
Thesis for obtaining the title of Doctor of Engineering of the Faculties of Natural Sciences and

Technology of Saarland University

Statistical Learning Techniques for Text

Categorization with Sparse Labeled Data

Georgiana Ifrim

Supervisor:

Prof. Dr.-Ing. Gerhard Weikum

Max-Planck Institute for Informatics

Saarbrücken, Germany

2009

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Acronym

https://core.ac.uk/display/196651399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Dean: Prof. Dr. Joachim Weickert
Faculty of Mathematics and Computer Science
Saarland University
Saarbrücken, Germany

Colloquium: 27 February 2009
Max-Planck Institute for Informatics
Saarbrücken, Germany

Examination Board

Supervisor and Prof. Dr.-Ing. Gerhard Weikum
First Reviewer: Databases and Information Systems Group

Max-Planck Institute for Informatics
Saarbrücken, Germany

Second Reviewer: Prof. Dr.-Ing. Thomas Hofmann
Director of Engineering
Google Inc.
Zürich, Switzerland

Third Reviewer: Prof. Dr.-Ing. Tobias Scheffer
Department of Computer Science
University of Potsdam
Potsdam, Germany

Chairman: Prof. Dr.-Ing. Andreas Zeller
Department of Computer Science
Saarland University
Saarbrücken, Germany

Research Assistant: Dr. Martin Theobald
Databases and Information Systems Group
Max-Planck Institute for Informatics
Saarbrücken, Germany

iii

Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbständig und ohne Be-
nutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen Quellen oder
indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form in einem
Verfahren zur Erlangung eines akademischen Grades vorgelegt.

Saarbrücken, den 03. März 2009

(Unterschrift)

Acknowledgements

The work environment at the Max-Planck Institute for Informatics is truly special. One is sur-
rounded by very smart and interesting people who are genuinely curious about difficult scientific
problems, as well as difficult problems facing our current world.

First and foremost I would like to thank my supervisor Prof. Gerhard Weikum, who plays a
very big role in making the MPII such an exciting work environment. He was always there listening
to my ideas, giving guidance and support toward interesting and promising research directions, and
most of all sharing his optimistic and mature approach toward solving problems, which made it so
much easier to cope with the PhD life challenges.

I would also like to thank my office colleagues, Fabian Suchanek and Gjergji Kasneci. It was
really a pleasure to share the office with you guys. I always enjoyed both our technical and our
philosophical discussions, and most of all your openness toward approaching challenging problems.
I am grateful to my husband and colleague Deepak Ajwani, for always patiently listening to my ideas
and many times coming up with a fresh view on the issues. Many thanks to my collaborators Maya
Ramanath and Gökhan Bakır, working with you was a very rewarding experience. Thanks to my
colleagues Christos Tryfonopoulos, Ralitsa Angelova and Julia Luxenburger for their suggestions
and support during the course of this work.

Last but not least, I am grateful to the International Max Planck Research School for its
financial support during these years, and for always encouraging a productive research environment.

v

Abstract

Many applications involve learning a supervised classifier from very few explicitly labeled training
examples, since the cost of manually labeling the training data is often prohibitively high. For
instance, we expect a good classifier to learn our interests from a few example books or movies
we like, and recommend similar ones in the future, or we expect a search engine to give more
personalized search results based on whatever little it learned about our past queries and clicked
documents.

There is thus a need for classification techniques capable of learning from sparse labeled data, by
exploiting additional information about the classification task at hand (e.g., background knowledge)
or by employing more sophisticated features (e.g., n-gram sequences, trees, graphs). In this thesis,
we focus on two approaches for overcoming the bottleneck of sparse labeled data.

We first propose the Inductive/Transductive Latent Model (ILM/TLM), which is a new
generative model for text documents. ILM/TLM has various building blocks designed to facili-
tate the integration of background knowledge (e.g., unlabeled documents, ontologies of concepts,
encyclopedia) into the process of learning from small training data. Our method can be used for
inductive and transductive learning and achieves significant gains over state-of-the-art methods for
very small training sets.

Second, we propose Structured Logistic Regression (SLR), which is a new coordinate-wise
gradient ascent technique for learning logistic regression in the space of all (word or character)
sequences in the training data. SLR exploits the inherent structure of the n-gram feature space
in order to automatically provide a compact set of highly discriminative n-gram features. Our
detailed experimental study shows that while SLR achieves similar classification results to those
of the state-of-the-art methods (which use all n-gram features given explicitly), it is more than an
order of magnitude faster than its opponents.

The techniques presented in this thesis can be used to advance the technologies for automat-
ically and efficiently building large training sets, therefore reducing the need for spending human
computation on this task.

vii

Kurzfassung

Viele Anwendungen benutzen Klassifikatoren, die auf dünn gesäten Trainingsdaten lernen müssen,
da es oft aufwändig ist, Trainingsdaten zur Verfügung zu stellen. Ein Beispiel fuer solche Anwen-
dungen sind Empfehlungssysteme, die auf der Basis von sehr wenigen Büchern oder Filmen die
Interessen des Benutzers erraten müssen, um ihm ähnliche Bücher oder Filme zu empfehlen. Ein
anderes Beispiel sind Suchmaschinen, die sich auf den Benutzer einzustellen versuchen, auch wenn
sie bisher nur sehr wenig Information üeber den Benutzer in Form von gestellten Anfragen oder
geklickten Dokumenten besitzen.

Wir benötigen also Klassifikationstechniken, die von dünn gesäten Trainingsdaten lernen kön-
nen. Dies kann geschehen, indem zusätzliche Information über die Klassifikationsaufgabe ausge-
nutzt wird (z.B. mit Hintergrundwissen) oder indem raffiniertere Merkmale verwendet werden
(z.B. n-Gram-Folgen, Bäume oder Graphen). In dieser Arbeit stellen wir zwei Ansätze vor, um das
Problem der dünn gesäten Trainingsdaten anzugehen.

Als erstes schlagen wir das Induktiv-Transduktive Latente Modell (ILM/TLM) vor, ein neues
generatives Modell für Text-Dokumente. Das ILM/TLM verfügt über mehrere Komponenten, die
es erlauben, Hintergrundwissen (wie z.B. nicht Klassifizierte Dokumente, Konzeptontologien oder
Enzyklopädien) in den Lernprozess mit einzubeziehen. Diese Methode kann sowohl für induktives
als auch für transduktives Lernen eingesetzt werden. Sie schlägt die modernsten Alternativmetho-
den signifikant bei dünn gesäten Trainingsdaten.

Zweitens schlagen wir Strukturierte Logistische Regression (SLR) vor, ein neues Gradienten-
verfahren zum koordinatenweisen Lernen von logistischer Regression im Raum aller Wortfolgen
oder Zeichenfolgen in den Trainingsdaten. SLR nutzt die inhärente Struktur des n-Gram-Raums
aus, um automatisch hoch-diskriminative Merkmale zu finden. Unsere detaillierten Experimente
zeigen, dass SLR ähnliche Ergebnisse erzielt wie die modernsten Konkurrenzmethoden, allerdings
dabei um mehr als eine Größenordnung schneller ist.

Die in dieser Arbeit vorgestellten Techniken verbessern das Maschinelle Lernen auf dünn gesäten
Trainingsdaten und verringern den Bedarf an manueller Arbeit.

ix

Summary

Many applications involve learning a supervised classifier from very few explicitly labeled training
examples, since the cost of manually labeling the training data is often prohibitively high. For
instance, we expect a good classifier to learn our interests from a few example books or movies
we like, and recommend similar ones in the future, or we expect a search engine to give more
personalized search results based on whatever little it learned about our past queries and clicked
documents.

There is thus a need for classification techniques capable of learning from sparse labeled data, by
exploiting additional information about the classification task at hand (e.g., background knowledge)
or by employing more sophisticated features (e.g., n-gram sequences, trees, graphs). In this thesis,
we focus on two approaches for overcoming the bottleneck of sparse labeled data.

We first propose the Inductive/Transductive Latent Model (ILM/TLM), which is a new
generative model for text documents. ILM/TLM has various building blocks designed to facilitate
the integration of background knowledge (related to the domain of the labeled data) into the process
of learning from small training data. We advocate using external ontologies for instantiating the
structure of our latent model, rather than selecting an appropriate structure by time-consuming
model selection strategies. Such ontologies are currently growing and are freely available. We give
an Expectation-Maximization algorithm for learning the parameters of ILM/TLM. The parameter
space can be huge, but we propose pruning it by learning a prior on the model parameters based on
background knowledge. For example, if the training data is too sparse for learning robust parameter
values, a prior which relies on context-similarity in the given corpus and external sources, can help
improve the final predictions by 10%. Additionally, background knowledge, e.g., encyclopedia such
as Wikipedia, can be used to explicitly or implicitly extend the topic descriptions provided by
the training set. Empirical results show that the additional flexibility of ILM/TLM offered by its
various building blocks results in improved classification results for small training sets, as compared
to other state-of-the-art classifiers. Additionally ILM/TLM has the advantage of interpretability
and robustness to training/test distribution shifts. We analyze different ways of setting parameters,
and the effect of each building block on the overall model performance. Last but not least, we
show that taking advantage of unlabeled data, which is abundantly available in many applications,
improves the results of our model.

Second, we propose Structured Logistic Regression (SLR), which is a new coordinate-wise
gradient ascent technique for learning logistic regression in the space of all (word or character)
sequences in the training data. SLR exploits the inherent structure of the n-gram feature space
in order to automatically provide a compact set of highly discriminative n-gram features. We

xi

xii

give theoretical bounds which quantify the “goodness” of the gradient for each n-gram candidate
given its length-(n-1) prefix. We show that by using the proposed bounds, we can efficiently work
with variable-length n-gram features both at the word-level and the character-level. Our detailed
experimental study shows that while SLR achieves similar classification results to those of the
state-of-the-art methods (which use all n-gram features given explicitly), it is more than an order
of magnitude faster than its opponents. We also consider the problem of learning the tokenization
of the input text, rather than explicitly fixing it in advance (as in the bag-of-words model). We
show that SLR can be used to learn arbitrarily sized discriminative n-grams, rather than n-grams
that are restricted to a hypothesized “good” size.

Given the flexibility of SLR for learning variable-length n-gram patterns, this model could be
applied to supervised information extraction for learning patterns that are indicative of binary
relations. Additionally, SLR can be applied to other domains such as biological sequence classi-
fication, where mining variable-length sequences is of particular importance. Theoretical results
similar to those presented in this thesis for learning with sequences apply directly to trees or graph
representations (for example for XML documents), with only a few implementation modifications.
This is true because the simple monotonicity property needed by our proofs holds also in the case
of more complex structures such as trees and graphs.

The techniques presented in this thesis can be used to advance the technologies for automat-
ically and efficiently building large training sets, therefore reducing the need for spending human
computation on this task.

Zusammenfassung

Viele Anwendungen benutzen Klassifikatoren, die auf dünn gesäten Trainingsdaten lernen müssen,
da es oft aufwändig ist, Trainingsdaten zur Verfügung zu stellen. Ein Beispiel fuer solche Anwen-
dungen sind Empfehlungssysteme, die auf der Basis von sehr wenigen Buechern oder Filmen die
Interessen des Benutzers erraten müssen, um ihm ähnliche Bücher oder Filme zu empfehlen. Ein
anderes Beispiel sind Suchmaschinen, die sich auf den Benutzer einzustellen versuchen, auch wenn
sie bisher nur sehr wenig Information üeber den Benutzer in Form von gestellten Anfragen oder
geklickten Dokumenten besitzen.

Wir benötigen also Klassifikationstechniken, die von dünn gesäten Trainingsdaten lernen kön-
nen. Dies kann geschehen, indem zusätzliche Information über die Klassifikationsaufgabe ausge-
nutzt wird (z.B. mit Hintergrundwissen) oder indem raffiniertere Merkmale verwendet werden
(z.B. n-Gram-Folgen, Bäume oder Graphen). In dieser Arbeit stellen wir zwei Ansätze vor, um das
Problem der dünn gesäten Trainingsdaten anzugehen.

Als erstes schlagen wir das Induktiv-Transduktive Latente Modell (ILM/TLM) vor, ein neues
generatives Modell für Text-Dokumente. Das ILM/TLM hat verschiedene Komponenten, die es
erlauben, Hintergrundwissen in den Lernprozess mit einzubeziehen. Wir schlagen außerdem vor,
externe Ontologien zur Initialisierung des latenten Modells zu verwenden, anstatt die passende An-
zahl der verborgenen Variablen mit zeitaufwändigen Modellselektionsstrategien zu finden. Solche
Ontologien sind frei verfügbar und werden immer größer. Wir beschreiben einen Expectation-
Maximization-Algorithmus zum Lernen der Parameter des ILM/TLM. Der Parameterraum kann
sehr groß werden, aber wir zeigen, wie man ihn einschränken kann, indem man ein A-Priori-Modell
lernt, das durch das Hintergrundwissen bestimmt ist. Wenn beispielsweise die Trainingsdaten zu
dünn gesät sind, um robuste Parameter zu lernen, so kann ein A-Priori-Modell, das auf kontex-
tueller Ähnlichkeit im Korpus und externen Quellen beruht, die Vorhersagen um 10% verbessern.
Zusätzlich kann Hintergrundwissen (z.B. in Form der Online-Enzyklopädie Wikipedia) benutzt
werden, um die Trainingsdaten implizit oder explizit zu erweitern. Empirische Studien zeigen,
dass die Flexibilität des ILM/TLM mit seinen vielfältigen Komponenten die Klassifikationsergeb-
nisse im Vergleich zu anderen modernen Methoden bei dünn gesäten Trainingsdaten verbessert.
Wir untersuchen verschiedene Konfigurationen des Systems und die Auswirkungen jeder einzel-
nen Komponente auf die Gesamtperformanz. Schließlich zeigen wir auch, dass nicht Klassifizierte
Daten, welche in vielen Anwendungsfällen reichlich vorhanden sind, die Ergebnisse mit unserem
Modell noch verbessern können.

Zweitens schlagen wir Strukturierte Logistische Regression (SLR) vor, ein neues Gradienten-
verfahren zum koordinatenweisen Lernen von logistischer Regression im Raum aller Wortfolgen

xiii

xiv

oder Zeichenfolgen in den Trainingsdaten. SLR nutzt die inhärente Struktur des n-Gram-Raums
aus, um automatisch hoch-diskriminative Merkmale zu finden. Wir beweisen theoretische Schran-
ken für die Güte der Gradienten aller n-Gramme, die mit einem gegebenen (n-1)-stelligen Präfix
anfangen. Mithilfe dieser Schranken kann unsere Methode effizient auf n-Grammen mit variabler
Länge arbeiten – sowohl auf der Zeichen-Ebene als auch auf Wort-Ebene. Unsere detaillierten Ex-
perimente zeigen, dass SLR ähnliche Ergebnisse erzielt wie die modernsten Konkurrenzmethoden,
allerdings dabei um mehr als eine Größenordnung schneller ist. Wir betrachten auch das Problem,
die lexikalische Analyse des Eingabetexts zu lernen, anstatt sie im Vorhinein festzulegen (wie es
beim Bag-of-Words-Modell geschieht). Wir zeigen, dass SLR beliebige diskriminative n-Gramme
lernen kann, und nicht nur n-Gramme einer im Voraus festgelegten Maximal-länge.

Da SLR mit n-Grammen variabler Länge umgehen kann, könnte das Modell in der unüber-
wachten Informationsextraktion eingesetzt werden, um Textmuster zu lernen, die binäre Relationen
ausdrücken. SLR kann auch in anderen Gebieten eingesetzt werden, z.B. bei der Klassifizierung von
biologischen Sequenzen, wo das Auffinden von n-Grammen mit variabler Länge eine besondere Rol-
le spielt. Die hier vorgstellten theoretischen Ergebnisse lassen sich mit wenigen Änderungen auch
auf Baum- oder Graph-Darstellungen (wie beispielsweise XML-Dokumente) übertragen, da die ein-
fache Monotonie-Bedingung, auf der unsere Beweise basieren, ebenso für komplexere Strukturen
wie Bäume und Graphen gilt.

Die in dieser Arbeit vorgestellten Techniken verbessern das Maschinelle Lernen auf dünn gesäten
Trainingsdaten und verringern den Bedarf an manueller Arbeit.

Contents

1 Introduction 1
1.1 Text Categorization: A Short Overview . 1
1.2 Text Categorization with Sparse Labeled Data . 3
1.3 Contributions of this Thesis . 5
1.4 Outline of the Thesis . 7

2 Related Work 9
2.1 Background Knowledge for Text Classification . 9

2.1.1 Inductive Learning . 9
2.1.2 Transductive Learning . 11

2.2 Rich Document Representations for Text Classification 16
2.2.1 N-gram Features, Parse Trees, Semantic Kernels 16
2.2.2 Learning with Variable-length N-grams . 18

3 Background Knowledge for Text Classification and Clustering 21
3.1 Introduction . 21
3.2 Latent Model . 22

3.2.1 Introduction . 22
3.2.2 Generative Model . 23
3.2.3 Learning Model Parameters . 24
3.2.4 Problems and Solutions . 28

3.3 Inductive Learning . 31
3.4 Transductive Learning . 31
3.5 Experimental Results . 32

3.5.1 Methodology . 32
3.5.2 Test Collections . 32
3.5.3 Performance Measures . 34
3.5.4 Parameter Analysis of the Inductive Latent Model 35
3.5.5 Parameter Analysis of the Transductive Latent Model 44
3.5.6 Parameter Analysis of the Latent Model: Discussion 49
3.5.7 Comparison to Other Techniques . 50
3.5.8 Other Aplications: Topic-driven Clustering 60

xv

xvi CONTENTS

3.6 Conclusion . 63

4 Rich Input Representations: Learning with Variable-Length N-gram Features 65
4.1 Introduction . 65
4.2 Structured Logistic Regression . 68

4.2.1 Logistic Regression Model . 68
4.2.2 Coordinate-wise gradient ascent in the space of all n-gram sequences 68
4.2.3 Algorithm . 71
4.2.4 Implementation Issues . 74

4.3 Experimental Results . 76
4.3.1 Methodology . 77
4.3.2 Test Collections . 77
4.3.3 Parameter settings . 78
4.3.4 Results . 79

4.4 Other Applications: Spam Filtering . 85
4.5 Using Explicit Regularization on the Objective Function 87

4.5.1 Empirical Results using SLR with L1 Regularization 90
4.6 Speeding Up SLR by Using Second Order Information 93

4.6.1 Empirical Results using SLR with Second Order Information 96
4.7 Conclusion . 97

5 Conclusion 99
5.1 Summary . 99
5.2 Future Research Directions . 100

List of Figures 101

List of Algorithms 102

List of Tables 105

References 106

Chapter 1

Introduction

1.1 Text Categorization: A Short Overview

Text Categorization (also known as Text Classification) is the process of organizing text documents
into pre-defined categories according to the documents’ content. More explicitly, given a set of
example documents for each category, we want to automatically learn the characteristics of each
category, or learn a model of each category, which we can then apply to assign categories to a new
(unlabeled) document. The models of each category learned this way are also called classifiers.

Until the late 1980’s, classifiers were built manually by a set of expert users, who needed
to invest a huge amount of time into finding a comprehensive set of rules for characterizing the
given set of categories. Each set of rules per category would then be used to decide whether the
respective category should be assigned to an unlabeled document. With the sudden increase in
the amount of digital information in the late 1990’s, this type of manual system building became
infeasible, since manually designing application-dependent rules is both slow and very expensive.
The new approaches that took over around this time were based on machine learning techniques
and relied on automatically learning characteristics of each category based on a set of labeled
example documents.

Text categorization has many applications, in various fields and for various types of data.
Many problems related to data storage, management and retrieval can be formulated in terms of
text classification. The most common example of text classification is that of organizing news
according to their topic, e.g. into Sports, Politics, Economics or categorizing large Web document
collections into Web directories for easier browsing and retrieval, e.g. the Yahoo Directory [CM07],
the Wikipedia free encyclopedia [Wik], etc. The use of text categorization is nevertheless much
wider, ranging from automated or computer-aided patient diagnosis in hospitals [RRN+06], where
classifiers learned on the medical history of previous patients can help the doctor decide the type
of treatment for a new patient, to automatically providing movies or book recommendations for
on-line shopping portals such as Amazon [KB07].

From the wide spectrum of applications of text categorization we further mention:

• Product categorization [FM01]: Large on-line shopping portals such as eBay automatically or-

1

2 1. Introduction

ganize their product descriptions into categories for facilitating the browsing of their products
for the customers.

• Search personalization [KSG+03, LEW08]: Many search engines keep track of queries and
users browsing activities in order to improve their search experience, by matching retrieved
information content to a user’s profile. Advertisement classification is another important
application. Classifying ads can help targeted advertisement, a very important source of
revenue for most search engines.

• Document filtering for digital libraries [Seb01, Zha04]: Categorizing documents based on their
content can facilitate the search and browsing of documents in digital libraries. Additionally,
in publish-subscribe systems, users can register to be notified when new documents belonging
to certain categories arrive in the system [MFP06].

• Authorship detection [HF95, SKF00, SKS07]: Typically employed for fraud detection or for
texts which do not bare the name of the original author.

• Product reviews classification [PLV02, PL04, ZZ06, ZV06]: Organizing the user feedback
regarding certain products or services into positive, negative and even neutral categories.
Most users first read other users’ reviews before deciding to purchase a certain product.
Automatically organizing the user feedback can help both the company and the users to
better assess the products on sale.

• Analyzing public opinion or sentiment mining [NH06, ZZ06, ZJ08, YNBN03, WBB+03]: Min-
ing data about companies, individual products and services or even political polls.

• E-mail filtering [KPA08, BS07, BFC+06, SACY04, RZ04]: Automatically filtering out unso-
licited e-mail (i.e., spam).

The most widely used document representation for text categorization is that of a bag-of-words,
in which only the distinct words of each document are preserved, while discarding all the order
information. For most topical classification tasks, e.g., applications in which there is a direct
correlation between individual words and the category name or meaning, such a representation
suffices for capturing enough of the semantics of the document for achieving high classification
quality. For non-topical classification, where there is no direct relation between individual keywords
and the categories of interest, such representation may be insufficient, and a lot of research has
gone into investigating the use of other representations (e.g. n-gram representation) for better
capturing the needs of such applications [HF95, KNS97, LM02, PSW04, ZL06, IBW08].

The simplest example of a fully automated classifier is the Naive Bayes (NB) classifier [MN98a],
which uses frequency statistics of the words in the document set of each category, and a probabilistic
model for assigning categories to documents. Naive Bayes makes assumptions about the way
the input data is distributed: it assumes documents in each topic are generated according to a
given distribution (e.g., Multinomial), and that words in a document are generated conditionally
independent of other words, given the category label. Because NB makes assumptions about the
input data distribution it belongs to the class of generative classifiers. On the positive side this
classifier is very easy to implement, very fast, and reasonably accurate in practice, which led to its

1.2 Text Categorization with Sparse Labeled Data 3

wide spread use in research on text classification [Lew98, MN98a, RSTK03]. On the negative side,
its probability estimates are not accurate, and it is outperformed by more sophisticated classifiers
[Joa98, CNM06].

Another type of classifiers which became the de facto method of choice because of its high
accuracy are Support Vector Machines (SVM) [Vap98, Joa98]. SVM take a different approach to
data classification, aiming at directly inferring a mapping between documents and their categories,
without relying on intermediate assumptions about the data generation process. SVM can be
regarded as a geometric approach in which documents are seen as vectors in a vector space spanned
by all the distinct words in the collection. Learning an SVM classifier for the case of two categories
is then equivalent to finding the hyperplane that separates the two categories with the largest
margin. For more than two categories, several classifiers (one per category) are learned. SVM
falls in the category of discriminative classifiers; it does not make any assumptions on or any
attempt at modeling the input distribution. SVM proved to be more accurate than Naive Bayes
in many classification tasks [Joa98], which led to the popular belief that discriminative classifiers
are preferable over generative classifiers.

Generative classifiers tend to be better when training data is small, and are more natural for
treating missing data (learning from labeled and unlabeled data) or integrating assumptions about
the model structure and prior parameter values. Discriminative classifiers are instead better when
training data is plentiful, or when it is preferable to not make any assumptions about the way the
input data was generated. At the same time discriminative approaches are more sensitive to noisy
data [LB03]. Therefore a lot of work has investigated the benefits of combining these two type of
approaches [JH99, BT04, RSNM03, NJ01].

1.2 Text Categorization with Sparse Labeled Data

Most existing classifiers can achieve very high classification accuracy when training data is plentiful
(i.e., in the order of thousands). But, for most applications, labeled training data is difficult to
provide in large numbers, since the labels are manually or at best semi-automatically acquired,
which makes this process slow and costly. Moreover, digital data is growing at a very fast pace,
making it harder to provide a representative set of labeled samples, to cover most aspects of the
categories of interest. Therefore a lot of work has gone into studying which classifiers are more
robust when training data is sparse and into various alternatives for enriching small amounts of
labeled data. In this section we give a short summary of several existing approaches to overcoming
the bottleneck of sparse labeled data.

Active Learning [MN98b, TKK00] tries to overcome the labeled data sparsity problem, by
assuming that a large pool of unlabeled documents is available for the application of interest,
and by allowing the learner to ask a human user to label a few carefully selected documents that
are considered most relevant for learning a particular task. The learner’s choice of documents to
present to the user would typically prioritize documents for which the learner’s label assignment is
most uncertain, but can also include other criteria of importance. The parallel sometimes used in
the literature between passive learning (where all the training data is labeled) and active learning,
is that of a student that sits and listens to a teacher while an active learner is a student that asks
the teacher questions, listens to the answers, and asks further questions based upon the teacher’s

4 1. Introduction

response. Active learning was shown to significantly decrease the amount of labeled data necessary
for achieving a certain classification accuracy [MN98b, TKK00, BBL06, Das04, DHM08, DH08].

Semi-supervised Learning [Zhu08] refers to the use of both labeled and unlabeled data for train-
ing. It contrasts supervised learning (all data is labeled) and unsupervised learning (all data is
unlabeled). Labeled instances are often expensive while unlabeled data may be relatively easy
to collect. Semi-supervised learning addresses this problem by using large amounts of unlabeled
data, together with the labeled data, to build better classifiers. It has been shown that semi-
supervised learning typically requires less human effort and can provide higher classification ac-
curacy [NMTM00a, Zhu08, CSZ06] if there is a good match between the problem structure and
the model assumptions. Semi-supervised learning methods use unlabeled data to either modify or
re-prioritize hypotheses obtained from labeled data alone. EM (Expectation-Maximization) with
generative mixture models, self-training, co-training, transductive support vector machines, and
graph-based methods are a few examples of semi-supervised learning methods.

Transductive Learning [Zhu08, CSZ06] can be understood as a more specialized form of semi-
supervised learning where the unlabeled test data is available during training. It is a simpler
problem than inductive learning (where only the labeled training data, but no detailed knowledge
of the test data is available during training). Research literature [Zhu05] has used the analogy that
transductive learning is more like a take-home exam, while inductive learning is more like an in-
class exam. An example of transductive learning arises in the context of information retrieval with
relevance feedback [Bou02]. The unlabeled test set is stored in the database, and based on some
labeled (i.e relevant and non-relevant) samples from the user, a classifier based on the labeled data
and the entire unlabeled set can be built for finding more relevant documents. A lot of research work
has investigated the benefits of transductive learning [Joa99b, Joa03, Zhu05, Bou02, EYG05, IW06].

Using background knowledge [ZH00, ZH01, ZH02, Zel02, IW06] for alleviating the labeled data
sparsity falls in the semi-supervised learning type of approaches. For example, ontologies of con-
cepts can help in coping with the ambiguity of words, by considering their usage in context; prior
information (e.g. from an encyclopedia) about the categories of interest can help provide additional
knowledge on model parameters [IW06]. Moreover, background knowledge can be used to bridge
training and test samples [Zel02], i.e. training samples are related to test samples in the context
of the background knowledge.

Transfer Learning [DYXY07, RMKD05, RK07, WD04] focuses on re-using labeled data from a
different task, in order to reduce the need for labeled data for a new classification task, in a related
domain. One example of transfer learning is that of learning prior distributions over classifier
parameters. Achieving significant levels of transfer learning across tasks is a central problem in
machine learning [tra, Car97]. However, transfer learning may actually hinder performance if the
tasks are too dissimilar [RMKD05]. Therefore, one challenge for transfer learning research is to
develop approaches that detect and avoid negative transfer using very little data from the target
task.

Self-taught Learning [RBL+07, DYXY08] is a new machine learning framework for using unla-
beled data in supervised classification tasks. The main difference from semi-supervised learning is
that the unlabeled data is not assumed to follow the same class label distribution as the labeled
data. The main idea behind this type of learning paradigm, is that one uses the unlabeled data
to discover basic features, which are then used for a better representation of the labeled data,

1.3 Contributions of this Thesis 5

together with a supervised classification algorithm. Therefore, one can use a large number of un-
labeled images (or audio samples, or text documents) randomly downloaded from the Internet to
improve performance on a given image (or audio, or text) classification task. Such unlabeled data
is easier to obtain than in typical semi-supervised or transfer learning settings.

For many applications of text categorization in which individual words are not highly correlated
with the categories of interest, changing the representation of documents from the simple bag-of-
words to more sophisticated representations, e.g. n-grams of words, may be required. For example,
in applications such as opinion mining [NH06, ZZ06] and spam filtering [KPA08, BS07], capturing
sequences of words or characters rather than individual tokens (words or characters) may help
improve the classification accuracy. Many studies have analyzed various document representations,
ranging from the simple bag-of-words to n-gram representations [PS03, PSW04], syntactic parse
trees [Mos06, KM04] or even more sophisticated semantically annotated structures [GM06b, BM07].
In a few cases it was noted that richer representations may help, but more often the simple bag-
of-words representation turned out to be the most accurate. The reason for such results may have
been that typically certain restrictions had to be imposed on the richness of the representation
in order to avoid the combinatorial explosion of the feature space. Using unrestricted n-grams of
variable length, or syntax parse trees results in very large feature spaces, and therefore it leads to
computational challenges.

1.3 Contributions of this Thesis

Inductive and Transductive Text Classification using Explicit

Knowledge Models

We present a generative model for inductive and transductive learning, coined ILM/TLM (In-
ductive/Transductive Latent Model), which uses background knowledge for improving the
quality of classification when the training data is sparse. Our algorithm uses ontologies of concepts
in order to learn the structure of the model, and available unlabeled documents and encyclopedia
in order to learn a prior distribution of model parameters.

Our generative model treats groups of related words as together describing a concept, while
groups of concepts together describe a topic. In order to capture the dependencies between words,
concepts and topics, ILM/TLM postulates the following generative process: words in documents
are generated by concepts which in turn are generated by topics. This simulates the intuition that
topics are described by finer grained concepts which in turn are described by several words. In order
to estimate the word-concept and concept-topic mappings, we rely on an iterative Expectation-
Maximization (EM) procedure for maximum likelihood estimation from the given training set.
Additionally, for improving the parameter estimation, we use several background knowledge re-
sources to infer a priori word-concept and concept-topic mappings. We show that using background
knowledge for the application of interest improves classification accuracy, as compared to using just
a small set of labeled training examples. We also show that our model is competitive to state-
of-the-art classification techniques, and that for small training data our technique outperforms its
competitors. This work has been published in [ITW05] and [IW06].

6 1. Introduction

The process of creating ontologies was until recently a manual and therefore very tedious and
slow process [Fel99]. We contributed to learning ontologies automatically by developing techniques
for supervised information extraction from unstructured text [SIW06]. Once we know how to
automatically create large and accurate ontologies, it is necessary to be able to retrieve information
from such large structures in an efficient and meaningful way. In [KSI+08b] and [KSI+08a], we
presented work on querying and retrieving ranked information from ontologies.

Transductive Learning for Topic-driven Clustering. Clustering algorithms typically find
the structure present in a given dataset, in terms of groups of highly similar documents. The clusters
found by such algorithms do not always correspond to the user needs, e.g. the user may desire
to specify what type of grouping she is interested in and even specify a few keywords describing
each of the groups or categories she would like to get from the clustering algorithm. This setting
falls to some degree in the area of semi-supervised clustering approaches, but the problem such
techniques may face is the extreme sparsity of explicitly labeled examples, since here the training
data is given as very brief keyword descriptions of the categories of interest. In this setting,
using auxiliary knowledge resources in order to enrich the original training set, can help improve
the clustering quality compared to the solution that just relies on user provided keywords. This
framework was coined topic-driven clustering in [ZK05]. We show that our transductive generative
model can provide good results for such a task, in particular by retraining the model on its previous
predictions, as a form of iterative self-training.

Structured Logistic Regression

The standard bag-of-words representation is widely used in text categorization as an explicit to-
kenization of the training text, before employing learning algorithms. Typically, some language
dependent pre-processing is employed, such as stop-words removal or stemming. Furthermore, a
feature selection step [YP97] is often crucial for computational efficiency and generalization. Such
feature engineering often requires detailed knowledge about the language of the text to be cate-
gorized. In practice, this entails major tuning of the classifiers in order to find the right unigram
features.

In this thesis we present a new learning algorithm for text classification which uses variable-
length n-gram sequences as features. As opposed to prior work, we do not restrict the length of
the n-gram features; in principle our n-gram features can be as long as the longest document.
We consider both word-level n-grams to capture phrases, and character-level n-grams to capture
morphological variations (stemming, transcription from non-Latin alphabets, misspelling, etc.).

Introducing n-grams as features of a classification model confronts the learner with a combinatorial-
explosion problem and a quality-efficiency trade-off. Our solution, coined SLR (for Structured
Logistic Regression), incorporates the best n-gram features, for variable-length n, into the
feature space while staying highly efficient in its training procedure. To this end, we develop a
coordinate-wise gradient ascent technique for maximizing the logistic regression likelihood of the
training data. Our method exploits the inherent structure of the n-gram feature space in order to
automatically provide a compact set of highly discriminative n-gram features. Instead of comput-
ing the gradient value at each coordinate (dimension) corresponding to a possible n-gram feature,
we search for the n-gram feature which gives the highest value of the gradient in a given iteration.

1.4 Outline of the Thesis 7

The vector found this way is non-orthogonal to the full gradient vector, thus guaranteeing that it
is a good direction to follow in order to maximize the objective function.

To determine the feature with the best gradient value as fast as possible, we derive a theoretical
bound which quantifies the “goodness” of the gradient for each n-gram candidate given its length-
(n−1) prefix. This way we can efficiently decide whether it is worthwhile advancing the search in a
particular part of the search space. The effect is that we can prune large parts of the search space,
resulting in a practically viable method even for large n. The result of our learning algorithm is a
sparse linear model learned in the space of all possible n-grams in the training data.

We present experiments that compare our SLR method against the state-of-the-art classifiers
BBR (a logistic regression method) [GLM06], SVMperf [Joa06] and LIBLINEAR [Lin08]. These
opponents are widely viewed as the best known methods for text classification, with fast training
procedures. We study a variety of configurations for three different real-life datasets: the opponents
can employ n-grams, with different choices of maximum n, and are tuned for each setting. The F1
measure for our method is comparable to that of the best opponent. In terms of training running
time, SLR is more than one order of magnitude faster than its opponents. Open source code for
SLR is available on-line at: http://www.mpi-inf.mpg.de/∼ifrim/slr. This work is presented
in [IBW08].

Spam Filtering. The task of blocking unsolicited e-mail is of vital importance. Text classifiers
trained on previously labeled e-mails can be used to automate this process. We show an application
of our SLR algorithm to spam filtering. Empirical results provide insight into the importance of
using variable-length n-grams when training spam filters.

Explicit Regularization and Newton-style extensions for SLR. We investigate several
extensions of SLR. First, we look into integrating explicit regularization of the objective function
into our learning algorithm. We propose new theoretical bounds and discuss the challenges such
modifications pose. We also give a theoretical analysis of using Newton-style updates for the
optimization inside SLR, and discuss some preliminary results with this approach.

1.4 Outline of the Thesis

Chapter 1 introduced the notion of text categorization and the various learning approaches designed
to solve the problem of learning robust classifiers when labeled training data is sparse. Chapter 2
discusses relevant prior work, and positions our contributions in the context of existing learning
approaches. Chapter 3 presents our generative learning model for inductive and transductive
learning, and gives a detailed analysis of the various building blocks of the model, and their
interactions and role in achieving high classification accuracy. We present experimental results
comparing our techniques to state-of-the-art classifiers and analyze their behavior for small training
datasets. Chapter 4 presents our novel algorithm for learning classifiers in the space of all n-gram
features in the training set. The same chapter presents theoretical and empirical evidence that our
algorithm achieves classification accuracy comparable to that of state-of-the-art classifiers, while
being orders of magnitude faster than existing algorithms. Chapter 5 concludes with a discussion
of our findings, and future work directions opened up by this dissertation.

Chapter 2

Related Work

2.1 Background Knowledge for Text Classification

2.1.1 Inductive Learning

Inductive learning paradigms assume that a manually labeled training set is given as input to the
text classifier. In this setting a model is learned on the given training set, in order to provide good
predictions on new samples. An open research problem in inductive learning for text classification
concerns reducing the training set size required for achieving good classification results. Recent
research efforts addressing this problem focused on the usage of more complex kernel functions for
text classifiers such as SVM (string kernels, [LSST+01]), designing more effective document simi-
larity measures based on prior knowledge, e.g. by including semantic knowledge from WordNet or
Wikipedia in the kernel function [BCM05, CBM06, WD08]), better representations of documents,
e.g., feature engineering, [BH04a, SM99], or supplying training with background knowledge from
the Web (domain ontologies, encyclopedia, e.g. Wikipedia) [IW06], [DLM+06].

The work presented in [FC04] investigates the behavior of several state-of-the-art text classi-
fiers (Naive Bayes, Logistic Regression and Support Vector Machines) for small training set sizes.
The authors study the effect of several factors on classification quality: training set size, feature
selection, the mismatch between the training and test distributions and different ratios of positives
versus negatives in the training set. Their work extends the work presented in [WP03] which
studies the behavior of decision tree classifiers for varying distributions of the training samples
over classes. In [WP03] the authors show that accounting for the mismatch between the training
and the test distribution, can considerably improve the classification results. The work in [FC04]
moves a bit further by analyzing several other factors, such as the training set size and feature
selection. One of their main findings is that when the training set contains a low percentage
of positive samples as compared to negative samples (for the two-class case) in the training set,
the simple Naive Bayes classifier outperforms SVM. The latter classifier is known for providing
high accuracy classification results when training data is plentiful and the number of positives is
reasonably high (a few hundreds). This work also shows that SVM is more sensitive than Naive
Bayes to a mismatch in data distribution between the training and the test set. When the per-

9

10 2. Related Work

cent of positives is high enough, SVM is the dominant classifier. Therefore, for small training
sets with a few representatives from the positive set, Naive Bayes seems to be a better choice,
while for large enough training sets with enough positive samples, SVM is the dominant classi-
fier. Several other papers [NJ01, KT06, RSNM03, BT04, CYM08, LBM06] also pointed out the
dominance of generative classifiers over discriminative classifiers for small training sets. Recently,
a lot of research work has focused on the mismatch between the training and the test distribution
[BBS07, SKM07, PSM07, SS07] which negatively affects most classifiers.

In Chapter 3 of this thesis we present a generative model for learning with small training data,
which uses external resources such as ontologies and encyclopedia, in order to better estimate its
parameters [Ifr05, ITW05]. Somewhat related to our model is the work on Latent Semantic Index-
ing (LSI) [DDF+90], Probabilistic Latent Semantic Analysis (PLSA) [Hof01] and Latent Dirichlet
Analysis (LDA) [BNJ03]. These techniques aim at capturing synonymy (words sharing the same
meaning) and polysemy (the contextual change of meaning of certain words) by treating groups
of co-occuring words as a coherent unit of meaning, or so called concept. The concepts in these
models are mathematical notions, and can be interpreted as dimensions of the original documents
and terms, in a new concept-space which captures the variations of word usage. Typically the
number of concepts has to be provided a priori, i.e., the number of dimensions of the new space
has to be fixed in advance. Recent work has focused on techniques for selecting the number of
concepts automatically [BGJT04, TJBB06]. LSI, PLSA, LDA and the models extending these ap-
proaches are typically unsupervised learning techniques, i.e. statistical models which capture the
characteristics of text, but do not have the goal of mapping text to a given set of categories, and do
not require labeled samples. In contrast to this work, our Inductive Latent Model (ILM) technique
aims at learning a mapping from the given set of labeled examples to the given set of categories.
ILM selects its latent model structure based on named concepts from a given ontology, which are
carefully selected to reflect the domain of the training data. This helps both in learning a robust
structure of the probabilistic model, but also in the interpretation of results, since the individual
concepts and their relation to word features and the given set of categories can be investigated for
understanding the decisions of the classifier.

Prior work on text classification with small training sets has also focused on exploring concepts
from given ontologies in order to enrich the bag-of-words feature space [BH04a, SM99, TSW03].
After the feature extension step, the extended representation is given as input to a standard super-
vised classifier, e.g. SVM. The typical outcome of such feature engineering approaches is that they
rarely outperform the simple bag-of-words representation. More sophisticated approaches which
involve boosting weak hypotheses obtained using PLSA techniques [CH03] show some promise for
the direction of extending the word feature space with domain specific concepts. The work of
[GM05] uses a combination of feature generation, feature selection, and domain adaptation from a
large web directory to improve classification of diverse documents.

Besides feature engineering efforts, another direction of work has investigated the usage of
background knowledge for improving text classification results when training data is small [ZH00,
ZH01, ZH02, DLM+06]. The work of [ZH00, ZH01, ZH02] investigates various ways of using
unlabeled data or other external background knowledge resources for improving classifiers learned
from small training data alone. For example, [ZH00] investigates the usage of unlabeled data for
improving short text classification. Rather than attempting to label the unlabeled data and then

2.1 Background Knowledge for Text Classification 11

add these samples to the training data, the authors propose treating the unlabeled data as a bridge
between training and test examples. If certain training examples are similar to unlabeled documents
which are similar to some test documents, than these training documents should contribute more
to predicting the category of those test samples. In some sense the unlabeled data plays the role
of capturing co-occurrence of words in free flowing text from a similar domain as the training and
test data. A similar idea is used in [ZH01, ZH02], where background knowledge, i.e. large amounts
of information available about a specific problem on the World Wide Web, is used for assessing
document similarity therefore achieving a bridging effect on the training and test samples. What
is needed for this approach is an unlabeled corpus of related data in addition to the training data.
As a concrete example of learning with background knowledge, the authors mention the following
classification task. Suppose that we wish to classify the names of companies by the industry that
the company is part of. A company such as Watson Pharmaceuticals Inc would be classified with
the label drug, and the company name Walmart would be classified as type retail. Although we
many not have numerous training examples, and the training examples are very short, we can find
other data that is related to this task. Such data could be articles from the business section of an
on-line newspaper or information from company home pages.

Similar ideas are investigated in the work of [DLM+06]. They analyze the benefit of using
background knowledge for learning informative prior distributions for the parameters of a logistic
regression model. The hypothesis is that when training data is small, relying on prior parameter
distributions learned from data related to the given training data can be beneficial for the classi-
fication quality. As examples of background knowledge the authors mention category descriptions
meant for manual indexers, reference materials on the topics of interest, lists of features chosen
by a domain expert, etc. The authors also make the point that integrating background knowledge
by specifying prior distributions using a Bayesian framework should be more effective than di-
rectly adding it as training samples, due to the diverse and non-document-like forms of the domain
knowledge texts. Their empirical results also support this hypothesis: treating domain texts as ar-
tificial training examples had an erratic impact, sometimes improving and sometimes substantially
harming effectiveness. On the other hand, converting the domain texts to priors, almost always
improved effectiveness.

2.1.2 Transductive Learning

In the Transductive learning paradigms, the data collection to be automatically labeled (i.e. test
data) is available during training time. Some examples of real-life applications of transductive text
classification vary from organizing book descriptions into pre-defined categories (e.g. by the popular
Amazon portal), to classifying crawled Web pages into topic directories for more convenient access
(e.g. by search engines Google or Yahoo!), or categorizing encyclopedia articles for better search
and browsing (e.g. the largest on-line encyclopedia Wikipedia). Similar to inductive learning, the
bottleneck for transductive classification stems from the difficulty of providing sufficient manually
labeled data. Being able to harness the feature distributions and relations among the available
unlabeled documents is thus an important asset to improve the classifier. Another potentially
beneficial asset is additional knowledge about concepts, words and phrases that express concepts,
and the semantic relations among concepts (e.g., hyponymy). Such knowledge sources may be

12 2. Related Work

given in the form of an ontology or thesaurus, such as WordNet [Fel99], Yago [SKW08], Wikipedia
[Wik], etc.

There are many approaches to transductive learning. Transductive SVM (TSVM) were intro-
duced by [Vap98] and first applied to text classification by [Ben99, Joa99b]. They exploit the
structure in both training and test data for better positioning the maximum margin hyperplane.
Essentially TSVM use the unlabeled data additional to the training data to find lower density
regions in the document space. Assuming that lower density regions correspond to separation be-
tween categories, TSVM find the maximum margin hyperplane passing through such a low density
region. The TSVM implementation presented in [Joa99b] suffers from the dependency on the true
ratio of positives and negatives in the test set. Typically an estimate of this ratio is computed
from the training set, but a big mismatch between the training estimate and the true ratio can
lead to poor classification performance. Recent work [CWD03] tried to avoid this dependency, by
modifying the learning algorithm such that the ratio of positives to negatives in the test set is not
required explicitly. The authors coin this algorithm Progressive Transductive SVM (PTSVM) and
show empirically that by avoiding the requirement for explicit knowledge on the positive/negative
ratio gives promising results. Nevertheless, PTSVM has to pay a bit in complexity for avoiding
the need for knowing the correct ratio, therefore when the number of unlabeled data is large, it
may be even slower than TSVM during training.

Since TSVM requires solving a combinatorial optimization problem, extensive research ef-
forts have been devoted to efficiently finding an approximate solution. Recent work presented
in [XJZ+08] surveys the existing approaches for efficiently solving TSVM and proposes a new algo-
rithm which works via a convex relaxation, which converts the NP-hard problem to a semi-definite
programming scheme. We first mention a few of the previous approaches and then give some details
on the algorithm presented in [XJZ+08]. The popular version of TSVM proposed in [Joa99b] uses
a label-switching-retraining procedure to speed up the computation. In [CZ05], the hinge loss in
TSVM is replaced by a smooth loss function, and a gradient descent method is used to find the
decision boundary in a region of low density. Chapelle et al. [CCZ06] employ an iterative approach
for TSVM. It begins with minimizing an easy convex objective function, and then gradually ap-
proximates the objective of TSVM with more complicated functions. The solution of the simple
function is used as the initialization for the solution to the complicated function. Other itera-
tive methods, such as deterministic annealing [SKC06] and the concave-convex procedure (CCCP)
method [CSWB06], are also employed to solve the optimization problem related to TSVM. The
main drawback of the approximation methods listed above is that they are susceptible to local
optima, and therefore are sensitive to the initialization of solutions. To address this problem, in
[CSK07], a branch and-bound search method is developed to find the exact solution. In [XS05], the
authors approximate TSVM by a semi-definite programming problem, which leads to a relaxation
solution to TSVM (noted as RTSVM), to avoid the solution of local optimum. However, both
approaches suffer from high computational costs and can only be applied to small sized data sets.

Compared with other semi-definite programming relaxation approaches for Transductive SVM,
the algorithm proposed in [XJZ+08] is computationally more efficient reducing the number of free
parameters from O(n2) to O(n) where n is the number of examples. The key idea of the presented
method is to approximate the non-convex optimization problem of TSVM by its dual problem. Nev-
ertheless, the worst-case computational complexity of their algorithm is O(n4.5), which is prohibitly

2.1 Background Knowledge for Text Classification 13

high for reasonably large datasets. Very recent work [ZWZ08] further advances the understanding
of efficient solutions for TSVM. The authors of [ZWZ08] mention their solution is inspired by the
work of Joachims on Linear (Inductive) SVM presented in [Joa06]. They propose a cutting plane
semi-supervised support vector machine (CutS3VM) algorithm, to solve the semi-supervised SVM
(S3VM) problem. The authors construct a nested sequence of successively tighter relaxations of
the original S3VM problem, and efficiently solve each optimization problem in this sequence by
using a constrained concave-convex procedure (CCCP). The authors prove theoretically that their
CutS3VM algorithm takes O(sn) time to converge, where n is the total number of samples in the
dataset and s is the average number of non-zero features, i.e. the sparsity.

Also relevant is the work of [ZO00], which shows theoretically and empirically that learning a
maximum margin from the unlabeled data in order to assign the labels (i.e. what TSVM does)
may be unreliable. The authors argue that in order for the unlabeled data to be useful for a
transductive learner, the data model p(x) must be parameter dependent. In the case of SVM,
a strong parameter dependency of p(x) is not necessary in order to work well in the supervised
setting. Therefore, the authors suggest that the prior success of TSVM may have been due to the
fortunate empirical setup in which there was indeed a reasonably large margin between in-class
and out-of-class members. For example, if the data is generated from two heavily overlapping
Gaussian, the decision boundary would go right through the densest region, and methods such as
TSVM would perform badly [Zhu08]. In this sitation, generative models which have a parameter
dependent data distribution may benefit more from the use of unlabeled data. Thus, it is very
important to match the problem structure with the model assumptions [Zhu08].

Generative approaches can exploit the information in the unlabeled collection for better estimat-
ing the generating distribution. Generative models are perhaps one of the oldest semi-supervised
learning method [Zhu08]. They assume a model p(x, y) = p(y)p(x|y) where x are document sam-
ples, y are categories or classes, and p(x|y) is an identifiable mixture distribution, for example
Gaussian mixture models. With large amount of unlabeled data, the mixture components can be
identified. One can think of the mixture components as soft clusters. Nigam et al. [NMTM00a]
apply the EM algorithm on mixture of multinomials for the task of text classification using labeled
and unlabeled data. They showed the resulting classifiers perform better than those trained using
only labeled data. If the mixture model assumption is correct, unlabeled data is guaranteed to
improve accuracy [Zhu08, CC95]. However if the model is wrong, unlabeled data may actually hurt
accuracy. This has been observed by multiple researchers. Cozman et al. [CCC03] give a formal
derivation on how this might happen. It is thus important to carefully construct the mixture model
to reflect reality. For example in text categorization a topic may contain several sub-topics, and
will be better modeled by multiple multinomials instead of a single one ([NMTM00b]). Another
solution is to down-weight unlabeled data ([CJ01]), which is also used by Nigam et al. [Nig01].
Even if the mixture model assumption is correct, in practice mixture components are identified
by the Expectation-Maximization (EM) algorithm ([DLR77]). EM is prone to local maxima. If a
local maximum is far from the global maximum, unlabeled data may again hurt learning. Remedies
include smart choice of starting points by using informative priors [IW06] or by active learning
([Nig01]).

Other semi-supervised learning approaches represent the dataset as a graph and exploit the
structure of the graph in search for mincuts [BC01] or for min average cuts [Joa03]. Graph-based

14 2. Related Work

semi-supervised methods define a graph where the nodes are labeled and unlabeled examples in
the dataset, and edges (potentially weighted) reflect the similarity of examples. These methods
usually assume label smoothness over the graph. Graph methods are typically nonparametric,
discriminative, and transductive in nature [Zhu08]. Next, we give some examples of graph-based
learning methods for text classification. Blum and Chawla ([BC01, BLRR04]) pose semi-supervised
learning as a graph mincut problem. In the binary case, positive labels act as sources and negative
labels act as sinks. The objective is to find a minimum set of edges whose removal blocks all flow
from the sources to the sinks. The nodes connecting to the sources are then labeled positive, and
those to the sinks are labeled negative. Pang and Lee [PL04] used graph mincuts to improve the
classification of sentences into either ’objective’ or ’subjective’, with the assumption that sentences
close to each other tend to have the same class. Discrete Markov Random Fields also called
Boltzmann Machines are another approach to graph-based semi-supervised learning. Nevertheless,
the inference problem posed in this framework is inherently difficult [ZG02, GSD06]. The Gaussian
random fields and harmonic function methods introduced in [ZGL03] are a continuous relaxation to
discrete Markov random fields and are known as label propagation techniques. Niu et al. [NJT05]
applied the label propagation algorithm (aka harmonic functions) to word sense disambiguation.
Goldberg and Zhu [GZ06] applied the algorithm to sentiment analysis for movie rating prediction.
The Spectral Graph Transducer (SGT) [Joa03] is another example of graph-based learning methods
for transductive classification. The SGT algorithm solves a normalized-cut (or ratio-cut) problem
with additional constraints for the labeled examples using spectral methods. Pham et al. [PNL05]
perform empirical experiments on word sense disambiguation, comparing variants of co-training
[BM98] (training two separate classifiers with the labeled data, on two independent sub-feature
sets) and spectral graph transducer. The authors notice that the spectral graph transducer with
carefully constructed graphs produces good results.

Szummer and Jaakkola [SJ01] perform a t-step Markov random walk on the graph of labeled
and unlabeled examples. The influence of one example to another example is proportional to how
easy the random walk goes from one to the other. The graph construction is very important for
all the graph-based methods previously mentioned. Several approaches have been investigated in
the literature [Zhu08], e.g. using domain knowledge, using nearest neighbor graphs, etc.

Explicit knowledge sources like ontologies, thesauri, or dictionaries have been used in prior work
on text classification mostly for feature engineering, e.g., constructing composite words or phrases
as features based on a thesaurus or for constructing document similarity graphs. Most notably, the
WordNet thesaurus [Fel99] has been leveraged in various feature engineering approaches [BH04b],
[SM99]. In contrast, we propose integrating explicit knowledge about word-concept relationships
into the learning procedure itself.

In Chapter 3 of this thesis we present a generative model for transductive learning, coined
Transductive Latent Model (TLM) [IW06]. Our model relies on both available unlabeled data
and external resources in order to learn the latent structure of the model, and for estimating
parameters. In particular, unlabeled data plays an important role in estimating word-concept de-
pendencies in our model, where individual words get mapped onto concepts that play the role of
latent variables. Since capturing the contextual meaning of words (i.e. the word-concept map-
pings) only requires unlabeled data, we can take advantage of large quantities of unlabeled data to
better estimate such dependencies, and therefore better estimate the model parameters. We show

2.1 Background Knowledge for Text Classification 15

experiments comparing TLM to the state-of-the-art transductive classifiers Transductive Support
Vector Machines [Joa99b] and Spectral Graph Transducer [Joa03].

Topic-driven clustering

Clustering algorithms typically find the structure in a given dataset, in terms of tight groups of
similar documents. The clusters found by such algorithms do not always correspond to the user
needs, e.g. the user may desire to specify what type of grouping he or she is interested in and
even specify a few keywords describing each of the groups or categories he or she would like to get
from the clustering algorithm. This setting falls to some degree into the group of semi-supervised
clustering approaches [Zhu08], but the problem such techniques may face is the extreme sparseness
of explicitly labeled examples, since the training data in this framework is just a sparse keyword
description of the categories of interest, rather than several labeled training documents. The
framework was coined topic-driven clustering in [ZK05]. This problem has been investigated by
several researchers going back to 1999 [MN99]. We summarize some of these approaches in this
section.

[ZK05] takes a clustering (as opposed to classification) view on the problem, and gives three
clustering schemes which use the topic descriptions as prior knowledge for adjusting unsupervised
clustering methods. They focus on a few clustering algorithms, among which a k-means style one.
We discuss their methods and give an intuition using the k-means style algorithm.

In their work, both documents and topic descriptions are represented as vectors in a vector
space. One of the approaches pursued by the authors is to seed the clustering algorithm with the
topic descriptions and iteratively compute topic-weighted centroids, which are biased toward the
topic descriptions.

Another technique the authors propose is to optimize a combined objective function, e.g. a
simple supervised clustering, which maps documents onto topic descriptions by cosine similarity,
with an unsupervised k-means solution, by means of a weight which settles the influence of the
two methods (αfsupervised + (1 − α)funsupervised). The authors show their proposed techniques
are superior to simple seeded k-means, but their evaluation methodology is problematic since the
authors use the entropy of clustering as their evaluation measure. For this particular problem in
which each cluster has an associated topic, using entropy to measure the quality of the clustering
solution is not appropriate. The entropy captures how homogeneous the output clusters are, but
does not capture the number of misclassifications corresponding to the clustering solution. Lets
assume we are interested in two given topics and we obtain two clusters as a result from some
clustering algorithm. The entropy is low (suggesting high quality of the clustering) in either of the
two cases of 100% accuracy (the documents in each cluster are representatives of the corresponding
topic) or 0% accuracy (the documents are entirely swaped, i.e. we find two clsuters but they
correspond to the wrong topics), thus using entropy for measuring the quality of the clustering
can be misleading. We therefore re-ran experiments with some of the techniques proposed in the
original paper, in order to evaluate the quality of their clustering approaches using the standard
F1 measure for evaluating classification solutions.

Previous approaches to topic-driven clustering mainly focused on bootstrapping training sam-
ples based on the keyword topic descriptions, and then applying standard classification techniques

16 2. Related Work

(e.g. Naive Bayes, SVM) for obtaining the desired clustering solution. Such examples include
[MN99] which automatically labels some documents based on the presence of the topic keywords,
and then uses a Naive Bayes classifier and an EM algorithm which takes advantage of the un-
labeled documents for learning a classifier of the entire collection. In [GSD05], an unsupervised
method is proposed for better selecting the initial labeled samples. The approach is based on LSI
decomposition coupled with Gaussian mixtures for learning a document-topic similarity distribu-
tion, per topic. [LLLY04] addresses the issue of selecting good keywords for describing the topics
of interest. They first cluster the collection and then use Mutual Information [MN98a] for selecting
candidate keywords for each cluster. After this step a user selects good keywords for describing
each cluster/topic of interest.

In contrast to previous approaches, we view this problem as a transductive classification prob-
lem, where we assume that each topic/category has a short textual description which is treated
as explicitly labeled training data. The goal is to organize the unlabeled collection according to
the user-defined topics. We employ our TLM model for learning from both the supervised and the
unsupervised information available. We show that taking a transductive learning approach to this
problem shows promising results. We also experiment with other inductive and transductive classi-
fiers, and comment on the behavior of each of the compared techniques for solving the topic-driven
clustering problem.

2.2 Rich Document Representations for Text Classification

2.2.1 N-gram Features, Parse Trees, Semantic Kernels

A lot of research has investigated the hypothesis that using document representations which are
richer than the simple bag-of-words, (e.g. syntactic and semantic representations) can improve
text classification results. Most of this work stems from the observation that words alone do
not always represent true atomic units of meaning [SM99]. David D. Lewis undertook a major
study of the use of noun phrases for statistical classification as part of his Ph.D. thesis [Lew92],
but concluded that more sophisticated phrase-based representations did not improve the results
obtained using the bag-of-words representation. In [SM99] the authors attempt to integrate more
complex information in the RIPPER rule-based learner. They focus on using some alternative
ways to represent text based on syntactic and semantic relationships between words (i.e. phrases,
synonyms and hypernyms from Wordnet). Their finding is that using this additional information
directly by extending the set of features does not improve results, but combining classifiers based
on different representations using a majority voting technique seems more promising. Nevertheless,
their study separates feature selection from the actual learning algorithm. Additionally, since using
all the phrases or possible feature combinations leads to feature space explosion, the authors select
only a subset of features, therefore potentially eliminating some good combinations of features.
The work of [JM00] expands the previous study, by analyzing careful combinations of various
conceptual and contextual features (e.g. synonyms, hypernyms, term frequency, and bigrams of
nouns, synonyms and hypernyms) and various classifiers (Coordinate matching, TF*IDF, and Naive
Bayes). The authors mention that when using an automated scheme to determine which features to
use, based upon the data set in question, the results improve considerably as compared to using just

2.2 Rich Document Representations for Text Classification 17

the bag-of-words representation. They also give some guidelines for feature combinations and type
of features which typically lead to improvement of results. According to the authors, hypernyms
always improve results and they usually improve over the use of synonyms alone; stemming helps
when a large percentage of terms do not exist in WordNet; bigrams can help dramatically, but the
corresponding individual terms should be removed from the feature set, etc. Many other works
rely on thesauri such as WordNet or Wikipedia for extending the word feature space with concepts
[BH04a, GM05, GM06a, GM07, WHZ+07, WHZC08]. The main idea in [WHZ+07] for example,
is to use Wikipedia to build a general thesaurus for word feature enrichment. Based on the filtered
Wikipedia concept index, they first search candidate concepts mentioned in each text document,
and then add the synonyms, polysems, hyponyms, etc., of these candidate concepts to the original
documents. On a similar note [GM07] enhances the feature space with features generated from
domain-specific and common-sense knowledge. This knowledge is represented by ontologies that
contain hundreds of thousands of concepts (e.g. Open Directory Project [Dmo]), further enriched
through controlled Web crawling. Prior to text categorization, a feature generator analyzes the
documents and maps them onto appropriate ontology concepts that augment the bag of words
used in simple supervised learning.

Other studies focus on using more sophisticated syntactic or semantic information for repre-
senting documents. The work of [BMP00, Mos03] analyzes various avenues for exploiting syntactic
information for text classification. In his Ph.D. thesis Moschitti [Mos03] refers to the following nec-
essary pre-processing steps. First, the author points at the importance of the separation between
content words (i.e. open syntactic classes such as nouns, verbs and adjectives) and other less rele-
vant information (e.g., functional classes like prepositions or complex functional expressions as far
as or in order to). The need for this separation was known since the early research in Information
Retrieval [Sal89] which motivated the use of stoplists or stop-words. Another important aspect is
the identification of the syntactic role of each word in its corresponding context: for example verbal
from nominal uses of a lemma can be distinguished (ready to land vs. suitable public lands). The
syntactic role allows to select the more informative class of words, i.e. nouns, and to perform a
first level of word disambiguation, e.g., book and to book. The syntactic category of the word book,
clearly, decides which is the most suitable choice between categories like Book Sales and Travel
Agency. Furthermore, the author points at the identification of linguistically motivated structures
such as complex Proper Nouns (e.g., Shell Transport & Trading Co. PLC), as they should not be
modeled similarly to common nouns.

Further work uses more complex information such as syntactic parse trees of individual sentences
or document paragraphs as features. In [Mos06] the authors study the use of tree kernels to encode
syntactic parsing information for semantic role labeling and question answering. Their experiments
with SVM on the PropBank and FrameNet predicate argument structures show that kernels defined
using syntactic information are generally more accurate. The work presented in [BM07] proposes
a generalized framework consisting of a family of kernels that jointly incorporates syntax and
semantics. This is done by considering information about the syntactic structure of the input
and by incorporating knowledge about the semantic similarity of term features. The applications
considered by the authors are the classification of natural language questions from a TREC question
answering dataset and the automated assignment of ICD-9 (International Classification of Diseases,
Version 9) categories to short textual fragments of medical diagnoses.

18 2. Related Work

2.2.2 Learning with Variable-length N-grams

Previous research has shown that for most topical text classification applications (e.g. categorizing
news into categories such as Politics, Sports, Science), the bag-of-words representation suffices for
capturing the characteristics of each category. This is possible because there is typically a high
correlation between the category profile and individual keywords in documents [KM04].

However, there are important text classification tasks for which the initial unigram bag-of-words
representation does not capture the rich facets of the problem, even if the classifier itself is very
powerful [HF95, KNS97, LM02, PSW04, ZL06]. Examples are: email categorization, sentiment
polarity mining in product or movie reviews, subjectivity versus objectivity mining of given texts,
authorship attribution, user classification in social networks, and others. For instance, opinion
mining often needs to consider entire phrases such as “. . . [This president did] not meet our ex-
pectations . . . ”, and classification in social communities may want to consider titles of music songs
that a person likes, which are usually phrases.

For the above applications, more complex features are needed, like word n-grams or natural-
language parse trees. Using syntactic or semantic kernels typically comes at a price in computa-
tional complexity, since computing more complex similarity measures usually results in considerable
running time costs. Kudo et al. [KM04] observed that the classification performance with n-grams
did not differ much from the quality achievable by using deep NLP (natural-language processing)
techniques, which would be orders of magnitude more expensive anyway.

Introducing n-grams as features of a classification model confronts the learner with a combina-
torial explosion problem and a quality-efficiency trade-off. Simply including all n-grams up to some
maximum length, say 3 or 4, leads to extremely high-dimensional feature spaces. Although many
learners can cope reasonably well with large but sparse input spaces (e.g., [GLM06, Joa06, ZO01]),
their learning cost is at least linear in the number of features that are present in the training
data. Here, high-accuracy classification implies high training cost; conversely, a conservatively
bounded set of n-grams like 2-grams often leads to merely mediocre classification quality. An al-
ternative approach is to pre-process text corpora to identify interesting n-grams by various forms
of co-occurrence statistics or frequent-itemset mining [CYHH07]. However, this kind of feature
engineering also entails high training-time costs, which would prevent it from being used in envi-
ronments that require frequent re-training (e.g., in spam mail detection). This may be mitigated,
to some extent, by active learning (e.g., [KB06]), but this in turn puts the burden on the users by
requiring a potentially large amount of human attention.

Recent advances in efficient, regularized learning algorithms, such as SVM [Joa06, HCL+08] and
sparse logistic regression [GLM06] have reduced the need for explicitly modifying the input feature
space (e.g. by doing feature selection), by better coping with large feature spaces and still providing
very good predictive models. These methods still scale linearly with the feature space size and
therefore are usually employed with the unigram bag of words representation, rather than the much
richer feature space of all (word or character) n-grams in the training text. As a side effect of this
efficiency aspect, most text categorization approaches fix the basic token of the text representation
at the word level, rather than at the character level. This has the effect of potentially losing
some of the robustness of the learned predictive models, since the character-level tokenization may
better capture several facets of language use. For example, learning with variable or unrestricted-

2.2 Rich Document Representations for Text Classification 19

length character n-grams could better capture spelling mistakes, spam characteristics (punctuation,
etc.) or sub-words (implicit stemming) and phrasal features. Furthermore, the sometimes difficult
problem of defining word-like segments in Asian language text could be avoided. Other benefits
of using variable-length character n-grams could come from the more robust statistics captured by
substrings of the text.

Some existing learning approaches can work with character sequences rather than bag of words,
for example Markov chain models [FCW00, Ros00], which are generative approaches, or SVM with
string kernel [SS02], a discriminative approach.
Markov chain models can be in fixed order/memory or variable order/memory [MS00, ZL06].
The Markov chain models in fixed order n are usually called n-gram language models [Goo01,
Ros00]. Recently, [PSW04] tried character-level n-gram modeling for text classification, but in
order to achieve decent performance one needs to choose an appropriate order n and employ
good smoothing techniques [PSW04, ZL06]. Markov chain models in variable order adjust the
memory length according to the context, hence they are much more flexible than fixed order
Markov chain models. The amnesic probabilistic automata (aka PST - prediction suffix trees)
[DSSS04], text compression [BCW90] methods such as PPM (prediction by partial matching) and
PPM* [CT97] belong to the family of variable order Markov models. However, previous work
has repeatedly shown that generative approaches are generally outperformed by discriminative
approaches (e.g. SVM) for word-based text categorization [DPHS98, Joa98, YL99, ZL06]. For
string-based (e.g. character-level n-gram) categorization, the number of distinct substrings in a
large corpus becomes prohibitively large, thus preventing the straightforward application of most
discriminative approaches. SVM with string kernel is a discriminative approach that can perform
string-based text categorization. However, SVM with string kernel has not become as popular
as the word-based kernel SVM for text classification tasks, due to efficiency and classification
performance reasons [LSST+01, ZL06]. Recent work [ZL06] has advocated the usage of an efficient
feature selection step for selecting a subset of character-level n-gram features based on a suffix tree
algorithm, followed by learning an SVM classifier. This again disconnects the feature selection step
from the actual learning algorithm, which is undesirable (the combined process of feature selection
followed by a learning algorithm has no clear statistical foundation [GLM06]) and could be avoided
by employing efficient classifiers that can do the feature selection on-the-fly as part of the learning
process.

For maximum likelihood logistic regression, the most common optimization approach in statis-
tical software is the multidimensional Newton-Raphson method and its variants [NW06]. Newton
algorithms have the advantage of converging in very few iterations. For high-dimensional problems
such as text categorization, however, Newton algorithms have the serious disadvantage of requiring
O(d2) memory, where d is the number of model parameters. A variety of alternate optimization
approaches have therefore been explored for maximum likelihood logistic regression, and for reg-
ularized (Maximum A Posteriori) logistic regression. Some of these algorithms, such as limited
memory BFGS [NW06], conjugate gradient [NW06], and hybrids of conjugate gradient with other
methods [KM03], compute the gradient of the objective function at each step. This requires only
O(d) memory (in addition to the data itself). Efron et al. [EHJT04] describe a new class of “least
angle” algorithms for lasso linear regression and related models. Other methods solve a series of
partial optimization problems. Some of these methods use the subproblems to maintain an evolv-

20 2. Related Work

ing approximation to the gradient of the full objective [NW06], which still requires O(d) memory.
Others use each subproblem only to make progress on the overall objective, using only constant
memory beyond that for the parameter vector. The one dimensional subproblems may be based on
processing one parameter at a time, as in iterative scaling [JYZH03], and cyclic coordinate descent
[SK03, ZO01]. Some of these algorithms have already shown promise on text categorization or
other language processing tasks. One of the methods we use for comparison, Bayesian Logistic
Regression (BBR) [GLM06], is an efficient implementation of regularized cyclic coordinate descent
logistic regression.

In Chapter 4 we present our technique for efficiently learning a logistic regression classifier in the
space of all n-grams present in the training set. Our solution, coined SLR (for Structured Logistic
Regression), incorporates the best n-gram features, for variable-length n, into the feature space
while staying highly efficient in its training procedure. To this end, we develop a coordinate-wise
gradient ascent technique for maximizing the logistic regression likelihood of the training data.
Our method exploits the inherent structure of the n-gram feature space in order to automatically
provide a compact set of highly discriminative n-gram features. Instead of computing the gradient
value at each coordinate (dimension) corresponding to a possible n-gram feature, we search for the
n-gram feature which gives the highest value of the gradient in a given iteration. The vector found
this way is non-orthogonal to the full gradient vector, thus guaranteeing that it is a good direction
to follow in order to maximize the objective function.

To determine the feature with the best gradient value as fast as possible, we derive a theoretical
bound which quantifies the “goodness” of the gradient for each n-gram candidate given its length-
(n− 1) prefix. This way we can timely decide whether it is worthwhile advancing the search in a
particular part of the search space. The effect is that we can prune large parts of the search space,
resulting in a practically viable method even for large n. The result of our learning algorithm is a
sparse linear model learned in the space of all possible n-grams in the training data.

We present experiments that compare our SLR method against the state-of-the-art classifiers
BBR (a logistic regression method) [GLM06] and SVMperf [Joa06]. These opponents are widely
viewed as the best known methods for text classification, with fast training procedures. We study
a variety of configurations for three different real-life datasets: the opponents can employ n-grams,
with different choices of maximum n, and are tuned for each setting. The F1 measure for our
method is comparable to that of the best opponent. In terms of training run-time, SLR is more
than one order of magnitude faster than its opponents.

To the best of our knowledge, SLR is the first method that can incorporate variable-length
n-grams into the learning of advanced text classifiers, without any noticeable penalty on the size
of the feature space and computational cost of the training.

Chapter 3

Background Knowledge for Text

Classification and Clustering

3.1 Introduction

The process of gathering clean and representative labeled data for text classification is typically
very slow and costly. Therefore, techniques that can learn from a small set of labeled data and
rich sources of background knowledge can be highly useful for many different applications. For
example, if we are interested in automatically organizing the technical literature (conference papers
or other type of documents) on our computers into pre-defined categories, e.g. text classification,
information extraction, information retrieval, etc. and we are willing to label a few examples that
(sparsely) describe the categories of interest, we can learn a classifier from the provided examples,
and use it to label the remaining collection of documents. Learning a classifier on such small
training data is likely to provide very low accuracy when automatically predicting the labels of
new documents, since many features (terms) may not even be represented in the small training
set. We could instead use other sources of information relevant to this particular learning task in
order to improve the accuracy of the classifier. Such examples of background knowledge could be:

• Ontologies of concepts, such as WordNet [Fel99], Yago [SKW08], etc., from which we can
learn about word-concept or concept-concept relations, phrases that express concepts.

• Enclyclopedia, such as Wikipedia, which provide broad descriptions of the categories of in-
terest.

• Unlabeled documents, which give information about the structure of the input collection of
documents, and capture knowledge about the feature distributions, etc.

This type of background knowledge can be used for solving two difficult problems typically
associated with learning parametric statistical models: learning an appropriate structure for the
statistical model employed and learning a prior distribution for the model parameters. In Section
3.2 we present a latent model which builds on different types of background knowledge for solving

21

22 3. Background Knowledge for Text Classification and Clustering

these type of problems. The structure of the model (i.e. the number of latent variables and
their initialization) is decided based on the training set and an external ontology of concepts. An
informative prior for the model parameters is learned from the training corpus and other available
resources, in order to improve the parameter estimation based on the (sparse) training set alone.
In particular, we analyze the behavior of this model for two different learning paradigms, inductive
and transductive learning. We conclude with an overview of the proposed approach and discuss
future research directions.

3.2 Latent Model

3.2.1 Introduction

For text classification, the standard representation of documents is a set or bag-of-words, i.e. a word
vector, also called feature vector. Features can be all the distinct terms in the input collection,
or a subset or combinations of the terms. More sophisticated pre-processing at both syntactic
and semantic level can be done, e.g. using part-of-speech tagging or word sense disambiguation.
Typically some light term pre-processing is preferred, such as stemming, stop-words removal, etc.
The most widely used features are simply words or their morphological normal forms. Here, we
use the name features and words interchangeably.

A simple classifier, such as Naive Bayes, learns frequency statistics associated with each feature
and topic, from the training set. Even if this type of classifier makes a strong assumption about the
input documents, i.e. it assumes that given the topic label, the features of the document are inde-
pendent, it performs surprisingly well, many times being competitive to much more sophisticated
classifiers such as Support Vector Machines [RSTK03].

The independence assumption of Naive Bayes does not badly affect the final classification
predictions [RSTK03, MRS08] since the classifier manages to estimate well the most likely topic,
even if the probability estimate may be wrong. In other words, as long as Naive Bayes correctly
predicts the ranking of topics with respect to a given document, having wrong estimates for the
actual probabilities of topics for the given document does not influence the final classification
accuracy.

Nevertheless, since Naive Bayes relies on simply counting words in the training set to estimate
the probability of a topic given a word, for small training sets the count estimates may be unreliable,
which has a direct effect on the final predictions.

For avoiding these type of effects that can affect Naive Bayes, we can instead try to capture
more information about the training set, when estimating parameters. For example, we can capture
groups of related words, as together describing a concept, while groups of concepts together describe
a topic. This essentially breaks the problem into three rather than two layers: a layer of words, a
layer of concepts and a layer of topics. Groups of words from the word layer can be understood
as ways to describe a common concept, while groups of concepts from the concept layer can be
understood as finer grained topics, which together describe a more general topic. This has the
advantage of capturing synonymy effects, i.e., words that have the same meaning (synonyms) and
correlation effects, i.e., words that tend to co-occur. Furthermore, it can deal with polysemy effects,
i.e., words that have various meanings or interpretations depending on the context.

3.2 Latent Model 23

For example, if a text describes a topic using different words, the frequency of each word may
not be enough in itself to correctly discriminate between topics of a given document which contains
some of these words, but if we use the implicit grouping of related words, the frequency estimates
get in some sense focused into one group parameter, and thus the predictive power of the group
can improve the predictions.

For getting the relations between the word, concept and topic layers, we first need to instantiate
each of the layers and then need to learn the groupings in a meaningful way. The words and topics
are provided by the training set, while for instantiating the concepts we use an external ontology.

For the scope of this work, we specifically used the WordNet ontology [Fel99], which at the time
contained around 150,000 concepts. WordNet was for a long time the most prominent and freely
available such resource and is simply an example of the explicit concept collections that could be
leveraged for better text representation. Currently, there is a lot of work on automatically building
ontologies by mining concepts from encyclopedia like Wikipedia or directly from unstructured text
from the Web [SKW08, WHW08, Sar08, SS04].

In order to capture the dependencies between the three layers, we develop a generative model
for text documents, which postulates that words are generated by concepts which in turn are gen-
erated by topics. This simulates the intuition that topics are describes by finer grained concepts
which in turn are described by several words. In order to estimate the word-concept and concept-
topic dependencies (we also refer to them as mappings), we rely on an iterative EM (expectation-
maximization) procedure for maximum likelihood estimation from the given training set. Addi-
tionally, for helping the parameter estimation, we use several background knowledge resources to
infer a priori word-concept and concept-topic mappings. For the a priori estimation, we use context
based similarity heuristics which rely on:

• labeled (training set) and unlabeled documents (if the test set is available a priori or related
collections of unlabeled documents) for estimating a context for the usage of words

• ontology information in the form of concept descriptions and neighborhoods, to infer a context
describing concepts

• encyclopedia (e.g. Wikipedia) information, to infer broad descriptions of the topics of interest

The a priori knowledge coming from the background resources plays a very important role in
making the learning and estimation process robust and practically viable, by removing unlikely
combinations of word-concept and concept-topic pairs.

In the next subsection we describe the generative model and the estimation process in detail.
In particular, we discuss the building blocks of the model, and the modeling choices we have made.
In Section 3.3 and Section 3.4 we analyze the effect of different building blocks for inductive and
transductive learning. We conclude this chapter with a discussion of experimental results for the
two different learning paradigms.

3.2.2 Generative Model

In this section we introduce the framework and the theoretical model proposed. Depending on the
learning strategy used for estimating parameters we coin our model Inductive Latent Model
(ILM) or Transductive Latent Model (TLM).

24 3. Background Knowledge for Text Classification and Clustering

We consider as input:

• A set of pre-defined categories or topics T = {t1, . . . , tk}.

• A document collection, D = {d1, . . . , dn}, which is split into training (documents with known
topics) and test data (documents with unknown topics).

• A set of features, F = {f1, . . . , fm}, that can be observed in documents (words or phrases).

• An ontology graph of concepts, C = {c1, . . . , cr}, where each concept has a short textual
description, and is related to other concepts by semantic edges (e.g. hypernym/hyponym
relations).

Given a document d with observed features (and possibly unknown topics), we want to automat-
ically predict P [t|d] for every topic t or find argmaxtP [t|d]. Let (f, t) be observation pairs from
the training set. Our generative model for feature-topic co-occurrence can be described as:

1. Select a topic t with probability P [t];

2. Pick a latent variable c with probability P [c|t], the probability that concept c describes topic
t;

3. Generate a feature f with probability P [f |c], the probability that feature f describes concept
c.

The pairs (f, t) can be directly observed, while concepts are implicit and are treated here as latent
variables. Figure 3.1 shows a graphical representation of our generative model. This is a latent

Figure 3.1: Graphical model representation of the generative model.

variable model for co-occurrence data which associates an unobserved variable c ∈ {c1 . . . cr} with
each observation pair (f, t).

3.2.3 Learning Model Parameters

For tractability reasons, the model is based on two independence assumptions. The different
observation pairs (f, t) are generated independently and the features f and topics t are conditionally
independent given the latent variable c: P [(f, t)|c] = P [f |c] · P [t|c]. To describe the generative
process of an observation (f, t) we sum up over all the possible values that the latent variables
might take

P [f, t] =
∑
c

P [c] · P [(f, t)|c]. (3.1)

3.2 Latent Model 25

This representation is also called mixture distribution, since each concept c gives a probability of
generating the pair (f, t) from a particular distribution P [(f, t)|c].

Since we are working with count data, we naturally assume the (f, t) pairs are generated from a
multinomial distribution. The likelihood of the observed (f, t) samples can therefore be expressed
as:

L =
∏

f∈F,t∈T

P [f, t]n(f,t) (3.2)

=
∏

f∈F,t∈T

(
∑
c∈C

P [c] · P [(f, t)|c])n(f,t)

=
∏

f∈F,t∈T

(
∑
c∈C

P [f |c] · P [c|t] · P [t])n(f,t)

n(f, t) is the number of occurrences of feature f in the training set of topic t.
The learning problem can be formulated as estimating the parameters (P [f |c], P [c|t], P [t]) of
the generating distribution, given the observed (f, t) samples from the training set. This can be
formally expressed as a maximization of the observed data log-likelihood:

l =
∑
(f,t)

n(f, t) · log(P [f, t]) (3.3)

=
∑
(f,t)

n(f, t) · log(
∑
c

P [c] · P [(f, t)|c])

Due to the sum inside the logarithm in Equation 3.3, direct maximization of the log-likelihood
by partial derivatives is infeasible. But if we knew for each pair (f, t) exactly by which of the
latent variables it was generated, we could express the complete log-likelihood without a log of
sums, because only one term inside the sum would be non-zero. We introduce indicator variables

∆c,f,t =
{

1 if the pair (f, t) was generated by concept c
0 otherwise

(3.4)

The joint density becomes:

P [f, t,∆c,f,t] =
∏
c

(P [c] · P [f, t|c])∆c,f,t (3.5)

and the complete data likelihood is:

Lcomp = Πf,tP [f, t,∆c,f,t]n(f,t). (3.6)

Essentially P [f = 1, t = 1,∆c,f,t = 1] is the probability of a certain (feature, topic) pair to have
been generated from a given concept. Now we can express the complete log-likelihood of the data
by:

lcomp =
∑
(f,t)

n(f, t) · log(P [f, t,∆c,f,t]) (3.7)

26 3. Background Knowledge for Text Classification and Clustering

lcomp =
∑
(f,t)

n(f, t) · log(
∏
c

(P [c] · P [f, t|c])∆c,f,t) (3.8)

lcomp =
∑
(f,t)

n(f, t)
∑
c∈C

∆c,f,t · log(P [c] · P [f, t|c]) (3.9)

If we replace the missing variables ∆c,f,t by their expected values, using Jensen’s inequality
(e.g. E[log(X)] ≥ log(E[X])) we can show that the complete data log-likelihood in Equation
(3.9), bounds from below the incomplete log-likelihood, Equation (3.3). This means that we can
concentrate on the easier problem, that of maximizing the expected complete data log-likelihood
(where the expectation is taken over the unknown variables ∆c,f,t). We compute the expectation
over the missing variables using the current values of the model parameters:

P [∆c,f,t|f, t] =
P [f, t,∆c,f,t]

P [f, t]
=

Πc(P [c] · P [f, t|c])∆c,f,t∑
c P [c] · P [f, t|c]

(3.10)

E[∆c,f,t|f, t] = 1 · P (∆c,f,t = 1|f, t) + 0 · P (∆c,f,t = 0|f, t) (3.11)

= P (∆c,f,t = 1|f, t) + 0 · P (∆c,f,t = 0|f, t)

=
P [c] · P [f, t|c]∑
c∈C P [c] · P [f, t|c]

= P [c|f, t]

(3.12)

E[lcomp] =
∑
t∈T

∑
f∈F

n(f, t)
∑
c∈C

P [c|f, t] · log(P [c] · P [f, t|c]) (3.13)

E[lcomp] =
∑
t∈T

∑
f∈F

n(f, t)
∑
c∈C

P [c|f, t] · log(P [c] · P [f |c] · P [t|c]) (3.14)

E[lcomp] =
∑
t∈T

∑
f∈F

n(f, t)
∑
c∈C

P [c|f, t] · log(P [t] · P [f |c] · P [c|t]) (3.15)

This type of approach in which the maximization of the likelihood is analytically intractable,
but made easier by enlarging the sample with latent data falls in the category of Expectation-
Maximization (EM) techniques [DLR77].

Typically EM algorithms take two iterative steps:

• E-Step: Expectation step, in which posterior probabilities are estimated for the latent vari-
ables, taking as evidence the observed data (current estimates of the model parameters). For

3.2 Latent Model 27

calculating the probabilities of the E-step, we use Bayes’ formula:

P [c|f, t] =
P [c, f, t]
P [f, t]

(3.16)

=
P [f, t|c] · P [c]∑
c′∈C P [f, t|c] · P [c]

=
P [f |c] · P [t|c] · P [c]∑
c′∈C P [f |c] · P [t|c] · P [c]

=
P [f |c] · P [c|t] · P [t]∑
c′∈C P [f |c] · P [c|t] · P [t]

P [c|f, t] =
P [f |c] · P [c|t]∑
c′∈C P [f |c] · P [c|t]

(3.17)

• M-Step: Maximization step, in which the current parameters are updated based on the
expected complete data log-likelihood which depends on the posterior probabilities estimated
in the E-Step. We compute the parameters P [f |c], P [c|t] and P [t] that maximize the expected
complete data log-likelihood E[lcomp].

E[lcomp] =
∑
t∈T

∑
f∈F

n(f, t)
∑
c∈C

P [c|f, t] · log(P [t] · P [f |c] · P [c|t]) (3.18)

For the maximization criterion, we need to also consider the normalization constraints:∑
t∈T

P [t] = 1;
∑
f∈F

P [f |c] = 1, for each c ∈ C;
∑
c∈C

P [c|t] = 1, for each t ∈ T (3.19)

The M-step parameter estimates are:

P [f |c] =
∑
t∈T n(f, t)P [c|(f, t)]∑

f ′∈F
∑
t′∈T n(f, t)P [c|(f, t)]

(3.20)

P [c|t] =

∑
f∈F n(f, t)P [c|(f, t)]∑

c′∈C
∑
f ′∈F n(f, t)P [c|(f, t)]

(3.21)

P [t] =

∑
f∈F,c∈C n(f, t)P [c|(f, t)]∑

t′∈T
∑
f ′∈F,c′∈C n(f, t)P [c|(f, t)]

(3.22)

The E-step and M-step are iterated until some stopping criterion is met. The number of EM
iterations is a parameter of the model. Typically, a threshold on the log-likelihood improvement
(change in the function given in Equation 3.3) is used as a stopping criterion.

The algorithm presented above estimates the parameters P [f |c], P [c|t] and P [t] based on the
postulated model. Our goal is nevertheless to predict the P [t|d] for a given document d. For this
we use Bayes formula to reverse the generative model and predict a distribution over topics for a
given document. We first use the estimated parameters to compute P [d|t]].

P [d|t] =
∏
f∈d

P [f |t]n(f,t) =
∏
f∈d

(
P [f, t]
P [t]

)n(f,t)

(3.23)

=
∏
f∈d

(
∑
c∈C

P [f |c] · P [c|t])n(f,t)

28 3. Background Knowledge for Text Classification and Clustering

We can than substitute 3.23 into 3.24 to compute P [t|d].

P [t|d] =
P [d|t] · P [t]

P [d]
=

P [d|t] · P [t]∑
t P [d|t] · P [t]

(3.24)

3.2.4 Problems and Solutions

The EM algorithm faces two major problems:

• The combinatorial explosion of the parameter space, since the number of parameters is di-
rectly proportional to the cross-product of the number of features, concepts and topics. These
parameters are sparsely represented in the observed training data.

• The possibility of converging to a local maximum of the likelihood function (i.e. not finding
the global maximum).

For the first problem, it is desirable to prune the parameter space to reflect only the meaningful
parameter combinations. For the second problem, it is desirable to pre-initialize the model
parameters to good values.

Pruning the Parameter Space

We propose using feature selection for reducing the size of the feature space down to a subset of
important features and using concept selection for reducing the size of the concept set selected from
the ontology, down to a subset relevant to the given input collection.

1. Feature Selection

From the given collection we extract a set of features using two approaches. Supervised
feature selection from the labeled training set retains the features with the highest average
Mutual Information with the topic variable [MN98a]. Unsupervised feature selection from the
entire collection of documents (without use of topic labels), selects features with high tf · idf
[Cha03, Kra05] weights.

2. Concept Set Selection

We use the WordNet thesaurus [Fel99] as the basis for our ontology graph. WordNet contains
around 150,000 concepts (word senses) linked by hierarchical relations. Using the entire set
of concepts can result in a high computational overhead and a high amount of noise. A better
approach is to select from the ontology only a subset of concepts that reflects the semantics
of the input collection. We call this the candidate set of concepts. This set is selected in a
pre-processing step, before running the EM algorithm, and serves the purpose of instantiating
the layer of latent variables in our model.

There are several strategies for selecting the concept set, based on context similarity measures
between the concepts from the ontology and the features from the input text collection. These
strategies are highly related to the pre-initialization of the model parameters, and thus we
give more details on this in the next paragraph. The advantage of such a concept selection
step is that the size of this subset is some orders of magnitude lower than the size of the
entire ontology. It also pre-determines the number of latent variables of the model.

3.2 Latent Model 29

Pre-initializing the Model Parameters

EM is theoretically guaranteed to find a local maximum of the objective function. Therefore, the
standard way of using this algorithm is to randomly initialize the model parameters and iterate
the algorithm until convergence. This is done repeatedly and the values of the parameters that
give the highest value of the likelihood are retained.

For avoiding slow or suboptimal convergence of the EM algorithm, it is desirable to pre-
initialize the model parameters to good values.

In order to get a good initialization for the parameters P [f |c] and P [c|t] we use a similarity-
based mapping approach. The technique consists of mapping features to concepts and concepts
to topics, based on context similarity. Let f be a feature (word) that we want to map to the
ontological concepts. For each occurrence of word f in the text collection, its local context is a
text window around its offset. We can gather all these local contexts into a global context over the
entire collection. We note that the context of the feature does not require labeled data (supervised
information), but can be computed on the entire (possibly unlabeled) collection.

For gathering concept contexts we rely on the ontology graph. The WordNet thesaurus is
a directed acyclic graph (DAG) where the nodes are the concepts and the edges are semantic
relationships [Fel99]. First, we query WordNet for the possible meanings of word f . For example,
if we query WordNet for the word mouse we get:

• The noun mouse has 2 senses (concepts) in WordNet.

1. mouse – (any of numerous small rodents...)

2. mouse, computer mouse – (a hand-operated electronic device...)

• The verb mouse has 2 senses (concepts) in WordNet.

1. sneak, mouse, creep, steal, pussyfoot – (to go stealthily or furtively)

2. mouse – (manipulate the mouse of a computer)

Let {c1, . . . , cl} be the set of meanings associated with f . By taking also the synonyms of these
word senses, we can form synsets for each of the word meanings. Additionally, for each sense ci
we use the neighborhood formed by its hypernyms, hyponyms, holonyms and their short textual
descriptions to form the context. We restrict the neighborhood to depth two, in order to avoid
introducing too much noise.

Next, we apply a light word sense disambiguation step by computing the overlap between the
context of the feature and that of each of its possible meanings. This type of approach is commonly
used in the word sense disambiguation literature.

For each of the candidate senses ci, we compute the cosine similarity between the tf vectors of
context(f) and context(ci), i ∈ {1, . . . , l}.

There are several strategies for deciding which concepts should be selected for the final set.
One strategy keeps all the concepts gathered by querying the ontology for each feature. The size
of this set is typically several times the size of the feature set depending on how many different
meanings a feature maps to in the ontology.

30 3. Background Knowledge for Text Classification and Clustering

A second strategy, only keeps the most dominant concept (meaning) of f . For features having
multiple meanings, our hypothesis is that “secondary” meanings are introduced by their corre-
sponding features, e.g., for the feature Java having meanings island and coffee, if island is selected
as the main meaning of Java, the second meaning coffee can still be introduced in the concept
space by occurrences of words like espresso, latte, coffee beans, etc. For this strategy, the size of
the concept set is at most as large as that of the feature set. We call this strategy Discriminative
Concept Selection.

We found out experimentally that both strategies give similar classification accuracy, but the
second approach improves running time and scalability.

For initializing the P [c|t] parameters we use a similar context-similarity strategy. For gathering
the context of a topic, we can use two different strategies. The supervised approach, uses the top
features as selected by decreasing Mutual Information (MI) [MN98a] value from the training set.
For our implementation, we used the top 50 features with respect to MI rank. The unsupervised
approach, relies on external resources such as encyclopedia, for gathering a broad description of
the topic of interest. This can help particularly when training data is sparse. For example, we
can improve the training description of the topic Biology by using a better description from an
encyclopedia, e.g. the Biology page from Wikipedia. We note that this methodology of using
background knowledge makes our model robust to variations in vocabulary or data distribution,
problems that can occur when directly adding background data to the training set.

Once we have computed all the similarities for the (feature, concept) and (concept, topic) pairs,
we normalize them, and interpret them as estimates of the probabilities P [f |c] and P [c|t]. In the
sim(f, c) and sim(c, t) computations, we only consider the (f, c) and (c, t) pairs in the pruned
parameter space. The computed values are then used for initializing the parameters of the EM
algorithm.

Enhanced EM Algorithm

The mapping step presented in the previous paragraph can be interpreted as building a prior prob-
ability distribution on the model parameters P [f |c], P [c|t]. We can interpret the similarity-based
estimates as pseudo-counts, and consider them in the inference process. This can be exploited in a
Maximum A Posteriori (MAP) estimation of parameters, rather than simple maximum likelihood
estimation. We denote by θ = (θf |c, θc|t, θt), θf |c = P [f |c], θc|t = P [c|t], θt = P [t] our model
parameters. Let θf |c ∼ Dirichlet(αcf) and θc|t ∼ Dirichlet(βtc), where αcf is set to sim(f, c) for
each f ∈ F and c ∈ C and βtc is set to sim(c, t) for each c ∈ C and t ∈ T . Let θt be uniformly
distributed, with density g(θt) = 1

|T | . The corresponding densities for θf |c and θc|t are:

g(θf |c) ∼
∏
f∈F

θf |c
αcf , θf |c ≥ 0, αcf ≥ 0,

∑
f∈F

θf |c = 1, for each c ∈ C (3.25)

g(θc|t) ∼
∏
c∈C

θc|t
βtc , θc|t ≥ 0, βtc ≥ 0,

∑
c∈C

θc|t = 1, for each t ∈ T (3.26)

Because θf |c, θc|t and θt are independent random variables, their joint density can be written as:
g(θ) = g(θf |c, θc|t, θt) = g(θf |c) · g(θc|t) · g(θt). Let x = (f, t) be an observation from a multinomial
distribution. Let F (θ|x) = g(θ) · L(x|θ), where g(θ) defines a prior distribution on the parameters

3.3 Inductive Learning 31

and L(x|θ) is the likelihood of the (f, t) samples (as in Section 2.2). We want to compute the MAP
estimate

θ = argmaxθ F (θ|x) (3.27)

As g(θt) is a constant function, it does not influence the maximization, and we leave it out in the
following estimations. Let

F (θ|x) = (
∏
c,f

θf |c
αcf) · (

∏
t,c

θc|t
βtc) · [

∏
f,t

(
∑
c

θf |c · θc|t · θt)n(f,t)] (3.28)

For maximizing the above function we employ an EM algorithm (similar to the estimation in
Section 3.2). The E-Step does not change. The parameter estimates θf |c and θc|t for the M-Step
become:

θf |c = P [f |c] =
αcf +

∑
t∈T n(f, t)P [c|(f, t)]∑

f ′∈F (αcf ′ +
∑
t∈T n(f ′, t)P [c|(f ′, t)])

(3.29)

θc|t = P [c|t] =
βtc +

∑
f∈F n(f, t)P [c|(f, t)]∑

c′∈C(βtc′ +
∑
f∈F n(f, t)P [c′|(f, t)])

(3.30)

Combining the similarity-based estimates with the estimates based on training counts strengthens
the model robustness. We empirically analyze the effect of using a context-similarity prior on
model parameters in the next sections.

3.3 Inductive Learning

In the inductive learning paradigm, we are given a labeled set of documents and the objective is
to learn a classification model from the labeled set which can accurately predict the labels of new
documents. Typically one splits the labeled set into a training set and a test set. The training set is
used for learning the classifier model. The test set is not seen by the classifier during training, and
is used for measuring the performance of the classifier, by directly comparing for each document the
predicted labels to the true labels. Furthermore, one can decide to split the labeled set into training,
validation and test sets, where the validation set serves the purpose of evaluating different models
(e.g. different parameter values and configurations), and the best model is selected for predicting
the labels of the test set.

In this work we take the first approach, i.e., we split the labeled set into training and test
sets. If training data is already very small, splitting it further for validation purpose is unlikely to
give any insight or benefit. If training is enough (some hundreds of labeled samples), we can use
cross-validation techniques for model selection.

3.4 Transductive Learning

In the transductive learning paradigm, the data collection to be automatically labeled is available
before hand. The goal is to predict labels for the entire collection, using a few labeled samples
provided by the user. The bottleneck is again the small size of the training set (labeled set), but
one can take advantage of the unlabeled data in order to learn more about the nature of the input

32 3. Background Knowledge for Text Classification and Clustering

corpus, e.g. cluster substructure, feature distributions, etc. Moreover, transductive classification
can be used as a building block for preparing the large training sets required by inductive learning
techniques.

Both learning paradigms (inductive and transductive) can benefit from background knowledge
about the problem at hand.

In order to analyze the various building blocks of the latent model presented in the previous
section, we design several experiments, in which we test the influence of each of the building blocks
on model performance. For the purpose of parameter analysis for the latent model, we compare
the results to a Naive Bayes classifier as a baseline. In order to understand the benefit of using
our latent model for improving classification accuracy, we compare the classification performance
to several inductive and transductive classifiers.

3.5 Experimental Results

3.5.1 Methodology

The experimental setup is the following. We are given a collection of labeled documents which we
split into training, with labels known to the classifier, and test, with labels unknown to the classifier.
The goal is to automatically predict the labels of the documents from the test set. Furthermore, we
want to study how much labeled data is needed for obtaining a reasonable classification accuracy,
and what classifier methods perform best.

We analyze the performance of both inductive and transductive learning techniques in solving
this problem. The inductive techniques learn based on the training data alone and have access
to external background knowledge (e.g. ontologies, encyclopedia, but no unlabeled examples).
The transductive techniques learn from both training (labeled) and test (unlabeled) data, as well
as from external background knowledge. For analyzing the impact of various parameters on the
performance of our latent model (Sections 3.5.4 and 3.5.5), we randomly split the collection into
1% training and remaining 99% test. For comparing several classifiers (Section 3.5.7), we average
over 5 repetitions with random splits into training and test data, with the size of the splits ranging
from 0.25% training data and 99.75% test data, up to 10%− 90% training-test splits.

3.5.2 Test Collections

We evaluate our techniques on three different text corpora. For all three collections, we pre-process
the text by stemming all the words and removing stop-words from the standard SMART list [SMA].

The Reuters-21578 dataset is part of the Reuters newswire collected in 1987 [Lew]. Of the
135 potential categories we select the top 10 categories in terms of training set size (so that each
topic has a reasonable amount of labeled documents) and we keep only documents labeled with a
unique topic. We pool together all the labeled documents for each topic. This results in a total of
8,024 documents. Per topic statistics are given in Table 3.1.

The Amazon dataset is a collection of editorial reviews of books organized into categories,
extracted from http://www.amazon.com. From the available categorization, we selected all the

3.5 Experimental Results 33

Table 3.1: Reuters-21578 corpus description.

Category Name Labeled set size

earn 3,923

acq 2,292

crude 374

trade 327

money-fx 309

interest 272

money-supply 149

ship 144

sugar 122

coffee 112

editorial reviews of books under the categories Biological Sciences, Mathematics, and Physics.
This amounts to 5,634 labeled documents. The corpus is described in Table 3.2.

Table 3.2: Amazon corpus description.

Category Name Labeled set size

Mathematics 2,258

Biological Sciences 2,047

Physics 1,329

Table 3.3: Wikipedia corpus description.

Category Name Labeled set size

Politics 3,923

Computer Science 2,292

Mathematics 975

Geography 919

Physics 513

Biology 435

Chemistry 371

The Wikipedia collection was obtained by a topic-focused crawl of http://en.wikipedia.org.
The selected topics were Politics, Computer Science, Physics, Chemistry, Biology, Mathematics,
and Geography. The crawl was started from the main pages of each of these classes and topic-
specific words in the anchor text were used as indicators for whether an outgoing link should be

34 3. Background Knowledge for Text Classification and Clustering

followed. The dataset gathered this way contains 5,384 documents. Table 3.3 gives detailed corpus
statistics. Due to the crawling procedure, this dataset contains a certain amount of noise. All
datasets are available online1.

3.5.3 Performance Measures

For evaluating the classification quality, we use the following measures commonly employed in
evaluating text classifiers [MS00, Cha03]:

• Per topic:

1. Precision: number of correct positive predictions
number of positive predictions

2. Recall: number of correct positive predictions
number of positive examples

3. F1-measure: the harmonic mean of Precision and Recall

F1 =
2 · Precision ·Recall
Precision+Recall

Typically a per topic confusion matrix is created which summarizes the classifier decisions.
Precision and Recall are then computed from this matrix. Table 3.4 shows how the confusion
matrix is defined. Using the confusion matrix Precision and Recall are defined as: Precision =
TP

TP+FP , Recall = TP
TP+FN .

Table 3.4: Classifier evaluation based on the per topic confusion matrix.

Predicted

Positive Negative

True
Positive TP FN

Negative FP TN

• Aggregation over all topics:

1. Micro-averaged Precision/Recall: Precision/Recall computed on the confusion matrix
formed by summing up all the per topic matrices.

2. Micro-averaged F1 measure: The harmonic mean of Micro-averaged Precision and
Micro-averaged Recall.

3. Macro-averaged Precision/Recall: Averaged Precision/Recall over all topics.

4. Macro-averaged F1 measure: The harmonic mean of Macro-averaged Precision and
Macro-averaged Recall.

1Test collections available at http://www.mpi-sb.mpg.de/∼ifrim/pkdd06-datasets.zip

3.5 Experimental Results 35

Table 3.5: Details on the training/test per collection.

Collection Training size Test size Features

Reuters21578 80 7,944 1,385

Amazon 56 5,578 2,041

Wikipedia 54 5,330 5,170

Micro-averaging makes the overall Precision and Recall depend most on the classes with the
largest number of (positive) documents: the classification results can be poor for classes with few
positive examples without affecting much the overall numbers. Thus, micro-averaged measures
pay equal importance to each document [Cha03]. Macro-averaging pays equal importance to each
topic, that is macro-averaged results reflect how well the documents in each topic were classified.

3.5.4 Parameter Analysis of the Inductive Latent Model

We first analyze the inductively learned latent model (ILM), i.e. the classifier only sees the labeled
training data, but does not see any (unlabeled) test data. The main parameters of the latent model
are:

1. the number of features,

2. the number of concepts (latent variables),

3. the number of EM iterations,

4. P [f |c] (the probability of feature f given concept c),

5. P [c|t] (the probability of concept c given topic t).

For the experiments in this section, we randomly select 1% of the collection as training data,
and the rest as test data. We use Mutual Information [MN98a] for selecting features. We also show
results for a Naive Bayes classifier (NB) tested in similar conditions as our Inductive Latent
Model (ILM). For evaluating ILM, we design the following experiments.

Influence of the number of EM iterations

In this experiment we analyze the model behavior as a function of the number of EM iterations.
We take all the distinct terms in the training set as features. The number of concepts is

set using the Discriminative Concept Selection strategy presented in Section 3.2.4. We vary the
number of EM iterations (By 0 EM iterations we refer to using only the mapping estimates of
P [f |c] and P [c|t], without n(f, t) training counts) between 0 and 20 and study the effect of this
parameter on classification quality. We show results with both random initialization (rand-init)
and context-similarity initialization (sim-init) of P [f |c] and P [c|t]. Table 3.5 shows statistics on
the input data.

In Table 3.6 we show classification results for Naive Bayes over all three collections. We use
Naive Bayes results as a baseline for comparison with ILM.

36 3. Background Knowledge for Text Classification and Clustering

Table 3.6: Results on all collections using Naive Bayes.

Collection NB

micro-avg F1 macro-avg F1

Reuters21578 79.7 60.3

Amazon 74.9 73.2

Wikipedia 70.2 70.3

Table 3.7: Reuters21578. Influence of the number of EM iterations on micro/macro-averaged F1
using rand-init for P [f |c] and P [c|t].

EM iteration ILM

micro-avg F1 macro-avg F1

0 28.4 4.8

1 76.2 54.5

2 79.5 60.7

3 81.0 61.4

4 79.6 59.1

5 79.4 58.9

10 74.9 50.6

15 73.4 46.3

20 72.6 44.0

Table 3.8: Reuters21578. Influence of the number of EM iterations on micro/macro-averaged F1
using sim-init for P [f |c] and P [c|t].

EM iteration ILM

micro-avg F1 macro-avg F1

0 69.8 50.5

1 75.9 55.1

2 77.5 55.8

3 77.3 55.0

4 77.1 54.5

5 76.7 54.2

10 75.7 52.8

15 75.5 51.8

20 75.5 51.8

Table 3.7 and Table 3.8 present results on the Reuters collection for ILM. We give in bold
the best micro-averaged F1 result across EM iterations. We observe that for both random and
similarity-based initialization (denoted by rand-init and sim-init) of P [f |c] and P [c|t], the clas-
sification quality (in terms of micro-averaged F1) peaks at 2-3 EM iterations, and then starts
decreasing with more iterations, most likely due to overfitting. We also notice that ILM outper-
forms NB on this collection, when the P [f |c] and P [c|t] parameters are randomly initialized.

3.5 Experimental Results 37

Table 3.9: Amazon. Influence of the number of EM iterations on micro/macro-averaged F1 using
rand-init for P [f |c] and P [c|t].

EM iteration ILM

micro-avg F1 macro-avg F1

0 36.2 26.9

1 74.4 72.9

2 73.9 72.7

3 73.8 72.6

4 73.7 72.3

5 73.4 71.8

10 72.1 69.7

15 70.9 68.2

20 70.5 67.7

Table 3.10: Amazon. Influence of the number of EM iterations on micro/macro-averaged F1 using
sim-init for P [f |c] and P [c|t].

EM iteration ILM

micro-avg F1 macro-avg F1

0 61.9 63.0

1 71.8 71.7

2 72.1 71.9

3 72.4 72.0

4 72.6 71.9

5 73.0 72.0

10 73.4 71.6

15 73.1 71.0

20 72.9 70.7

On Amazon (Table 3.9 and Table 3.10) the best number of EM iterations differs depending
on the initialization. For rand-init, the micro-averaged F1 is highest in the first EM iteration,
while for sim-init, the peak is reached with about 10 iterations. In Table 3.11 and Table 3.12
we summarize the results on the Wikipedia dataset. Again, the classification quality varies with
the number of EM iterations. For rand-init micro-averaged F1 reaches its peak on the third
EM iteration, while for sim-init it peaks on the first iteration. This experiment shows that
the classification quality is influenced by the number of EM iterations. Throughout the next
experiments we fix the number of EM iterations to the value that resulted in highest micro-averaged
F1 for each dataset and parameters configuration. We summarize these values in Table 3.13.

38 3. Background Knowledge for Text Classification and Clustering

Table 3.11: Wikipedia. Influence of the number of EM iterations on micro-averaged F1 using
rand-init for P [f |c] and P [c|t].

EM iteration ILM

micro-avg F1 macro-avg F1

0 17.7 13.6

1 69.2 69.7

2 70.2 70.4

3 70.4 70.5

4 70.3 70.3

5 69.6 69.7

10 65.2 65.8

15 62.6 63.5

20 61.7 62.8

Table 3.12: Wikipedia. Influence of the number of EM iterations on micro/macro-averaged F1
using sim-init for P [f |c] and P [c|t].

EM iteration ILM

micro-avg F1 macro-avg F1

0 66.7 65.2

1 68.3 68.0

2 67.7 67.7

3 67.6 67.3

4 67.1 66.7

5 66.8 66.6

10 66.0 65.8

15 65.7 65.3

20 65.5 65.1

Table 3.13: Best number of EM iterations on all collections..
Collection ILM

rand-init sim-init

Reuters21578 3 2

Amazon 1 10

Wikipedia 3 1

Influence of the number of concepts

In this section, we test various strategies for selecting concepts (i.e. initializing the model structure),
including the two strategies presented in Section 3.2.4. All the distinct terms in the training set
are taken as features. The number of EM iterations is set as in Table 3.13. We initialize P [f |c]

3.5 Experimental Results 39

and P [c|t] to random values. Tables 3.14 to 3.16 show results for varying number of concepts.

Table 3.14: Reuters21578. Influence of the number of concepts on micro/macro-averaged F1.

Concepts ILM

micro-avg F1 macro-avg F1

10 75.3 41.5

50 79.4 53.7

100 79.4 54.8

300 80.4 60.2

500 80.6 60.3

1,000 81.0 60.6

2,000 80.9 60.1

5,000 81.3 62.3

ConceptSel-All: 6,969 81.2 62.0

ConceptSel-Discriminative: 1,107 81.0 61.4

Table 3.15: Amazon. Influence of the number of concepts on micro/macro-averaged F1.

Concepts ILM

micro-avg F1 macro-avg F1

3 48.6 48.7

50 73.1 70.4

100 74.6 72.3

300 73.5 72.3

500 74.3 72.5

1,000 74.2 72.7

2,000 74.2 72.7

5,000 74.4 72.7

ConceptSel-All: 9,715 74.2 72.7

ConceptSel-Discriminative: 1,723 74.4 73.0

This experiment shows that the number of latent variables in the model affects the quality
of classification. It also shows that initializing the structure of the latent model based on the
ontology using the strategies presented in Section 3.2.4 is a good approach. The advantage of
using the techniques proposed in Section 3.2.4 is that the latent variables are explicitly represented
in the ontology and their selection is driven by the training set, without the need for further
cross-validation or other model selection techniques.

Influence of the number of features

In this section we vary the number of features in the model, and measure the classification perfor-
mance. We initialize P [f |c] and P [c|t] using random values and context-similarity estimates. For

40 3. Background Knowledge for Text Classification and Clustering

Table 3.16: Wikipedia. Influence of the number of concepts on micro/macro-averaged F1.

Concepts ILM

micro-avg F1 macro-avg F1

7 52.4 52.2

50 70.0 69.3

100 70.4 70.2

300 69.9 70.2

500 69.9 70.1

1,000 70.2 70.4

2,000 70.1 70.2

5,000 70.4 70.5

ConceptSel-All: 18,426 70.4 70.5

ConceptSel-Discriminative: 4,024 70.4 70.5

all the remaining experiments, we set the number of concepts using our Discriminative Concept
Selection strategy. The number of EM iterations is set as in Table 3.13. We show results with
varying number of features for both NB and ILM.

The NB classifier results improve with increased number of features. On the Reuters collection
(Table 3.17) it achieves the peak of micro-averaged F1 with 1,000 features, while on the second
collection (Table 3.19) it achievs maximum classification quality when using all the distinct terms
in the training set as features. On the Wikipedia collection (Table 3.21), it achieves the best

Table 3.17: Reuters21578. Influence of the number of features on micro/macro-averaged F1. NB
versus rand-init ILM.

Features NB ILM

micro-avg F1 macro-avg F1 micro-avg F1 macro-avg F1

100 75.1 57.5 75.3 56.7

500 79.7 61.4 79.8 59.1

1,000 80.1 61.1 80.3 60.1

1,385 79.7 60.3 81.0 61.4

Table 3.18: Reuters21578. Influence of the number of features on micro/macro-averaged F1. NB
versus sim-init ILM.

Features NB ILM

micro-avg F1 macro-avg F1 micro-avg F1 macro-avg F1

100 75.1 57.5 68.4 39.3

500 79.7 61.4 76.1 56.0

1,000 80.1 61.1 78.3 56.7

1,385 79.7 60.3 77.5 55.8

3.5 Experimental Results 41

Table 3.19: Amazon. Influence of the number of features on micro/macro-averaged F1. NB versus
rand-init ILM.

Features NB ILM

micro-avg F1 macro-avg F1 micro-avg F1 macro-avg F1

100 69.7 69.6 69.9 67.7

500 72.8 72.1 72.9 71.4

1,000 74.2 72.4 74.9 73.3

1,500 74.8 73.1 73.9 72.7

2,000 74.7 72.9 73.8 72.4

2,041 74.9 73.2 74.4 72.9

Table 3.20: Amazon. Influence of the number of features on micro/macro-averaged F1. NB versus
sim-init ILM.

Features NB ILM

micro-avg F1 macro-avg F1 micro-avg F1 macro-avg F1

100 69.7 69.6 69.0 68.5

500 72.8 72.1 72.1 71.1

1,000 74.2 72.4 73.3 71.9

1,500 74.8 73.1 72.8 71.8

2,000 74.7 72.9 73.3 71.7

2,041 74.9 73.2 73.4 71.6

Table 3.21: Wikipedia. Influence of the number of features on micro/macro-averaged F1. NB
versus rand-init ILM.

Features NB ILM

micro-avg F1 macro-avg F1 micro-avg F1 macro-avg F1

100 63.4 62.9 62.7 62.3

500 69.3 68.9 69.2 68.5

1,000 69.9 70.0 69.6 69.5

1,500 70.1 70.1 69.8 69.8

2,000 70.5 70.6 70.1 69.9

5,000 70.0 70.1 70.0 70.0

5,170 70.2 70.3 70.4 70.5

performance with 2,000 features out of 5,170 distinct terms. On Reuters21578 (Table 3.17), ILM
achieves highest micro-averaged F1 using all the distinct terms in the training set (1,385 features).
ILM with rand-init is slightly better (+1.3%) than NB on this dataset. ILM with sim-init is
slightly worse than ILM with rand-init (-1.7%). On Amazon (Table 3.19), ILM achieves the best
micro-averaged F1 with 1,000 features (out of 2,041 distinct terms in training). For rand-init
ILM has micro-averaged F1 which is the same as for NB (NB: 74.9%, ILM: 74.9%). For sim-

42 3. Background Knowledge for Text Classification and Clustering

Table 3.22: Wikipedia. Influence of the number of features on micro/macro-averaged F1. NB
versus sim-init ILM.

Features NB ILM

micro-avg F1 macro-avg F1 micro-avg F1 macro-avg F1

100 63.4 62.9 63.3 62.8

500 69.3 68.9 68.7 68.5

1,000 69.9 70.0 69.2 69.6

1,500 70.1 70.1 69.7 69.8

2,000 70.5 70.6 69.6 69.7

5,000 70.0 70.1 68.6 68.2

5,170 70.2 70.3 68.3 68.0

init, ILM behaves slightly worse (micro-averaged F1: 73.4%). On Wikipedia (Table 3.21), ILM
achieves highest micro-averaged F1 using all the features (5,170 distinct terms) with rand-init, and
using only 2,000 features with sim-init of the P [f |c] and P [c|t] parameters. Compared to NB, the
micro-averaged F1 results are similar (NB: 70.5%, ILM: 70.4%).

We note that using the similarity-based prior does not help in improving the classification
accuracy of ILM as compared to its randomly initialized counterpart. On all three collections, the
random initialization of these parameters resulted in better classification quality. This suggests
the training may be too small and of potentially too low quality to be used alone for inferring the
similarity-based prior. We summarize the best number of features for each collection and parameter
initialization in Table 3.23.

Table 3.23: Best number of features on all collections..
Collection ILM

rand-init sim-init

Reuters21578 1,385 1,000

Amazon 1,000 2,041

Wikipedia 5,170 1,500

Influence of P[f|c]

In this experiment, we test the influence of the similarity-based prior distribution of P [f |c] on the
classification quality of the latent model. We fix the number of features and the number of EM
iterations to the values that achieved best micro-averaged F1 for each collection (Table 3.23, Table
3.13). We initialize P [f |c] using the context-similarity heuristic presented in Section 3.2.4. We
initialize the P [c|t] to random values.

Tables 3.24 and 3.25 show results for ILM with different initializations of the parameters P [f |c].
From this experiment we see that the similarity-initialization as a prior on P [f |c] does not help
the overall classification quality of ILM. This can be explained by the quality and size of the

3.5 Experimental Results 43

Table 3.24: Results with best parameter settings on all collections using rand-init for both P [f |c]
and P [c|t].

Collection ILM

rand-init P[f|c], rand-init P[c|t]

EM iter micro-avgF1

Reuters21578 3 81.0

Amazon 1 74.9

Wikipedia 3 70.4

Table 3.25: Influence of sim-init for P[f|c].

Collection ILM

sim-init P[f|c], rand-init P[c|t]

EM iter micro-avg F1 EM iter micro-avg F1

Reuters21578 3 77.9 2 78.1

Amazon 1 73.0 10 73.9

Wikipedia 3 69.7 1 69.0

Table 3.26: Influence of sim-init for P[c|t].
Collection ILM

rand-init P[f|c], sim-init P[c|t]

EM iter micro-avg F1 EM iter micro-avg F1

Reuters21578 3 78.7 2 79.0

Amazon 1 73.8 10 73.3

Wikipedia 3 68.9 1 69.7

training data, e.g. when the training data is small, features tend to occur sparsely in the training
set, therefore inferring a prior mapping between features and concepts based on training contexts
alone, does not boost performance as compared to random initialization.

Influence of P[c|t]

We fix the number of features and the number of EM iterations to the values that achieve best
micro-averaged F1 for each collection (Table 3.23, Table 3.13). We initialize P [f |c] to random
values and P [c|t] using the context-similarity heuristic presented in Section 3.2.4.

From Table 3.26 we observe the same effect when using the context-similarity prior for P[c|t],
as we noted for P [f |c] . When training is sparse, the similarity-based prior does not improve over
random initialization of P [f |c] and P [c|t].

44 3. Background Knowledge for Text Classification and Clustering

3.5.5 Parameter Analysis of the Transductive Latent Model

For testing the transductively learned latent model (TLM), we investigate the effect of using un-
labeled examples and external background knowledge for selecting features and for estimating the
prior on P [f |c] and P [c|t].

Influence of unlabeled examples

We fix the number of features to 5,000, selected based on tf · idf ranking computed on the full
(labeled and unlabeled) collection. The number of concepts is selected by our Discriminative
Concept Selection technique. We vary the number of EM iterations from 0 to 10. We initialize
the P [c|t] parameters to random values. We test both the random initialization of P[f|c] and the
similarity-based estimate of P [f |c] from labeled and unlabeled examples. In this section we try to
answer several questions.

1. Does enlarging the feature set alone, without estimating a context-similarity prior on P [f |c]
and P [c|t], increase classification accuracy?

Table 3.27: Influence of unlabeled features.
Collection TLM

rand-init P[f|c], rand-init P[c|t]

EM iter micro-avg F1 macro-avg F1

Reuters21578 0 28.3 4.4

1 77.2 51.5

2 80.2 60.5

3 81.5 61.2

4 81.8 61.8

5 81.6 61.9

10 76.2 52.8

Amazon 0 36.9 31.4

1 73.9 72.5

2 73.4 72.5

3 73.0 72.2

4 73.1 72.1

5 72.8 71.6

10 71.4 69.4

Wikipedia 0 14.2 12.3

1 68.9 69.4

2 69.8 69.7

3 70.1 69.9

4 70.2 70.1

5 70.1 69.9

10 66.1 66.7

3.5 Experimental Results 45

Simply enlarging the feature set by selecting features from the entire collection rather than
training alone does not help. Lets have a closer look at the effect of extending the feature set by
adding unlabeled features, i.e. features of the collection which may not occur in the labeled training
set. From equations Equation 3.17 and 3.29 we observe that unlabeled features can only affect
the estimation of P [c|f, t] directly. The estimates of P [f |c] and P [c|t] for unlabeled features does
not change during EM iterations, but they directly influence P [c|f, t] and thus indirectly influence
the estimates of P [f |c] and P [c|t] for the labeled features (features with non-zero occurrences in
the training set). Since we initialize the P [f |c], P [c|t] parameters with random values, they cannot
influence the P [c|f, t] in a meaningful way, and thus the model using both labeled and unlabeled
features does not gain much accuracy over its counter part which only involves labeled features.
The classification results of our Transductive Latent Model (TLM) are summarized on Table
3.27. On Reuters, the micro-averaged F1 goes up from 81.0% to 81.8%, on Amazon it goes down
from 74.9% to 73.9%, and on Wikipedia it goes down from 70.4% to 70.2%.

2. Does enlarging the feature set and inferring a similarity-based prior on P [f |c] increase
classification accuracy?

Table 3.28: Influence of sim-init for P[f|c] from labeled and unlabeled documents.

Collection TLM

sim-init P[f|c], rand-init P[c|t]

EM iter micro-avg F1 macro-avg F1

Reuters21578 0 27.0 5.6

1 83.1 62.4

2 83.8 65.7

3 85.1 69.6

4 84.6 68.8

5 82.1 64.2

10 79.9 59.1

Amazon 0 33.9 26.7

1 77.9 76.0

2 77.9 76.6

3 76.7 76.1

4 75.0 75.3

5 74.5 74.9

10 73.6 72.2

Wikipedia 0 13.5 9.5

1 72.9 73.1

2 73.7 73.8

3 74.3 74.2

4 74.2 74.0

5 73.2 73.0

10 68.6 68.6

46 3. Background Knowledge for Text Classification and Clustering

Since we initialize the P [f |c] based on the context-similarity prior, the parameters corresponding
to unlabeled features positively affect the overall parameter estimation. Table 3.28 present TLM
results for all three collections. On the Reuters corpus, TLM achieves a 4% improvement in terms
of micro-averaged F1 (from 81.0% for ILM to 85.1% for TLM), and 3-4% improvement on Amazon
and Wikipedia respectively (Amazon: from 74.9% for ILM to 77.9% for TLM, Wikipedia: from
70.4% for ILM to 74.3% for TLM).

3. Does enlarging the feature set and estimating a similarity prior on both P [f |c] and P [c|t]
increase classification accuracy?

Table 3.29: Influence of sim-init for P[f|c] and P[c|t] from labeled and unlabeled documents.

Collection TLM

sim-init P[f|c], sim-init P[c|t]

EM iter micro-avg F1 macro-avg F1

Reuters21578 0 81.6 58.0

1 82.3 62.3

2 84.1 66.2

3 84.8 67.9

4 84.6 67.3

5 84.0 66.0

10 82.5 62.7

Amazon 0 73.4 73.4

1 73.0 75.5

2 71.9 74.7

3 72.4 74.6

4 73.6 74.8

5 74.5 74.9

10 75.9 74.5

Wikipedia 0 74.6 74.3

1 74.1 74.1

2 73.3 73.6

3 72.6 73.2

4 71.8 72.2

5 71.3 71.5

10 70.7 70.5

Table 3.29 shows that using the similarity prior on both P [f |c] and P [c|t] helps classification
accuracy as compared to ILM, but not as compared to TLM with sim-init P [f |c] and rand-init
P [c|t]. The reason for the latter observation is that the estimate for P [f |c] can take advantage of
unlabeled data while the estimate for P [c|t] relies on labeled data alone, thus it is better to rely on
the prior only for P [f |c] and not for P [c|t]. As compared to TLM with sim-init P [f |c] and rand-
init P [c|t], TLM with sim-init for both parameters gives the following results: on Reuters, micro-
averaged F1 decreases from 85.1% to 84.4%, on Amazon from 77.9% to 75.9% and on Wikipedia

3.5 Experimental Results 47

it increases slightly from 74.3% to 74.6%.

Influence of external background knowledge

For this experiment, we set the number of features to 5,000, selected based on tf · idf ranking
computed on the full (labeled and unlabeled) collection. The number of concepts is selected by
our discriminative Concept Selection technique. We vary the number of EM iterations from 0 to
10. We run two experiments, in order to check the influence of the P [c|t] component. The first
experiment initializes P [f |c] to random value, while the second estimates P [f |c] from labeled and
unlabeled examples. For both experiments we initialize P [c|t] using both training and Wikipedia
pages to build contexts for topics. The Wikipedia pages are treated as explicit training data.

Table 3.30 shows the results of the first experiment. Using sim-init for P [c|t] alone (with
rand-init P [f |c]) has a positive effect on classification accuracy as compared to initializing both
parameters with random values. Nevertheless, using context-similarity initialization for both P [f |c]
and P [c|t] parameters gives the best results.

Table 3.30: Influence of sim-init for P[c|t] from training and Wikipedia pages.

Collection TLM

rand-init P[f|c], sim-init P[c|t]

EM iter micro-avg F1 macro-avg F1

Reuters21578 0 7.6 4.2

1 79.3 57.5

2 82.0 59.9

3 82.8 59.1

4 82.4 58.6

5 81.6 58.5

10 80.3 59.7

Amazon 0 35.5 33.7

1 81.7 80.6

2 81.9 80.8

3 82.0 81.0

4 82.3 81.1

5 82.4 81.2

10 81.4 79.9

Wikipedia 0 13.5 13.0

1 76.0 75.3

2 74.8 75.0

3 73.1 74.4

4 73.3 74.3

5 73.7 74.3

10 73.5 73.7

48 3. Background Knowledge for Text Classification and Clustering

Table 3.31 shows TLM results for the second experiment. We note that the background
knowledge from Wikipedia has a strong positive effect on the classification quality on the Amazon
and Wikipedia corpora, while for the Reuters corpus it leads to a slight decrease as compared
to the model learned with no Wikipedia data. Nevertheless, we observe that for all collections
including external background knowledge leads to a faster peak in the micro-averaged F1, e.g. on
all collections the highest micro-averaged F1 value is reached within the first three EM iterations.
The results with respect to micro-averaged F1 without and with using Wikipedia as an extension
for training are: on Reuters 85.1% versus 84.2%, on Amazon 77.9%versus 84.2% and on Wikipedia
74.3% versus 79.6%.

For comparison we also show NB results on the Wikipedia-extended training set. Table 3.32
summarizes the details about the extended training data. The NB results are shown in Table 3.33.

Table 3.31: Influence of sim-init for P[f|c] from labeled and unlabeled documents, sim-init for P[c|t]
from training and Wikipedia pages.

Collection TLM

sim-init P[f|c], sim-init P[c|t]

EM iter micro-avg F1 macro-avg F1

Reuters21578 0 57.7 53.1

1 81.6 60.0

2 83.7 61.6

3 84.2 62.6

4 83.6 61.7

5 83.3 61.4

10 82.7 63.3

Amazon 0 82.5 82.0

1 84.2 83.3

2 84.1 83.1

3 83.9 82.8

4 83.9 82.8

5 83.7 82.5

10 83.0 81.6

Wikipedia 0 79.6 78.4

1 79.2 78.6

2 77.1 77.5

3 75.9 76.5

4 75.6 76.1

5 75.2 75.7

10 74.8 75.0

3.5 Experimental Results 49

Table 3.32: Details on the training/test per collection. Training extended with Wikipedia pages.

Collection Extended Training size Test size Extended Training Features

Reuters21578 90 7,944 5,082

Amazon 59 5,578 3,500

Wikipedia 61 5,330 6,802

Table 3.33: Results on all collections using Naive Bayes. Training extended with Wikipedia pages.

Collection NB NB-wikiext

micro-avg F1 macro-avg F1 micro-avg F1 macro-avg F1

Reuters21578 79.7 60.3 80.1 61.7

Amazon 74.9 73.2 83.3 82.2

Wikipedia 70.2 70.3 76.9 76.5

3.5.6 Parameter Analysis of the Latent Model: Discussion

In the previous experiments we analyzed the building blocks of the latent model proposed, and
observed the influence of each of these building blocks on the overall model performance. We have
noted the following effects:

1. The number of EM iterations affects the classification results. Typically the model reaches
the peak of classification quality within the first 10 iterations.

2. Using an external ontology of concepts for initializing the model structure is beneficial and
avoids the need for using other model selection techniques.

3. The number of features in the model influences the classification performance. A few thou-
sand features seem to be enough for achieving good classification quality. Models learned
transductively, e.g. with labeled and unlabeled features, provide better results than models
learned inductively.

4. Using a context-similarity heuristic for initializing P [f |c] affects the classification perfor-
mance. If the similarity-based prior on P [f |c] is learned only from little training, this may
negatively affect the results. In this case initializing these parameters to random values can
give better results. If instead the prior is learned from a large collection of labeled and
unlabeled documents, the prior can improve micro and macro-averaged F1 results by up to
5%.

5. Using a context-similarity heuristic for initializing P [c|t] affects the classification perfor-
mance. If the similarity-based prior on P [c|t] is learned only from little training, this may
negatively affect the results. If instead the prior is learned from training and other sources
of background knowledge about the topics, the prior can improve micro and macro-averaged
F1 results by up to 8%.

50 3. Background Knowledge for Text Classification and Clustering

6. Using a context-similarity prior on both P [f |c] and P [c|t] parameters positively affects the
classification quality and can improve the results by up to 10%.

3.5.7 Comparison to Other Techniques

In the previous sections we have analyzed the model behavior depending on various parameter val-
ues. In this section we present results comparing our technique to other state-of-the-art (inductive
as well as transductive) classifiers. We compare the following classifiers:

• (Inductive) Multinomial Naive Bayes (NB) [MN98a]

• Inductive/Transductive Latent Model (ILM, TLM) developed in this thesis

• Inductive/Transductive Support Vector Machines (ISVM, TSVM) [Joa98] [Joa99b]

• (Transductive) Spectral Graph Transducer (SGT) [Joa03]

To evaluate the classification performance of all the methods compared, we focus on micro/macro-
averaged F1 [Seb02] as our main performance metrics. The results are averages over 5 repetitions
with random splits into training and test data, with the size of the splits ranging from 0.25% training
data and 99.75% test data, up to 10% − 90% training-test splits. When learning classifiers from
sparse training data, parameter tuning is unreliable, i.e. it is difficult to perform meaningful cross-
validation or to provide held-out data for model selection. In order to set the hyperparameters for
each of the compared methods we tune them directly on the test set, using the same training/test
data employed in the previous section for the analysis of ILM/TLM parameters (Section 3.5.4,
Section 3.5.5). The results presented can thus be interpreted as an upper bound on the realistic
performance these methods will deliver in practice. We show experiments for two settings: the
first setting does not use external information from Wikipedia to improve the description of the
topics. In the second setting (coined wikiext) we use Wikipedia pages as broad descriptions of
the topics of interest (and add them as explicit training for all the methods).

Parameter tuning for all methods

In this paragraph we summarize the decisions we took for setting the hyperparameters for all the
methods compared. For ILM/TLM we rely on the empirical study presented in the previous section
in order to set the number of EM iterations and whether we turn on or off the similarity prior for
the model parameters P [f |c] and P [c|t]. We observed that using more than 10,000 features did
not improve the classification performance of NB, ILM and TLM, therefore we limit the number of
features to 10,000 for these methods. The features are selected from the training set using Mutual
Information for NB and ILM, and from the entire collection by tf · idf rank for TLM. The number
of concepts is set according to our Discriminative Concept Selection strategy. Table 3.34 and Table
3.35 summarize the parameter settings used for ILM and TLM, both with and without Wikipedia
as background data.

As suggested in [Joa98, Joa99b, Joa03] we do not use feature selection for ISVM, TSVM and
SGT, i.e. we use all the distinct terms in the collection as features. We use SVMLight [Joa98] with
linear kernel. In order to set the hyperparameter of SVM (parameter C: the trade-off between

3.5 Experimental Results 51

training error and margin), we run experiments on the same data as in Section 3.5.4 and choose
the best parameter according to the performance on the test set. Table 3.36 and Table 3.37 show
results for varying the hyperparameter of SVM. For TSVM we limited the number of values tried
for the C parameter due to the high training time. For C larger than 0.01, it took more than
2 days to train TSVM. Furthermore, the classification quality kept on decreasing for values of C
lower than 1.

The SGT hyperparameter is the number of nearest neighbors (denoted by k) for each node in
the neighborhood graph. Similar to the hyperparameter of SVM, we set the SGT main parameter
to the best performing value on the test set. Table 3.38 and Table 3.39 show results for varying the
hyperparameter of SGT.

Table 3.34: Parameter settings for ILM.

Collection ILM ILM-wikiext

rand-init P [f |c], P [c|t] rand-init P [f |c], sim-init P [c|t]
EM iterations EM iterations

Reuters21578 3 3

Amazon 3 3

Wikipedia 3 2

Table 3.35: Parameter settings for TLM.

Collection TLM TLM-wikiext

sim-init P [f |c], rand-init P [c|t] sim-init P [f |c], sim-init P [c|t]
EM iterations EM iterations

Reuters21578 3 3

Amazon 2 1

Wikipedia 3 1

52 3. Background Knowledge for Text Classification and Clustering

Table 3.36: Influence of the SVM hyperparameter on micro/macro-averaged F1.

Collection C ISVM TSVM

micro-avg F1 macro-avg F1 micro-avg F1 macro-avg F1

Reuters21578 def 73.4 34.0 81.2 54.8

10 74.3 39.4 81.2 50.4

1 73.4 34.0 81.4 55.0

0.1 73.6 31.6 79.6 51.5

0.01 73.3 31.5 68.7 51.9

0.001 78.5 55.8 57.5 53.2

0.0001 77.3 54.4 N/A N/A

Amazon def 72.7 69.3 73.3 71.2

10 74.3 71.3 72.4 70.5

1 72.7 69.3 73.7 71.5

0.1 72.7 69.3 63.5 61.7

0.01 72.0 68.6 52.9 53.8

0.001 74.1 71.9 N/A N/A

0.0001 73.7 71.5 N/A N/A

Wikipedia def 65.4 66.2 70.5 67.6

10 68.8 68.4 70.2 68.1

1 65.4 66.2 70.7 67.8

0.1 65.2 66.0 61.7 57.0

0.01 68.0 68.0 59.6 52.7

0.001 62.7 63.7 N/A N/A

0.0001 63.2 64.9 N/A N/A

3.5 Experimental Results 53

Table 3.37: Influence of the SVM hyperparameter on micro/macro-averaged F1 with Wikipedia
pages.

Collection C ISVM TSVM

micro-avg F1 macro-avg F1 micro-avg F1 macro-avg F1

Reuters21578 def 73.9 36.0 80.4 56.8

10 75.2 46.6 80.6 57.1

1 73.9 36.0 80.7 57.5

0.1 74.0 34.1 78.5 52.5

0.01 74.2 34.1 N/A N/A

0.001 78.8 55.5 N/A N/A

0.0001 78.8 55.2 N/A N/A

Amazon def 75.2 72.7 73.0 71.2

10 77.4 75.1 73.4 71.7

1 75.2 72.7 73.0 71.2

0.1 75.2 72.7 66.0 64.4

0.01 73.7 70.9 N/A N/A

0.001 76.1 74.4 N/A N/A

0.0001 77.7 75.9 N/A N/A

Wikipedia def 70.5 71.3 70.9 68.3

10 73.1 73.0 71.2 70.2

1 70.5 71.3 71.5 69.0

0.1 70.4 71.2 60.1 54.8

0.01 68.6 70.7 N/A N/A

0.001 73.6 73.7 N/A N/A

0.0001 60.5 64.4 N/A N/A

54 3. Background Knowledge for Text Classification and Clustering

Table 3.38: Influence of the SGT hyperparameter on micro/macro-averaged F1.

Collection k SGT

micro-avg F1 macro-avg F1

Reuters21578 10 64.9 62.6

50 76.4 70.3

100 79.9 72.8

300 84.6 74.6

500 84.8 73.0

800 84.2 70.9

1000 84.0 69.2

Amazon 10 84.9 83.8

50 86.1 84.9

100 86.3 85.4

300 86.6 85.9

500 85.7 85.0

800 85.6 84.9

1000 86.0 85.1

Wikipedia 10 80.7 80.5

50 78.2 78.8

100 77.8 78.5

300 79.8 79.1

500 79.7 79.0

800 80.2 79.6

1000 79.9 79.3

3.5 Experimental Results 55

Table 3.39: Influence of the SGT hyperparameter on micro/macro-averaged F1 with Wikipedia
pages.

Collection k SGT

micro-avg F1 macro-avg F1

Reuters21578 10 64.8 62.8

50 78.6 74.5

100 83.1 76.2

300 87.8 79.1

500 88.2 79.1

800 88.4 78.2

1000 87.6 75.7

Amazon 10 85.1 84.1

50 86.2 84.9

100 86.5 85.6

300 86.6 85.8

500 85.9 85.2

800 85.9 85.2

1000 85.8 85.0

Wikipedia 10 81.9 81.2

50 79.8 79.9

100 79.7 79.8

300 79.7 79.2

500 80.3 79.3

800 80.5 79.9

1000 79.7 79.3

56 3. Background Knowledge for Text Classification and Clustering

Results without Wikipedia background data

Tables 3.40 to 3.42 summarize the results for all the methods compared across the three datasets,
in the experimental setting in which no Wikipedia pages are used to overcome the training sparsity.

Behavior of Inductive Methods. Analyzing the behavior of the inductive methods, we
observe that ILM gives better results than NB on Reuters and Wikipedia (Table 3.40, Table 3.42)
and it is comparable to NB on Amazon (Table 3.41). For small training sets ISVM is slightly worse
than NB and ILM, and becomes better for larger training data.

Behavior of Transductive Methods. On all collections the transductive methods (TSVM,
SGT, TLM) perform better than the inductive methods (NB, ILM, ISVM). This is normal, since
these methods can take advantage of the information encoded in the unlabeled data available to
the classifier. Among the transductive methods, TLM and SGT behaves best.

Table 3.40 shows results for the Reuters dataset. For small training (up to 40 training documents
or 0.5% of the total dataset), TLM is about 4% better than SGT with respect to micro-averaged
F1 (i.e 79.26% versus 75.40%), while for larger training sets SGT is about 1% better than TLM in
terms of micro-averaged F1.

Table 3.40: Reuters21578. Micro/macro-averaged F1 for different training set sizes.

F1 Training (%) NB ILM ISVM TSVM SGT TLM

Micro-avg F1 33 (0.4%) 64.34 64.96 63.28 49.72 75.40 79.26

40 (0.5%) 77.06 77.72 71.72 78.20 83.20 83.42

80 (1%) 81.44 82.66 75.88 85.92 87.40 86.76

160 (2%) 84.30 86.04 66.24 89.50 90.60 88.90

400 (5%) 89.82 90.02 85.66 90.90 92.28 91.68

800 (10%) 91.92 91.16 77.32 93.58 92.92 92.54

Macro-avg F1 33 (0.4%) 59.20 58.10 60.12 40.84 72.58 69.40

40 (0.5%) 55.76 60.16 49.14 49.84 68.22 62.36

80 (1%) 61.20 63.70 54.78 65.06 76.16 71.50

160 (2%) 64.28 71.24 36.92 74.70 82.76 75.94

400 (5%) 78.38 80.62 73.26 82.30 86.04 83.52

800 (10%) 83.34 83.36 65.14 87.16 87.50 85.76

On the Amazon dataset (Table 3.41), TSVM is outperformed by both SGT and TLM. Com-
paring TLM to SGT, SGT provides better results. We hypothesize that in this case the TLM prior
is not strong enough to improve parameter estimation.

The results for the Wikipedia dataset are shown in Table 3.42. For very small training data
TLM is slightly better than SGT, but for larger training the SGT results become a bit better
than those of TLM. For the latter two datasets, using background data in order to learn a strong
prior on the TLM parameters is therefore an important aspect for making TLM a robust classifier.
Additionally, the SGT hyperparameter is tuned directly on the test data. Therefore one of its main
assumptions, that the training and test distributions are similar, does not have a strong impact
on its performance. Thus, the results we present should be interpreted as an upper bound on

3.5 Experimental Results 57

Table 3.41: Amazon. Micro-averaged F1 for different training set sizes

F1 Training (%) NB ILM ISVM TSVM SGT TLM

Micro-avg F1 14 (0.25%) 57.26 56.46 54.42 61.28 74.78 67.18

28 (0.5%) 65.36 65.64 64.44 69.08 83.66 73.38

56 (1%) 73.40 72.66 74.56 72.98 86.00 77.28

112 (2%) 78.98 78.32 76.40 77.82 86.30 80.78

280 (5%) 82.50 82.44 83.78 84.24 88.14 83.78

560 (10%) 84.14 84.12 81.70 86.70 88.32 85.08

Macro-avg F1 14 (0.25%) 57.18 56.50 49.70 57.96 74.00 65.26

28 (0.5%) 63.34 63.52 63.86 64.96 82.48 71.20

56 (1%) 72.54 71.80 72.80 71.20 84.96 76.24

112 (2%) 77.72 76.90 74.82 76.90 85.48 79.38

280 (5%) 81.64 81.38 82.54 83.94 87.34 82.74

560 (10%) 83.00 82.92 80.26 85.94 87.56 83.92

Table 3.42: Wikipedia. Micro-averaged F1 for different training set sizes

F1 Training NB ILM ISVM TSVM SGT TLM

Micro-avg F1 14 (0.25%) 53.36 53.58 29.64 52.96 67.30 67.62

27 (0.5%) 61.74 62.00 53.62 61.06 73.98 71.70

53 (1%) 70.38 71.42 70.72 74.06 80.74 77.84

108 (2%) 76.80 77.14 78.82 71.72 81.88 80.48

265 (5%) 82.54 83.00 83.54 79.56 83.64 83.34

530 (10%) 85.32 85.56 85.68 82.80 84.44 85.42

Macro-avg F1 14 (0.25%) 50.78 51.64 38.44 54.40 67.36 65.46

27 (0.5%) 59.64 59.80 53.68 56.38 70.40 68.46

53 (1%) 68.52 69.12 68.96 71.22 79.94 76.44

108 (2%) 75.56 75.30 76.94 68.82 80.92 78.44

265 (5%) 80.46 81.02 81.66 78.04 82.60 81.76

530 (10%) 83.60 83.90 83.88 81.12 83.38 83.82

the SGT true classification performance. In practice, when training data is very sparse, tuning
parameters can become infeasible and therefore SGT’s performance could be affected considerably.
For example, by tuning the parameters on the test data rather than using default values, the SGT
results on small training sets improve by as much as 6-7%.

Results using Wikipedia background data

For the second experimental setting, in which we use Wikipedia pages to extend the topics de-
scriptions, we show results in Table 3.43, Table 3.44 and Table 3.45. As we can observe from these
experiments, the Wikipedia background data helps all methods, and in particular improves the

58 3. Background Knowledge for Text Classification and Clustering

Table 3.43: Reuters21578-wikiext. Micro/macro-averaged F1 for different training set sizes

F1 Training (%) NB ILM ISVM TSVM SGT TLM

Micro-avg F1 33 (0.4%) 63.88 71.44 66.08 46.88 76.64 80.66

40 (0.5%) 76.46 79.20 71.06 75.46 85.72 85.88

80 (1%) 83.38 83.50 75.64 85.08 89.34 87.38

160 (2%) 85.46 85.70 69.52 90.16 90.30 88.72

400 (5%) 89.60 90.02 85.66 90.72 91.86 91.26

800 (10%) 91.38 91.44 78.90 93.66 92.74 92.18

Macro-avg F1 33 (0.4%) 64.88 62.14 66.38 40.60 73.04 68.10

40 (0.5%) 64.60 61.82 51.14 49.96 74.48 65.28

80 (1%) 67.40 65.54 55.72 64.62 79.54 67.94

160 (2%) 69.48 70.18 48.16 75.90 90.30 72.76

400 (5%) 78.44 80.42 73.46 82.28 84.98 82.02

800 (10%) 82.40 84.36 66.76 87.52 86.98 84.82

Table 3.44: Amazon-wikiext. Micro-averaged F1 for different training set sizes

F1 Training (%) NB ILM ISVM TSVM SGT TLM

Micro-avg F1 14 (0.25%) 77.30 74.92 66.42 65.42 78.04 82.80

28 (0.5%) 79.18 77.66 72.40 70.52 83.76 83.16

56 (1%) 81.12 80.36 77.04 69.98 85.32 83.12

112 (2%) 83.34 83.08 77.56 79.14 86.42 85.18

280 (5%) 84.30 84.68 83.06 83.38 87.74 85.78

560 (10%) 85.36 85.78 81.68 85.18 88.32 86.46

Macro-avg F1 14 (0.25%) 76.96 75.06 66.38 63.06 76.78 82.04

28 (0.5%) 78.28 77.02 71.24 67.34 82.58 82.22

56 (1%) 80.42 79.74 75.54 68.24 84.30 82.32

112 (2%) 82.32 82.06 76.14 78.40 85.56 84.14

280 (5%) 83.50 83.80 81.76 83.18 86.76 84.88

560 (10%) 84.36 84.82 80.18 84.42 87.48 85.48

results of TLM, which can benefit from the strong prior on its model parameters.
On all three collections TLM and SGT are the best performing methods. TLM outperforms

SGT for the small training sets on all three datasets. For larger training data, the two methods
are comparable.

Directly adding external data to the training can have a negative impact on the classification
accuracy, since the original training data and the external background knowledge may have dif-
ferent vocabulary and different term distributions per topic. With ILM/TLM we can consider
the external knowledge only for the computation of the similarity-prior on model parameters, and
thus overcome a potential negative effect potentially induced by directly extending the training

3.5 Experimental Results 59

Table 3.45: Wikipedia-wikiext. Micro-averaged F1 for different training set sizes

F1 Training NB ILM ISVM TSVM SGT TLM

Micro-avg F1 14 (0.25%) 72.76 72.74 51.98 62.70 78.26 80.70

27 (0.5%) 75.94 76.04 64.32 64.96 78.26 81.36

53 (1%) 77.96 77.88 71.18 74.46 82.46 81.34

108 (2%) 80.90 81.08 70.84 71.78 82.22 82.82

265 (5%) 83.74 83.76 81.34 79.22 83.90 83.74

530 (10%) 85.90 85.48 83.40 82.82 84.88 85.46

Macro-avg F1 14 (0.25%) 73.08 73.04 59.50 62.42 78.16 79.70

27 (0.5%) 75.36 75.24 65.66 61.08 77.18 80.16

53 (1%) 76.96 76.62 71.60 72.08 81.46 80.06

108 (2%) 79.80 79.74 72.40 69.46 81.24 81.66

265 (5%) 81.92 82.02 80.14 77.74 82.76 82.42

530 (10%) 84.20 83.96 81.84 81.08 83.64 83.88

data. We observed empirically that using the Wikipedia extension only for computing the prior
for ILM/TLM gave similar results as when adding it directly to the training data. TLM has the
advantage of interpretability, since the mapping of features to concepts and concepts to topics can
be directly displayed to the user. Furthermore, techniques such as re-training which we employ in
the next section, can help improve TLM results by a significant percent.

Running time. We give the training running times for all methods on the data used for
tuning hyperparameters, i.e. a single 1%-99% training/test split for each collection. Table 3.46
summarizes the training running time for all the methods compared. NB and ISVM have very
low training times, followed by SGT. TSVM takes a considerable amount of time, in particular
the choice of the C hyperparameter can considerably affect the training time. We show here the
training times for the best value of the hyperparameters on the test set.

ILM needs around 10 minutes for training, while TLM requires somewhat longer (40 minutes)
due to the estimation of the prior on the unlabeled part of the collection. During training, selecting
the concepts and estimating the prior on P [f |c] and P [c|t] takes about three quarters of the training

Table 3.46: Total training running time for all methods compared (minutes).

NB ILM ISVM TSVM SGT TLM

Reuters21578 0.5 4 1.5 60 3.5 35

Amazon 0.5 3 1 65 3 20

Wikipedia 0.5 8 7 150 6 35

Reuters21578-wikiext 0.6 8 2 240 5 37

Amazon-wikiext 0.7 4 1 75 3 25

Wikipedia-wikiext 1 10 8 170 6.5 40

60 3. Background Knowledge for Text Classification and Clustering

time, but this needs to be done only once before starting the EM algorithm. The rest of the training
time goes into re-computing the parameters in the EM iterations.

Complexity. In this paragraph we discuss the time and memory complexity of each of the
methods compared. NB is simple to implement and has time and memory complexity of O(|F |·|T |).
The SVMLight implementation has time complexity of O(q ·L ·f) for ISVM, where L is the number
of labeled examples, q is a constant much smaller than L, and f is the maximum number of non-zero
features in any of the training examples [Joa99a]. The memory complexity is O(q · L) [Joa99a].

TSVM has time complexity of O(2U) where U is the number of unlabeled examples [Joa99b].
SGT relies on finding minimum average cuts also called normalized cuts in the nearest neighbor
graph of all documents in the dataset, which in turn relies on finding the second smallest eigen
vector of the Laplacian graph. This can be done using the Lanczos method in O(m ·n), where n is
the number of nodes in the graph and m was empirically observed to be less than O(n

1
2) [SM00].

Our algorithm for learning ILM/TLM has O(|F | · |C| · |T |) time and O(|F | · |C|) +O(|C| · |T |)
memory complexity, where |F | is the number of features in the model, |C| is the number of concepts
and |T | is the number of topics. These factors result from the fact that we need to keep track of the
P [f |c] and P [c|t] parameters. Due to our concept selection strategy, the number of concepts is at
most as high as the number of features, and we assume that the number of topics is a fairly small
constant. This complexity can be quite high if we work with a large number of features, but as
observed from our experiments using a few thousand features already leads to good classification
results. All experiments were ran on a Red Hat Linux release 3.0 machine, with 8GByte memory
and 2.3GHz AMD Opteron CPU.

3.5.8 Other Aplications: Topic-driven Clustering

Organizing large document collections into meaningful clusters has attracted a lot of interest from
the research community. Clustering is usually an unsupervised process, but if prior knowledge
about the clusters of interest is available, the clustering techniques should be able to exploit this
information for producing more desired clusterings.

For example, domain experts or normal users could describe the major topics that the collection
covers. Most importantly, they would like the clustering algorithms to produce clustering solutions
that are consistent with their cognition models [ZK05]. For example, the user may want to specify
the granularity level of the clusters, together with a short description for each cluster, and would
expect the clustering algorithm to find groups of documents according to the specified criteria.

Depending on the application at hand, providing labeled samples for each of the topics of interest
could be very costly, particularly if the number of desired topics/clusters is large. Instead, short
keyword descriptions could be provided for the topics of interest. Since the available descriptions
may only contain a few keywords, in order to produce good clusterings additional type of knowledge
must be considered by the algorithm, e.g. the unlabeled documents or other sources of domain
knowledge.

The problem of organizing document collections into clusters according to a user-given set of
categories was coined by [ZK05] as topic-driven clustering.

We view this problem as a transductive classification problem, where we assume that each
topic/category has a short textual description which is treated as explicitly labeled training data.

3.5 Experimental Results 61

Table 3.47: Details on the training/test per collection.

Collection Topics Source Documents Terms Categories

Trec6 301-350 FT & LATimes 2,559 37,821 37

Trec7 351-400 FT & LATimes 2,785 39,572 45

Trec8 401-450 FT & LATimes 2,745 41,019 43

The goal is to organize the unlabeled collection according to the user-defined topics.

Test Collections

We work with three document collections selected from the TREC-6, TREC-7, and TREC-8 ad-hoc
retrieval tasks which were also used in [ZK05]. These are news articles from the Financial Times
Limited and Los Angeles Times newswires. The user specified topics for these datasets are taken
to be the TREC queries for which at least 10 relevant documents are available. Each query has
a title and a short textual description. We only use the query title as a topic description, thus
each topic of interest is described by a few keywords. The number of queries/topics varies from 37
for the TREC6 dataset to 45 for the TREC8 dataset. The number of documents is close to 3,000
for each collection. Table 3.47 gives exact statistics on these datasets. All three collections are
available online.2

Results

We compare the performance of several inductive and transductive classifiers on this task. The
methods compared are: Naive Bayes, Support Vector Machines, Spectral Graph Transducer and
our Transductive Latent Model. We observed empirically that on this task Transductive Support
Vector Machines (TSVM) performed worse than Inductive Support Vector Machines (ISVM). For
this reason, we only show results for ISVM. We as well present results using one of the techniques
presented in [ZK05], e.g. a modified form of k-means which considers the constraints imposed
by the user while searching for clusters. We use micro/macro-averaged F1 for evaluating the
classification results.

Since the training data is very sparse the prediction quality can be quite low. For this reason we
decided to investigate whether re-training (aka. self-training [Zhu05]) of all the classifiers can help
improve the classification quality. During re-training each classifier selects some of the documents
for which it predicted labels with high confidence, and adds those documents to the training set.
Then the classifier is re-trained on the extended training set. This process needs to be carefully
designed, since extending the training with wrongly classified documents can increase rather than
decrease the quality of the classifier’s predictions. For re-training we considered several strategies
for selecting documents for iteratively extending the training set. We observed empirically that
sorting the documents by prediction confidence and extending the training by taking the top 20%,
gave the best results. We thus use this simple technique for retraining all the classifiers compared.

2Test collections available at http://www.mpi-sb.mpg.de/∼ifrim/trec678-datasets.zip

62 3. Background Knowledge for Text Classification and Clustering

Table 3.48: TREC678. Micro/macro-averaged F1 for different training set sizes.

F1 Collection NB Re-NB ISVM Re-ISVM SGT Re-SGT TLM Re-TLM

Trec6 56.5 58.2 64.2 64.2 68.7 68.7 76.1 78.0

Micro-avg F1 Trec7 43.6 44.0 51.4 55.6 63.1 63.1 53.9 58.0

Trec8 52.1 55.6 58.9 65.0 57.2 57.2 67.6 74.5

Trec6 N/A N/A 63.0 63.0 N/A N/A 69.5 73.4

Macro-avg F1 Trec7 53.3 N/A 59.5 61.7 N/A N/A 58.5 63.8

Trec8 54.4 N/A 59.4 61.5 N/A N/A 66.9 73.5

Table 3.48 presents results for the classifier methods compared. For TLM we set the number
of features to 10,000 and the number of EM iterations to 1 across collections. For all the other
compared methods we set their hyperparameters based on the performance on the test set. These
results are therefore an upper bound on the classification performance in a realistic scenario. We
use the prefix RE in front of the name of each classifier to denote the re-trained classifier. If re-
training did not improve results we show the result without re-training. For the macro-averaged F1
results, we denote by N/A the case in which one or more topics were not discovered by the classifier,
i.e., the classifier did not correctly identify any test examples belonging to one or more topics. We
first note that the inductive classifiers NB and ISVM give fairly low results, since the training
data is extremely sparse, thus the classifiers need to use additional data to relax the constraint
impose by the training data. Re-training these two classifiers improved the results slightly (by
2-3% micro-averaged F1), but did not outperform the results of the transductive classifiers. The
transductive classifiers can benefit from exploring the unlabeled data in order to learn more about
the structure of the dataset. Comparing the results of the two transductive classifiers (SGT and
TLM), TLM outperformed SGT on two out of three datasets. Re-training improves the results of
TLM but did not improve the classification results of SGT.

Table 3.49: TREC6. Micro/macro-averaged F1 for different training set sizes.

F1 Collection Constrained-KMeans

Micro-avg F1 Trec6 77.7

Trec7 62.4

Trec8 73.7

Macro-avg F1 Trec6 73.2

Trec7 72.0

Trec8 67.8

Table 3.49 shows results using the constrained-k-means method presented in [ZK05]. Compared
to the constrained clustering approach, TLM was better in two out of the three test collections.

3.6 Conclusion 63

Given that training data is so sparse for this particular problem, TLM relied mainly on the context-
similarity prior on the model parameters, rather than the explicit training information in order to
learn a robust model. Nevertheless, the constrained clustering technique performs quite well and
may be better suited for such problems where the explicitly labeled training data is in the form of
a few keywords rather than training samples.

3.6 Conclusion

In this chapter we introduced a new generative model for text documents, which uses various
building blocks designed to facilitate the integration of background knowledge about the problem
at hand in the process of learning from small training data.

We proposed using external ontologies for instantiating the structure of the latent model, rather
than selecting an appropriate structure by time consuming model selection strategies. Such ontolo-
gies are currently growing and are freely available [SKW07, WHW08]. Furthermore, information
extraction techniques have considerably advanced [SIW06, WW08, WHW08], thus automatically
building domain-specific ontologies has become a fruitful area.

We have given an Expectation-Maximization algorithm for learning the parameters of our
Inductive/Transductive Latent Model. The parameter space can be huge, but we propose several
techniques for learning a prior on the model parameters based on background knowledge. For
example, if training is too sparse for learning robust parameter values, a prior which relies on
context-similarity in the given corpus and external sources, can help improve the final predictions
by 10%. Additionally, background knowledge, e.g., encyclopedia such as Wikipedia, can be used
to explicitly or implicitly extend the topic descriptions provided by the training set.

We have empirically observed that the additional flexibility of ILM/TLM offered by its various
building blocks results in improved classification results for small training sets, as compared to
other state-of-the-art classifiers. We have analyzed various ways of setting parameters, and what
type of effect each building block has on the overall model performance. We have seen that different
model components can be turned on or off depending on how much we trust the training data or
the background knowledge to be useful for learning an accurate classifier. Most of all, we have
observed that taking advantage of unlabeled data which is plentiful in many applications improves
the results of our model.

In the next chapter we study another way of approaching the problem of learning with sparse
labeled data. Rather than using a richer model and additional background knowledge, we use a
simpler logistic regression model and focus on learning with more complex features, such as word
or character sequences. Thus, we focus on more complex representations of the input data, rather
than using external information sources. We show that for applications in which the individual
keywords are not highly correlated with the pre-specified categories, learning sequences rather than
individual words can result in increased classification accuracy.

Chapter 4

Rich Input Representations:

Learning with Variable-Length

N-gram Features

4.1 Introduction

Approaching text categorization from a Machine Learning perspective involves several typical steps.
Given a training set of labeled samples, feature selection is applied in order to reduce the size of
the feature space or remove noisy features. A classifier, typically a parametric statistical model,
is learned from the labeled samples represented in the reduced feature space. Finally, the induced
classifier is used for labeling new test samples. Typically both the training and test samples are
represented as a set-of-words or a bag-of-words. This representation has the advantage of being
compact, since it only requires statistics about the distinct words in the collection, but has the great
disadvantage of sometimes not being expressive enough. The decrease in expressivity is a result of
discarding the structure, order, and context of the original documents’ contents, which comes at a
considerable loss of information, in favor of having a simple and compact representation. Since the
bag-of-words representation is the most widely used for text classification, this could mean that
in general such loss of information does not negatively affect the classification results. Therefore,
is there a need for using richer representations of the input text, when the simple bag-of-words
representation seems to be enough? For answering this question, consider the following example.

Let us assume that a company wants to automatically categorize its customer feedback, which
comes in the form of user product reviews, into positive or negative reviews. For example, given
the two labeled samples in Table 4.1 for the positive and the negative category, we would like the
classifier to learn discriminative features, such as not bad, not good, actually quite good and actually
quite bad which would be good discriminators for the positive versus the negative category. A
bag-of-words representation of these input samples would only capture the individual words, out of
context, such as good, bad, actually, etc., completely missing out on the difference between the two
statements. Thus a simple swapping of the words good and bad causes this representation to even

65

66 4. Rich Input Representations: Learning with Variable-Length N-gram Features

Table 4.1: Bag-of-words fails to accurately represent the input data.

Category Training sample

+1 This product is not bad, it is actually quite good.

−1 This product is not good, it is actually quite bad.

Table 4.2: Bag-of-words representation for the two training samples.

Category Training sample

+1 (actually, bad, is, it, good, product, This)

−1 (actually, bad, is, it, good, product, This)

fail to accurately represent the input. The bag-of-words representation for both training samples
is given in Table 4.2.

Ideally we should not alter the original input text, but work with the original text sequence
and use a representation that can take advantage of all subsequences (e.g. n-grams) in the text, as
features. The n-gram representation for the two samples above is shown in Table 4.3. Nevertheless,
working with the full space of n-gram features is a highly challenging problem, due to the huge
size of such a feature space, e.g. with u distinct unigrams in the input training corpus, the n-gram
feature space can have as many as O(un) distinct n-grams.

Table 4.3: N-gram representation for the two training samples.

Category Training sample

+1 (This, product, is, not, bad, it, is, actually, quite, good, This product,

product is, is not, not bad, ..., quite good, This product is,

product is not, is not bad, ..., it is actually quite good,...)

−1 (This, product, is, not, good, it, is, actually, quite, bad, This product,

product is, is not, not good, ..., quite bad, This product is,

product is not, is not good, ..., it is actually quite bad, ...)

Since the bag-of-words representation is quite compact, we could try to fix its expressiveness
handicap by simply adding some n-gram features for a fixed n, or adding some combinations of
bigram and trigram features, thus essentially resorting to some type of feature engineering or
feature selection. But, unless done by a domain expert or by a user with considerable knowledge
of the task and corpus at hand, this type of pre-processing heuristics may still miss important
information. Furthermore, feature selection is often highly dependent on several other factors:
the specific application, the domain of the text (topicality, using common or scientific terms),
the language of the corpus (Western versus Asian language), and even the size of the training

4.1 Introduction 67

corpus (when the training corpus increases, the choice and the number of features may be very
different, e.g. selecting unigrams and bigrams versus unigrams, bigrams and trigrams, selecting
1,000 features versus 5,000 features, etc.).

In this chapter we present a new logistic regression algorithm, coined Structured Logistic
Regression (or SLR), for efficiently learning a classifier in the space of all n-gram features in the
training set. The SLR algorithm selects only a small set of discriminative n-gram features from
the full space of n-grams, and produces features such as not bad, not good, actually quite good
which can easily discriminate the examples presented in Table 4.1.

The main idea behind our algorithm is to modify the gradient based optimization techniques
typically used for solving logistic regression (which are at least linear in the feature space size),
so they do not require seeing the full feature space for updating the model parameters. Instead
of iteratively re-computing the full gradient vector of the log-likelihood function, we use a differ-
ent ascent direction which is extremely sparse, i.e. a vector with only one non-zero coordinate
corresponding to the the n-gram feature with the largest magnitude of the gradient value. This
approach works for the following reasons. First, the chosen direction is an ascent direction because
it forms an angle of less than 90 degrees with the original gradient vector, therefore theoretically
guaranteeing ascent in the objective function [NW06]. Second, choosing the n-gram feature with
the largest gradient value reflects a greedy advance toward the largest change in the objective
function (conditional log-likelihood); thus it captures a notion of goodness of the n-gram feature
for the discriminative power of the model.

This transforms the learning problem into a search problem, which can be solved efficiently
by pruning large parts of the search space, using an upper bound on the quality (i.e. gradient
value) of each n-gram feature, based on its prefix. The upper bound exploits the structure of the
n-gram feature space (i.e. the fact that the set of occurrences of an n-gram is a subset of the set
of occurrences of its prefix) in order to quantify the growing behavior of the gradient value of any
n-gram feature based on its prefix.

The advantage of such a technique is that we can treat the input simply as a sequence of words
or characters, or even more general, as a sequence of bits, and let the model learn a compact
set of discriminative subsequences. Thus, model learning and feature selection are interleaved,
eliminating the need for expert knowledge about the classification problem at hand. Furthermore,
the tokenization of the text is not fixed in advance, as in the bag-of-words model, but it is rather
learned by the logistic regression model. This has the advantage of providing robustness to sparse
training data, since arbitrary length sequences of characters are considered as features, rather
than restricting the input representation to the level of words. In the next sections we discuss
the proposed model in detail and show that it is competitive to state-of-the-art classification
techniques in terms of prediction quality, while being at least one order of magnitude faster than
its competitors.

To the best of our knowledge, SLR is the first method that can incorporate variable-length n-
grams into the learning of advanced text classifiers (e.g. logistic regression), without any noticeable
penalty on the size of the feature space and computational cost of the training.

68 4. Rich Input Representations: Learning with Variable-Length N-gram Features

4.2 Structured Logistic Regression

4.2.1 Logistic Regression Model

Let D = {(x1, y1), (x2, y2), . . . , (xN , yN)} denote the training set. Let d be the number of dis-
tinct n-grams in the feature space. The training samples are represented as binary vectors xi =
(xi1, . . . xij , . . . xid)T , xij ∈ {0, 1}, i = 1 . . . N . yi ∈ {0, 1} are class labels encoding membership
(1) or non-membership (0) of the training samples in the category. We focus here on binary clas-
sification and treat multi-class classification as several binary classification problems. Let X be
the set of all samples x ∈ {0, 1}d in the given collection. Let β = (β1, . . . , βj , . . . , βd) ∈ Rd be a
parameter vector (which can be interpreted as a weight vector for the feature dimensions). Under
the logistic regression model, the probability of a sample belonging to class y = 1 is ([HTF03]):

p(yi = 1;xi, β) =
eβ

T ·xi

1 + eβT ·xi
.

The goal is to learn a mapping f : X → {0, 1} from the given training set D, such that given a
sample x ∈ X, we can predict a class label y ∈ {0, 1}. Learning a mapping for logistic regression
is achieved by finding the parameter vector β, that maximizes the conditional log-likelihood of the
training set. The conditional log-likelihood of the training set for the logistic regression model is
([HTF03]):

l(β) =
N∑
i=1

[yi · βT · xi − log(1 + eβ
T ·xi)] (4.1)

We take an optimization approach for solving this problem. In the next section we show a procedure
for maximizing l(β), based on a coordinate-wise gradient ascent in the space of all n-grams in the
training set.

4.2.2 Coordinate-wise gradient ascent in the space of all n-gram se-

quences

All prior optimization methods for solving logistic regression require at least O(d) memory where
d is the size of the overall feature space. Since with u distinct unigrams there are O(un) potential
n-grams in the training set, for large u and n, this would result in a very high cost.

In this section we present a new approach that in practice requires o(d) memory, for solving
logistic regression in the large space of all n-gram sequences in the training text. This becomes
possible because we do not need to explicitly store all the distinct features, which would already
use O(d) memory. Our algorithm is based on a branch-and-bound approach which chooses the
maximum gradient ascent direction projected onto a single dimension (i.e., candidate feature).

The simplest optimization approach to solving logistic regression is the steepest (gradient)
ascent technique [NW06]. It is linear in the number of features and it iteratively updates the
parameter vector β by always moving in the direction of the gradient of the log-likelihood function.

4.2 Structured Logistic Regression 69

Equation 4.2 gives the parameter update details.

β(n+1) = β(n) + ε · ∂l
∂β

(β(n)) (4.2)

(β(n+1)
1 , β

(n+1)
2 , . . . , β

(n+1)
d) = (β(n)

1 , β
(n)
2 , . . . , β

(n)
d)

+ ε · [∂l
∂β1

(β(n)),
∂l

∂β2
(β(n)), . . . ,

∂l

∂βd
(β(n))]

This essentially involves iteratively recomputing the full gradient vector, which has as many co-
ordinates as features in the feature space. For the extremely large space of all n-grams, simply
enumerating all the coordinates of the gradient vector is infeasible. Therefore, rather than comput-
ing the full gradient vector (Equation 4.3) we propose taking a different update direction, which
is still an ascent direction, but is much sparser than the original gradient (Equation 4.4).

∂l

∂β
(βn) = [

∂l

∂β1
(βn),

∂l

∂β2
(βn), . . . ,

∂l

∂βd
(βn)] (4.3)

[
∂l

∂β
(βn)

]sparse
= [0, 0, . . . ,

∂l

∂βj
(βn), . . . , 0] (4.4)

where, βj = argmax
βj ,j∈{1,...,d}

∂l

∂βj
(βn)

This step transforms the learning problem into a search problem, since in each iteration we have
to search for the n-gram feature with the largest magnitude of the gradient. This problem is still
hard, given the huge space that we need to search to find this feature, but can be made easier by
giving a search-space-pruning-strategy. In our approach, we iteratively search for the best n-gram
feature and prune parts of the search space which cannot improve the currently best solution. For
designing an efficient pruning strategy we exploit the structure of the n-gram feature space: the
fact that the set of occurrences of an n-gram is a subset of the set of occurrences of its prefix. This
consideration leads us to an upper bound on the gradient value of any n-gram feature, based on
the occurrences of its length-(n− 1)-prefix.

Using Equation 4.1, the gradient of l with respect to a coordinate value βj evaluated at a given
parameter vector β is:

∂l

∂βj
(β) =

N∑
i=1

xij ·

(
yi −

eβ
T ·xi

1 + eβT ·xi

)
(4.5)

Let j be a coordinate corresponding to a given n-gram sequence sj , and j′ be a coordinate
corresponding to a super sequence sj′ of sj , i.e. sj is a prefix of sj′ . We write sj ∈ xi to denote
xij 6= 0.

The following theorem, inspired by work on boosting [KM04], gives a convenient way of com-
puting an upper bound on the gradient value for any super sequence sj′ ⊇ sj .

Theorem 4.2.1 For any sj′ ⊇ sj and y ∈ {0, 1}, the absolute value of the gradient of l(β) with

70 4. Rich Input Representations: Learning with Variable-Length N-gram Features

respect to βj′ is bounded by µ(βj), where

µ(βj) = max{
∑

{i|yi=1,sj∈xi}

xij ·

(
1− eβ

T ·xi

1 + eβT ·xi

)
,

∑
{i|yi=0,sj∈xi}

xij ·

(
eβ

T ·xi

1 + eβT ·xi

)
}.

Proof We split the analysis into two subproblems, the first concerning the “positive” class (y = 1),
and the second concerning the “negative” class (y = 0). First we prove the bound for the positive
class:

∂l

∂βj′
(β) =

N∑
i=1

xij′ ·

(
yi −

eβ
T ·xi

1 + eβT ·xi

)
(4.6)

=
∑

{i|sj′∈xi}

xij′ ·

(
yi −

eβ
T ·xi

1 + eβT ·xi

)
(4.7)

≤
∑

{i|yi=1,sj′∈xi}

xij′ ·

(
1− eβ

T ·xi

1 + eβT ·xi

)
(4.8)

≤
∑

{i|yi=1,sj∈xi}

xij ·

(
1− eβ

T ·xi

1 + eβT ·xi

)
. (4.9)

The last inequality holds due to the fact that {i|yi = 1, sj′ ∈ xi} ⊆ {i|yi = 1, sj ∈ xi}, for any
sj′ ⊇ sj.

Similarly , we can show for the negative class that

∂l

∂βj′
(β) ≥

∑
{i|yi=0,sj∈xi}

xij ·

(
− eβ

T ·xi

1 + eβT ·xi

)
. (4.10)

Thus we have:

∑
{i|yi=0,sj∈xi}

xij ·

(
− eβ

T ·xi

1 + eβT ·xi

)
≤ ∂l

∂βj′
(β) (4.11)

≤
∑

{i|yi=1,sj∈xi}

xij ·

(
1− eβ

T ·xi

1 + eβT ·xi

)

The absolute value of the gradient of l(β) at coordinate j′ corresponding to n-gram sequence sj′

4.2 Structured Logistic Regression 71

is thus bounded by µ(βj):∣∣∣∣ ∂l∂βj′
(β)
∣∣∣∣ ≤ µ(βj) = max{

∑
{i|yi=1,sj∈xi}

xij ·

(
1− eβ

T ·xi

1 + eβT ·xi

)
,

∑
{i|yi=0,sj∈xi}

xij ·

(
eβ

T ·xi

1 + eβT ·xi

)
}.

2

The theorem essentially states that at a given coordinate, i.e. n-gram sequence, we can decide
whether the gradient of l(β) can be improved by further extending this sequence. This facilitates
casting the learning process as a search for the coordinate with best gradient value, rather than
computing the full gradient vector, in each optimization iteration. This process searches the entire
space of all possible subsequences of the text, and guarantees to find the globally optimal feature
(i.e. coordinate) in terms of the gradient value. We give pseudo-code for our algorithm in the next
subsection.

Once we find the feature with the best gradient value, we adjust the value of the relevant
parameter:

β
(n+1)
j = β

(n)
j + ε · ∂l

∂βj
(β(n))

and repeat the search for the coordinate with maximum magnitude of the gradient value. This
essentially produces one candidate feature per iteration. ε is known in the literature as the step
length, and is usually estimated via line search algorithms [NW06]. Finding a good step length
is necessary for guaranteeing convergence of the gradient based algorithm. The best direction to
follow for maximizing the log-likelihood function is given by the gradient. The distance to move
along this direction is given by the line search algorithm which subsequently generates a limited
number of trial step lengths until it finds one that loosely approximates the maximum of the
objective function.

The iterations typically start at β0 = 0 ([HTF03]). Note that, since each restricted gradient
direction is not necessarily conjugate to the previous ones, the chosen feature is not necessarily
distinct from the already selected features. This is a common property of gradient methods and
carries over to our greedy gradient ascent method. The outcome of this iterative process is a very
sparse weight vector β, which is a linear model learned in the space of all n-gram sequences.

4.2.3 Algorithm

A high level overview of our gradient-based search algorithm is shown in Algorithm 1. The algo-
rithm calls several routines. The function find best ngram(), returns the n-gram with the highest
magnitude of the gradient value in a given iteration. Once the best n-gram feature is returned, we
do a line search (routine find best step size()) for computing the best step size to follow in this
direction. Next we need to update the relevant parameter, i.e. the weight of the corresponding
best n-gram feature. This is done calling the update best ngram parameter() procedure. The
best n-gram feature is then added to the SLR model (add best ngram to SLR model()). The

72 4. Rich Input Representations: Learning with Variable-Length N-gram Features

Algorithm 1 Structured Logistic Regression algorithm.
1: Input: Training set D = {(x1, y1), (x2, y2), . . . , (xN , yN)},

where xi is a training document, yi ∈ {0, 1} is a class label

2: Output: Structured Logistic Regression model.

3: begin

4: iter = 0 // optimization iteration

5: //for each optimization iteration

while iter < num iterations || convergence test
6: find best ngram()

7: find step size()

8: update best ngram parameter()

9: add best ngram to SLR model()

10: update log likelihood()

11: convergence test = check convergence test()

12: iter = iter + 1

13: end

14: end

final steps are those of updating the log-likelihood objective function (update log likelihood())
and checking convergence in order to decide whether the objective function increase falls below a
given threshold and therefore we can stop the learning process (check convergence test()).

In Algorithm 2 we give detailed pseudo-code for the routine of finding the best n-gram feature.
The gradient value in iteration n is always computed at the parameter vector estimated in iteration
n − 1, thus the selection of a new feature depends on the set of previously chosen features. The
main parameter of SLR is the number of optimization iterations, which directly influences the size
of the final model. This can be treated as an explicit input parameter for our algorithm or it can be
implicitly decided by a convergence test, e.g. by thresholding the aggregated change in score pre-
dictions or by thresholding the improvement in the objective function (check convergence test()).

Theorem 4.2.1 proposes an efficient way for pruning the search space while searching for the
best n-gram feature. Figure 4.1 shows the search and pruning process graphically. We first start by
checking the gradient value of single unigrams. In Figure 4.1, we denote the unigrams by a, b, c, the
gradient value by grad, the current best gradient value by δ and the upper bound on the gradient
value of any n-gram in the space rooted at a given node in the search tree with µ.

For each unigram, we compute the upper bound on the gradient value of any n-gram starting
with this prefix. If n-grams in this part of the search space can still improve the current best
gradient value, we continue expanding and exploring this part of the space. If the upper bound
given in Theorem 4.2.1 is below the current best gradient value, this means we can discard this
part of the search space, since no n-gram in this part of the space can improve the current best
gradient value. Although the search space is very large, the pruning bound proposed in this paper
effectively prunes the search. We have empirically observed that the pruning condition presented
in Theorem 4.2.1 prunes more than 90% of the search space.

4.2 Structured Logistic Regression 73

Algorithm 2 Find best n-gram feature.
1: Input: Training set D = {(x1, y1), (x2, y2), . . . , (xN , yN)},

where xi is a training document, yi ∈ {0, 1} is a class label

2: Output: Optimal feature (e.g. with best gradient value)

3: begin

4: global τ , best feature

5: τ = 0 //suboptimal value of gradient

6: function find best ngram()

7: //for each single unigram

foreach s′ ∈
⋃N

i=1{s|s ∈ xi, |s| = 1}
8: grow sequence(s′)

9: end

10: returnbest feature

11: end

12: end

1: function grow sequence(s)

2: if µ(s) ≤ τ then return //µ(s) as in Theorem 1

3: if abs(gradient(s)) > τ then

4: best feature = s //suboptimal solution

τ = abs(gradient(s))

5: end

6: foreach s′′ ∈ {s′|s′ ⊇ s, s′ ∈
⋃N

i=1 xi, |s′| = |s|+ 1}
7: grow sequence(s′′)

8: end

9: end

Figure 4.1: Graphical description of the find-best-n-gram-feature algorithm.

74 4. Rich Input Representations: Learning with Variable-Length N-gram Features

4.2.4 Implementation Issues

In this section we discuss several issues related to implementation, in particular we focus on the
routines and parameters of our learning algorithm.

Input Representation and Data Structures.

The first aspect of learning in such a large feature space regards data representation. We simply
represent the data collection as a vector of strings, where a string is a document, and decide on-the-
fly on the type of tokenization required. The user can set an input parameter to specify whether
she desires word-level n-grams or character-level n-grams. Furthermore, since we need to keep
track of the occurrences of all distinct unigrams and of the features of interest (e.g. best n-grams
selected during learning iterations), we decided to keep an inverted index which grows on-demand.
In each iteration, we start with an inverted index on all distinct unigrams in the training set, which
we subsequently extend to include candidate n-grams which could not be pruned using the bound
of Theorem 4.2.1. The inverted index does not grow excessively due to the effectiveness of the
pruning bound.

Search Space Traversal and Upper Bounds.

Traversing the search space can be done in a Breadth-First-Search (BFS) fashion or a Depth-First-
Search (DFS) fashion. The BFS style traversal first extends all unigrams to bigrams, then all
bigrams to trigrams, etc. The DFS traversal first extends a unigram up to its longest sequence
which cannot be pruned, and then moves on to extending the next unigram. We have investigated
both approaches in our work. For word-level n-grams, longer n-grams are less likely to be better for
classification than shorter n-grams; therefore the BFS traversal can prune many potential n-gram
candidates very fast. For character-level n-grams, longer sequences are more likely to be beneficial
for classification; therefore DFS is more beneficial for the running time of the algorithm, since the
pruning bound will faster eliminate large parts of the search space. Depending on the application
and the type of n-grams employed, one type of traversal may be preferred over the other or one
could use a combination where DFS traversal and BFS traversal steps are alternated.

Line Search Algorithm

We mentioned in the description of our algorithm that we use a line search routine in order to
find the best step size in the direction of the selected n-gram feature. Finding a good step size is
necessary for steepest ascent style of algorithms in order to guarantee convergence. We use a simple
binary line search algorithm in which we start at some initial small value for the step size, and
keep on doubling the step size until the log-likelihood function stops increasing. We then narrow
down the interval found this way until it becomes a good approximation for the step size. Unless
the starting value in the binary line search is small enough, the increase in the log-likelihood may
stop right at the start of the step size search. Therefore we need a robust and ideally automated
way to estimate such a starting value. We have found out empirically that the starting value can
automatically be set based on the magnitude of the gradient value of each individual feature.

4.2 Structured Logistic Regression 75

With line search, no predetermined step size is used. Here, we sketch the steps of this algorithm
in more detail. Let d be the search direction starting from the point β. We evaluate our objective
function (log-likelihood l) at a sequence of points β0 = β and, recursively, βn+1 = βn + 2n · ε · d
(doubling the step ε in each step). We assume that the direction d and the parameter ε are such
that l(β1) > l(β0) (e.g., the direction is the gradient and ε is very small). The move continues
from point to point until l(βn+1) ≤ l(βn). Now βn−1, βn, and βn+1 are taken as the initial range
where the maximum occurs. The range is then narrowed down iteratively until it is so small that
one can simply take the middle point as a good approximation of the maximum.

Regularization of the Objective Function

When solving logistic regression we typically use explicit regularization on the log-likelihood func-
tion. This plays the role of avoiding degenerated solutions and can also considerably shrink the
feature space. For example, if we use an L1 regularizer

max
β

l(β)− λ ·
d∑
j=1

|βj |

decreasing the regularizer coefficient λ has the effect of dropping many feature weights to zero. In
our case we do not use an explicit regularizer on the log-likelihood function, but rather achieve this
effect implicitly by our convergence threshold. The higher the convergence threshold, the fewer
learning iterations we will allow, and therefore the final model will contain fewer distinct features.
Thus rather than starting with the full space of feature and dropping some to zero using the explicit
regularizer, we instead add one feature in each learning iteration. In Section 4.5 we investigate the
effect of using an explicit regularizer on the objective function of SLR.

Implementation Modules and Parameters

We have implemented different modules for training and testing the classifier. Open source code
for SLR is available on-line at: http://www.mpi-inf.mpg.de/∼ifrim/slr. The training module
has several parameters.

./slr learn [-L max ngram size] [-T number iterations] [-n token type] [-c convergence threshold]

[-m minsup] [-v verbosity] training file model file

The default values and the explanation of the role of each parameter are:

• L (max ngram size) = 0xffff. This parameter allows restricting the n-grams considered
by the learning algorithm to a given length. By default the n-gram size is unrestricted, e.g.
at most as long as the largest document in the training set.

• T (number iterations) = 50,000. This parameter sets the number of optimization itera-
tions. By default it is set to 50,000 iterations or it can be indirectly set by the convergence
threshold, i.e., once the convergence criterion is met, the iterations terminate.

76 4. Rich Input Representations: Learning with Variable-Length N-gram Features

• n (token type)= 0 (word token, default), or 1 (character token). The user can decide
what type of n-grams he is interested in, by setting this parameter. A value of 0 triggers
the algorithm to consider a word n-gram representation, while for a value of 1 the algorithm
considers the input text as a sequence of characters.

• c (convergence threshold) = 0.005. This parameter sets a threshold on the aggregated
change in score predictions. If the weight vector does not change much, implicitly the log-
likelihood does not increase much and we can decide to stop the learning algorithm.

• m (min support) = 1. With this parameter we can control the minimum support (occur-
rence) in the input dataset an n-gram should have to be considered for learning. By default
we consider all n-grams. A minimum support of k means that an n-gram should occur in at
least k documents.

• v (verbosity)= 1. This decides the amount of information the algorithm should output,
e.g., information on the log-likelihood value, the value of the gradient of the feature selected,
etc.

• training file. The training data file name.

• model file. The output file for the learned model.

The module for building a final model creates a trie on the features of the model for the purpose
of faster testing. The input parameter is the model file. The output parameters are a binary file
storing the trie model, and optionally a file storing the distinct features of the model.

./slr mkmodel -i model file -o binary trie model -O distinct rules file

The testing module takes the (trie) model and the test data as inputs. Additionally an optional
parameter specifying whether a given classification threshold should be used for prediction, rather
than fixing the threshold at 0, e.g. a sample is classified as positive if its predicted score is larger
than a certain threshold.

./slr classify [-t classif threshold] [-v verbosity level] test file binary trie model

4.3 Experimental Results

In this section we compare our learning technique to state-of-the-art logistic regression and support
vector machines.

For logistic regression we use the open source implementation by Genkin et al. [GLM06] which
we denote by BBR. This is a recent implementation of regularized (quasi-Newton) logistic regression
that was particularly designed to simultaneously select variables and perform learning. BBR is
able to handle a large set of features via regularized cyclic coordinate gradient descent.

For support vector machines we used the latest open source SVMperf solver by Joachims et
al. [Joa06] which is especially tuned for linear problems. Additionally we show results with the latest
tool for large scale linear classification with SVM, LIBLINEAR [HCL+08, LWK08, Lin08, FCH+08].

4.3 Experimental Results 77

4.3.1 Methodology

To study the effect of using variable-length n-gram sequences as basic features, we vary the maxi-
mum (word or character) n-gram length and train all methods in the space of all sequences up to
a fixed length. For example, if we fix the n-gram size to n = 3, this means we train in the space of
all n-grams up to trigrams, i.e., all the unigrams, bigrams and trigrams.

For BBR and SVM, we first use a state-of-the-art pattern mining tool [AKA+02, Kud03, Zak02]
in order to produce all the actually occurring n-grams up to a given size (e.g., up to 5-grams), and
then learn the two classifiers in this space. Thus the feature space is the same for all methods, but
for BBR and SVM we need to generate the space explicitly using a pattern mining tool while SLR
searches the entire space automatically and incrementally adds only those features that contribute
to a good classifier.

We evaluate all methods with respect to training run-times and micro-averaged and macro-
averaged F1 measure [YL99], with word-level and character-level n-grams. We show that our
method can benefit from using arbitrary-length n-grams, which is reflected in the F1 measure, and
that due to our pruning bound we are much faster than our competitors.

4.3.2 Test Collections

We study three different applications1 of text categorization that could benefit from learning
variable-length n-grams. The first application is movie genre classification. We take a subset
of movies from IMDB, which have a plot section, i.e., one or two paragraphs that describe the
movie. IMDB contains information about the genre of each movie in the database. The classifi-
cation task is to learn the genre of the movie from the short plot description associated with each
movie. We take a subset of movies classified to either of the genres Crime or Drama. We select
these two genres because they are close in terms of topicality, thus the classification task is harder
than learning to classify movies belonging to orthogonal genres, e.g., Crime versus Comedy. The
dataset contains a total of 7,440 documents with 3,720 documents for each genre. There are 63,623
distinct word-unigrams (IMDB dataset).

The second application we study is book reviews classification by genre. We work with a
dataset of editorial reviews of books from Amazon. The collection was first used in [IW06]. The
editorial reviews are grouped into three genres: Biology, Mathematics and Physics. There are 5,634
reviews, with reviews of books about Biology and Mathematics having roughly 2,200 documents
each, and those about Physics having about 1,300 documents. There are 55,764 distinct unigrams
in this collection (AMAZON dataset).

The third application we analyze is topic detection for Chinese text. We considered the
TREC-5 People’s Daily News dataset investigated in [HTT03]. The dataset contains 6 classes:
(1) Politics, Law and Society; (2) Literature and Arts; (3) Education, Science and Culture; (4)
Sports; (5) Theory and Academy and (6) Economics, and it is split into training and test. Each
class has 500 training documents and 100 test documents. The training set contains 4,961 distinct
characters (CHINESE dataset).

1All datasets are available at:

http://www.mpi-inf.mpg.de/∼ifrim/data

78 4. Rich Input Representations: Learning with Variable-Length N-gram Features

No pre-processing of the first two datasets was carried out. For the Chinese dataset we removed
the SGML tags. For the case of multiple classes, we convert the classification task into several
binary classification tasks in the one-versus-all manner.

4.3.3 Parameter settings

We first compare the training running times for all methods, for each dataset and experiment,
with a fixed parameter set. We also show various statistics on the models learned by each method.
For reporting micro/macro-averaged F1 we also tune the most important (in terms of influence on
classification performance) parameters for each method. Parameter tuning is always carried out
on the training set. The classifier sees the test set only in the final stage where the model learned
on the full training using the best parameters from cross-validation and is tested on the held-out
test set.

SLR

Setting the number of iterations. For our method the number of iterations directly influences
the size of the final model, since in each iteration we select a candidate feature to be included in
the final model. In order to set this parameter, we consider the aggregated change in the score
predictions (i.e., the aggegration of βnew · xi − βold · xi for all documents xi), and if this is not
above a fixed threshold, we stop the iterations. The threshold is set to 0.005. This is fixed across
all datasets and experiments, for measuring running times. For tuning the number of iterations,
we run cross-validation for values between 200 and 1,000 with steps of 100, and choose the best
parameter. We set the classification threshold to the value that minimizes training error. The data
representation for our method is the original text, interpreted as a word-level or character-level
n-gram sequence.

BBR

Setting the regularization parameter. For Bayesian logistic regression [GLM06] the regu-
larization parameter is the most important tuning aspect (i.e., the prior variance for parameter
values). This is initially set to the value recommended in [GLM06], i.e. the ratio of the number
of distinct features to the average Euclidean norm of documents in the dataset. For tuning this
parameter, we use the autosearch option, which automatically searches for the best cross-validated
hyperparameter value. The other parameters are set as: -p 1 -t 1. The -p 1 parameter selects
the Laplace prior distribution on the model parameters. We choose this prior due to the resulting
sparse models. The Laplace (aka. lasso) logistic regression is also much faster and more accurate
than the Gaussian (aka. ridge) logistic regression. The -t 1 parameter sets the final classification
threshold to the value that minimizes the number of training errors. All other parameters are used
with their default values. The data representation for BBR is sparse vectors, i.e. id and value for
non-zero features.

4.3 Experimental Results 79

SVMperf

Setting the soft-margin C parameter. For SVMperf [Joa06] the soft-margin C parameter is
the most important tuning aspect. [Joa06] observed that any parameter value between 100 and 500
would be good across datasets. After some initial trials we set C = 100, for the fixed parameter
experiments. For the tuning setting, we chose the C value which performed best in cross-validation
on the training set, from several values selected from the range 100 to 500. All other parameters
are kept with their default values (linear kernel is a default setting). The data representation for
SVM is also sparse vectors.

LIBLINEAR (SVM)

Setting the cost C parameter. For LIBLINEAR [HCL+08, LWK08, Lin08, FCH+08] the
hyper-parameter is the regularization or cost parameter C. We use the recommended default
values [HCL+08] for the fixed parameter experiments, and then we tune the C parameter to study
the influence on classification accuracy. The default parameters were chosen by the authors of
LIBLINEAR such that the best trade-off between running time and accuracy is achieved: C = 1,
ε = 0.01 and s = 1. This sets the objective function to L2-loss Support Vector Machines in
the dual formulation which was empirically observed to behave best across several datasets. For
tuning the C parameter we follow [HCL+08, LWK08] and run cross-validation with C from the set
{0.125, 0.25, 1, 4, 16} and choose the parameter C which gives the best cross-validated classification
performance. LIBLINEAR was designed to exploit the sparsity in the data for improving the
scalability and the running time of linear SVM.

4.3.4 Results

All experiments were run on a Red Hat Linux release 3.0 machine with 8GB memory and 2.3GHz
AMD Opteron CPU. We show micro/macro-averaged F1 [YL99] as global measure of quality for
each dataset and classifier.

IMDB dataset

The IMDB dataset is not explicitly split into training and test, thus we run 5-fold cross valida-
tion and report the micro/macro-averaged F1 measure and the influence of the n-gram length on
classification quality. Next, we discuss the running time of each of the methods compared.

In terms of micro/macro-averaged F1 (Table 4.4, Table 4.7), we observe that our method is as
good as the state-of-the-art regarding generalization ability. For the case of default parameters,
SLR is 3 to 5% better than either BBR, LIBLINEAR or SVM. For both word n-grams and character
n-grams the macro-averaged F1 increases with increasing n-gram length. For word n-grams SLR’s
macro-averaged F1 goes from 72.95% for n = 1 to 73.28% for n unrestricted. For character n-grams,
the macro-averaged F1 increases from 56.09% for n = 1 to 74.0% for n unrestricted.

In the case of tuned parameters, for word n-grams SLR achieves 74.04% macro-averaged F1,
compared to BBR 73.94%, LIBLINEAR 71.32% and SVMperf 71.24%. Increasing the n-gram
length does not seem to improve results for the word representation with tuned parameters. For
n = 1 the SLR macro-averaged F1 is 74.04%, while for n unrestricted it is 73.91%. With character

80 4. Rich Input Representations: Learning with Variable-Length N-gram Features

Table 4.4: IMDB training running times. Micro/Macro-averaged F1 for varying n.
word n-grams char n-grams

max n-gram length n=1 n=3 n=5 n unrestricted n=1 n=3 n=5 n unrestricted

overall features 63,623 838,620 1,922,942 N/A 135 41,433 704,440 N/A

iterations SVMperf 500 1,130 1,600 N/A 490 1,721 2,912 N/A

iterations LIBLINEAR 960 3,500 6,500 N/A 370 6,500 17,500 N/A

iterations BBR 250 370 374 N/A 85 265 370 N/A

iterations SLR 175 180 184 190 325 670 649 620

features in final model BBR 3,200 3,750 4,167 N/A 97 3,045 4,061 N/A

features in final model SLR 120 130 135 135 47 440 420 420

Running Time SVMperf 0.3 min 6 min 15 min N/A 0.2 min 3.2 min 50 min N/A

Running Time LIBLINEAR 0.1 min 2.5 min 7.5 min N/A 0.1 min 3.3 min 54 min N/A

Running Time BBR 0.3 min 2.2 min 4 min N/A 0.1 min 2.4 min 8.4 min N/A

Running Time SLR 0.25 min 0.3 min 0.35 min 0.35 min 0.3 min 1.7 min 2.4 min 2.4 min

Time for generating patterns 1 min 2.5 min 3.5 min N/A 1 min 3 min 5 min N/A

Total Time SVMperf 1.3 min 8.5 min 18.5 min N/A 1.2 min 6.2 min 55 min N/A

Total Time LIBLINEAR 1.1 min 5 min 11 min N/A 1.1 min 6.3 min 59 min N/A

Total Time BBR 1.3 min 4.7 min 7.5 min N/A 1.1 min 5.4 min 13.4 min N/A

Total Time SLR 0.25 min 0.3 min 0.35 min 0.35 min 0.3 min 1.7 min 2.4 min 2.4 min

microavgF1 SVMperf 69.08% 71.11% 70.71% N/A 57.13% 65.27% 69.48% N/A

microavgF1 LIBLINEAR 68.47% 70.89% 70.52% N/A 56.78% 64.25% 69.42% N/A

microavgF1 BBR 67.54% 67.97% 68.21% N/A 56.32% 65.21% 67.10% N/A

microavgF1 SLR 72.90% 72.89% 72.64% 73.17% 55.99% 72.86% 73.84% 73.94%

macroavgF1 SVMperf 69.08% 71.13% 70.74% N/A 57.16% 65.27% 69.48% N/A

macroavgF1 LIBLINEAR 68.50% 70.90% 70.55% N/A 56.79% 64.26% 69.43% N/A

macroavgF1 BBR 67.56% 68.02% 68.24% N/A 56.43% 65.21% 67.08% N/A

macroavgF1 SLR 72.95% 72.94% 72.72% 73.28% 56.09% 72.90% 73.89% 74.00%

n-grams, SLR achieves the best macro-averaged F1 (74.88%), compared to BBR 74.72%, SVMperf

70.43% and LIBLINEAR 69.46%. Increasing the n-gram length increases the classification quality
of SLR with character n-grams. For n = 1 the SLR macro-averaged F1 is 58.43%, while for n
unrestricted, the macro-averaged F1 increases to 74.88%. We also note that character n-grams
provide better classification quality than word n-grams (best macro-averaged F1 for word n-grams
of 74.04% compared to character n-grams of 74.88%).

Looking at memory consumption for the four methods, their requirements are as follows. For
word 5-grams BBR uses 310 MByte of memory, SVMperf 160 MByte and LIBLINEAR 50 MByte.
For character 5-grams, BBR requires 340 MByte memory, SVMperf 200 MByte and LIBLINEAR
122 MByte. SLR with unrestricted n, uses 40 MByte for word n-grams and 75 MByte for character
n-grams.

Regarding running time, SLR is one order of magnitude faster than its competitors. In Table 4.4
we report the training running time for all methods. The times reported are average running times
over cross-validation splits averaged across topics. We observe that our method is much faster than
either BBR, SVMperf or LIBLINEAR. In particular, LIBLINEAR was designed to take advantage
of sparsity in the data, and we can observe that for word n-grams it is faster than SVMperf but
not faster than SLR. Furthermore, when we look at character n-grams, since the sparsity condition
does not hold, i.e. most character n-grams occur in many documents, LIBLINEAR suffers from
this symptom of dense data, and takes about the same time as SVMperf and sometimes even a bit
longer. Nevertheless, for both word and character n-grams SLR is much faster than its competitors.

For word n-grams, SLR’s running time stays almost constant with increasing n-gram length

4.3 Experimental Results 81

(0.35 minutes even with unrestricted length), while BBR goes from 0.3 minutes for unigrams to 4
minutes for (up to) 5-grams. SVMperf shows a similar trend, its running time increases from 0.3
minutes for unigrams to 15 minutes for 5-grams. LIBLINEAR is slightly faster than SVMperf for
word n-grams, with running time of 0.1 minutes for n = 1 and of 7.5 minutes for 5-grams. For
character-level n-grams SLR’s running time stays almost constant at 1.7 minutes for 3-grams and
2.4 minutes for unrestricted n. BBR, SVMperf and LIBLINEAR go from 2.4, 3.2 and 3.3 minutes
respectively for character 3-grams, to 8.4, 50 and 54 minutes respectively for 5-grams.

Thus, SLR is an order of magnitude faster than the state-of-the-art methods SVMperf , LIB-
LINEAR and BBR. This difference in running time is due to the way our technique deals with
large feature spaces, by its pruning strategy. We also notice that SLR selects much fewer features
in the final model, as compared to BBR. For word n-grams, out of 190 iterations for unrestricted
n-gram size, it selects 135 distinct features in the final model. BBR runs for 374 iterations in the
space of 5-grams, and selects 4,167 distinct features in the final model. For character n-grams, our
model runs for 620 iterations and selects 420 distinct features, while BBR runs for 370 iterations
for 5-grams and selects 4,061 features.

In Table 4.8 we show the top 5 word-level and character-level n-gram features for the positive
(Crime) and the negative (Drama) class. We can observe the following effects comparing the
top word-level n-grams with the character n-grams in Table 4.8. The top-5 word-level features
are highly discriminative unigrams, for both the positive and the negative class. The character-
level n-grams extract characteristic substrings (word stems, syllables, etc.) of words and provide
robustness to morphological variation of wordings and misspellings. For example, the n-gram urde
a potential substring of murder, murderer, murdering, is selected as a positive feature for the Crime
class (962 times in Crime vs 303 times in Drama). Note that urde rather than murde is selected
because adding the m does not increase (in this particular case) the discrimination power of this
feature. Other examples are the prefix lov, from love, loving, loveable, a feature much more frequent
in the Drama movie plots (925 times), than the Crime plots (470 times). Similarly, substrings such
as choo from school, schools, schooling, etc. are chosen as characteristics of the Drama class (300
times in Drama, 110 times in Crime).

AMAZON dataset

Similarly, we run 5-fold cross validation on the AMAZON dataset and report the micro/macro-
averaged F1 results. We then discuss the training running times for all methods on this dataset.

In terms of classification quality, for the fixed parameters setting (Table 4.4) SLR is better
by 2-3% than either BBR, SVMperf or LIBLINEAR. In the tuned setting (Table 4.7), SLR is
comparable to the other techniques. For word n-grams, SLR has macro-averaged F1 of 83.16%,
compared to BBR with 83.44%, SVMperf 80.68% and LIBLINEAR 79.71%. For character-level
n-grams, SLR has macro-averaged F1 of 83.01%, compared to BBR with 82.97%, SVMperf 80.52%
and LIBLINEAR 80.90%.

Again, SLR is much faster than BBR and SVM, with running time of 0.2 minutes for unre-
stricted word n-grams, and 1.5 minutes for unrestricted character n-grams. BBR takes 5.4 minutes
for learning a word-level 5-gram model and 9.6 minutes for learning a 5-gram character model.
SVM takes somewhat longer with 24 minutes average runtime for word-level 5-gram model and 55

82 4. Rich Input Representations: Learning with Variable-Length N-gram Features

Table 4.5: AMAZON training running times. Micro/Macro-averaged F1 for varying n.
word n-grams char n-grams

max n-gram length n=1 n=3 n=5 n unrestricted n=1 n=3 n=5 n unrestricted

overall features 55,764 1,036,693 2,454,205 N/A 95 50,422 700,993 N/A

iterations SVMperf 479 1089 1,722 N/A 592 1,578 2,597 N/A

iterations LIBLINEAR 1,250 5,400 9,500 N/A 450 8,700 20,000 N/A

iterations BBR 270 390 386 N/A 77 259 320 N/A

iterations SLR 87 93 95 98 216 347 318 294

features in final model BBR 1,000 1,250 1,329 N/A 79 1,157 1,332 N/A

features in final model SLR 75 83 77 86 43 258 259 243

Running Time SVMperf 0.2 min 6 min 24 min N/A 0.5 min 2.5 min 55 min N/A

Running Time LIBLINEAR 0.1 min 3.3 min 11.5 min N/A 0.05 min 3.5 min 45 min N/A

Running Time BBR 0.4 min 2.7 min 5.4 min N/A 0.05 min 2.75 min 9.6 min N/A

Running Time SLR 0.13 min 0.16 min 0.18 min 0.2 min 0.26 min 0.95 min 1.3 min 1.5 min

Time for generating patterns 0.1 min 1 min 4.0 min N/A 1 min 5 min 8 min N/A

Total Time SVMperf 0.3 min 7 min 28 min N/A 1.5 min 7.5 min 63 min N/A

Total Time LIBLINEAR 0.2 min 4.3 min 15.5 min N/A 1.05 min 8.5 min 53 min

Total Time BBR 0.5 min 3.7 min 9.4 min N/A 1.05 min 7.75 min 17.6 min N/A

Total Time SLR 0.13 min 0.16 min 0.18 min 0.2 min 0.26 min 0.95 min 1.3 min 1.5 min

microavgF1 SVMperf 81.75% 80.42% 78.05% N/A 39.01% 79.09% 81.88% N/A

microavgF1 LIBLINEAR 81.11% 79.75% 78.04% N/A 40.88% 78.57% 82.35% N/A

microavgF1 BBR 79.08% 79.23% 80.13% N/A 42.70% 78.37% 80.45% N/A

microavgF1 SLR 82.13% 81.80% 82.15% 81.89% 43.73% 82.75% 83.90% 84.49%

macroavgF1 SVMperf 80.24% 78.40% 75.31% N/A 30.93% 77.37% 80.52% N/A

macroavgF1 LIBLINEAR 79.44% 77.45% 75.14% 37.91% 76.77% 80.81% N/A

macroavgF1 BBR 77.49% 77.50% 78.58% N/A 39.82% 76.75% 78.92% N/A

macroavgF1 SLR 80.64% 80.30% 80.65% 80.40% 40.92% 81.31% 82.52% 83.20%

minutes for character-level 5-gram model.
In Table 4.8 we show the top-5 positive and negative n-grams for this dataset. We observe the

same effect of implicit stemming for the character n-grams as in IMDB. For example, our model
selects features such as bio, instead of biology, or mat instead of mathematics. These features carry
already enough information for discriminating the given topics, thus there is no need for selecting
the entire word. Note the features such as olo which seem unexpected at a first glance. The reason
for selecting olo is that it is contained in words such as biology, biologist, biological, ecology, etc.,
thus it is by itself already good for discriminating between Biology and Mathematics-Physics. This
sort of features may seem prone to overfitting, but our learning method is robust enough to decide
on inclusion of only highly discriminative features. Examples of syllable extraction are features like
ics instead of physics, mathematics, statistics, etc. Misspellings, such as physics versus pyhsics,
can influence the features much less with this kind of representation. Char n-grams could also
potentially capture other effects of language use, such as re-named entities, e.g. Alon Halevy, A.
Halewi, A. Halevy, slang, e.g. Eire for Ireland, and abbreviations, e.g. math instead of mathematics.

CHINESE dataset

This dataset has a separate set for training and for testing, thus we train all models on the training
set and report micro/macro-averaged F1 on the test set. For tuning the hyperparameters, we run
cross-validation on the training set. The best set of parameters is then user for learning the model
on the full training set. The test set is never seen by the classifiers during leaning. The training

4.3 Experimental Results 83

Table 4.6: CHINESE training running times. Micro/Macro-averaged F1 for varying n.
max char n-gram length n=1 n=3 n=5 n unrestricted

overall features 4,961 1,588,488 6,107,182 N/A

iterations SVMperf 146 116 148 N/A

iterations LIBLINEAR 35 9 8 N/A

iterations BBR 223 222 226 N/A

iterations SLR 187 184 184 184

features in final model BBR 551 687 701 N/A

features in final model SLR 120 131 131 131

Running Time SVMperf 0.1 min 1.5 min 5 min N/A

Running Time LIBLINEAR 0.01 min 0.08 min 0.22 min N/A

Running Time BBR 0.5 min 4.4 min 11 min N/A

Running Time SLR 0.25 min 0.5 min 0.5 min 0.5 min

Time for generating patterns 1 min 5 min 9 min N/A

Total Time SVMperf 1.1 min 6.5 min 14 min N/A

Total Time LIBLINEAR 1.01 min 5.08 min 9.22 min N/A

Total Time BBR 1.5 min 6.9 min 20 min N/A

Total Time SLR 0.25 min 0.5 min 0.5 min 0.5 min

microavgF1 SVMperf 72.82% 80.93% 78.96% N/A

microavgF1 LIBLINEAR 73.20% 80.89% 77.91% N/A

microavgF1 BBR 73.18% 76.65% 76.85% N/A

microavgF1 SLR 77.39% 78.87% 78.87% 78.87%

macroavgF1 SVMperf 73.29% 80.66% 78.60% N/A

macroavgF1 LIBLINEAR 73.81% 80.61% 78.26% N/A

macroavgF1 BBR 73.74% 77.43% 77.52% N/A

macroavgF1 SLR 77.69% 78.54% 78.54% 78.54%

set contains 4,961 distinct characters, and about 6,000,000 character n-grams up to size 5.

Table 4.7 shows results on the prediction quality of all methods. SLR achieves 79.75% macro-
averaged F1 which is similar to the 80.66% achieved by SVMperf , 80.61% by LIBLINEAR and
79.63% by BBR.

Table 4.6 shows training run-times for this dataset. SLR takes 0.5 minutes for learning a
model in the space of character-level n-grams of unrestricted length. BBR needs 11 minutes, while
SVMperf needs 5 minutes and LIBLINEAR needs 0.22 minutes for learning 5-gram models. The
running times for BBR, SVMperf and LIBLINEAR do not include the time required for pattern
generation (9 extra minutes), since all these methods require generating the n-gram feature space
explicitly.

Tables 4.4 to 4.7 show the micro/macro-averaged F1 behavior for all methods and corpora for
varying maximum n-gram length n. For word n-grams, we note that a higher order n improves the
quality of the models in the case of fixed parameters, but not in the case of tuned parameters. For
character n-grams, we observe that all methods benefit from using higher order n-gram features,
also in the tuned setting. Overall, character n-gram models seem to be at least as good and often
better than word n-gram models. Furthermore, the accuracy of SLR models with fixed parameters
is close to that of tuned SLR models, thus reducing the need for careful tuning of the number of
iterations. Although the space of variable-length n-grams is very large, our method can efficiently
learn accurate models, thus avoiding the need for additional pre-processing, such as feature selection
or word-segmentation.

84 4. Rich Input Representations: Learning with Variable-Length N-gram Features

Table 4.7: All collections. Tuned parameters. Micro/Macro-averaged F1 for varying n.

Collection

IMDB

AMAZON

CHINESE

word n-grams char n-grams

max n-gram length n=1 n=3 n=5 n unrestricted n=1 n=3 n=5 n unrestricted

microavgF1 SVMperf 69.21% 71.11% 71.22% N/A 57.47% 65.65% 70.41% N/A

microavgF1 LIBLINEAR 69.07% 70.95% 71.27% N/A 57.79% 65.01% 69.46% N/A

microavgF1 BBR 73.70% 73.58% 73.92% N/A 56.97% 73.54% 74.71% N/A

microavgF1 SLR 74.02% 73.74% 73.70% 73.86% 58.44% 73.82% 74.44% 74.87%

macroavgF1 SVMperf 69.21% 71.13% 71.24% N/A 57.47% 65.66% 70.43% N/A

macroavgF1 LIBLINEAR 69.09% 70.98% 71.32% N/A 57.79% 65.01% 69.46% N/A

macroavgF1 BBR 73.76% 73.63% 73.94% N/A 57.07% 73.56% 74.72% N/A

macroavgF1 SLR 74.04% 73.77% 73.72% 73.91% 58.43% 73.89% 74.47% 74.88%

microavgF1 SVMperf 82.09% 80.60% 78.49% N/A 39.32% 79.14% 81.88% N/A

microavgF1 LIBLINEAR 81.30% 80.11% 78.06% N/A 40.57% 78.36% 82.41% N/A

microavgF1 BBR 84.58% 84.14% 83.99% N/A 43.62% 82.98% 84.21% N/A

microavgF1 SLR 84.22% 83.64% 83.75% 83.57% 45.54% 83.05% 84.21% 84.27%

macroavgF1 SVMperf 80.68% 78.54% 75.79% N/A 34.91% 77.47% 80.52% N/A

macroavgF1 LIBLINEAR 79.71% 77.73% 75.08% N/A 37.58% 76.51% 80.90% N/A

macroavgF1 BBR 83.44% 82.95% 82.81% N/A 40.62% 81.77% 82.97% N/A

macroavgF1 SLR 83.16% 82.43% 82.55% 82.30% 42.61% 81.78% 82.94% 83.01%

microavgF1 SVMperf N/A N/A N/A N/A 72.82% 80.93% 78.96% N/A

microavgF1 LIBLINEAR N/A N/A N/A N/A 74.36% 80.89% 78.03% N/A

microavgF1 BBR N/A N/A N/A N/A 78.36% 78.88% 78.58% N/A

microavgF1 SLR N/A N/A N/A N/A 76.18% 78.71% 78.30% 79.17%

macroavgF1 SVMperf N/A N/A N/A N/A 73.29% 80.66% 78.60% N/A

macroavgF1 LIBLINEAR N/A N/A N/A N/A 74.77% 80.61% 77.68% N/A

macroavgF1 BBR N/A N/A N/A N/A 78.17% 79.63% 79.36% N/A

macroavgF1 SLR N/A N/A N/A N/A 76.09% 79.35% 79.06% 79.75%

Table 4.8: Top 5 features IMDB and AMAZON. Max n-gram length n=5.
IMDB AMAZON

Crime(pos) vs Drama(neg) Biology (pos) vs Mathematics-Physics(neg)

Methods SLR BBR SLR BBR

top-5 pos word n-grams 0.139 crime 9.673 has done 0.093 species 8.148 which they can

0.125 police 8.348 postwar 0.086 human 7.484 ecology

0.105 detective 7.631 extortion 0.081 biological 7.108 biochemistry

0.077 murder 7.562 recorded 0.074 biology 7.067 bioinformatics

0.068 gang 7.203 dependent on 0.072 ecology 6.542 ecological

top-5 neg word n-grams -0.057 school -8.094 a wild -0.092 physics -6.100 calculus

-0.050 war -7.803 his way to -0.084 mathematics -5.402 physics

-0.049 family -6.888 is the owner -0.077 theory -5.106 stars

-0.046 love -6.624 life in -0.071 mathematical -4.623 geometry

-0.035 her -6.419 onto his -0.057 statistics -4.408 chaos

top-5 pos char n-grams 0.040 u r d e 3.244 c h t o t 0.064 B i o 3.050 E c o l

0.039 g a n g 3.238 b w 0.060 o l o 2.478 i o l

0.038 o l i c e 3.217 a a r 0.048 b i o 2.301 c o l o

0.034 c r i m 3.077 b y o n 0.046 p e c i e 2.273 B i

0.021 b o s 2.956 e B o 0.045 i o l o g 2.153 n i m

top-5 neg char n-grams -0.020 l o v -3.150 c h u n -0.076 e m a t -2.792 M a t

-0.015 t i o n -2.635 a b r o -0.060 i c s -2.667 S t a t i

-0.013 r i n -2.289 a t s e r -0.043 h e o r -2.334 T e

-0.011 c h o o -2.278 t h e r n -0.031 s i c -2.144 M a t h

-0.011 l d -2.262 i n i s t -0.030 M a t -1.797 a l c u

4.4 Other Applications: Spam Filtering 85

4.4 Other Applications: Spam Filtering

Spam filtering is a mission-critical text classification application, which can directly affect our day
to day lives. Having a legitimate e-mail end up in the spam folder, or receiving hundreds of spam
e-mails every day, can be highly damaging to both private individuals and large industries. In
this section we analyze the effect of using our SLR algorithm for learning variable-length n-gram
models for spam filtering. In particular, character n-gram models have the potential of improving
state-of-the-art classification prediction, since they can potentially capture many ways of altering
the original text typically used by spammers to increase the chances that spam gets through to
the user. For these experiments we compile a corpus of spam and legitimate e-mails (referred to
as ham) from several large spam benchmarks: TREC 2005 and TREC 2006 Public Spam Corpora
[spab, BHS06, BFC+06] and the Guenter spam trap [BHS06, spaa]. The pooled corpus amounts to
201,324 e-mails. From the large pool we randomly select 100,000 e-mails for training and 100,000
e-mails for testing. Table 4.9 gives exact details on the number of spam/ham in the training and
test sets. We evaluate the classification quality by the F1 measure [Cha03, MRS08] and the Area
Under the Roc Curve (AUC) [MRS08, Faw04]. The AUC measure is particularly used in spam
filtering benchmarks. The ROC (Receiver Operating Characteristics) curve is obtained by plotting
the fraction of true positives (also called sensitivity) versus the fraction of false positives (also called
1 - specificity) for a binary classifier system as its discrimination threshold is varied [MRS08]. A
common aggregate measure is to report the area under the ROC curve (AUC), which is the ROC
analog of Mean Average Precision [MRS08].

As a basis for comparison, we give the F1 and the AUC measures reported in [BHS06] obtained
on a set of randomly selected 100,000 training and 100,000 test emails from the same benchmarks
in relation to the SpamTREC 2006 challenge: F1: 92.78%, AUC: 98.78%.

Typical approaches to spam filtering spend considerable time in pre-processing the input data
and in doing feature selection. We keep the original text as it is (no pre-processing, no feature
selection), and rely on the learning algorithm to be able to select discriminative n-grams for the
final model.

This experimental study aims at:

1. Analyzing the scalability of SLR on a large real world corpus, and the trade-offs between
training run-time and prediction quality.

2. Understanding the effect of using unrestricted-length word/character n-grams on a real world
application of vital importance.

Table 4.9: Spam corpus. Details on the training/test per collection.

Collection Training size Test size

Spam corpus 100,000 100,000

Spam Ham Spam Ham

74,354 25,646 74,228 25,772

86 4. Rich Input Representations: Learning with Variable-Length N-gram Features

Table 4.10: SPAM training running times. F1 and AUC measures for varying n.

word n-grams char n-grams

max n-gram length n=1 n=3 n=5 n unrestricted n=1 n=3 n=5 n unrestricted

overall features 2,198,919 20,627,820 51,714,667 N/A 185 635,118 25,138,274 N/A

convergence threshold SLR1 2.5e-04 2.5e-04 2.5e-04 2.5e-04 2.5e-03 2.5e-03 2.5e-03 2.5e-03

convergence threshold SLR2 5e-06 5e-06 5e-06 5e-06 5e-04 5e-04 5e-04 5e-04

iterations SLR1 1,005 1,001 1,013 1,156 499 555 549 561

features in SLR1 model 470 493 510 570 82 418 424 425

iterations SLR2 3,962 5,803 4,074 4,086 1,606 2,739 3,040 2,570

features in SLR2 model 1,308 1,735 1,395 1,417 106 1,496 1,627 1,473

Running Time LIBLINEAR 1 min 14 min 60 min N/A 1 min 12 min 138 min N/A

Running Time BBR 120 min 615 min N/A N/A 14 min 1,055 min N/A N/A

Running Time SLR1 57 min 79 min 84 min 97 min 19 min 70 min 99 min 150 min

Running Time SLR2 211 min 405 min 292 min 319 min 57 min 303 min 513 min 688 min

Time for generating patterns 16 min 45 min 75 min N/A 25 min 90 min 150 min N/A

Total Time LIBLINEAR 17 min 59 min 135 min N/A 26 min 102 min 288 min N/A

Total Time BBR 136 min 660 min N/A N/A 39 min 1,145 min N/A N/A

Total Time SLR1 57 min 79 min 84 min 97 min 19 min 70 min 99 min 150 min

Total Time SLR2 211 min 405 min 292 min 319 min 57 min 303 min 513 min 688 min

F1 LIBLINEAR 99.43% 99.39% 99.32% N/A 93.44% 99.33% 99.44% N/A

F1 BBR 99.40% 99.44% N/A N/A 93.50% 99.40% N/A N/A

F1 SLR1 98.84% 98.94% 98.92% 99.03% 93.55% 98.81% 98.89% 98.88%

F1 SLR2 99.28% 99.35% 99.29% 99.32% 93.63% 99.25% 99.35% 99.30%

AUC LIBLINEAR 98.74% 98.62% 98.50% N/A 86.22% 98.60% 98.83% N/A

AUC BBR 99.86% 99.87% N/A N/A 95.27% 99.86% N/A N/A

AUC SLR1 99.71% 99.74% 99.74% 99.76% 95.09% 99.71% 99.75% 99.74%

AUC SLR2 99.81% 99.83% 99.82% 99.82% 95.32% 99.84% 99.87% 99.86%

3. Further analyzing the influence of parameters on the overall performance of the SLR algo-
rithm.

We show experiments with SLR, BBR and LIBLINEAR. Since in the previous experiments the
results of SVMperf and LIBLINEAR were very similar in terms of both accuracy and running
time, we show results only for LIBLINEAR. The hyperparameters of BBR and LIBLINEAR were
tuned using cross-validation on the training set. We report running time, F1 and AUC results for
the tuned values of their parameters. For SLR we vary the convergence threshold which affects
the number of optimization iterations executed by our algorithm. The value of the convergence
threshold can affect the accuracy and the running time of the model. We show results for two
values of the threshold (we coin the models SLR1 and SLR2), which give a feeling of the trade-off
between running time and F1/AUC values. In Table 4.10 we give details on the models and the F1
and AUC values obtained on the test set. We denote by N/A the entries for which the respective
model ran out-of-memory.

First we note that the training corpus has a size of 320MBytes on disk and contains about
2 million distinct word unigrams. Therefore, explicitly generating the n-gram feature space as
required by both BBR and LIBLINEAR is an obvious disadvantage. The files corresponding to
the explicit feature spaces for n = 3 and n = 5 are large, occupying around 4 and respectively 8
GByte disk space. Correspondingly, the amount of memory required by BBR and LIBLINEAR
is very demanding. BBR requires about 6.5 GByte for n = 3 and more than 8 GByte memory

4.5 Using Explicit Regularization on the Objective Function 87

(which is more than the resources of the machine used for these experiments), for n = 5. Therefore,
for BBR we only show experiments for n = 1 and n = 3. LIBLINEAR requires about 4 GByte
memory for n = 3 and around 6.5 GByte memory for n = 5. SLR takes 1.5 GByte memory for
unrestricted word n-grams and 2.2 GByte for unrestricted character n-grams.

Regarding the AUC measure, SLR delivers results comparable to those of BBR, i.e. 99.75%
for SLR1 and 99.87% for SLR2 versus 99.87% for BBR. LIBLINEAR has the smallest AUC with
98.83%. Regarding running time, SLR1 is a good compromise between LIBLINEAR and BBR.
LIBLINEAR is quite fast, with 135 minutes for word 5-grams, and 288 minutes for character 5-
grams. SLR1 takes 97 minutes for unrestricted word n-grams, and 150 minutes for unrestricted
character n-grams. BBR needs 136 minutes for word unigrams and 660 minutes for word 3-grams.
For character n-grams, BBR takes 39 minutes for 1-grams and 1,145 minutes for 3-grams. By
lowering the convergence threshold for SLR (denoted in Table 4.10 by SLR2) we can achieve
higher F1/AUC values at some cost with respect to running time.

We note that the classification performance with respect to both F1 and AUC values is higher
for all methods than that reported in [BHS06], for both word n-grams and character n-grams.

For SLR2 with word n-grams, the F1/AUC values increase with increasing n-gram size, with
a peak at maximum n = 3 with F1: 99.35% and AUC: 99.83%. The character n-gram models
further improve these results. For increasing n-gram size the classification quality increases, with
a peak at n = 5 with F1: 99.35% and AUC: 99.87%. For both BBR and SLR the classification
quality with unrestricted n-gram size is closer to the peak than when using unigrams alone. This
shows the importance of using n-grams for spam filtering.

In conclusion, from these experiments we observe that LIBLINEAR is quite fast, but does not
deliver satisfactory AUC results which are considered more important that the F1 value by the
spam filtering community. Additionally LIBLINEAR requires a considerable amount of memory.
BBR is slower than our method, but provides good AUC results (99.87%). Nevertheless, similar
to LIBLINEAR it has considerable memory demands. SLR provides AUC results comparable to
BBR (99.74% for SLR1 and 99.87% for SLR2), at a much lower running time and memory costs.

4.5 Using Explicit Regularization on the Objective Function

In this section we investigate the effect of using an explicit regularizer on the logistic regression
objective function and we give new theoretical bounds for the SLR algorithm in this setting. We
first focus on the L1 regularizer and then discuss the use of other regularizers such as the L2
regularizer or an n-gram-length-aware regularizer. As we mentioned in the previous sections, the
L1 regularized objective takes the form:

l̃1 = max
β

l(β)− λ ·
d∑
j=1

|βj |

We show next how introducing an explicit regularizer affects the pruning bound of SLR. The
new objective function becomes:

l̃1 = max
β

N∑
i=1

[yi · βT · xi − log(1 + eβ
T ·xi)]− λ ·

d∑
j=1

|βj | (4.12)

88 4. Rich Input Representations: Learning with Variable-Length N-gram Features

Using Equation 4.12, the gradient of l̃1 with respect to a coordinate βj evaluated at a given
parameter vector β is:

∂l̃1
∂βj

(β) =
N∑
i=1

xij ·

(
yi −

eβ
T ·xi

1 + eβT ·xi

)
− λ · sign(βj) (4.13)

Let j be a coordinate corresponding to a given n-gram sequence sj , and j′ be a coordinate
corresponding to a super sequence of sj , (i.e., sj is a prefix of sj′). We write sj ∈ xi to denote
xij 6= 0.

The following theorem gives a convenient way of computing an upper bound on the gradient
value for any super sequence sj′ ⊇ sj .

Theorem 4.5.1 For any sj′ ⊇ sj and y ∈ {0, 1}, the absolute value of the gradient of l̃1(β) with
respect to βj′ is bounded by µ(βj), where

µ(βj) = max{
∑

{i|yi=1,sj∈xi}

xij ·

(
1− eβ

T ·xi

1 + eβT ·xi

)
+ λ,

∑
{i|yi=0,sj∈xi}

xij ·

(
eβ

T ·xi

1 + eβT ·xi

)
+ λ}.

Proof Similar to the proof of Theorem 4.2.1 we split the analysis into two subproblems, the first
concerning the “positive” class (y = 1), and the second concerning the “negative” class (y = 0).
First we prove the bound for the positive class:

∂l̃1
∂βj′

(β) =
N∑
i=1

xij′ ·

(
yi −

eβ
T ·xi

1 + eβT ·xi

)
− λ · sign(βj′) (4.14)

=
∑

{i|sj′∈xi}

xij′ ·

(
yi −

eβ
T ·xi

1 + eβT ·xi

)
− λ · sign(βj′) (4.15)

≤
∑

{i|yi=1,sj′∈xi}

xij′ ·

(
1− eβ

T ·xi

1 + eβT ·xi

)
− λ · sign(βj′) (4.16)

≤
∑

{i|yi=1,sj∈xi}

xij ·

(
1− eβ

T ·xi

1 + eβT ·xi

)
+ λ. (4.17)

The last inequality holds due to the fact that {i|yi = 1, sj′ ∈ xi} ⊆ {i|yi = 1, sj ∈ xi}, for any
sj′ ⊇ sj. Additionally, since the sign(β′j) = ±1, we can give a simple bound on the gradient value
at the coordinate sj′ .

Similarly , we can show for the negative class that

∂l̃1
∂βj′

(β) ≥
∑

{i|yi=0,sj∈xi}

xij ·

(
− eβ

T ·xi

1 + eβT ·xi

)
− λ. (4.18)

4.5 Using Explicit Regularization on the Objective Function 89

Thus we have: ∑
{i|yi=0,sj∈xi}

xij ·

(
− eβ

T ·xi

1 + eβT ·xi

)
− λ ≤ ∂l̃1

∂βj′
(β) (4.19)

≤
∑

{i|yi=1,sj∈xi}

xij ·

(
1− eβ

T ·xi

1 + eβT ·xi

)
+ λ

The absolute value of the gradient of l̃1(β) at coordinate j′ corresponding to n-gram sequence
sj′ is thus bounded by µ(βj):∣∣∣∣∣ ∂l̃1∂βj′

(β)

∣∣∣∣∣ ≤ max{
∑

{i|yi=1,sj∈xi}

xij ·

(
1− eβ

T ·xi

1 + eβT ·xi

)
+ λ,

∑
{i|yi=0,sj∈xi}

xij ·

(
eβ

T ·xi

1 + eβT ·xi

)
+ λ}.

2

We note from the previous theorem that in order to use L1 regularization with the SLR al-
gorithm we only need to adjust the pruning bound slightly, and pay a small computation cost to
retrieve the sign of the current βj coefficient (needed for computing the current gradient value).
This is not the case when using the L2 regularizer. Let l̃2(β) be the L2 regularized logistic objective:

l̃2 = max
β

N∑
i=1

[yi · βT · xi − log(1 + eβ
T ·xi)]− λ

2
·
d∑
j=1

βj
2 (4.20)

We follow the same steps as for the proof using the L1 regularizer. Using Equation 4.20, the
gradient of l with respect to a coordinate value βj evaluated at a given parameter vector β is:

∂l̃2
∂βj

(β) =
N∑
i=1

xij ·

(
yi −

eβ
T ·xi

1 + eβT ·xi

)
− λ · βj (4.21)

We note that the presence of the coefficient βj in the gradient computation makes it harder to
write down a clean bound.

∂l̃2
∂βj′

(β) =
N∑
i=1

xij′ ·

(
yi −

eβ
T ·xi

1 + eβT ·xi

)
− λ · βj′ (4.22)

=
∑

{i|sj′∈xi}

xij′ ·

(
yi −

eβ
T ·xi

1 + eβT ·xi

)
− λ · βj′ (4.23)

≤
∑

{i|yi=1,sj′∈xi}

xij′ ·

(
1− eβ

T ·xi

1 + eβT ·xi

)
− λ · βj′ (4.24)

≤
∑

{i|yi=1,sj∈xi}

xij ·

(
1− eβ

T ·xi

1 + eβT ·xi

)
− λ · βj′ . (4.25)

90 4. Rich Input Representations: Learning with Variable-Length N-gram Features

Additionally, since β′j ∈ < we do not have the same nice monotonicity property when trying
to bound the gradient value of sequence sj′ based on its prefix sj , as for the L1 regularizer case.
In order to guarantee that we find the best n-gram sequence in a given iteration, we need to
explicitly compute the quantity in Equation 4.25 for all the non-zero n-grams (i.e. previously
selected features) which have sj as a prefix. This implies that at each point in the search space,
when checking the pruning bound we need to explicitly compute the quantity in Equation 4.25 for
all non-zero features starting with this prefix. This additional computation can result in making
the algorithm less efficient (by increasing the training time).

Furthermore, using an n-gram-length-aware regularizer suffers from the same need for additional
computation as the L2 regularizer. For example, even when using an additional length penalty
in the L1 regularizer we run into the same problem of having to explicitly compute the bounding
value for all non-zero features.

l̃∗ = max
β

N∑
i=1

[yi · βT · xi − log(1 + eβ
T ·xi)]− λ ·

d∑
j=1

|βj | · nj (4.26)

∂l̃∗
∂βj′

(β) =
N∑
i=1

xij′ ·

(
yi −

eβ
T ·xi

1 + eβT ·xi

)
− λ · sign(βj′) · nj′ (4.27)

=
∑

{i|sj′∈xi}

xij′ ·

(
yi −

eβ
T ·xi

1 + eβT ·xi

)
− λ · sign(βj′) · nj′ (4.28)

≤
∑

{i|yi=1,sj′∈xi}

xij′ ·

(
1− eβ

T ·xi

1 + eβT ·xi

)
− λ · sign(βj′) · nj′ (4.29)

≤
∑

{i|yi=1,sj∈xi}

xij ·

(
1− eβ

T ·xi

1 + eβT ·xi

)
+ λ · nj′ . (4.30)

As we note from Equation 4.30 we need to explicitly compute the bounding value for all non-zero
features starting with prefix sj . This again results in additional computation during the training
process which can make the learning algorithm inefficient.

Using the L1 regularizer is widely regarded in the literature [GLM06] as a good choice for
controlling the selection of features for the final model. Many learning researchers [GLM06] actually
advocate the use of L1 regularization over L2 regularization, since the L1 regularization has the
advantage of shrinking many feature coefficients to zero, therefore providing feature selection and
learning in a single algorithm. Since training SLR using an L1 regularizer comes at small additional
computation time we focus next on empirically analyzing the effect of using L1 regularization with
SLR.

4.5.1 Empirical Results using SLR with L1 Regularization

One problem concerning L1 regularization is that the regularized objective function is not differ-
entiable at βj = 0. Furthermore, if βj switches its sign (i.e., we selected the feature as positive
and now it is selected as negative) the increase in the objective function is no longer guaranteed.

4.5 Using Explicit Regularization on the Objective Function 91

Table 4.11: IMDB training running times. Micro/Macro-averaged F1 for unrestricted n.
word n-grams char n-grams

L1 regularizer time microavgF1 macroavgF1 time microavgF1 macroavgF1

λ = 0 0.35 min 73.17 73.28 2.40 min 73.94 74.00

λ = 0.01 1.25 min 72.62 72.67 7.56 min 74.07 74.09

λ = 0.02 1.27 min 72.73 72.78 7.55 min 73.69 73.73

λ = 0.04 1.27 min 73.02 73.04 7.36 min 73.93 73.96

λ = 0.08 1.15 min 72.62 72.68 7.26 min 74.01 74.03

λ = 0.1 1.20 min 72.92 73.01 7.53 min 73.57 73.61

λ = 0.125 1.30 min 72.78 72.84 7.38 min 73.89 73.91

λ = 0.25 1.25 min 73.36 73.40 7.69 min 74.12 74.19

λ = 0.5 1.25 min 72.97 73.04 6.95 min 73.45 73.47

λ = 1 1.26 min 72.88 72.96 7.08 min 74.12 74.14

λ = 5 1.10 min 71.89 72.00 5.88 min 74.20 74.24

Table 4.12: AMAZON training running times. Micro/Macro-averaged F1 for unrestricted n.
word n-grams char n-grams

L1 regularizer time microavgF1 macroavgF1 time microavgF1 macroavgF1

λ = 0 0.20 min 81.89 80.40 1.50 min 84.49 83.20

λ = 0.01 0.70 min 79.49 77.63 2.57 min 83.98 82.75

λ = 0.02 0.65 min 79.46 77.65 3.09 min 84.16 82.95

λ = 0.04 0.68 min 79.79 78.05 2.53 min 84.01 82.68

λ = 0.08 0.73 min 79.85 78.19 2.36 min 84.42 83.16

λ = 0.1 0.71 min 79.63 77.97 2.56 min 84.09 82.82

λ = 0.125 0.76 min 79.54 77.90 2.59 min 84.21 82.84

λ = 0.25 0.67 min 79.45 77.65 2.27 min 83.94 82.73

λ = 0.5 0.74 min 79.26 77.47 2.77 min 84.21 82.92

λ = 1 0.69 min 79.14 77.30 2.66 min 84.02 82.72

λ = 5 0.58 min 77.94 76.03 2.43 min 84.19 82.76

In order to tackle these problems we follow the steps in [GLM06], i.e., whenever the coefficient βj
changes its sign (crosses zero), we set it to βj = 0.

Furthermore, some additional running time goes into retrieving the sign of the coefficient for
the coordinate currently investigated during gradient and bounds computation. Since we keep all
the selected features in a binary search tree, we need logarithmic time in the size of the selected
feature set for retrieving such information. Nevertheless, this search has to be done repeatedly for
each coordinate, in each optimization iteration, therefore we should expect the regularized SLR
algorithm to be somewhat slower than its original (not explicitly regularized) counterpart.

Table 4.11 shows results for the L1 regularized SLR on the IMDB dataset. We fix the conver-
gence threshold to 0.005, and show running time and micro/macro-averaged F1 results for varying
values of the regularizer value, denoted by λ. We denote by λ = 0 the original SLR without explicit
regularization (presented in Section 4.2). We observe that varying the value of the regularizer can
affect the running time and the micro/macro-averaged F1 values to some degree. The variation in
running time is nevertheless very little affected by the regularizer value λ. This happens because
of the following effect: increasing the regularizer value leads to less optimization iterations, but in
each iteration the time required for finding the best n-gram feature increases with increasing λ.
We can observe the letter effect from the bound given in Theorem 4.5.1. The larger the λ, the
looser the bound, and therefore the more time is needed to search for the best n-gram in a given
iteration.

92 4. Rich Input Representations: Learning with Variable-Length N-gram Features

Table 4.13: CHINESE training running times. Micro/Macro-averaged F1 for unrestricted n.
char n-grams

L1 regularizer time microavgF1 macroavgF1

λ = 0 0.50 min 78.87 78.54

λ = 0.01 1.60 min 77.32 77.42

λ = 0.02 1.68 min 77.57 77.70

λ = 0.04 1.67 min 77.63 77.86

λ = 0.08 1.63 min 78.04 78.07

λ = 0.1 1.65 min 78.57 78.63

λ = 0.125 1.61 min 78.07 77.98

λ = 0.25 1.67 min 78.19 78.27

λ = 0.5 1.41 min 78.70 78.59

λ = 1 1.56 min 78.35 78.15

λ = 5 1.85 min 77.47 77.15

The variation in micro/macro-averaged F1 with increasing λ is about 1-2%. The largest micro-
averaged F1 (73.36%) value for word-ngrams is achieved with λ = 0.25. For character n-grams the
highest value of the micro-averaged F1 was achieved at λ = 5 (74.20%).

We note that using L1 regularization can slightly improve the SLR results as compared to the
original SLR algorithm. At the same time when comparing running times, because we have to pay
some small additional computation in the regularized case, the regularized SLR is slightly slower
than the original SLR. For example, the running time for word n-grams goes up from 0.35 min
to 1.30 min, and for character n-grams from 2.4 min to 7.55 min. Using regularization seems to
have a higher impact for character n-grams than for word n-grams. Decreasing the convergence
threshold to less than 0.005 resulted in increased running times, without notable accuracy benefits.

In Table 4.12 we show results on the AMAZON dataset. Similar to IMDB, using regularization
has a more notable effect on the character n-gram models than on the word n-gram models. For
word n-grams the micro/macro-averaged F1 results are actually lower than for the original (un-
regularized) SLR, for all the regularizer values tried. For character n-grams, the micro-averaged F1
results are comparable to those of original SLR (84.42% versus 84.49%). Regarding running time,
the regularized version requires 2.36 minutes as compared to 1.5 minutes for the un-regularized
version.

Table 4.13 summarizes the results on the CHINESE dataset. The classification results using
regularization are not better than those achieved by original SLR (micro-averaged F1 of 78.70%
versus 78.87%). Running-time wise, the regularized version is also slower than the un-regularized
one, with 1.41 minutes versus 0.5 minutes. This preliminary experiments suggest that using regu-
larization with SLR does not improve the results of the original SLR algorithm. This may happen
because of the way our algorithm works, i.e. the feature selection strategy in our algorithm (al-
ways choose the feature with best gradient value) can play an implicit regularization effect on the
final model selected. Furthermore, using regularization comes with additional computational costs
which results in increased running time. In the future, we plan to further investigate using other
types of regularization with SLR.

4.6 Speeding Up SLR by Using Second Order Information 93

4.6 Speeding Up SLR by Using Second Order Information

In the previous sections we presented a first order algorithm for solving logistic regression in the
large space of all n-gram features. There are several optimization approaches in the literature
which use second order information for faster convergence. These are called Newton algorithms
[NW06], which are typically quadratic, or quasi-Newton methods which are linear in the feature
space size. In this section we give an upper bound on the magnitude of the weight of any n-gram
sequence based on its prefix, for the case of using second order information.

Let

l(β) =
N∑
i=1

[yiβ>xi − log(1 + eβ
>xi)]

be the log-likelihood function for logistic regression. We are interested in maximizing l(β). We
will achieve this by repeatedly optimizing in one dimension, while keeping all the other dimensions
fixed, e.g. the update for a single dimension j using second order information is:

β(n+1) = β(n) +
∂l
∂βj

(β(n))
∂2l
∂βj2

(β(n))

The gradient of l with respect to a coordinate βj at some point β is:

∂l

∂βj
(β) =

N∑
i=1

xij

(
yi −

eβ
>xi

1 + eβ>xi

)
From this it follows that the second derivative of l with respect to a coordinate βj at some

point β is:

∂2l

∂βj
2 (β) =

[
N∑
i=1

xij

(
yi −

eβ
>xi

1 + eβ>xi

)]
∂βj

(4.31)

= −

[
N∑
i=1

xij
eβ
>xi

1 + eβ>xi

]
∂βj

(4.32)

= −

[
N∑
i=1

xij
2 · eβ

>xi

1 + eβ>xi
−

N∑
i=1

xij
2 · e2β>xi(

1 + eβ>xi
)2
]

(4.33)

=
N∑
i=1

xij
2 · eβ

>xi(
1 + eβ>xi

) ·(eβ
>xi

1 + eβ>xi
− 1

)
≤ 0 (4.34)

(4.35)

The Newton step projected at a coordinate βj′ corresponding to a super-sequence sj′ of sj is
thus:

∂l
∂βj′

(β)
∂2l
∂βj′

2 (β)
=

∑N
i=1 xij

(
yi − eβ

>xi

1+eβ
>xi

)
∑N
i=1 xij

2 · eβ
>xi(

1+eβ
>xi

) · (eβ
>xi

1+eβ
>xi
− 1
) (4.36)

94 4. Rich Input Representations: Learning with Variable-Length N-gram Features

We prove a bound on the absolute magnitude of the Newton update

∣∣∣∣∣ ∂l
∂β
j′

(β)

∂2l
∂β
j′

2 (β)

∣∣∣∣∣ corresponding

to a super-sequence sj′ which only uses information about the subsequence sj of sj′ . This will help
us prune the search space while looking for the best coordinate w.r.t. the absolute magnitude of
the Newton update.

We have:

∣∣∣∣∣∣
∂l
∂βj′

(β)
∂2l
∂βj′

2 (β)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑N
i=1 xij′

(
yi − eβ

>xi

1+eβ
>xi

)
∑N
i=1 xij′

2 · eβ
>xi(

1+eβ
>xi

) · (eβ
>xi

1+eβ
>xi
− 1
)
∣∣∣∣∣∣∣∣ (4.37)

=

∣∣∣∑N
i=1 xij′

(
yi − eβ

>xi

1+eβ
>xi

)∣∣∣∑N
i=1 xij′

2 · eβ
>xi(

1+eβ
>xi

) · (1− eβ
>xi

1+eβ
>xi

) (4.38)

We cannot directly apply the trick used for proving a bound on the first derivative of l because
the numerator and the denominator behave similarly, i.e. even if the numerator is bounded by the
same expression in which we replace the subsequence occurrences, so does the denominator, thus
sort of balancing out the effect. Rather than trying to bound the numerator and the denominator
separately, we will prove a bound directly on the ratio. Since we work with a binary setting
(xij′ ∈ {0, 1}), we observe that xij′ = x2

ij′ .

Let u =
∑N
i=1 xij′

(
yi − eβ

>xi

1+eβ
>xi

)
=
∑
{i|xij′=1}

(
yi − eβ

>xi

1+eβ
>xi

)
and

v =
N∑
i=1

xij′
2 eβ

>xi(
1 + eβ>xi

) ·(1− eβ
>xi

1 + eβ>xi

)
=

∑
{i|xij′=1}

eβ
>xi(

1 + eβ>xi
) ·(1− eβ

>xi

1 + eβ>xi

)
.

Let u+ =
∑
{i|xij′=1,yi=1}

(
1− eβ

>xi

1+eβ
>xi

)
, u− =

∑
{i|xij′=1,yi=0}

(
− eβ

>xi

1+eβ
>xi

)
. Let zi = eβ

>xi

1+eβ
>xi

.

Then:

u =
∑

{i|xij′=1}

(yi−zi); u+ =
∑

{i|xij′=1,yi=1}

(1−zi); u− =
∑

{i|xij′=1,yi=0}

−zi; v =
∑

{i|xij′=1}

zi ·(1−zi).

We can directly see that the following inequality holds:

u−
v
≤ u

v
≤ u+

v
.

We would like to find bounds f and g that depend only on the occurrences of the subsequence
sj (rather than the super-sequence sj′) such that:

f ≤ u−
v
≤ u

v
≤ u+

v
≤ g.

4.6 Speeding Up SLR by Using Second Order Information 95

Next, we prove such bounds exist:

u+

v
=

∑
{i|xij′=1,yi=1}(1− zi)∑
{i|xij′=1} zi · (1− zi)

(4.39)

≤

∑
{i|xij′=1,yi=1}(1− zi)∑

{i|xij′=1,yi=1} zi · (1− zi)
(4.40)

=

∑
{i|xij′=1,yi=1}

1
zi
· zi · (1− zi)∑

{i|xij′=1,yi=1} zi · (1− zi)
(4.41)

≤

√∑
{i|xij′=1,yi=1}

1
zi2
·
√∑

{i|xij′=1,yi=1} zi
2 · (1− zi)2∑

{i|xij′=1,yi=1} zi · (1− zi)
(4.42)

≤
√√√√ ∑
{i|xij′=1,yi=1}

1
zi2
·

√∑
{i|xij′=1,yi=1} zi

2 · (1− zi)2∑
{i|xij′=1,yi=1} zi · (1− zi)

(4.43)

≤
√√√√ ∑
{i|xij′=1,yi=1}

1
zi2

(4.44)

≤

√√√√ ∑
{i|xij=1,yi=1}

1
zi2

(4.45)

Equation 4.42 uses the Cauchy-Schwarz inequality and the fact that 1
zi
≥ 0 and zi · (1−zi) ≥ 0.

Equation 4.43 uses the fact that
∑
i αi

2 ≤ (
∑
i αi)

2, for αi ≥ 0, thus
√∑

i αi
2 ≤

∑
i αi.

96 4. Rich Input Representations: Learning with Variable-Length N-gram Features

Similarly, we can prove:

u−
v

=

∑
{i|xij′=1,yi=0}(−zi)∑
{i|xij′=1} zi · (1− zi)

(4.46)

≥

∑
{i|xij′=1,yi=0}(−zi)∑

{i|xij′=1,yi=0} zi · (1− zi)
(4.47)

= −

∑
{i|xij′=1,yi=0}

1
1−zi · zi · (1− zi)∑

{i|xij′=1,yi=1} zi · (1− zi)
(4.48)

≥ −

√∑
{i|xij′=1,yi=0}

1
(1−zi)2

·
√∑

{i|xij′=1,yi=0} zi
2 · (1− zi)2∑

{i|xij′=1,yi=0} zi · (1− zi)
(4.49)

≥ −
√√√√ ∑
{i|xij′=1,yi=0}

1
(1− zi)2 ·

√∑
{i|xij′=1,yi=0} zi

2 · (1− zi)2∑
{i|xij′=1,yi=0} zi · (1− zi)

(4.50)

≥ −
√√√√ ∑
{i|xij′=1,yi=0}

1
(1− zi)2 (4.51)

≥ −

√√√√ ∑
{i|xij=1,yi=0}

1
(1− zi)2 (4.52)

Thus we have:

−

√√√√ ∑
{i|xij=1,yi=0}

1
(1− zi)2 ≤

u

v
≤

√√√√ ∑
{i|xij=1,yi=1}

1
zi2

or in a more compact form:∣∣∣∣∣∣
∂l
∂βj′

(β)
∂2l
∂βj′

2 (β)

∣∣∣∣∣∣ =
∣∣∣u
v

∣∣∣ ≤ max

√√√√ ∑
{i|xij=1,yi=1}

1
zi2

,

√√√√ ∑
{i|xij=1,yi=0}

1
(1− zi)2

We can thus proceed with the Newton update :

βnew = βold +
∂l
∂βj

(β)
∂2l
∂βj2

(β)

always going in the direction of the coordinate with largest magnitude for the newton update.

4.6.1 Empirical Results using SLR with Second Order Information

Our preliminary experiments using second order information did not provide encouraging results.
Using the Newton update for selecting features in each optimization iteration, lead to the selection
of many noisy features, therefore resulting in low classification quality. We think this is due to

4.7 Conclusion 97

the fact that the information captured in the second order derivative and therefore in the Newton
update (the ratio of the gradient value and the second derivative) led to the selection of very rare
features, therefore resulting in high precision, but very low recall. For the future we plan to further
investigate the effect of using second order information with the SLR algorithm.

4.7 Conclusion

In this chapter we presented a coordinate-wise gradient ascent technique for learning logistic re-
gression in the space of all (word or character) n-gram sequences in the training data. Our method
exploits the inherent structure of the n-gram feature space in order to automatically provide a
compact set of highly discriminative n-gram features.

We gave theoretical bounds which quantify the “goodness” of the gradient for each n-gram
candidate given its length-(n-1) prefix. We show that by using the proposed bounds, we can
efficiently work with variable-length n-gram features both at the word-level and the character-
level.

We presented experiments that compare our SLR method against the state-of-the-art classifiers
BBR (a logistic regression method) [GLM06], SVMperf [Joa06] and the latest implementation of
sparse SVM, LIBLINEAR (SVM) [HCL+08, LWK08, Lin08, FCH+08]. We showed that while SLR
achieves similar F1/AUC results to those of the state-of-the-art methods, it is typically more than
one order of magnitude faster than its opponents.

We applied the above models to spam filtering, a text classification application of critical
importance. This allowed us to study all models on a large real-world dataset. We observed that
our model delivers classification results comparable to the best results of the other techniques, but
at a much lower memory and running time cost.

With the method presented in this chapter we studied the problem of learning the tokenization
of the input text, rather than explicitly fixing it in advance (as in the bag-of-words model). The
tokens learned by SLR can be arbitrarily sized, rather than restricted to a hypothesized “good”
size. This work opens interesting research directions. Given the flexibility of our model for learning
variable-length n-gram patterns, this model could be applied to supervised information extraction
in order to learn patterns indicative of binary relations such as Saarbruecken locatedIn Germany.
Additionally, our technique could be applied to other domains such as gene sequence classification,
where mining variable-length sequences is of particular importance.

The same theoretical results presented in this chapter apply directly to trees or graph represen-
tations (for example for XML documents), rather than sequences, with only some implementation
modifications (e.g., the process of enumeration of candidate features and search space traversal
is a bit more sophisticated for trees and graphs). This is true because the simple monotonicity
property needed by our proofs holds also in the case of more complex structures such as trees and
graphs.

Gradient projection approaches similar to those used in SLR could be applied to other learning
problems such as least squares regression. Furthermore, our current SLR technique could be treated
as a black-box feature selection algorithm and used as a starting point for other classifiers or even
more sophisticated quasi-Newton learning methods.

Chapter 5

Conclusion

5.1 Summary

In this thesis we studied the problem of learning text classifiers when training data is sparse using
statistical learning techniques. We focused on two different approaches.

The first approach, coined the Inductive/Transductive Latent Model (ILM/TLM), is a
new generative model for inductive and transductive learning which can take advantage of other
sources of knowledge besides the small labeled training set. ILM/TLM uses background ontologies,
available unlabeled data and encyclopedia, in order to gather additional information about feature
distributions, relationships between word-and-concepts and phrases that express certain concepts.
We designed different building blocks for the generative model, which can be turned on or off
depending on how much we trust certain parameter configurations. For example we can turn on a
Dirichlet prior on the model parameters, if we are fairly confident that the background knowledge
resources are rich enough to provide robust information on the model structure and parameters. We
showed experiments comparing ILM/TLM to state-of-the-art classifiers. For small training data,
our model outperforms its competitors. Additionally ILM/TLM can take advantage of re-training
techniques, in order to boost its performance.

The second approach, coined Structured Logistic Regression (SLR), is an efficient algo-
rithm for learning logistic regression with variable-length n-grams. Although the dimensionality
of the feature space poses efficiency challenges, we showed that by transforming simple optimiza-
tion schemes into search-and-pruning strategies we can deliver an efficient and accurate learning
algorithm. Experimental results on various datasets demonstrated that using variable-length n-
grams as features, is beneficial for classification accuracy. At the same time, SLR is one order
of magnitude faster than state-of-the-art classifiers. SLR benefits from the fact that it does not
need to represent the feature space explicitly, but it rather implicitly searches for the best n-gram
features in the huge feature space. We investigated the application of SLR to a fundamental text
classification application: spam filtering. We demonstrated the scalability of our technique on a
large real-world dataset of spam e-mails. We additionally showed that treating text as a sequence
of bytes and learning with features at the level of byte-subsequences is beneficial for spam filtering.
We analyzed various extensions of SLR and suggested potential applications to other domains such

99

100 5. Conclusion

as biological sequence classification.

5.2 Future Research Directions

We have seen that the ILM/TLM model is particularly promising for small training sets. This
suggests using this approach for automatically producing larger training sets. One can start with
a few labeled samples and use TLM with potentially unlabeled data from related domains in order
to create a larger labeled training set. Furthermore, TLM can be used in re-training or active
learning schemes, where the classifier can be boosted by learning from its own predictions or from
labels provided by a human user.

SLR was showcased for sequences in this thesis, but an interesting research direction is its
usage with trees and graphs structures. The same theoretical framework directly applies to these
complex structures. Additionally, during the search for a candidate feature, one can envision a more
flexible matching mechanism, so that features that are within a certain distance from the original
feature are considered during the learning steps. For example, instead of producing sequences of
consecutive tokens x y z, we could consider sequences with gaps such as x % z, where % stands
for any token. This could particularly benefit applications in information extraction from natural
language text or the mining of biological data. Certain parameter combinations could also be
avoided by considering prior distributions on the logistic regression parameters. These priors could
be learned from available data from related domains. Future work could consider combining the
strengths of the two learning paradigms into hybrid models that could benefit from the advantages
of both schemes.

With the techniques presented in this thesis we aim at advancing the technologies for automat-
ically and efficiently building large training sets, thereby reducing the need for spending human
computation on this task.

List of Figures

3.1 Graphical model representation of the generative model. 24

4.1 Graphical description of the find-best-n-gram-feature algorithm. 73

101

List of Algorithms

1 Structured Logistic Regression algorithm. 72
2 Find best n-gram feature. 73

102

List of Tables

3.1 Reuters-21578 corpus description. 33

3.2 Amazon corpus description. 33

3.3 Wikipedia corpus description. 33

3.4 Classifier evaluation based on the per topic confusion matrix. 34

3.5 Details on the training/test per collection. 35

3.6 Results on all collections using Naive Bayes. 36

3.7 Reuters21578. Influence of the number of EM iterations on micro/macro-averaged
F1 using rand-init for P [f |c] and P [c|t]. 36

3.8 Reuters21578. Influence of the number of EM iterations on micro/macro-averaged
F1 using sim-init for P [f |c] and P [c|t]. 36

3.9 Amazon. Influence of the number of EM iterations on micro/macro-averaged F1
using rand-init for P [f |c] and P [c|t]. 37

3.10 Amazon. Influence of the number of EM iterations on micro/macro-averaged F1
using sim-init for P [f |c] and P [c|t]. 37

3.11 Wikipedia. Influence of the number of EM iterations on micro-averaged F1 using
rand-init for P [f |c] and P [c|t]. 38

3.12 Wikipedia. Influence of the number of EM iterations on micro/macro-averaged F1
using sim-init for P [f |c] and P [c|t]. 38

3.13 Best number of EM iterations on all collections.. 38

3.14 Reuters21578. Influence of the number of concepts on micro/macro-averaged F1. 39

3.15 Amazon. Influence of the number of concepts on micro/macro-averaged F1. . . . 39

3.16 Wikipedia. Influence of the number of concepts on micro/macro-averaged F1. . . 40

3.17 Reuters21578. Influence of the number of features on micro/macro-averaged F1.
NB versus rand-init ILM. 40

3.18 Reuters21578. Influence of the number of features on micro/macro-averaged F1.
NB versus sim-init ILM. 40

3.19 Amazon. Influence of the number of features on micro/macro-averaged F1. NB
versus rand-init ILM. 41

103

104 LIST OF TABLES

3.20 Amazon. Influence of the number of features on micro/macro-averaged F1. NB
versus sim-init ILM. 41

3.21 Wikipedia. Influence of the number of features on micro/macro-averaged F1. NB
versus rand-init ILM. 41

3.22 Wikipedia. Influence of the number of features on micro/macro-averaged F1. NB
versus sim-init ILM. 42

3.23 Best number of features on all collections.. 42

3.24 Results with best parameter settings on all collections using rand-init for both P [f |c]
and P [c|t]. 43

3.25 Influence of sim-init for P[f|c]. 43

3.26 Influence of sim-init for P[c|t]. 43

3.27 Influence of unlabeled features. 44

3.28 Influence of sim-init for P[f|c] from labeled and unlabeled documents. 45

3.29 Influence of sim-init for P[f|c] and P[c|t] from labeled and unlabeled documents. . . 46

3.30 Influence of sim-init for P[c|t] from training and Wikipedia pages. 47

3.31 Influence of sim-init for P[f|c] from labeled and unlabeled documents, sim-init for
P[c|t] from training and Wikipedia pages. 48

3.32 Details on the training/test per collection. Training extended with Wikipedia pages. 49

3.33 Results on all collections using Naive Bayes. Training extended with Wikipedia pages. 49

3.34 Parameter settings for ILM. 51

3.35 Parameter settings for TLM. 51

3.36 Influence of the SVM hyperparameter on micro/macro-averaged F1. 52

3.37 Influence of the SVM hyperparameter on micro/macro-averaged F1 with Wikipedia
pages. 53

3.38 Influence of the SGT hyperparameter on micro/macro-averaged F1. 54

3.39 Influence of the SGT hyperparameter on micro/macro-averaged F1 with Wikipedia
pages. 55

3.40 Reuters21578. Micro/macro-averaged F1 for different training set sizes. 56

3.41 Amazon. Micro-averaged F1 for different training set sizes 57

3.42 Wikipedia. Micro-averaged F1 for different training set sizes 57

3.43 Reuters21578-wikiext. Micro/macro-averaged F1 for different training set sizes 58

3.44 Amazon-wikiext. Micro-averaged F1 for different training set sizes 58

3.45 Wikipedia-wikiext. Micro-averaged F1 for different training set sizes 59

3.46 Total training running time for all methods compared (minutes). 59

3.47 Details on the training/test per collection. 61

3.48 TREC678. Micro/macro-averaged F1 for different training set sizes. 62

3.49 TREC6. Micro/macro-averaged F1 for different training set sizes. 62

LIST OF TABLES 105

4.1 Bag-of-words fails to accurately represent the input data. 66

4.2 Bag-of-words representation for the two training samples. 66

4.3 N-gram representation for the two training samples. 66

4.4 IMDB training running times. Micro/Macro-averaged F1 for varying n. 80

4.5 AMAZON training running times. Micro/Macro-averaged F1 for varying n. 82

4.6 CHINESE training running times. Micro/Macro-averaged F1 for varying n. 83

4.7 All collections. Tuned parameters. Micro/Macro-averaged F1 for varying n. 84

4.8 Top 5 features IMDB and AMAZON. Max n-gram length n=5. 84

4.9 Spam corpus. Details on the training/test per collection. 85

4.10 SPAM training running times. F1 and AUC measures for varying n. 86

4.11 IMDB training running times. Micro/Macro-averaged F1 for unrestricted n. 91

4.12 AMAZON training running times. Micro/Macro-averaged F1 for unrestricted n. . 91

4.13 CHINESE training running times. Micro/Macro-averaged F1 for unrestricted n. . 92

Bibliography

[AKA+02] K. Abe, S. Kawasoe, T. Asai, H. Arimura, and S. Arikawa. Optimized substructure
discovery for semi-structured data. In Proceedings of the Conference on Principles
and Practice of Knowledge Discovery in Databases. Springer–Verlag, 2002.

[BBL06] M.-F. Balcan, A. Beygelzimer, and J. Langford. Agnostic active learning. In ICML
’06: Proceedings of the 23rd International Conference on Machine Learning, pages
65–72, New York, NY, USA, 2006. ACM.

[BBS07] S. Bickel, M. Brückner, and T. Scheffer. Discriminative learning for differing training
and test distributions. In ICML ’07: Proceedings of the 24th International Conference
on Machine Learning, pages 81–88, New York, NY, USA, 2007. ACM.

[BC01] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph
mincuts. In Proc. 18th International Conference on Machine Learning, pages 19–26.
Morgan Kaufmann, San Francisco, CA, 2001.

[BCM05] R. Basili, M. Cammisa, and A. Moschitti. A semantic kernel to exploit linguistic
knowledge. In Stefania Bandini and Sara Manzoni, editors, AI*IA 2005: Advances
in Artificial Intelligence — Proceedings of the 9th Congress of the Italian Association
for Artificial Intelligence, September 21-32, 2005, Milan, Italy, volume 3673 of Lecture
Notes in Computer Science, pages 290–302. Springer, Berlin–Heidelberg, Germany,
2005.

[BCW90] T. C. Bell, J. G. Cleary, and I. H. Witten. Text Compression. Prentice-Hall, 1990.

[Ben99] K. P. Bennett. Combining support vector and mathematical programming methods
for classification. Advances in kernel methods: support vector learning, pages 307–326,
1999.

[BFC+06] A. Bratko, B. Filipič, G. V. Cormack, T. R. Lynam, and B. Zupan. Spam filtering
using statistical data compression models. Journal of Machine Learning Research,
7:2673–2698, 2006.

[BGJT04] D.M. Blei, T.L. Griffiths, M.I. Jordan, and J.B. Tenenbaum. Hierarchical Topic
Models and the Nested Chinese Restaurant Process. Advances in Neural Information
Processing Systems 16, 2004.

106

BIBLIOGRAPHY 107

[BH04a] S. Bloehdorn and A. Hotho. Boosting for text classification with semantic features.
In Proceedings of the 10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Mining for and from the Semantic Web Workshop, pages
70–87, 2004.

[BH04b] S. Bloehdorn and A. Hotho. Text classification by boosting weak learners based on
terms and concepts. In International Conference on Data Mining, pages 331–334,
2004.

[BHS06] M. Brückner, P. Haider, and T. Scheffer. Highly scalable discriminative spam filtering.
In Proceedings of the 15th Text REtrieval Conference (TREC 2006), Gaithersburg,
USA, 2006.

[BLRR04] A. Blum, J. Lafferty, M. R. Rwebangira, and R. Reddy. Semi-supervised learning
using randomized mincuts. In ICML ’04: Proceedings of the twenty-first International
Conference on Machine Learning, page 13, New York, NY, USA, 2004. ACM.

[BM98] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In
COLT’ 98: Proceedings of the eleventh annual conference on Computational learning
theory, pages 92–100, New York, NY, USA, 1998. ACM.

[BM07] S. Bloehdorn and A. Moschitti. Exploiting structure and semantics for expressive text
kernels. In CIKM ’07: Proceedings of the sixteenth ACM conference on Conference
on Information and Knowledge Management, pages 861–864, New York, NY, USA,
2007. ACM.

[BMP00] R. Basili, A. Moschitti, and M. T. Pazienza. Language-sensitive text classification.
In Proceeding of RIAO-00, 6th International Conference “Recherche d’Information
Assistee par Ordinateur”, pages 331–343, Paris, FR, 2000.

[BNJ03] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, 2003.

[Bou02] O. Bousquet. Transductive learning: Motivation, models, algorithms. University of
New Mexico, Albuquerque, USA, January 2002.

[BS07] S. Bickel and T. Scheffer. Dirichlet-enhanced spam filtering based on biased samples.
In Advances in Neural Information Processing Systems 19, pages 161–168. MIT Press,
2007.

[BT04] G. Bouchard and B. Triggs. The tradeoff between generative and discriminative classi-
fiers. In IASC International Symposium on Computational Statistics (COMPSTAT),
pages 721–728, Prague, August 2004.

[Car97] R. Caruana. Multitask learning. Machine Learning, 28(1):41–75, 1997.

[CBM06] M. Cammisa, R. Basili, and A. Moschitti. A semantic kernel to classify texts with
very few training examples. International Journal of Computing and Informatics,
2006.

108 BIBLIOGRAPHY

[CC95] V. Castelli and T. M. Cover. On the exponential value of labeled samples. Pattern
Recongnition Letters, 16(1):105–111, 1995.

[CCC03] F. G. Cozman, I. Cohen, and M. C. Cirelo. Semi-supervised learning of mixture
models. In ICML-03, 20th International Conference on Machine Learning, pages
99–106, 2003.

[CCZ06] O. Chapelle, M. Chi, and A. Zien. A continuation method for semi-supervised svms.
In Proceedings of the 23rd International Conference on Machine Learning, pages 185–
192, New York, NY, USA, 2006. ACM.

[CH03] L. Cai and T. Hofmann. Text categorization by boosting automatically extracted
concepts. In SIGIR ’03: Proceedings of the 26th annual international ACM SIGIR
conference on Research and development in informaion retrieval, pages 182–189, New
York, NY, USA, 2003. ACM.

[Cha03] S. Chakrabarti. Mining the Web: Discovering Knowledge from Hypertext Data. Mor-
gan Kaufman, San Francisco, 2003.

[CJ01] A. Corduneanu and T. Jaakkola. Stable Mixing of Complete and Incomplete Infor-
maation. Technical report, CSAIL, MIT, 2001.

[CM07] M. Ceci and D. Malerba. Classifying web documents in a hierarchy of categories: a
comprehensive study. Journal of Intelligent Information Systems, 28(1):37–78, 2007.

[CNM06] R. Caruana and A. Niculescu-Mizil. An empirical comparison of supervised learn-
ing algorithms. In ICML ’06: Proceedings of the 23rd International Conference on
Machine Learning, pages 161–168, New York, NY, USA, 2006. ACM.

[CSK07] O. Chapelle, V. Sindhwani, and S. Keerthi. Branch and bound for semi-supervised
support vector machines. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances
in Neural Information Processing Systems 19. MIT Press, Cambridge, MA, 2007.

[CSWB06] R. Collobert, F. Sinz, J. Weston, and Léon Bottou. Large scale transductive svms.
Journal of Machine Learning Research, 7:1687–1712, 2006.

[CSZ06] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT
Press, Cambridge, MA, 2006.

[CT97] J. G. Cleary and W. J. Teahan. Unbounded length contexts for ppm. Computer
Journal, 3(40):67–75, 1997.

[CWD03] Y. Chen, G. Wang, and S. Dong. Learning with progressive transductive support
vector machine. Pattern Recongnition Letters, 24(12):1845–1855, 2003.

[CYHH07] H. Cheng, X. Yan, J. Han, and C. Hsu. Discriminative frequent pattern analysis
for effective classification. In Proceedings of the International Conference on Data
Engineering, pages 716–725, 2007.

BIBLIOGRAPHY 109

[CYM08] M. Chang, W. Yih, and C. Meek. Partitioned logistic regression for spam filtering.
In Proceeding of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 97–105, New York, NY, USA, 2008. ACM.

[CZ05] O. Chapelle and A. Zien. Semi–supervised classification by low density separation.
In Proceedings of the International Workshop on Artificial Intelligence and Statistics,
2005.

[Das04] S. Dasgupta. Analysis of a greedy active learning strategy. In Neural Information
Processing Systems (NIPS), pages 337–344, 2004.

[DDF+90] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman.
Indexing by latent semantic analysis. Journal of the American Society for Information
Science, 41:391–407, 1990.

[DH08] S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. In ICML ’08:
Proceedings of the 25th International Conference on Machine Learning, pages 208–
215, New York, NY, USA, 2008. ACM.

[DHM08] S. Dasgupta, D. Hsu, and C. Monteleoni. A general agnostic active learning al-
gorithm. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in
Neural Information Processing Systems 20, pages 353–360. MIT Press, Cambridge,
MA, 2008.

[DLM+06] A. Dayanik, D. D. Lewis, D. Madigan, V. Menkov, and A. Genkin. Constructing
informative prior distributions from domain knowledge in text classification. In SIGIR
’06: Proceedings of the 29th annual international ACM SIGIR conference on Research
and development in information retrieval, pages 493–500, New York, NY, USA, 2006.
ACM.

[DLR77] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), 39(1):1–38, 1977.

[Dmo] Open directory project. http://www.dmoz.org/.

[DPHS98] S. T. Dumais, J. Platt, D. Heckerman, and Mehran Sahami. Inductive learning
algorithms and representations for text categorization. In Georges Gardarin, James C.
French, Niki Pissinou, Kia Makki, and Luc Bouganim, editors, Proceedings of CIKM-
98, 7th ACM International Conference on Information and Knowledge Management,
pages 148–155, Bethesda, US, 1998. ACM Press, New York, US.

[DSSS04] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The power of selective memory: Self-
bounded learning of prediction suffix trees. In Proceedings of Advances in Neural
Information Processing Systems, Vancouver, Canada, 2004.

110 BIBLIOGRAPHY

[DYXY07] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu. Boosting for transfer learning. In ICML
’07: Proceedings of the 24th International Conference on Machine Learning, pages
193–200, New York, NY, USA, 2007. ACM.

[DYXY08] W. Dai, Q. Yang, G.-R. Xue, and Y. Yu. Self-taught clustering. In ICML ’08:
Proceedings of the 25th International Conference on Machine Learning, pages 200–
207, New York, NY, USA, 2008. ACM.

[EHJT04] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals
of Statistics, 32(2)(4047499), 2004.

[EYG05] R. El-Yaniv and L. Gerzon. Effective transductive learning via objective model se-
lection. Pattern Recongnition Letters, 26(13):2104–2115, 2005.

[Faw04] T. Fawcett. Roc graphs: Notes and practical considerations for researchers, 2004.

[FC04] G. Forman and I. Cohen. Learning from little: comparison of classifiers given little
training. In Proceedings of the 8th European Conference on Principles and Practice
of Knowledge Discovery in Databases, pages 161–172, New York, NY, USA, 2004.
Springer-Verlag New York, Inc.

[FCH+08] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A
library for large linear classification. Journal of Machine Learning Research, 9:1871–
1874, 2008.

[FCW00] E. Frank, C. Chui, and I. H. Witten. Text categorization using compression models.
In James A. Storer and M. Cohn, editors, Proceedings of DCC-00, IEEE Data Com-
pression Conference, pages 200–209, Snowbird, US, 2000. IEEE Computer Society
Press, Los Alamitos, US.

[Fel99] C. Fellbaum. WordNet: An Electronic Lexical Database. Cambridge: MIT Press,
1999.

[FM01] E. M. Felcher and A. L. McGill. The role of taxonomic and goal-derived product
categorization in, within, and across category judgments. J. Wiley & Sons, 18(8):865–
887, August 2001.

[GLM06] A. Genkin, D. Lewis, , and D. Madigan. Large-scale bayesian logistic regression for
text categorization. Technical Report no-06-05-18, DIMACS, 2006.

[GM05] E. Gabrilovich and S. Markovitch. Feature generation for text categorization using
world knowledge. In Proceedings of The Nineteenth International Joint Conference
for Artificial Intelligence, pages 1048–1053, Edinburgh, Scotland, 2005.

[GM06a] E. Gabrilovich and S. Markovitch. Overcoming the brittleness bottleneck using
wikipedia: Enhancing text categorization with encyclopedic knowledge. In AAAI,
2006.

BIBLIOGRAPHY 111

[GM06b] A.-M. Giuglea and A. Moschitti. Semantic role labeling via framenet, verbnet and
propbank. In ACL, 2006.

[GM07] E. Gabrilovich and S. Markovitch. Harnessing the expertise of 70,000 human edi-
tors: Knowledge-based feature generation for text categorization. Journal of Machine
Learning Research, 8:2297–2345, 2007.

[Goo01] J. Goodman. A bit of progress in language modeling. In Technical report. Microsoft
Research, 2001.

[GSD05] A. Gliozzo, C. Strapparava, and I. Dagan. Investigating unsupervised learning for text
categorization bootstrapping. In HLT ’05: Proceedings of the conference on Human
Language Technology and Empirical Methods in Natural Language Processing, pages
129–136, Morristown, NJ, USA, 2005. Association for Computational Linguistics.

[GSD06] G. Getz, N. Shental, and E. Domany. Semi-supervised learning – a statistical physics
approach. CoRR, abs/cs/0604011, 2006. informal publication.

[GZ06] A. B. Goldberg and X. Zhu. Seeing stars when there aren’t many stars: Graph-
based semi-supervised learning for sentiment categorization. In HLT-NAACL 2006
Workshop on Textgraphs: Graph-based Algorithms for Natural Language Processing,
2006.

[HCL+08] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and Sellamanickam Sundararajan.
A dual coordinate descent method for large-scale linear SVM. In Proceedings of the
Twenty Fifth International Conference on Machine Learning (ICML), 2008. Software
available at http://www.csie.ntu.edu.tw/~cjlin/liblinear.

[HF95] D. Holmes and R. Forsyth. The federalist revisited: New directions in autorship
atttribution. Literary and Linguistic Computing, 2(10):111–127, 1995.

[Hof01] T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Journal
of Machine Learning Research, 42(1-2):177–196, 2001.

[HTF03] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer Series in Statistics, 2003.

[HTT03] Ji He, Ah-Hwee Tan, and Chew-Lim Tan. On machine learning methods for chinese
document categorization. Applied Intelligence, 18(3):311–322, 2003.

[IBW08] G. Ifrim, G. Bakir, and G. Weikum. Fast logistic regression for text categorization
with variable-length n-grams. In Proceeding of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 354–362, New York,
NY, USA, 2008. ACM.

[Ifr05] G. Ifrim. A bayesian learning approach to concept-based document classification.
Master’s thesis, Universität des Saarlandes, February 2005.

http://www.csie.ntu.edu.tw/~cjlin/liblinear

112 BIBLIOGRAPHY

[ITW05] G. Ifrim, M. Theobald, and G. Weikum. Learning word-to-concept mappings for au-
tomatic text classification. In Luc De Raedt and Stefan Wrobel, editors, Proceedings
of the 22nd International Conference on Machine Learning - Learning in Web Search
(LWS 2005), pages 18–26, Bonn, Germany, 2005.

[IW06] G. Ifrim and G. Weikum. Transductive learning for text classification using explicit
knowledge models. In Proceedings of the Conference on Principles and Practice of
Knowledge Discovery in Databases, Springer Lecture Notes in Artificial Intelligence,
pages 223–234, Berlin, Germany, 2006.

[JH99] T. S. Jaakkola and D. Haussler. Exploiting generative models in discriminative clas-
sifiers. In Advances in Neural Information Processing Systems 11, pages 487–493.
MIT Press, 1999.

[JM00] L. S. Jensen and T. Martinez. Improving text classification by using conceptual and
contextual features. In In Proceedings of the Workshop on Text Mining at the 6th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 101–102, 2000.

[Joa98] T. Joachims. Text categorization with support vector machines: learning with many
relevant features. In Claire Nédellec and Céline Rouveirol, editors, Proceedings of
ECML-98, 10th European Conference on Machine Learning, pages 137–142, Chem-
nitz, DE, 1998. Springer Verlag, Heidelberg, DE. Published in the “Lecture Notes in
Computer Science” series, number 1398.

[Joa99a] T. Joachims. Making large-scale support vector machine learning practical. Advances
in kernel methods: support vector learning, pages 169–184, 1999.

[Joa99b] T. Joachims. Transductive inference for text classification using support vector ma-
chines. In ICML ’99: Proceedings of the Sixteenth International Conference on Ma-
chine Learning, pages 200–209, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc.

[Joa03] T. Joachims. Transductive learning via spectral graph partitioning. In International
Conference on Machine Learning (ICML), pages 290–297, 2003.

[Joa06] T. Joachims. Training linear SVMs in linear time. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
217–226, New York, NY, 2006. ACM Press.

[JYZH03] R. Jin, R. Yan, J. Zhang, and A. Hauptmann. A faster iterative scaling algorithm
for conditional exponential model. In Proceedings of the International Conference on
Machine Learning, 2003.

[KB06] A. C. König and E. Brill. Reducing the human overhead in text categorization. In
Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 598–603, New York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 113

[KB07] T. Kuroiwa and S. Bhalla. Dynamic personalization for book recommendation system
using web services and virtual library enhancements. In CIT ’07: Proceedings of the
7th IEEE International Conference on Computer and Information Technology, pages
212–217, Washington, DC, USA, 2007. IEEE Computer Society.

[KM03] P. Komarek and A. Moore. Fast robust logistic regression for large sparse datasets
with binary outputs. In Proceedings of the Ninth International Workshop on Artificial
Intelligence and Statistics, New York, NY, 2003.

[KM04] T. Kudo and Y. Matsumoto. A boosting algorithm for classification of semi-structured
text. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, pages 301–308, Barcelona, Spain, July 2004. Association for Computa-
tional Linguistics.

[KNS97] B. Kessler, Geoff Nunberg, and Hinrich Schütze. Automatic detection of text genre. In
Philip R. Cohen and Wolfgang Wahlster, editors, Proceedings of ACL-97, 35th Annual
Meeting of the Association for Computational Linguistics, pages 32–38, Madrid, ES,
1997. Morgan Kaufmann Publishers, San Francisco, US.

[KPA08] A. Kosmopoulos, G. Paliouras, and I. Androutsopoulos. Adaptive spam filtering using
only naive bayes text classifiers. In Proceedings of the Fifth Conference on Email and
Anti-Spam (CEAS), 2008.

[Kra05] W. Kraaij. Variations on language modeling for information retrieval. SIGIR Forum,
39(1):61–61, 2005.

[KSG+03] Y. Khopkar, A. Spink, C. L. Giles, P. Shah, and S. Debnath. Search engine person-
alization: An exploratory study. First Monday, 8(7), 2003.

[KSI+08a] G. Kasneci, F. M. Suchanek, G. Ifrim, Shady Elbassuoni, Maya Ramanath, and
G. Weikum. Naga: Harvesting, searching and ranking knowledge. In ACM Interna-
tional Conference on Management Of Data (SIGMOD/PODS 2008). ACM, 2008.

[KSI+08b] G. Kasneci, F. M. Suchanek, G. Ifrim, Maya Ramanath, and G. Weikum. NAGA:
Searching and Ranking Knowledge. In 24th International Conference on Data Engi-
neering (ICDE 2008). IEEE, 2008.

[KT06] C. Kang and J. Tian. A hybrid generative/discriminative bayesian classifier. In
FLAIRS Conference, pages 562–567, 2006.

[Kud03] T. Kudo. An implementation of freqt (frequent tree miner), 2003.
http://chasen.org/∼taku/software/freqt/.

[LB03] Quan Le and Samy Bengio. Noise Robust Discriminative Models. Technical report,
2003.

[LBM06] J. A. Lasserre, C. M. Bishop, and T. P. Minka. Principled hybrids of generative and
discriminative models. In CVPR ’06: Proceedings of the 2006 IEEE Computer Society

114 BIBLIOGRAPHY

Conference on Computer Vision and Pattern Recognition, pages 87–94, Washington,
DC, USA, 2006. IEEE Computer Society.

[Lew] D. D. Lewis. Reuters-21578 dataset. http://www. daviddlewis. com/resources/
testcollections/reuters21578/.

[Lew92] D. D. Lewis. Representation and Learning in Information Retrieval. PhD thesis,
Department of Computer Science, University of Massachusetts, 1992.

[Lew98] D. D. Lewis. Naive (bayes) at forty: The independence assumption in information
retrieval. In ECML ’98: Proceedings of the 10th European Conference on Machine
Learning, pages 4–15, London, UK, 1998. Springer-Verlag.

[LEW08] J. Luxenburger, Shady Elbassuoni, and G. Weikum. Task-aware search personal-
ization. In 31st Annual International ACM SIGIR Conference, pages –, Singapore,
2008. ACM.

[Lin08] C. Lin. Liblinear, 2008. http://mloss.org/software/view/61/.

[LLLY04] B. Liu, X. Li, W. S. Lee, and P. S. Yu. Text classification by labeling words. In
AAAI-2004, 2004.

[LM02] Y.-B. Lee and S. H. Myaeng. Text genre classification with genre-revealing and
subject-revealing features. In Micheline Beaulieu, Ricardo Baeza-Yates, Sung Hyon
Myaeng, and Kalervo Järvelin, editors, Proceedings of SIGIR-02, 25th ACM Inter-
national Conference on Research and Development in Information Retrieval, pages
145–150, Tampere, FI, 2002. ACM Press, New York, US.

[LSST+01] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classifi-
cation using string kernels. In Journal of Machine Learning Research, pages 419–444,
2001.

[LWK08] C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton method for large-scale
logistic regression. Journal of Machine Learning Research, 9:627–650, 2008. Software
available at http://www.csie.ntu.edu.tw/~cjlin/liblinear.

[MFP06] G. Mühl, L. Fiege, and P. Pietzuch. Distributed Event-Based Systems. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[MN98a] A. McCallum and K. Nigam. A comparison of event models for naive bayes text
classification. In AAAI-98 Workshop on “Learning for Text Categorization, 1998.

[MN98b] A. McCallum and K. Nigam. Employing em and pool-based active learning for text
classification. In ICML ’98: Proceedings of the Fifteenth International Conference on
Machine Learning, pages 350–358, San Francisco, CA, USA, 1998. Morgan Kaufmann
Publishers Inc.

http://mloss.org/software/view/61/
http://www.csie.ntu.edu.tw/~cjlin/liblinear

BIBLIOGRAPHY 115

[MN99] A. Mccallum and K. Nigam. Text classification by bootstrapping with keywords, em
and shrinkage. In ACL99 - Workshop for Unsupervised Learning in Natural Language
Processing, pages 52–58, 1999.

[Mos03] A. Moschitti. Natural Language Processing and Text Categorization: a study on the
reciprocal beneficial interactions. PhD thesis, University of Rome Tor Vergata, Rome,
Italy., 2003.

[Mos06] A. Moschitti. Efficient convolution kernels for dependency and constituent syntactic
trees. In ECML, pages 318–329, 2006.

[MRS08] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Information Retrieval.
Cambridge University Press, July 2008.

[MS00] C. D. Manning and H. Schuetze. Foundations of Statistical Natural Language Pro-
cessing. MIT Press, Cambridge, 2000.

[NH06] K. Nigam and M. Hurst. Towards a robust metric of polarity. In Computing Attitude
and Affect in Text: Theories and Applications, 2006.

[Nig01] K. P. Nigam. Using unlabeled data to improve text classification. Technical report,
PhD thesis, Carnegie Mellon University., 2001.

[NJ01] A. Y. Ng and M. I. Jordan. On discriminative vs. generative classi ers: A comparison
of logistic regression and naive bayes, 2001.

[NJT05] Z.-Y. Niu, D.-H. Ji, and C. L. Tan. Word sense disambiguation using label propa-
gation based semi-supervised learning. In ACL ’05: Proceedings of the 43rd Annual
Meeting on Association for Computational Linguistics, pages 395–402, Morristown,
NJ, USA, 2005. Association for Computational Linguistics.

[NMTM00a] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text classification from
labeled and unlabeled documents using em. Journal of Machine Learning Research,
39(2-3):103–134, 2000.

[NMTM00b] K. Nigam, A. K. McCallum, Sebastian Thrun, and Tom M. Mitchell. Text clas-
sification from labeled and unlabeled documents using em. Machine Learning,
39(2/3):103–134, 2000.

[NW06] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operation
Research and Financial Engineering, 2006.

[PL04] B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectiv-
ity summarization based on minimum cuts. In Proceedings of the Association for
Computational Linguistics (ACL), pages 271–278, 2004.

[PLV02] B. Pang, L. Lee, and S. Vaithyanathan. Thumbs up? Sentiment classification using
machine learning techniques. In Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pages 79–86, 2002.

116 BIBLIOGRAPHY

[PNL05] T. P. Pham, H. T. Ng, and W. S. Lee. Word sense disambiguation with semisupervised
learning. In AAAI-05, The Twentieth National Conference on Artificial Intelligence.,
2005.

[PS03] F. Peng and D. Schuurmans. Combining naive bayes n-gram and language models for
text classification. In F. Sebastiani, editor, Proceedings of ECIR-03, 25th European
Conference on Information Retrieval, pages 335–350, Pisa, IT, 2003. Springer Verlag.

[PSM07] Ó. Pérez and M. A. Sánchez-Montañés. A new learning strategy for classification
problems with different training and test distributions. In IWANN, pages 178–185,
2007.

[PSW04] F. Peng, D. Schuurmans, and S. Wang. Augmenting naive bayes text classifier with
statistical language models. Information Retrieval, 3(7):317–345, 2004.

[RBL+07] R. Raina, A. Battle, H. Lee, B. Packer, and A. Y. Ng. Self-taught learning: transfer
learning from unlabeled data. In ICML ’07: Proceedings of the 24th International
Conference on Machine Learning, pages 759–766, New York, NY, USA, 2007. ACM.

[RK07] D. M. Roy and L. P. Kaelbling. Efficient bayesian task-level transfer learning. In
Proceedings of the Twentieth International Joint Conference on Artificial Intelligence,
Hyderabad, India, 2007.

[RMKD05] M. T. Rosenstein, Z. Marx, L. P. Kaelbling, and T. G. Dietterich. To transfer or not
to transfer. In Proceedings of the Neural Information Processing Systems Workshop
on Transfer Learning, Whistler, BC., 2005.

[Ros00] R. Rosenfeld. Two decades of statistical language modeling: Where do we go from
here? Proceedings of the IEEE, 88(8):1270–1278, 2000.

[RRN+06] R. B. Rao, R. Rosales, S. Niculescu, S. Krishnan, L. Bogoni, X. S. Zhou, and B. Kr-
ishnapuram. Mining medical records for computer aided diagnosis, 2006.

[RSNM03] R. Raina, Y. Shen, A. Y. Ng, and A. Mccallum. Classification with hybrid genera-
tive/discriminative models. In Advances in Neural Information Processing Systems
16. MIT Press, 2003.

[RSTK03] J. Rennie, L. Shih, J. Teevan, and D. Karger. Tackling the poor assumptions of naive
bayes text classifiers. In Proceedings of ICML-03, 20th International Conference
on Machine Learning, Washington, DC, 2003. Morgan Kaufmann Publishers, San
Francisco, US.

[RZ04] G. Rios and H. Zha. Exploring support vector machines and random forests for spam
detection. In Proceedings of the First Conference on Email and Anti-Spam (CEAS),
2004. Available: http://www.ceas.cc/papers-2004/174.pdf.

http://www.ceas.cc/papers-2004/174.pdf

BIBLIOGRAPHY 117

[SACY04] C. Siefkes, F. Assis, S. Chhabra, and W. S. Yerazunis. Combining Winnow and
orthogonal sparse bigrams for incremental spam filtering. In Jean-François Bouli-
caut, Floriana Esposito, Fosca Giannotti, and Dino Pedreschi, editors, Proceedings
of the 8th European Conference on Principles and Practice of Knowledge Discov-
ery in Databases (PKDD 2004), volume 3202 of Lecture Notes in Artificial Intelli-
gence, pages 410–421. Springer, 2004. Available: http://www.siefkes.net/papers/
winnow-spam.pdf.

[Sal89] G. Salton. Automatic text processing: the transformation, analysis, and retrieval of
information by computer. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1989.

[Sar08] S. Sarawagi. Information Extraction. Foundations and Trends in Databases, 2(1),
2008.

[Seb01] F. Sebastiani. Organizing and using digital libraries by automated text categoriza-
tion. In Luciana Bordoni and Giovanni Semeraro (eds.), Proceedings of the AI*IA
Workshop on Artificial Intelligence for Cultural Heritage and Digital Libraries, pages
93–94, 2001.

[Seb02] F. Sebastiani. Machine learning in automated text categorization. ACM Computing
Surveys, 34(1):1–47, 2002.

[SIW06] F. M. Suchanek, G. Ifrim, and G. Weikum. Combining linguistic and statistical
analysis to extract relations from web documents. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
712–717, New York, NY, USA, 2006. ACM.

[SJ01] M. Szummer and T. Jaakkola. Partially labeled classification with markov random
walks. In T. Dietterich et al., editor, Proceedings of Advances in Neural Information
Processing Systems, volume 14. MIT Press, 2001. http://www.ai.mit.edu/people/
szummer/.

[SK03] S. K. Shevade and S. S. Keerthi. A simple and eficient algorithm for gene selection
using sparse logistic regression. Bioinformatics, 19:2246–2253, 2003.

[SKC06] V. Sindhwani, S. S. Keerthi, and O. Chapelle. Deterministic annealing for semi-
supervised kernel machines. In Proceedings of the 23rd International Conference on
Machine Learning, pages 841–848, New York, NY, USA, 2006. ACM.

[SKF00] E. Stamatatos, G. Kokkinakis, and N. Fakotakis. Automatic text categorization in
terms of genre and author. Comput. Linguist., 26(4):471–495, 2000.

[SKM07] M. Sugiyama, M. Krauledat, and K.-R. Müller. Covariate shift adaptation by impor-
tance weighted cross validation. Journal of Machine Learning Research, 8:985–1005,
2007.

http://www.siefkes.net/papers/winnow-spam.pdf
http://www.siefkes.net/papers/winnow-spam.pdf
http://www.ai.mit.edu/people/szummer/
http://www.ai.mit.edu/people/szummer/

118 BIBLIOGRAPHY

[SKS07] B. Stein, M. Koppel, and E. Stamatatos. Plagiarism analysis, authorship identifica-
tion, and near-duplicate detection pan’07. SIGIR Forum, 41(2):68–71, 2007.

[SKW07] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. In
WWW ’07: Proceedings of the 16th International Conference on World Wide Web,
pages 697–706, New York, NY, USA, 2007. ACM.

[SKW08] F. Suchanek, G. Kasneci, and G. Weikum. Yago - a large ontology from wikipedia
and wordnet. Elsevier Journal of Web Semantics, 2008.

[SM99] S. Scott and S. Matwin. Feature engineering for text classification. In Ivan Bratko
and Saso Dzeroski, editors, Proceedings of ICML-99, 16th International Conference
on Machine Learning, pages 379–388, Bled, SL, 1999. Morgan Kaufmann Publishers,
San Francisco, US.

[SM00] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 22:888–905, 2000.

[SMA] Smart stopwords list. http://www.lextek.com/manuals/onix/stopwords2.html.

[spaa] Guenter spam trap. http://untroubled.org/spam/.

[spab] Trec 2005 and trec 2006 spam challenge. http://plg.uwaterloo.ca/ gvcor-
mac/treccorpus/about.html.

[SS02] B. Scholkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

[SS04] S. Staab and R. Studer. Handbook on Ontologies. Springer, Berlin, 2004.

[SS07] A. J. Storkey and M. Sugiyama. Mixture regression for covariate shift. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 1337–1344. MIT Press, Cambridge, MA, 2007.

[TJBB06] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet processes.
Journal of the American Statistical Association, 101(476):1566–1581, 2006.

[TKK00] S. Tong, D. Koller, and P. Kaelbling. Support vector machine active learning with
applications to text classification. In Journal of Machine Learning Research, pages
999–1006. Morgan Kaufmann, 2000.

[tra] Ebtl: Effective bayesian transfer learning project. http://www.cs.berkeley.edu/ rus-
sell/ebtl/.

[TSW03] M. Theobald, R. Schenkel, and G. Weikum. Exploiting structure, annotation, and on-
tological knowledge for automatic classification of XML data. In V. Christophides and
J. Freire, editors, 6th International Workshop on the Web and Databases (WebDB-
03), pages 1–6, San Diego, USA, 2003. OGI School of Science and Engineering / CSE.
Acceptance ratio 1:4.

BIBLIOGRAPHY 119

[Vap98] V. Vapnik. Statistical learning theory. Wiley, 1998.

[WBB+03] J. Wiebe, E. Breck, C. Buckley, C. Cardie, P. Davis, B. Fraser, D. Litman, D. Pierce,
Ellen Riloff, Theresa Wilson, D. Day, and Mark Maybury. Recognizing and organizing
opinions expressed in the world press. In Proceedings of the AAAI Spring Symposium
on New Directions in Question Answering, 2003.

[WD04] P. Wu and T. G. Dietterich. Improving svm accuracy by training on auxiliary data
sources. In ICML ’04: Proceedings of the twenty-first International Conference on
Machine Learning, page 110, New York, NY, USA, 2004. ACM.

[WD08] P. Wang and C. Domeniconi. Building semantic kernels for text classification using
wikipedia. In Proceeding of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 713–721, New York, NY, USA, 2008.
ACM.

[WHW08] F. Wu, R. Hoffmann, and D. S. Weld. Information extraction from wikipedia: moving
down the long tail. In Proceeding of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 731–739, New York, NY, USA, 2008.
ACM.

[WHZ+07] P. Wang, J. Hu, H.-J. Zeng, L. Chen, and Z. Chen. Improving text classification by
using encyclopedia knowledge. In Data Mining, 2007. ICDM 2007. Seventh IEEE
International Conference on, pages 332–341, 2007.

[WHZC08] P. Wang, J. Hu, H.-J. Zeng, and Z. Chen. Using wikipedia knowledge to improve
text classification. Knowledge and Information Systems, 2008.

[Wik] Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Main Page.

[WP03] G. M. Weiss and F. Provost. Learning when training data are costly: The effect
of class distribution on tree induction. Journal of Artificial Intelligence Research,
19:315–354, 2003.

[WW08] F. Wu and D. S. Weld. Automatically refining the wikipedia infobox ontology. In
WWW ’08: Proceeding of the 17th International Conference on World Wide Web,
pages 635–644, New York, NY, USA, 2008. ACM.

[XJZ+08] Z. Xu, R. Jin, J. Zhu, I. King, and M. Lyu. Efficient convex relaxation for transductive
support vector machine. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors,
Advances in Neural Information Processing Systems 20, pages 1641–1648. MIT Press,
Cambridge, MA, 2008.

[XS05] L. Xu and D. Schuurmans. Unsupervised and semi-supervised multi-class support
vector machines. AAAI, 2005.

[YL99] Y. Yang and X. Liu. A re-examination of text categorization methods. In Marti A.
Hearst, Fredric Gey, and R. Tong, editors, Proceedings of SIGIR-99, 22nd ACM

120 BIBLIOGRAPHY

International Conference on Research and Development in Information Retrieval,
pages 42–49, Berkeley, US, 1999. ACM Press, New York, US.

[YNBN03] J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack. Sentiment analyzer: Extracting
sentiments about a given topic using natural language processing techniques. In
Proceedings of the IEEE International Conference on Data Mining (ICDM), 2003.

[YP97] Y. Yang and J. O. Pedersen. A comparative study on feature selection in text cate-
gorization. In Douglas H. Fisher, editor, Proceedings of ICML-97, 14th International
Conference on Machine Learning, pages 412–420, Nashville, US, 1997. Morgan Kauf-
mann Publishers, San Francisco, US.

[Zak02] M. Zaki. Efficiently mining frequent trees in a forest. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM
Press, 2002.

[Zel02] S. Zelikovitz. Using background knowledge to improve text classification. PhD thesis,
Rutgers University, New Brunswick, NJ, USA, 2002. Director-Haym Hirsh.

[ZG02] X. Zhu and Z. Ghahramani. Towards semisupervised classification with markov ran-
dom fields. Technical report, Technical Report CMU-CALD-02-106. Carnegie Mellon
University., 2002.

[ZGL03] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In International Conference on Machine Learning,
pages 912–919, 2003.

[ZH00] S. Zelikovitz and Haym Hirsh. Improving short text classification using unlabeled
background knowledge to assess document similarity. In Pat Langley, editor, Pro-
ceedings of ICML-00, 17th International Conference on Machine Learning, pages
1183–1190, Stanford, US, 2000. Morgan Kaufmann Publishers, San Francisco, US.

[ZH01] S. Zelikovitz and Haym Hirsh. Improving text classification with lsi using background
knowledge. In IJCAI01 Workshop Notes on Text Learning: Beyond Supervision,
pages 113–118, 2001.

[ZH02] S. Zelikovitz and Haym Hirsh. Integrating background knowledge into nearest-
neighbor text classification. In ECCBR ’02: Proceedings of the 6th European Confer-
ence on Advances in Case-Based Reasoning, pages 1–5, London, UK, 2002. Springer-
Verlag.

[Zha04] Y. Zhang. Using bayesian priors to combine classifiers for adaptive filtering. In
Proceedings of the 27th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, pages 345–352, New York, NY, USA,
2004. ACM.

[Zhu05] X. Zhu. Semi-supervised learning with graphs. PhD thesis, Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA, 2005. Chair-J. Lafferty and Chair-Ronald Rosenfeld.

BIBLIOGRAPHY 121

[Zhu08] X. Zhu. Semi-supervised learning literature survey. Technical Report 1530, Computer
Sciences, University of Wisconsin-Madison, 2008.

[ZJ08] Jeff Zabin and Alex Jefferies. Social media monitoring and analysis: Generating
consumer insights from online conversation. Aberdeen Group Benchmark Report,
January 2008.

[ZK05] Y. Zhao and G. Karypis. Topic-driven clustering for document datasets. In Siam
Conference on Data Mining, 2005.

[ZL06] D. Zhang and W. S. Lee. Extracting key-substring-group features for text clas-
sification. In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 474–483, New York, NY, USA, 2006.
ACM.

[ZO00] T. Zhang and F. J. Oles. A probability analysis on the value of unlabeled data for
classification problems. In Proc. 17th International Conference on Machine Learning,
pages 1191–1198, 2000.

[ZO01] T. Zhang and F. Oles. Text categorization based on regularized linear classifiers.
Information Retrieval, 4(1):5–31, 2001.

[ZV06] Z. Zhang and Balaji Varadarajan. Utility scoring of product reviews. In Proceedings
of the ACM SIGIR Conference on Information and Knowledge Management (CIKM),
pages 51–57, 2006.

[ZWZ08] B. Zhao, F. Wang, and C. Zhang. Cuts3vm: a fast semi-supervised svm algorithm.
In Proceeding of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 830–838, New York, NY, USA, 2008. ACM.

[ZZ06] F. Zhu and X. (M.) Zhang. The influence of online consumer reviews on the demand
for experience goods: The case of video games. In International Conference on
Information Systems (ICIS), 2006.

	Introduction
	Text Categorization: A Short Overview
	Text Categorization with Sparse Labeled Data
	Contributions of this Thesis
	Outline of the Thesis

	Related Work
	Background Knowledge for Text Classification
	Inductive Learning
	Transductive Learning

	Rich Document Representations for Text Classification
	N-gram Features, Parse Trees, Semantic Kernels
	Learning with Variable-length N-grams

	Background Knowledge for Text Classification and Clustering
	Introduction
	Latent Model
	Introduction
	Generative Model
	Learning Model Parameters
	Problems and Solutions

	Inductive Learning
	Transductive Learning
	Experimental Results
	Methodology
	Test Collections
	Performance Measures
	Parameter Analysis of the Inductive Latent Model
	Parameter Analysis of the Transductive Latent Model
	Parameter Analysis of the Latent Model: Discussion
	Comparison to Other Techniques
	Other Aplications: Topic-driven Clustering

	Conclusion

	Rich Input Representations: Learning with Variable-Length N-gram Features
	Introduction
	Structured Logistic Regression
	Logistic Regression Model
	Coordinate-wise gradient ascent in the space of all n-gram sequences
	Algorithm
	Implementation Issues

	Experimental Results
	Methodology
	Test Collections
	Parameter settings
	Results

	Other Applications: Spam Filtering
	Using Explicit Regularization on the Objective Function
	Empirical Results using SLR with L1 Regularization

	Speeding Up SLR by Using Second Order Information
	Empirical Results using SLR with Second Order Information

	Conclusion

	Conclusion
	Summary
	Future Research Directions

	List of Figures
	List of Algorithms
	List of Tables
	References

