1,757 research outputs found

    Improving MANET routing with satellite out-of-band signaling

    Get PDF
    International audienceRouting in mobile ad hoc networks is a complex task due to the mobility of the nodes and the constraints linked to a wireless multihop network (e.g., limited bandwidth, collisions, and bit errors). These adverse conditions impair not only data traffic but also routing signaling traffic, which feeds route computation. In this contribution, we propose to use satellite communications to help in the distribution of mobile ad hoc network routing signaling. The optimized link-state routing (OLSR) is chosen among several routing protocols to be extended with satellite-based signaling, yielding a version we call OLSR hybrid signaling (OLSR-H). This new scheme is evaluated through simulations and yields improvements of approximately 10% in the data delivery ratio compared with a regular OLSR. This evaluation is conducted using two different network topology models, one being fit for representing forest firefighting operations

    Internet of Satellites (IoSat): analysis of network models and routing protocol requirements

    Get PDF
    The space segment has been evolved from monolithic to distributed satellite systems. One of these distributed systems is called the federated satellite system (FSS) which aims at establishing a win-win collaboration between satellites to improve their mission performance by using the unused on-board resources. The FSS concept requires sporadic and direct communications between satellites, using inter satellite links. However, this point-to-point communication is temporal and thus it can break existent federations. Therefore, the conception of a multi-hop scenario needs to be addressed. This is the goal of the Internet of satellites (IoSat) paradigm which, as opposed to a common backbone, proposes the creation of a network using a peer-to-peer architecture. In particular, the same satellites take part of the network by establishing intermediate collaborations to deploy a FSS. This paradigm supposes a major challenge in terms of network definition and routing protocol. Therefore, this paper not only details the IoSat paradigm, but it also analyses the different satellite network models. Furthermore, it evaluates the routing protocol candidates that could be used to implement the IoSat paradigm.Peer ReviewedPostprint (author's final draft

    Construction of a real vehicular delay-tolerant network testbed

    Get PDF
    Vehicular Delay-Tolerant Networks (VDTNs) appear as innovative network architecture, able to outline communication challenges caused by issues like variable delays, disruption and intermittent connectivity once that it utilizes the store-carry-and-forward method to allow that in-transit messages (called bundles) can be delivered to the destination by hopping over the mobile vehicles even that an end-to-end path does not exist. Since messages are stored persistently in a buffer and forward to the next hop, a new communication infrastructure is created allowing low-cost asynchronous opportunistic communication under the most critical situations like variable delays and bandwidth constraints. VDTN introduces a layered architecture, acting as an overlay network over the link layer, aggregating incoming IP packets in data bundles (large IP packets), using out-of-band signaling, based on the separation of the control plane and planes. This dissertation presents and evaluates the performance of a real VDTN testbed, demonstrating the real applicability of this new vehicular communication approach. It includes an embedded VDTN testbed created to evaluate safety systems in a real-world scenario. It was used cars with laptops to realize terminal and relay nodes. A real testbed is very important because some complex issues presented in vehicular communication systems can be treated with more realism in real-world environments than in a laboratory environment. The experiments were performed on the internal streets of Brazilian Fiat Automobile manufacturing plant. Performance measurements and analysis were also conduct to verify the efficiency of the system. The results obtained show that safety applications and services can be executed with the actual proposal VDTN architecture in several environments, although notable interference as fading and characteristics of the radio channel, require the use of more modern, appropriate and robust technologies. Thus, the real deployment of VDTNs confirms that VDTNs can be seen as a very promising technology for vehicular communications.Fundação para a CiĂȘncia e a Tecnologia (FCT

    A novel approach to quality-of-service provisioning in trusted relay Quantum Key Distribution networks

    Get PDF
    In recent years, noticeable progress has been made in the development of quantum equipment, reflected through the number of successful demonstrations of Quantum Key Distribution (QKD) technology. Although they showcase the great achievements of QKD, many practical difficulties still need to be resolved. Inspired by the significant similarity between mobile ad-hoc networks and QKD technology, we propose a novel quality of service (QoS) model including new metrics for determining the states of public and quantum channels as well as a comprehensive metric of the QKD link. We also propose a novel routing protocol to achieve high-level scalability and minimize consumption of cryptographic keys. Given the limited mobility of nodes in QKD networks, our routing protocol uses the geographical distance and calculated link states to determine the optimal route. It also benefits from a caching mechanism and detection of returning loops to provide effective forwarding while minimizing key consumption and achieving the desired utilization of network links. Simulation results are presented to demonstrate the validity and accuracy of the proposed solutions.Web of Science28118116

    Creation of a vehicular delay-tolerant network prototype

    Get PDF
    Vehicular Delay-Tolerant Network (VDTN) is a new disruptive network architecture where vehicles act as the communication infrastructure. VDTN follows a layered architecture based on control and data planes separation, and positioning the bundle layer under the network layer. VDTN furnishes low-cost asynchronous communications coping with intermittent and sparse connectivity, variable delays and even no end-to-end connection. This paper presents a VDTN prototype (testbed) proposal, which implements and validates the VDTN layered architecture considering the proposed out-of-band signaling. The main goals of the prototype are emulation, demonstration, performance evaluation, and diagnose of protocol stacks and services, proving the applicability of VDTNs over a wide range of environments.Part of this work has been supported by the Instituto de TelecomunicaçÔes, Next Generation Networks and Applications Group (NetGNA), Covilhã Delegation, Portugal in the framework of the VDTN@Lab Project, and by the Euro-NF Network of Excellence from the Seventh Framework Programme of EU

    Next Generation High Throughput Satellite System

    Get PDF
    This paper aims at presenting an overview of the state-of-the-art in High Throughput Satellite (HTS) systems for Fixed Satellite Services (FSS) and High Density-FSS. Promising techniques and innovative strategies that can enhance system performance are reviewed and analyzed aiming to show what to expect for next generation ultra-high capacity satellite systems. Potential air interface evolutions, efficient frequency plans,feeder link dimensioning strategies and interference cancellation techniques are presented to show how Terabit/s satellite myth may turn into reality real soon
    • 

    corecore