3,967 research outputs found

    Utilising semantic technologies for intelligent indexing and retrieval of digital images

    Get PDF
    The proliferation of digital media has led to a huge interest in classifying and indexing media objects for generic search and usage. In particular, we are witnessing colossal growth in digital image repositories that are difficult to navigate using free-text search mechanisms, which often return inaccurate matches as they in principle rely on statistical analysis of query keyword recurrence in the image annotation or surrounding text. In this paper we present a semantically-enabled image annotation and retrieval engine that is designed to satisfy the requirements of the commercial image collections market in terms of both accuracy and efficiency of the retrieval process. Our search engine relies on methodically structured ontologies for image annotation, thus allowing for more intelligent reasoning about the image content and subsequently obtaining a more accurate set of results and a richer set of alternatives matchmaking the original query. We also show how our well-analysed and designed domain ontology contributes to the implicit expansion of user queries as well as the exploitation of lexical databases for explicit semantic-based query expansion

    Local selection of features and its applications to image search and annotation

    Get PDF
    In multimedia applications, direct representations of data objects typically involve hundreds or thousands of features. Given a query object, the similarity between the query object and a database object can be computed as the distance between their feature vectors. The neighborhood of the query object consists of those database objects that are close to the query object. The semantic quality of the neighborhood, which can be measured as the proportion of neighboring objects that share the same class label as the query object, is crucial for many applications, such as content-based image retrieval and automated image annotation. However, due to the existence of noisy or irrelevant features, errors introduced into similarity measurements are detrimental to the neighborhood quality of data objects. One way to alleviate the negative impact of noisy features is to use feature selection techniques in data preprocessing. From the original vector space, feature selection techniques select a subset of features, which can be used subsequently in supervised or unsupervised learning algorithms for better performance. However, their performance on improving the quality of data neighborhoods is rarely evaluated in the literature. In addition, most traditional feature selection techniques are global, in the sense that they compute a single set of features across the entire database. As a consequence, the possibility that the feature importance may vary across different data objects or classes of objects is neglected. To compute a better neighborhood structure for objects in high-dimensional feature spaces, this dissertation proposes several techniques for selecting features that are important to the local neighborhood of individual objects. These techniques are then applied to image applications such as content-based image retrieval and image label propagation. Firstly, an iterative K-NN graph construction method for image databases is proposed. A local variant of the Laplacian Score is designed for the selection of features for individual images. Noisy features are detected and sparsified iteratively from the original standardized feature vectors. This technique is incorporated into an approximate K-NN graph construction method so as to improve the semantic quality of the graph. Secondly, in a content-based image retrieval system, a generalized version of the Laplacian Score is used to compute different feature subspaces for images in the database. For online search, a query image is ranked in the feature spaces of database images. Those database images for which the query image is ranked highly are selected as the query results. Finally, a supervised method for the local selection of image features is proposed, for refining the similarity graph used in an image label propagation framework. By using only the selected features to compute the edges leading from labeled image nodes to unlabeled image nodes, better annotation accuracy can be achieved. Experimental results on several datasets are provided in this dissertation, to demonstrate the effectiveness of the proposed techniques for the local selection of features, and for the image applications under consideration

    Porqpine: a peer-to-peer search engine

    Get PDF
    In this paper, we present a fully distributed and collaborative search engine for web pages: Porqpine. This system uses a novel query-based model and collaborative filtering techniques in order to obtain user-customized results. All knowledge about users and profiles is stored in each user node?s application. Overall the system is a multi-agent system that runs on the computers of the user community. The nodes interact in a peer-to-peer fashion in order to create a real distributed search engine where information is completely distributed among all the nodes in the network. Moreover, the system preserves the privacy of user queries and results by maintaining the anonymity of the queries? consumers and results? producers. The knowledge required by the system to work is implicitly caught through the monitoring of users actions, not only within the system?s interface but also within one of the most popular web browsers. Thus, users are not required to explicitly feed knowledge about their interests into the system since this process is done automatically. In this manner, users obtain the benefits of a personalized search engine just by installing the application on their computer. Porqpine does not intend to shun completely conventional centralized search engines but to complement them by issuing more accurate and personalized results.Postprint (published version

    Semantic multimedia modelling & interpretation for annotation

    Get PDF
    The emergence of multimedia enabled devices, particularly the incorporation of cameras in mobile phones, and the accelerated revolutions in the low cost storage devices, boosts the multimedia data production rate drastically. Witnessing such an iniquitousness of digital images and videos, the research community has been projecting the issue of its significant utilization and management. Stored in monumental multimedia corpora, digital data need to be retrieved and organized in an intelligent way, leaning on the rich semantics involved. The utilization of these image and video collections demands proficient image and video annotation and retrieval techniques. Recently, the multimedia research community is progressively veering its emphasis to the personalization of these media. The main impediment in the image and video analysis is the semantic gap, which is the discrepancy among a userā€™s high-level interpretation of an image and the video and the low level computational interpretation of it. Content-based image and video annotation systems are remarkably susceptible to the semantic gap due to their reliance on low-level visual features for delineating semantically rich image and video contents. However, the fact is that the visual similarity is not semantic similarity, so there is a demand to break through this dilemma through an alternative way. The semantic gap can be narrowed by counting high-level and user-generated information in the annotation. High-level descriptions of images and or videos are more proficient of capturing the semantic meaning of multimedia content, but it is not always applicable to collect this information. It is commonly agreed that the problem of high level semantic annotation of multimedia is still far from being answered. This dissertation puts forward approaches for intelligent multimedia semantic extraction for high level annotation. This dissertation intends to bridge the gap between the visual features and semantics. It proposes a framework for annotation enhancement and refinement for the object/concept annotated images and videos datasets. The entire theme is to first purify the datasets from noisy keyword and then expand the concepts lexically and commonsensical to fill the vocabulary and lexical gap to achieve high level semantics for the corpus. This dissertation also explored a novel approach for high level semantic (HLS) propagation through the images corpora. The HLS propagation takes the advantages of the semantic intensity (SI), which is the concept dominancy factor in the image and annotation based semantic similarity of the images. As we are aware of the fact that the image is the combination of various concepts and among the list of concepts some of them are more dominant then the other, while semantic similarity of the images are based on the SI and concept semantic similarity among the pair of images. Moreover, the HLS exploits the clustering techniques to group similar images, where a single effort of the human experts to assign high level semantic to a randomly selected image and propagate to other images through clustering. The investigation has been made on the LabelMe image and LabelMe video dataset. Experiments exhibit that the proposed approaches perform a noticeable improvement towards bridging the semantic gap and reveal that our proposed system outperforms the traditional systems

    Content And Multimedia Database Management Systems

    Get PDF
    A database management system is a general-purpose software system that facilitates the processes of defining, constructing, and manipulating databases for various applications. The main characteristic of the ā€˜database approachā€™ is that it increases the value of data by its emphasis on data independence. DBMSs, and in particular those based on the relational data model, have been very successful at the management of administrative data in the business domain. This thesis has investigated data management in multimedia digital libraries, and its implications on the design of database management systems. The main problem of multimedia data management is providing access to the stored objects. The content structure of administrative data is easily represented in alphanumeric values. Thus, database technology has primarily focused on handling the objectsā€™ logical structure. In the case of multimedia data, representation of content is far from trivial though, and not supported by current database management systems

    Unsupervised Visual and Textual Information Fusion in Multimedia Retrieval - A Graph-based Point of View

    Full text link
    Multimedia collections are more than ever growing in size and diversity. Effective multimedia retrieval systems are thus critical to access these datasets from the end-user perspective and in a scalable way. We are interested in repositories of image/text multimedia objects and we study multimodal information fusion techniques in the context of content based multimedia information retrieval. We focus on graph based methods which have proven to provide state-of-the-art performances. We particularly examine two of such methods : cross-media similarities and random walk based scores. From a theoretical viewpoint, we propose a unifying graph based framework which encompasses the two aforementioned approaches. Our proposal allows us to highlight the core features one should consider when using a graph based technique for the combination of visual and textual information. We compare cross-media and random walk based results using three different real-world datasets. From a practical standpoint, our extended empirical analysis allow us to provide insights and guidelines about the use of graph based methods for multimodal information fusion in content based multimedia information retrieval.Comment: An extended version of the paper: Visual and Textual Information Fusion in Multimedia Retrieval using Semantic Filtering and Graph based Methods, by J. Ah-Pine, G. Csurka and S. Clinchant, submitted to ACM Transactions on Information System

    An Adaptive Contextual Recommender System: a Slow Intelligence Perspective

    Get PDF
    This paper introduces an Adaptive Context Aware Recommender system based on the Slow Intelligence approach. The system is made available to the user as an adaptive mobile application, which allows a high degree of customization in recommending services and resources according to his/her current position and global profile. A case study applied to the town of Pittsburgh has been analyzed considering various users (with different profiles as visitors, students, professors) and an experimental campaign has been conducted obtaining interesting result
    • ā€¦
    corecore