12 research outputs found

    Precise energy efficient scheduling of mixed-criticality tasks & sustainable mixed-criticality scheduling

    Get PDF
    In this thesis, the imprecise mixed-criticality model (IMC) is extended to precise scheduling of tasks, and integrated with the dynamic voltage and frequency scaling (DVFS) technique to enable energy minimization. The challenge in precise scheduling of MC systems is to simultaneously guarantee the timing correctness for all tasks, hi and lo, under both pessimistic and optimistic (less pessimistic) assumptions. To the best of knowledge this is the first work to address the integration of DVFS energy conserving techniques with precise scheduling of lo-tasks of the MC model. In this thesis, the utilization based schedulability tests and sufficient conditions for such systems under Earliest Deadline First EDF-VD scheduling policy are presented. Quantitative study in the forms of speedup bound and approximation ratio are also proved for the unified model. Extensive experimental studies are conducted to verify the theoretical results as well as the effectiveness of the proposed algorithm. In safety- critical systems, it is essential to perform schedulability analysis prior to run-time. Parameters characterizing the run-time workload are generated by pessimistic techniques; hence, adopting conservative estimates may result in systems performing much better than anticipated during run-time. This thesis also addresses the following questions associated to the better performance of the task system: (i) How does parameter change affect the schedulability of a task set (system)? (ii) In the event that a mixed-criticality system design is deemed schedulable and specific part/parts of the system are reassigned to be of low-criticality, is the system still safe to run? (iii) If a system is presumed to be non-schedulable, does it invariably benefit to reduce the criticality of some task? To answer these questions, in this thesis, we not only study the property of sustainability with regards to criticality levels, but also revisit sustainability of several uniprocessor and multiprocessor scheduling policies with respect to other parameters --Abstract, page iii

    Ordonnancement des systèmes avec différents niveaux de criticité

    Get PDF
    Real-time safety-critical systems must complete their tasks within a given time limit. Failure to successfully perform their operations, or missing a deadline, can have severe consequences such as destruction of property and/or loss of life. Examples of such systems include automotive systems, drones and avionics among others. Safety guarantees must be provided before these systems can be deemed usable. This is usually done through certification performed by a certification authority.Safety evaluation and certification are complicated and costly even for smaller systems.One answer to these difficulties is the isolation of the critical functionality. Executing tasks of different criticalities on separate platforms prevents non-critical tasks from interfering with critical ones, provides a higher guaranty of safety and simplifies the certification process limiting it to only the critical functions. But this separation, in turn, introduces undesirable results portrayed by an inefficient resource utilization, an increase in the cost, weight, size and energy consumption which can put a system in a competitive disadvantage.To overcome the drawbacks of isolation, Mixed Criticality (MC) systems can be used. These systems allow functionalities with different criticalities to execute on the same platform. In 2007, Vestal proposed a model to represent MC-systems where tasks have multiple Worst Case Execution Times (WCETs), one for each criticality level. In addition, correctness conditions for scheduling policies were formally defined, allowing lower criticality jobs to miss deadlines or be even dropped in cases of failure or emergency situations.The introduction of multiple WCETs and different conditions for correctness increased the difficulty of the scheduling problem for MC-systems. Conventional scheduling policies and schedulability tests proved inadequate and the need for new algorithms arose. Since then, a lot of work has been done in this field.In this thesis, we contribute to the study of schedulability in MC-systems. The workload of a system is represented as a set of jobs that can describe the execution over the hyper-period of tasks or over a duration in time. This model allows us to study the viability of simulation-based correctness tests in MC-systems. We show that simulation tests can still be used in mixed-criticality systems, but in this case, the schedulability of the worst case scenario is no longer sufficient to guarantee the schedulability of the system even for the fixed priority scheduling case. We show that scheduling policies are not predictable in general, and define the concept of weak-predictability for MC-systems. We prove that a specific class of fixed priority policies are weakly predictable and propose two simulation-based correctness tests that work for weakly-predictable policies.We also demonstrate that contrary to what was believed, testing for correctness can not be done only through a linear number of preemptions.The majority of the related work focuses on systems of two criticality levels due to the difficulty of the problem. But for automotive and airborne systems, industrial standards define four or five criticality levels, which motivated us to propose a scheduling algorithm that schedules mixed-criticality systems with theoretically any number of criticality levels. We show experimentally that it has higher success rates compared to the state of the art.We illustrate how our scheduling algorithm, or any algorithm that generates a single time-triggered table for each criticality mode, can be used as a recovery strategy to ensure the safety of the system in case of certain failures.Finally, we propose a high level concurrency language and a model for designing an MC-system with coarse grained multi-core interference.Les systèmes temps-réel critiques doivent exécuter leurs tâches dans les délais impartis. En cas de défaillance, des événements peuvent avoir des catastrophes économiques. Des classifications des défaillances par rapport aux niveaux des risques encourus ont été établies, en particulier dans les domaines des transports aéronautique et automobile. Des niveaux de criticité sont attribués aux différentes fonctions des systèmes suivant les risques encourus lors d'une défaillance et des probabilités d'apparition de celles-ci. Ces différents niveaux de criticité influencent les choix d'architecture logicielle et matérielle ainsi que le type de composants utilisés pour sa réalisation. Les systèmes temps-réels modernes ont tendance à intégrer sur une même plateforme de calcul plusieurs applications avec différents niveaux de criticité. Cette intégration est nécessaire pour des systèmes modernes comme par exemple les drones (UAV) afin de réduire le coût, le poids et la consommation d'énergie. Malheureusement, elle conduit à des difficultés importantes lors de leurs conceptions. En plus, ces systèmes doivent être certifiés en prenant en compte ces différents niveaux de criticités.Il est bien connu que le problème d'ordonnancement des systèmes avec différents niveaux de criticités représente un des plus grand défi dans le domaine de systèmes temps-réel. Les techniques traditionnelles proposent comme solution l’isolation complète entre les niveaux de criticité ou bien une certification globale au plus haut niveau. Malheureusement, une telle solution conduit à une mauvaise des ressources et à la perte de l’avantage de cette intégration. En 2007, Vestal a proposé un modèle pour représenter les systèmes avec différents niveaux de criticité dont les tâches ont plusieurs temps d’exécution, un pour chaque niveau de criticité. En outre, les conditions de validité des stratégies d’ordonnancement ont été définies de manière formelle, permettant ainsi aux tâches les moins critiques d’échapper aux délais, voire d’être abandonnées en cas de défaillance ou de situation d’urgence.Les politiques de planification conventionnelles et les tests d’ordonnoncement se sont révélés inadéquats.Dans cette thèse, nous contribuons à l’étude de l’ordonnancement dans les systèmes avec différents niveaux de criticité. La surcharge d'un système est représentée sous la forme d'un ensemble de tâches pouvant décrire l'exécution sur l'hyper-période de tâches ou sur une durée donnée. Ce modèle nous permet d’étudier la viabilité des tests de correction basés sur la simulation pour les systèmes avec différents niveaux de criticité. Nous montrons que les tests de simulation peuvent toujours être utilisés pour ces systèmes, et la possibilité de l’ordonnancement du pire des scénarios ne suffit plus, même pour le cas de l’ordonnancement avec priorité fixe. Nous montrons que les politiques d'ordonnancement ne sont généralement pas prévisibles. Nous définissons le concept de faible prévisibilité pour les systèmes avec différents niveaux de criticité et nous montrons ensuite qu'une classe spécifique de stratégies à priorité fixe sont faiblement prévisibles. Nous proposons deux tests de correction basés sur la simulation qui fonctionnent pour des stratégies faiblement prévisibles.Nous montrons également que, contrairement à ce que l’on croyait, le contrôle de l’exactitude ne peut se faire que par l’intermédiaire d’un nombre linéaire de préemptions.La majorité des travaux reliés à notre domaine portent sur des systèmes à deux niveaux de criticité en raison de la difficulté du problème. Mais pour les systèmes automobiles et aériens, les normes industrielles définissent quatre ou cinq niveaux de criticité, ce qui nous a motivés à proposer un algorithme de planification qui planifie les systèmes à criticité mixte avec théoriquement un nombre quelconque de niveaux de criticité. Nous montrons expérimentalement que le taux de réussite est supérieur à celui de l’état de la technique

    Approximate feasibility in real-time scheduling: Speeding up in order to meet deadlines

    Get PDF
    Stougie, L. [Promotor]Marchetti-Spaccamela, A. [Promotor

    Multiprocessor Scheduling of Precedence-constrained Mixed-Critical Jobs

    No full text
    International audienceThe real-time system design targeting multiprocessor platforms leads to two important complications in real-time scheduling. First, to ensure deterministic processing by communicating tasks the scheduling has to consider precedence constraints. The second complication factor is mixed criticality, i.e., integration upon a single platform of various subsystems where some are safety-critical (e.g., car braking system) and the others are not (e.g., car digital radio). Therefore we motivate and study the multiprocessor scheduling problem of a finite set of precedence-related mixed criticality jobs. This problem, to our knowledge, has never been studied if not under very specific assumptions. The main contribution of our work is an algorithm that, given a global fixed-priority assignment for jobs, can modify it in order to improve its schedulability for mixed-criticality setting. Our experiments show an increase of schedulable instances up to a maximum of 25% if compared to classical solutions for this category of scheduling problems

    Akita: a CPU scheduler for virtualized clouds

    Full text link
    Clouds inherit CPU scheduling policies of operating systems. These policies enforce fairness while leveraging best-effort mechanisms to enhance responsiveness of all schedulable entities, irrespective of their service level objectives (SLOs). This leads to unpredictable performance that forces cloud providers to enforce strict reservation and isolation policies to prevent high-criticality services (e.g., Memcached) from being impacted by low-criticality ones (e.g., logging), which results in low utilization. In this paper, we present Akita, a hypervisor CPU scheduler that delivers predictable performance at high utilization. Akita allows virtual machines (VMs) to be categorized into high- and low-criticality VMs. Akita provides strong guarantees on the ability of cloud providers to meet SLOs of high-criticality VMs, by temporarily slowing down low-criticality VMs if necessary. Akita, therefore, allows the co-existence of high and low-criticality VMs on the same physical machine, leading to higher utilization. The effectiveness of Akita is demonstrated by a prototype implementation in the Xen hypervisor. We present experimental results that show the many advantages of adopting Akita as the hypervisor CPU scheduler. In particular, we show that high-criticality Memcached VMs are able to deliver predictable performance despite being co-located with low-criticality CPU-bound VMs.First author draf

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    Allocation and Optimisation of Mixed Criticality Cyclic Executives

    Get PDF
    Incorporating applications of differing levels of criticality onto the same platform in an efficient manner is a challenging problem. Highly critical applications require stringent verification and certification while lower criticality work may seek to make greater use of modern processing power with little to no requirement for verification. Much study into mixed criticality systems has considered this issue by taking scheduling paradigms designed to provide good platform utilisation at the expense of predictability and attempting to provide mechanisms that will allow for the verification of higher criticality work. In this thesis we take the alternative approach, we utilise a cyclic executive scheduler. Such schedulers are used extensively in industrial practice and provide very high levels of determinism making them a strong choice for applications with strict certification requirements. This work provides a platform which supports the highly critical work, alongside work of lower criticalities in a cyclic executive context. The aim being to provide a near-future platform which is able to support existing legacy highly critical software alongside newer less critical software which seeks to utilise multi-core architectures. One of the fundamental challenges of designing a system for a static scheduler is the allocation of applications/tasks to the cores and, in the case of cyclic executives, minor cycles of the system. Throughout this work we explore task allocation, we make extensive use of Linear Programming to model and allocate work. We suggest a limited task splitting technique to aid in system design and allocation. Finally, we propose two ways in which an allocation of work might be optimised to meet some design goal. This thesis proposes a scheduling policy for mixed criticality multi-core systems using a cyclic executive scheduler and explores the design, allocation and optimisation of such a system

    Mixed Criticality Systems - A Review : (13th Edition, February 2022)

    Get PDF
    This review covers research on the topic of mixed criticality systems that has been published since Vestal’s 2007 paper. It covers the period up to end of 2021. The review is organised into the following topics: introduction and motivation, models, single processor analysis (including job-based, hard and soft tasks, fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, related topics, realistic models, formal treatments, systems issues, industrial practice and research beyond mixed-criticality. A list of PhDs awarded for research relating to mixed-criticality systems is also included

    Tехнічні засоби діагностування та контролю бортових систем інформаційного обміну на літаку

    Get PDF
    Робота публікується згідно наказу ректора від 27.05.2021 р. №311/од "Про розміщення кваліфікаційних робіт вищої освіти в репозиторії НАУ". Керівник дипломної роботи: доцент кафедри авіоніки, Слободян Олександр ПетровичТехнічний прогрес в авіаційній та будь-якій іншій галузі тісно пов'язаний з автоматизацією технологічних процесів. Сьогодні Автоматизація технологічних процесів використовується для підвищення характеристик надійності, довговічності, екологічності, ресурсозбереження і, найголовніше, економічності і простоти експлуатації. Завдяки швидкому розвитку комп'ютерних технологій і мікропроцесорів у нас є можливість використовувати більш досконалі і складні методи моніторингу та управління системами авіаційної промисловості і будь-якими іншими. Мікропроцесорні та електронні обчислювальні пристрої, з'єднані обчислювальними і керуючими мережами з використанням загальних баз даних, мають стандарти, що дозволяють модифікувати і інтегрувати нові пристрої, що, в свою чергу, дозволяє інтегрувати і вдосконалювати виробничі процеси і управляти ними. Проектування системи розподіленої інтегрованої модульної авіоніки (DIMA) з використанням розподіленої інтегрованої технології, змішаного планування критичних завдань, резервний планування в режимі реального часу і механізму зв'язку, який запускається за часом, значно підвищує надійність, безпеку і продуктивність інтегрованої електронної системи в режимі реального часу. DIMA являє собою тенденцію розвитку майбутніх систем авіоніки. У цій статті вивчаються і обговорюються архітектурні характеристики DIMA. Потім він детально вивчає та аналізує розвиток ключових технологій в системі DIMA. Нарешті, в ньому розглядається тенденція розвитку технології DIMA
    corecore