
APPROXIMATE FEASIBILITY IN
REAL-TIME SCHEDULING

Speeding up in order to meet deadlines

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VU

https://core.ac.uk/display/43407827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ISBN 978 90 361 0395 4

Cover design: Crasborn Graphic Designers bno, Valkenburg a.d. Geul
and Ay May Ho (image)

This book is no. 586 of the Tinbergen Institute Research Series, established through
cooperation between Thela Thesis and the Tinbergen Institute. A list of books which
already appeared in the series can be found in the back.

VRIJE UNIVERSITEIT

Approximate feasibility in real-time scheduling
Speeding up in order to meet deadlines

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. F.A. van der Duyn Schouten,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Economische Wetenschappen en Bedrijfskunde

op maandag 23 juni 2014 om 15.45 uur
in de aula van de universiteit,

De Boelelaan 1105

door
Suzanne Laura van der Ster

geboren te Amsterdam

promotoren: prof.dr. L. Stougie
prof. A. Marchetti-Spaccamela

Contents

1 Introduction 1
1.1 Classical scheduling theory . 2
1.2 Real-time scheduling . 4

1.2.1 Feasibility . 4
1.3 Complexity and approximation . 5

1.3.1 Complexity classes . 5
1.3.2 Approximation . 8

1.4 Outline . 9

2 Split scheduling 11
2.1 Introduction . 11

2.1.1 Related work . 11
2.1.2 Our results . 13

2.2 Preliminaries . 15
2.3 Properties of an optimal schedule . 15
2.4 A polynomial-time algorithm for two machines 17
2.5 Three and more machines . 19
2.6 Approximation algorithm . 21
2.7 Non-uniform setup times . 24

2.7.1 Machine-dependent setup times . 24
2.7.2 Job-dependent setup times . 25

2.8 Epilogue . 26

3 Assigning real-time tasks to unrelated machines 29
3.1 Introduction . 29

3.1.1 Related work for unrelated machines 29
3.1.2 Feasibility testing . 30
3.1.3 Our results . 31

3.2 Preliminaries . 33
3.3 Rounding procedure . 33

3.3.1 Generalized Assignment Problem 35
3.3.2 Iterative rounding procedure by Karp et al. 36
3.3.3 Our rounding procedure . 37

3.4 Arbitrary number of machines . 40
3.4.1 Approximate demand bound function 40

CONTENTS

3.4.2 Constant-factor approximation test 41
Relaxed dbf constraints . 41
The approximation algorithm . 42

3.4.3 Hardness result . 44
3.5 Constant number of machines . 47

3.5.1 Approximate demand bound function 47
3.5.2 The dynamic program . 49

Preprocessing . 50
Entries of the DP table . 51
Filling the DP table . 52
A PTAS feasibility test . 54

3.6 Epilogue . 55

4 Real-time tasks on identical machines 57
4.1 Introduction . 57

4.1.1 Related work . 57
4.1.2 Our results . 58

4.2 Preliminaries . 59
4.3 Task systems and vector scheduling . 60
4.4 The special-case vector scheduling problem 62

4.4.1 Notation and definitions . 62
4.4.2 Overview of the algorithm . 63
4.4.3 Preprocessing . 64
4.4.4 Scheduling t-vectors . 64

Scheduling big vectors . 65
Scheduling small vectors . 66
Combining the big and small vectors 67

4.4.5 The sliding-window dynamic program 67
4.4.6 Splitting t-profiles . 69

4.5 Conclusion . 70

5 Mixed-criticality scheduling 71
5.1 Introduction . 71

5.1.1 Related work . 72
5.1.2 Our results . 73

5.2 Preliminaries . 74
5.3 Implicit-deadline tasks on a single processor 76

5.3.1 Overview of EDF-VD . 77
5.3.2 Schedulability conditions . 78
5.3.3 Speedup bounds for two and three levels 83

Two levels . 83
Three levels . 84

5.3.4 Optimality of EDF-VD for two levels 85
5.4 Fixed priorities for implicit-deadline task systems 86

5.4.1 Overview of RM-VP . 86

vi

CONTENTS

5.4.2 Schedulability conditions . 87
5.4.3 Speedup factor . 89
5.4.4 Lower bound on speedup . 90

5.5 Finitely many jobs on multiple processors 91
5.6 Epilogue . 94

Bibliography 97

Samenvatting 103

Acknowledgments 107

vii

Chapter 1

Introduction

Imagine you are a PhD candidate in the Netherlands and your thesis defence is approach-
ing. Of course, you asked two friends to be your paranymphs.1 Apart from accompanying
you at your thesis defence, they agreed to help you with preparations for the party that
you are having that night. Before your defence, your paranymphs will make sure the
party location is ready. You gave your paranymphs the following list of jobs, each with
the time that this job should take.

putting up bar tables 25 min
beer engine ready 15 min
polishing glasses 20 min
decorating the room 20 min
picking up snacks from shop 20 min

The paranymphs decided they will divide these jobs such that each job is performed
by only one of them. They can leave the party location no earlier than that all jobs are
done, so they will have to figure out a good way to divide the jobs. Note that there is no
feasible way to divide the jobs such that both paranymphs are done at the same time. So,
for the given settting, the best division is that one of them performs the job that takes 25
minutes (putting up bar tables) and one of the jobs taking 20 minutes (polishing glasses,
for example). The other paranymph then performs the other two jobs taking 20 minutes
(decorating the room and picking up the snacks from the shop), and the job taking 15
minutes (preparing the beer engine). The paranymph to finish last will be finished after
55 minutes.

The problem given above is an example of a scheduling problem. In scheduling, we call
the moment of finishing the last job the makespan of a schedule. For the setting where
each of the jobs can only be assigned to one of the paranymphs, the schedule as given
above is optimal, i.e., no schedule exists, giving a smaller makespan. Problems arising in

1A paranymph is a ceremonial assistant, originally (in ancient Greece) for the bride and groom at
a wedding. In Dutch doctoral thesis defences, it is customary that the candidate has two paranymphs
accompanying him or her. In former times, the paranymphs had to be able to physically defend the
candidate but the doctoral candidate could also ask them for advice when answering questions. Although
officially paranymphs are still allowed to answer questions for the candidate, today their role is mainly
symbolic.

CHAPTER 1. INTRODUCTION

the field of scheduling all have in common that they are searching for the best way to
commit a set of resources to a set of jobs to be performed. What is “the best way” may
differ in each of the problems, and also the constraints that the sought-after schedule has
to obey are different among different problems.

This dissertation consists of four different scheduling problems. Later in this chap-
ter we will elaborate more on the problems that are considered in this dissertation and
how they are related to one another. First, we will more formally define the theory of
scheduling.

The field of scheduling consists of problems in the classical scheduling field and prob-
lems from real-time scheduling. We will introduce the classical scheduling setting first, as
the real-time setting is a generalization of that.

1.1 Classical scheduling theory

A typical scheduling problem consists of a set of n jobs, each of them having a certain
processing requirement. In order to process the jobs, we are given one or more resources,
that we will call machines. Whereas the word “machine” may evoke thoughts of the
classical machine in a factory, a machine in the scheduling model could also represent a
processor in a computer or a person (a paranymph, in the above example) performing a
set of jobs. Then, we need to specify what kind of schedule we are aiming for. So we
need to specify an objective function that is minimized (or maximized) and, if necessary,
define the other problem parameters.

Consider the following example instance of a scheduling problem.

Example 1. Five jobs are given and each job j has a processing requirement pj. The
processing requirements of jobs 1, . . . , 5 are 3, 4, 6, 7 and 10, respectively. There are
two machines to process these jobs and each machine can process one job at the time.
There are various ways to schedule the jobs on the machines. Let us first assume that we
want to minimize the time instant where the latest job finishes. This measure is called the
makespan. It is not hard to see that we cannot find a schedule with makespan less than 16.
In Figure 1.1, a schematic representation of one of the schedules yielding this makespan
is given. Each row represents one machine and the width of each block represents the
processing requirement of the corresponding job.

1 2 4

3 5

Figure 1.1: Gantt chart depicting one of the optimal schedules for makespan minimization.

Another possible objective to minimize is the sum of completion times. That is, for
all jobs we denote the amount of time that has elapsed since the start of the schedule,
until the completion of the job. Those completion times are then summed. The Shortest
Processing Time first (SPT) rule, that orders jobs in non-decreasing order of processing
times and assigns in this order the jobs to a machine, whenever one becomes available,
is optimal [54] for this problem. Figure 1.2 shows the optimal schedule resulting from

2

1.1. CLASSICAL SCHEDULING THEORY

applying this rule. Note that schedule is very different from the schedule in Figure 1.1 and
is not balanced as nicely.

1 3 5

2 4

Figure 1.2: Gantt chart depicting the optimal schedule for minimizing the sum of com-
pletion times.

Three-field notation In classical scheduling theory, to efficiently denote all parameters
of a scheduling problem, the three-field scheduling notation by Graham et al. [42] is
used. A scheduling problem is denoted in the form α|β|γ, where parameter α denotes the
machine environment, the parameter β the job characteristics and γ denotes the objective
function.

For the machine environment there are many possible settings, of which only those
relevant for this dissertation will be explained here. If α = P , we have parallel machines.
This means that the machines are identical and the processing requirement of job j can be
denoted by pj for all machines. If α = Q, we speak of uniform machines (or sometimes,
related machines). Each machine i now has a speed σi and the processing requirement of
job j on machine i is pj/σi. Consider again the example given in the beginning of this
chapter, and suppose your little brother wants to help the paranymphs preparing your
party. He is only twelve years old, and not working as efficiently as the paranymphs.
This can be modeled by a machine working at a speed that is half of the speed at which
the paranymphs are working. Whereas in this setting the dependence of the processing
requirement on the machine is uniform over all jobs, in the setting of unrelated machines
(α = R) this dependence is arbitrary. The processing requirement of job j on machine i
is then denoted by pij. This setting can model situations where machines are specialized
and thus better at certain jobs (and not so good at others). If the number of machines in
the problem is specifically given, we write this number after the parameter specifying the
machine environment (otherwise we assume an arbitrary number m of machines). Note
that if we have just one machine, all of these environments boil down to the same and we
will just write α = 1.

In the field of job characteristics, we can encounter more than one parameter at the
same time. We will list the parameters relevant for this dissertation. The term “pmtn”
denotes preemption. If preemption is allowed, it means that after processing of a certain
job has started, the job may be interrupted and resumed later (even on a different ma-
chine). It is, however, not allowed to process parts of the same job simultaneously on
more machines. This is allowed in the setting of job splitting (“split”). Note that the
paranymphs from our example chose for a non-preemptive schedule. They could have
improved their schedule by allowing preemption or job splitting. We can add setup times
to the problem which means that before each job (part) can be scheduled, the machine is
unavailable for some amount of time, because it is setting up for the new job. The symbol
“s” denotes the presence of uniform setup times, i.e., the setup time is independent of
the machine that is setting up, or the job that it is setting up for. Further, each job j

3

CHAPTER 1. INTRODUCTION

may have a release date (“rj”), meaning that the job is not available for processing prior
to time rj. In case the presence of release dates is not stated in field β, it is assumed that
rj = 0 for all jobs j. The symbol “dj” expresses the presence of due dates. In real-time
scheduling a due date is usually called a deadline.

The most common objective functions in classical scheduling are the makespan, the
sum of completion times and the weighted sum of completion times. Let us denote by
Cj the completion time of job j, i.e., the moment in time that job j completes in a
given schedule. The makespan Cmax := maxj Cj is then defined as the maximum over all
completion times, i.e., the moment that the last job completes. The sum of completion
times is simply defined as

∑
j Cj. Supposing that each job j is given a weight wj expressing

its importance, the weighted sum of completion times is then defined as
∑

j wjCj.

1.2 Real-time scheduling

Real-time scheduling is a generalization of the classical scheduling theory. Whereas in
classical scheduling we deal with a finite set of jobs, in real-time scheduling we typically
deal with an infinite amount of jobs, that are released by so-called sporadic tasks in a
structured manner. A task is a piece of code that generates multiple jobs over time. A
task τ is characterized by an execution requirement cτ , a (relative) deadline dτ and a
period pτ , that denotes the minimum interarrival time between two consecutive jobs from
the same task. If a task τ releases a job at time a, the job needs cτ units of execution
before its absolute deadline that is at a+dτ . The next arrival of a job from the same task
can be no earlier than a + pτ . A task system T consists of n tasks τ1, . . . , τn. We call a
job active if it has been released but not yet completed.

If a machine executing a sporadic task system is said to run at speed σ, we assume that
it can execute σ units of work per time unit, instead of one. Note that this is equivalent
to running the task system with all execution requirements scaled by a factor 1/σ on a
unit-speed machine.

For a task τ we define the utilization of that task as uτ = cτ
pτ

, the maximum execution
requirement per time unit of jobs from this task.

We classify task systems according to the relation that exists between deadlines and
periods of its tasks. If for all tasks the deadline equals the period (dτ = pτ , for all τ), we
call the system an implicit-deadline task system. If this is not the case but for all τ it
holds that dτ ≤ pτ , we have a constrained-deadline system. If dτ > pτ for at least one of
the tasks τ , we say the system has arbitrary deadlines.

1.2.1 Feasibility

In real-time scheduling, the focus is not on finding a schedule that optimizes a certain
objective function, but on determining whether a schedule can be found such that all jobs
from all tasks meet their deadlines.

Definition 1. A task system is said to be feasible on a computing platform if, for any
possible job sequence generated by the system, there exists a schedule for the system, such
that all jobs from all tasks meet their deadlines.

4

1.3. COMPLEXITY AND APPROXIMATION

For scheduling a task system on a single machine, much is known about determining
feasibility. The tightest case is when the first jobs of all tasks arrive simultaneously (at
time 0) and all subsequent jobs arrive as soon as permitted by the period parameters
(i.e., task τ generates a job at each time instant k pτ , for k = 0, 1, 2, . . .) [21]. We call
this sequence of job arrivals the synchronous arrival sequence. Further, if a task system is
feasible, the Earliest Deadline First (EDF) scheduling policy, that schedules at any time
the active job with the earliest absolute deadline, will produce a valid schedule [56].

Determining feasibility of an implicit-deadline task system is easy. It is well known
that an implicit-deadline task system is feasible on a speed-σ processor if and only if the
sum over the utilizations of all tasks is at most σ. The following proposition formalizes
this statement.

Proposition 1 (Liu and Layland [56]). For an implicit-deadline task system T , the
Earliest Deadline First algorithm is a correct scheduling policy for a processor of speed σ
if and only if

∑
τ∈T uτ ≤ σ.

For arbitrary-deadline systems, determining feasibility is more complicated. It is
known [21] that a set of sporadic tasks T is EDF-schedulable on a unit-speed machine if
and only if the following conditions are satisfied:

1. the utilization of the task system does not exceed 1, i.e.,
∑

τ∈T uτ ≤ 1,

2. all jobs with deadlines [0, lcmτ∈T (pτ)] in the synchronous arrival sequence of T meet
their deadlines (where lcm denotes the least common multiple).

This immediately yields an exponential-time test to check whether T is EDF-schedulable.
The two conditions given above can be translated into one function, called the demand

bound function. We define the function

dbfτ (t) = max

{
0,

⌊
t+ pτ − dτ

pτ

⌋
cτ

}
(1.1)

as the demand bound function of task τ at time t. It represents the (maximum) total
workload of the jobs generated by τ that needs to be finished by time t. For a task system
T to be feasible, the total workload of the jobs generated by all tasks in T up to time t
can not exceed the amount of work the processor can perform up to time t. This gives us
the following necessary and sufficient condition for feasibility of a task system T .

Proposition 2 (Baruah, Mok and Rosier [21]). A task system T is feasible on a preemp-
tive processor running at unit speed if and only if

dbfT (t) :=
∑

τ∈T :dτ≤t

⌊
t+ pτ − dτ

pτ

⌋
cτ ≤ t, ∀t ≥ 0. (1.2)

1.3 Complexity and approximation

1.3.1 Complexity classes

Complexity theory is a central field of the theoretical foundations of computer science
and focuses on classifying computational problems according to their intrinsic complex-
ity. Rather than giving an “absolute” answer about the complexity of computational

5

CHAPTER 1. INTRODUCTION

problems, complexity theory has been more successful at classifying problems to their
relative complexity.

Decision problems A decision problem is a computational problem that can only be
answered with ‘yes’ or ‘no’. For example, given a number of machines and some jobs with
processing requirements to schedule on them; does there exist a non-preemptive schedule
for these jobs with makespan at most C? This problem is the decision version of the
Makespan minimization problem, that we have seen earlier in this chapter. Any other
combinatorial optimization problem can also be formulated as a decision problem. These
decision problems form the basis of complexity theory.

Problem instance A computational problem like the makespan minimization problem
can be viewed as an infinite collection of problem instances. The example given in the
beginning of this chapter, consisting of two machines (the paranymphs) and a list of jobs
with processing times is one particular input to the problem, and is called an instance of
the makespan minimization problem.

We denote by |I| the size of an instance I. The size of an instance is the number of
binary information bits needed to represent the instance. In scheduling problem instances
we usually assume that the number of jobs (or tasks), n, and the number of machines, m,
should be part of the input size. However, it might be the case that the input parameters
(e.g., processing times) are so large, that they do not fit into the space of a “computer
word” (which has a fixed size)2 and they should be part of the input size as well. Repre-
senting each number as a binary number (base 2), and if the processing times can be very
large, then for an instance of the unrelated-machines problem (see Chapter 3) the input
size would be O(nm log pmax), where pmax = maxi,j pij.

Algorithm An algorithm is a step-by-step procedure to solve a computational problem.
It outputs the optimal solution for a problem instance, or outputs that it cannot find any
solution. (Note that there are also algorithms that do not output the optimal solution,
but a solution that is sufficiently close to the optimal solution. These algorithms are
called approximation algorithms and they are more formally defined in Section 1.3.2.)

Definition 2. An algorithm is said to run in polynomial time if for any instance I the
number of computational steps needed to solve I is bounded by a polynomial in the size |I|
of the instance.

The class NP Suppose, given an instance of the decision problem described above, the
answer is ‘yes’. Given a schedule, it is very easy to verify that it is a correct schedule
(all jobs are scheduled) and it gives the appropriate makespan. Actually, the maximum
number of steps required to check this, is polynomial in the size of the problem instance.
This brings us to a very natural class of problems: the class NP .

2If each input parameter fits into a computer word, the number of symbols necessary to represent each
of those number is bounded by a constant, and we can ignore the numbers when describing the input
size. If the number do not fit into this fixed size, then we need to take them into account explicitly.

6

1.3. COMPLEXITY AND APPROXIMATION

The class NP is the collection of all decision problems for which each instance with
a positive answer has a polynomial-time checkable certificate of correctness. In the case
of makespan minimization, the certificate consists of a partitioning of the jobs over the
machines. The check consists of adding the processing times of jobs assigned to each
machine (and check that the sum is at most C) and checking that all jobs are assigned to
exactly one machine.

Note that for the complementary question (Given a set of machines and a set of
jobs with processing requirements; does no schedule exist with makespan at most C?),
no polynomial-time checkable certificate for a positive answer is known to exist. Any
certificate giving a schedule with greater makespan does not prove that no schedule with
makespan at most C exists. This decision problem is in the class co-NP . This class exists
of all problems, for which the complementary problem belongs to NP .

NP -complete problems Although a certificate for the decision version of the makespan
minimization problem can be checked in polynomial time, it is not known how to find a
schedule with makespan at most C in polynomial time [24]. The decision version of the
makespan minimization problem belongs to the hardest problems within the class NP .
Problems that are at least as hard as any problem in NP , are called NP -hard problems
(note that an NP -hard problem is not necessarily in NP , though). Problems that are
both in NP and are NP -hard (e.g., the makespan minimization problem), are called
NP -complete.

The class P As mentioned above, it is not known, for an arbitrary scheduling instance,
how to find a schedule of makespan at most C in polynomial time. However, for some
problems that are in NP , it is possible to construct the certificate for a positive answer
in polynomial time. For example, for the problem of minimizing total completion time (a
different term for the sum of completion times).

The decision version of the total completion time problem is as follows: given a set
of machines and a set of jobs with processing requirements, does there exist a (non-
preemptive) schedule such that the total completion time is at most C̄? As mentioned
earlier in this chapter, the Shortest Processing Time first rule gives the minimum total
completion time [54]. This algorithm can thus be used to answer this question for any
instance of the problem, in polynomial time.

The class P is a subset of NP and consists of all problems for which a polynomial-time
algorithm exists solving any instance of this problem.

Reductions To prove that a problem belongs to P , it is sufficient to find a polynomial-
time algorithm solving the problem. Intuitively, it is not so easy how to show that a
problem is NP -complete. Clearly, it is not sufficient to claim that everything was tried
to find a polynomial-time algorithm and this failed, and thus assume that probably no
polynomial-time algorithm exists.

To place problems in a certain complexity class, we use the technique of reduction.
This is a transformation from one problem into another under certain conditions. If there
exists a mapping from any instance I of problem Π to an instance I ′ of problem Π′ that

7

CHAPTER 1. INTRODUCTION

can be computed in polynomial time, and I is a ‘yes’ instance of Π if and only if I ′ is a
‘yes’ instance of Π′, we say that Π polynomially reduces to Π′. This implies that problem
Π is not harder than Π′. Polynomial-time reductions are the core tool used for classifying
problems.

To prove that problem X is NP -complete, we take a problem that is known to be
NP-complete (say problem Y) and reduce it to X in polynomial time. Then, Y is no
harder than problem X, but since Y is NP -complete, problem X must be at least NP -
complete as well. More general, problem X is NP -complete if all problems in NP can
be polynomially reduced to X and X is in NP .

The open question in complexity theory is the “P versus NP” question. Although we
made a distinction between problems that are in P and that are NP -complete, it is not
proven that those sets are distinct. If someone would ever prove one of the NP -complete
problems to be easy to solve after all (i.e, to belong to P), then so are all problems in
NP . This scenario, however, is deemed highly unlikely by almost any mathematician and
computer scientist.

Any statements in this dissertation about hardness of the problems considered, are
made under the assumption that P 6= NP .

1.3.2 Approximation

Many of the problems we consider in this dissertation are NP -hard, and therefore it is
unlikely to find polynomial-time algorithms to solve them. When studying such problems,
the best we can do in polynomial time, is to find algorithms that give a solution that is
“close enough” to the optimal solution. Algorithms that turn out to work well on average
(or in practice), but that have no proven bound on how far away their solutions are from
the optimal solution, we usually call heuristics. If such an algorithm returns a solution
that is guaranteed to be within some multiplicative factor α from the optimal solution,
we call it an approximation algorithm. The factor α is called the approximation ratio.
The closer the approximation ratio is to 1, the better the approximation algorithm is.

An approximation algorithm is called a PTAS (polynomial-time approximation scheme)
if its approximation ratio equals 1+ε, for any small ε > 0, and it runs in polynomial time.
The running time is also dependent on 1/ε, but this dependence may be exponential.
If the running-time dependence on 1/ε is only polynomial, we call the algorithm a fully
polynomial-time approximation scheme (FPTAS).

In Chapters 3, 4 and 5, where we are interested in checking feasibility of task sys-
tems, the notion of approximate feasibility tests will appear. Since in the context of a
feasibility test there is no optimization, the approximation will be in the sense of the
resource augmentation setting. Although it was much earlier used in the context of online
algorithms for the paging problem (see, e.g., [67]), this notion was first explicitly intro-
duced for scheduling problems in [46] as a method for comparing worst-case behavior of
different algorithms for solving the same problem. If an α-approximate feasibility test
returns “feasible”, the task system is guaranteed to be feasible on a processor that runs
at speed α, while if it returns “infeasible”, the task set is guaranteed to be infeasible when
processed on a unit-speed processor. The factor α is also called the speedup factor. When
designing approximate feasibility tests, the aim is to obtain a speedup factor as close to

8

1.4. OUTLINE

1 as possible.

Analogous to the setting of approximation algorithms, the notions of PTAS and
FPTAS also exist when dealing with feasibility tests. A PTAS feasibility test has a
speedup factor of 1 + ε and runs in polynomial time in the instance size, but the running-
time dependence on 1/ε is super-polynomial. If this running-time dependence on 1/ε is
polynomial, we have an FPTAS feasibility test.

1.4 Outline

In this dissertation, both classical scheduling and real-time scheduling problems are
present. The outline of the dissertation is as follows.

Chapter 2 is the only chapter dealing with a scheduling problem in the classical setting.
We consider a number of parallel identical machines and a job set to be scheduled upon
these machines. The objective is to minimize the sum of completion times. Jobs can be
split into parts and parts of the same job can be processed simultaneously. However, before
each job (part) can be processed, a uniform setup time s is required on each machine.
The main result in this chapter is a polynomial-time algorithm solving the problem for
two machines. For more machines, the problem is more complicated and we do not know
the complexity of this problem. We do give a very simple 2 + 1

4
(
√

17 − 1) ≈ 2.781-
approximation algorithm for the general case.

The other three chapters consider problems from the real-time paradigm. Chapters 3
and 4 are quite closely related. Both chapters consider a set of real-time tasks and multiple
machines. The goal is to find a partitioning of the task set over the machines such that
all jobs released by a specific task are executed on the machine that this task is assigned
to, such that all deadlines are met.

In Chapter 3 the machines are unrelated. We give a 8 + 2
√

6 ≈ 12.9 approximation
for the partitioning problem on an arbitrary number of machines. In order to obtain this
result we introduce linear approximations of the demand bound function and on top of
that, we develop a rounding procedure that is of independent interest and is given in a
separate section. We also give a polynomial-time approximation scheme for the case that
the number of machines m is a constant. For a fixed ε > 0, the test decides in time
polynomial in the number of tasks whether there exists a partition of the task set over the
machines such that the task set can be feasibly scheduled if the machines run at speed
1 +O(ε) or whether no feasible partition exists if the machines run at unit speed.

In Chapter 4 we consider parallel identical machines. Building upon ideas from the
PTAS in Chapter 3 we find a (1 + ε)-approximate feasibility test for the problem of
partitioning a task set over an arbitrary number of identical machines. We improve
upon a result by Chen and Chakraborty [30] who give a PTAS for the case that the
ratio of the maximum relative deadline to the minimum relative deadline dmax/dmin is
bounded by a constant. Denoting this ratio by λ, the running time of their algorithm is
roughly nO(exp(1

ε
log λ)), hence doubly exponential in λ. Our approximation scheme runs

in O(mO(f(ε) log λ)) time, where f(ε) is a function depending solely on ε, and hence an
exponential improvement over the result from [30] is given.

Finally, Chapter 5 also deals with real-time tasks but considers the mixed-criticality

9

CHAPTER 1. INTRODUCTION

setting. In this setting, the task system is always in one out of K levels (think of the levels
as states that the system can be in), and each task has different execution-time parameters
for different levels. We will delay a detailed description of this setting to Chapter 5,
because it requires many concepts and a lengthy explanation that are not relevant to any
other chapter in this dissertation. We consider feasibly scheduling an implicit-deadline
mixed-criticality task system on a single machine. We give a scheduling algorithm EDF-
VD that decides in polynomial time that either a mixed-criticality task system consisting
of K levels (K ∈ N) can be scheduled upon a processor running at a faster speed or
that it cannot be scheduled on a processor running at unit speed. The required speedup
depends on the number of levels K. For any 2-level implicit-deadline task system we show
that this speedup is at most 4/3 and for 3 levels we show a speedup factor of 2. Finally
we show that no (non-clairvoyant3) algorithm can guarantee correctness on a processor
with speedup less than 4/3. For dual-criticality systems we give a fixed-priority policy
RM-VP needing a speedup of φ/ ln 2 ≈ 2.334 (where φ equals the golden ratio). Finally,
for scheduling a mixed-criticality job set on m parallel machines we give a fixed-priority
scheduling policy called OCBP, needing a speedup of φ+ 1− 1

m
.

3Meaning that it is not known in advance to the algorithm in which level the system will be. See
Section 5.2 for a formal definition of clairvoyance.

10

Chapter 2

Split scheduling

Almost all results in this chapter are based on work that appeared in [63].

2.1 Introduction

In this chapter we consider a classical scheduling problem, in a setting with job splitting
and setup times. We consider multiple parallel machines and our objective is to minimize
the sum of completion times. Whereas in the setting of ordinary preemption it is not
allowed that multiple machines process the same job simultaneously, in job splitting this
constraint is dropped. So each job can be split into multiple parts and machines may
process these parts simultaneously. However, before the processing of a job (part) can
start, a setup time is required.

2.1.1 Related work

Without setup times, many scheduling problems become trivial if preemption is replaced
by job splitting. For example, for minimizing the sum of completion times, it would
be optimal to split all jobs equally over all machines and process them in SPT order.
For minimizing the makespan, the order would not even matter. In the presence of
release times, minimizing the sum of completion times with ordinary preemption is NP -
hard [33], but if job splitting is allowed, it is not hard to see that splitting all jobs over
all machines and processing them in Shortest Remaining Processing Time first (SRPT)
order is optimal. We refer to Xing and Zhang [73] for an overview of several classical
scheduling problems which become polynomially solvable if job splitting is allowed.

If setup times enter the stage, triviality disappears. Then, before starting processing
of a job (part), the machine requires a setup time, during which it cannot process another
job (part), nor set up processing for any other job (part). Problems in which setup times
are assumed to be sequence-dependent, are usually NP -hard, as such problems exhibit
routing-like features. For example, the Hamiltonian path problem in a graph can be
reduced to the problem of minimizing the makespan on a single machine, where each job
corresponds to a node in the graph, all processing times are 1 and the setup time between
job j and k is 0 if the graph contains an edge between nodes j and k, and 1 otherwise.

CHAPTER 2. SPLIT SCHEDULING

We encountered problems in this setting by studying disaster relief operations [70],
such as flood relief operations, where machines are pumps and jobs are locations to be
drained. In the case of earthquake relief operations the machines represent teams of relief
workers and the jobs locations to be cleared. The setup time then represents the time
that is needed to instruct a new team about a location or move water pumps (overnight)
to a new location. Although in practice these setup times consist partly of travel time,
the main part of the setup consists of equipping teams with tools and instructions for a
new location. Hence the decision was made that considering job-, machine- and sequence-
independent setup times was an acceptable approximation of reality. As we will see
in this chapter, making this assumption about the setup times, still presents us with
algorithmically challenging problems.

From now on, we will refer to setup times that are job-, machine- and sequence-
independent as uniform setup times. We denote the setup time by the parameter s. Not
much literature exists on scheduling problems with such setup times. The problem of
minimizing the makespan on parallel identical machines, with job splitting and setup
times that are job-dependent, but machine- and sequence-independent is studied by Xing
and Zhang [73] and by Chen, Ye and Zhang [28]. Chen et al. [28] note that this problem
is NP -hard in the strong sense, and only weakly NP -hard for the case of a constant
number of machines. Straightforward reductions from the 3-Partition problem and
Subset Sum problem show that these hardness results continue to hold if setup times
are uniform. Chen et al. provide a 5/3-approximation algorithm for this problem and
an FPTAS for the case of a constant number of machines. For the same problem but
with preemption instead of job splitting, Schuurman and Woeginger [64] give a PTAS. It
remains open whether a PTAS exists if not preemption, but job splitting is considered,
even for uniform setup times. See [57] and [60] for more problems with preemption and
setup times.

Recently, Correa et al. [31] studied the problem of minimizing the makespan on un-
related machines with job splitting and unrelated setup times (i.e., the setup times are
machine- and job-dependent). They show a lower bound on the approximability of this

problem of e
e−1
≈ 1.582 and give a 1 + φ approximation (where φ = 1+

√
5

2
equals the

golden ratio) based on the approach by Lenstra, Shmoys and Tardos [53] for minimizing
the makespan on unrelated machines (see also Section 3.1 for this problem). For the
restricted-assignment case (for all j, pij ∈ {pj,∞} and sij ∈ {sj,∞}), they even give a 2
approximation.

The problem we consider is related to scheduling problems with malleable tasks. A
malleable task may be scheduled on multiple machines simultaneously, and a function
fj(k) is given that denotes the speed if task j is processed on k machines. If task j is
processed on k machines for L units of time, then fj(k)L units of task j are completed.
What we call job splitting can be translated into malleable tasks with linear speedups,
i.e., the processing time required on k machines is 1/k times the processing time required
on one machine. However, split scheduling with setup times can not be translated into
the setting with malleable tasks, because of the discontinuity caused by the setup times.
See Drozdowski [32] for an extensive overview of the literature on scheduling malleable
tasks.

12

2.1. INTRODUCTION

2.1.2 Our results

As mentioned above, this chapter focuses on the problem of minimizing the sum of com-
pletion times on identical machines, with job splitting and uniform setup times. The
version of this problem with ordinary preemption is solved by the SPT rule; the option
of preemption is not used by the optimum [54]. However, for job splitting the situation
is much less straightforward. If s is extremely large, an optimal schedule would minimize
the contribution of the setup times to the objective, and a job will only be split over more
machines, if no other job is scheduled after it on these machines. If s, on the other hand,
is very small (say 0), then each job is split over all machines and the jobs are scheduled in
SPT order. For other values of s, however, it appears to be a non-trivial problem to decide
how to schedule the jobs. Splitting a job over multiple machines decreases the completion
time of this job, but due to the extra setup times, the total load on the machines increases
and hence the completion times of later jobs are increased. We give an example instance
to illustrate this.

Example 2. Given are 3 machines and 6 jobs, with processing times 1, 2, 3, 5, 11 and
12, respectively. Setting up a machine takes 1 time unit. One could start with filling up
the machines in SPT order without any splits. This schedule is given in the Gantt chart
in Figure 2.1(a). The objective value equals 49.

This schedule can be improved by splitting job 6 over machines 1 and 3. This decreases

1 4
2 5

3 6

(a)

1 4 6
2 5

3 6

(b)

1 4 6
2 5
2 3 6

(c)

1 4 5 6
2 4 5 6

3 5 6

(d)

Figure 2.1: Gantt charts depicting the schedules for the example instance. The grey
blocks indicate the setup times, the numbered blocks are scheduled job parts. Each row
of blocks gives the schedule for one machine.

13

CHAPTER 2. SPLIT SCHEDULING

the completion time of job 6, and since no jobs are scheduled after job 6 on these machines,
no other completion times increase. To make the biggest improvement in the objective
value, both parts of job 6 should finish simultaneously. See Figure 2.1(b) for the Gantt
chart of this improved schedule, with objective value 45.

Splitting jobs that appear earlier in the schedule may actually increase the objective
value, as many later jobs experience delays due to extra setup times incurred. For example,
if we choose to split job 2 over machines 2 and 3, we cause delays for jobs 3 and 6, while
improving the completion times of jobs 2 and 5. If we require that all job parts of the
same job finish at the same time, we obtain the schedule in Figure 2.1(c) with objective
value 46. Finally, Figure 2.1(d) shows the optimal schedule, with objective value 40.

This example illustrates the inherent trade-off that makes this problem non-trivial.
Splitting jobs will decrease the completion times of some jobs, but it may also increase
the completion times of others, due to higher loads on the machines.

In Section 2.4 we give a polynomial-time algorithm to solve the special case of two
machines. The algorithm is based on a careful analysis of the structure of an optimal
solution. To this end, in Section 2.3 we give some properties that hold for the optimal
solution on any number of machines. Then, in Section 2.4 we give additional properties
that we prove for the case of two machines only. Together, these properties give us a
handle to find in O(n log n) time the optimal solution for the two-machine case, where
n is the number of jobs. Unfortunately, the additional properties given in Section 2.4
are not easily extended to more machines. In Section 2.5 we show that some of the nice
properties that hold for the two-machine case already fail to hold for three machines. This
fact bodes ill for finding an extension of the approach that we found for two machines.
However, showing NP -hardness for this problem has also failed thus far. So it could
be that we encountered another instance of Lawler’s “mystical power of twoness” [52],
a phrase signifying the surprisingly common occurrence that problems are easy when
a problem parameter (here, the number of machines) is 2, but NP -hard when it is 3.
But the possibility also exists that this problem is also easy for an arbitrary number of
machines, and we just have not been able to see how to approach those cases. Note that
if weights are added to the problem, i.e., the objective becomes minimizing the weighted
sum of completion times, the problem is strongly NP -hard for three machines or more,
and weakly NP -hard for the case of two machines [63].

In Section 2.6 we give a constant-factor approximation algorithm for the problem with
an arbitrary number of machines, even though we are not sure the problem is NP -hard.
The approximation algorithm is surprisingly simple; for each job the algorithm decides
on how many machines it is scheduled, based only on the processing time of the job and
the setup time s.

Although our main interest in this chapter lies in problems with uniform setup times, in
Section 2.7 we study briefly two settings with non-uniform setup times. Both for machine-
dependent and for job-dependent setup times, we discuss how much of the lemmas from
Sections 2.3 and 2.4 remains valid.

The chapter is completed by an overview showing the state of the art for split schedul-
ing problems with uniform setup times and showing which problems remain open.

14

2.2. PRELIMINARIES

2.2 Preliminaries

An instance is given by m parallel identical machines and n jobs. Job j has processing
time pj, for j = 1, . . . , n. Each job may be split into parts and multiple parts of the
same job may be processed simultaneously. Before a machine can start processing (a part
of) a job, a uniform setup time s is required. During setup of a job (part), the machine
cannot simultaneously process or setup another job (part). The objective we consider is
to minimize the sum of completion times of the jobs (also called total completion time).

Given a schedule for the jobs, we denote by Mj the set of machines on which parts
of job j are processed. We might sometimes say that a machine processes a certain job,
when it only processes a part of that job. We call job j a d-job if |Mj| = d.

Given a schedule, we call a job balanced if it completes at the same time on all ma-
chines on which it is processed. By this definition, a 1-job is always balanced, so this
characterization only has meaning for jobs j such that |Mj| > 1.

2.3 Properties of an optimal schedule

In this section we derive some properties of an optimal schedule, which are valid for any
number of machines.

Claim 1. Let S be a feasible schedule with job completion times C1 ≤ C2 ≤ . . . ≤ Cn. Let
S ′ be obtained from S by rescheduling per machine the job parts in the order 1, 2, . . . , n,
and let C ′ be the completion times in S ′. Then C ′j ≤ Cj for j = 1, . . . , n.

Proof. Let xij be the amount of time that job j is processed on machine i in S and let
Cij be the time that job j finishes on machine i. Let yij = s + xij if xij > 0 and let
yij = 0 otherwise. Fix some job j and machine i. Let k = arg max{Cik | 1 ≤ k ≤ j}.
Then Cj ≥ Ck ≥ Cik ≥

∑j
h=1 yih = C ′ij, where the first inequality is by assumption and

the last one by the definition of k (at time Cik all work on jobs smaller than or equal to j
has been done on machine i). Since Cj ≥ C ′ij for any machine i on which j is scheduled,
the proof follows.

This claim has several nice corollaries. First, note that if in an optimal schedule
C1 ≤ C2 ≤ . . . ≤ Cn, then we maintain an optimal schedule with the same completion
time for each job by scheduling the job parts on each machine in the order 1, 2, . . . , n. This
allows to characterize an optimal schedule by a permutation of the jobs and the amount
of time that job j is processed on each machine i, for all i and j. The optimal schedule
is then obtained by adding a setup time s for each non-zero job part and processing the
job parts in the order of the permutation on each machine. Consequently, in the optimal
schedule obtained, each machine contains at most one part of each job.

We thus have the following lemma, which we will use throughout this chapter.

Lemma 1. There exists an optimal schedule such that each machine contains at most
one part of each job.

Lemma 2. There exists an optimal schedule that satisfies the property of Lemma 1 such
that on each machine the job parts are processed (started and completed) in SPT order of
the corresponding jobs.

15

CHAPTER 2. SPLIT SCHEDULING

Proof. Among the optimal schedules that satisfy Lemma 1, we choose the schedule that
minimizes

∑
j pjCj. By Claim 1, we may assume the jobs are numbered 1, . . . , n so that

C1 ≤ C2 ≤ . . . ≤ Cn, and each machine processes the job parts in the order given by the
numbering of the jobs. By contradiction, suppose that there exist jobs k and ` such that
p` < pk and there is a machine i that processes job k before job `, i.e., Ck ≤ C`. Choose
among such pairs of jobs k and ` a pair that minimizes `−k. Note that any machine that
processes both k and ` must process k immediately before `, since if there is some job h
that is processed between them, then Ck ≤ Ch ≤ C`, and either ph > p` or ph ≤ p` < pk,
so either the pair ` and h or the pair k and h should have been chosen instead of the pair
` and k. We now show how to define a new optimal schedule for which

∑
j pjCj is strictly

less than for the original schedule, thus contradicting the choice of our schedule.

Note that M` ∩Mk 6= ∅. We define a new schedule by rescheduling both jobs within
the time slots these jobs occupy in the current schedule (including the slots for the setup
times). First remove both jobs. Then consider the machines in Mk one by one, starting
with the machines in Mk\M` and fill up the slots previously used by job k with job `,
until we have completely scheduled job ` including the setup times. This is possible since
p` < pk. We consider the remaining slots, which are single uninterrupted time intervals
for each machine, by our choice of k and `. We will show that they provide sufficient time
for the processing and setup of job k, by showing that the combined number of setups for
k and ` does not increase.

Let M ′
k and M ′

` denote the sets of machines processing jobs k and `, respectively, in
the new schedule. We distinguish two cases. If job ` cannot be rescheduled completely in
the slots used by k in Mk \M` then we have M ′

k ⊆M`. Together with M ′
` ⊆Mk it follows

that (M ′
k ∩M ′

`) ⊆ (Mk ∩M`). Hence, any machine containing both k and ` in the new
schedule did also contain both jobs in the old schedule, and therefore there are no extra
setups on any machine needed.

Now consider the case that job ` is rescheduled completely in the slots used by k in
Mk \M`. Then, after adding job k, the total number of setups needed for ` and k does
not increase since there is at most one machine of Mk \M` containing both jobs in the
new schedule, but none of the machines in Mk ∩M` is used by ` in the new schedule.

We conclude that the remaining slots after scheduling job ` provide sufficient room
to feasibly schedule both the processing of job k and the required setups. Note that, if
there is some machine on which the time allotted to job k is no more than s, then we can
simply leave the machine idle for that time interval.

Let C ′ denote the new completion times. Since in the new schedule ` is processed only
where job k was processed in the old schedule, and job k is processed in the new schedule
only where either job ` or job k was processed in the old schedule, we have C ′` ≤ Ck and
C ′k ≤ max{C`, Ck}. By assumption, we have that C` ≥ Ck, and hence C ′k ≤ C`. Since for
all other jobs the completion times remain the same, we have that the sum of completion
times did not increase and since

pkCk + p`C` = pk(Ck − C ′k) + pkC
′
k + p`(C` − C ′`) + p`C

′
`

> pkC
′
k + p`C

′
` + p`(Ck − C ′` + C` − C ′k)

≥ pkC
′
k + p`C

′
`,

16

2.4. A POLYNOMIAL-TIME ALGORITHM FOR TWO MACHINES

we have that
∑

j pjC
′
j <

∑
j pjCj, which contradicts the choice of the original schedule.

From now on, we assume that jobs are numbered in SPT order, i.e., p1 ≤ . . . ≤ pn.

Lemma 3. There exists an optimal schedule that satisfies the properties of Lemma 1 and
Lemma 2 in which all jobs are balanced.

Proof. Consider an optimal schedule of the form of Lemma 1 and Lemma 2 with a mini-
mum number of job parts. Let Cj be the completion time of j in this schedule and define
Mj for this schedule as before. Consider the following linear program in which there is a
variable xij for all pairs i, j with i ∈Mj, indicating the amount of processing time of job
j assigned to machine i:

min
∑
j

Cj

s.t.
∑
i∈Mj

xij = pj for j = 1, . . . , n;

∑
k≤j: Mk3i

(s+ xik) ≤ Cj for j = 1, . . . , n, ∀i ∈Mj;

xij ≥ 0, Cj ≥ 0 for j = 1, . . . , n, ∀i ∈Mj.

Note that a schedule that satisfies Lemmas 1 and 2 gives a feasible solution to the LP,
and on the other hand that any feasible solution to the LP gives a schedule with total
completion time at most the objective value of the LP: if there exist some j and i ∈ Mj

such that xij = 0, then the LP objective value is at least the total completion time of the
corresponding schedule, as there is no need to set up for job j on machine i if xij = 0.
We know that a solution is a basic solution to this LP, only if the number of variables
that are non-zero is at most the number of linearly independent tight constraints (not
including the non-negativity constraints). By the minimality assumption on the optimal
schedule, in any optimal solution to the LP all Cj and xij variables are non-zero, which
gives a total of n +

∑
j |Mj| variables. Since there are only n +

∑
j |Mj| constraints, all

constraints must be tight, which proves the lemma.

2.4 A polynomial-time algorithm for two machines

In this section we give more properties that hold for optimal schedules. However, these
properties are shown only for the special case of two machines. Together with the proper-
ties from Section 2.3, these properties will lead to a polynomial-time algorithm for finding
the optimal schedule in the case of two machines.

Lemma 4. Let S be an optimal schedule for a two-machine instance that satisfies the
properties of Lemmas 1, 2 and 3. Let k < ` be two consecutive 2-jobs. If there are 1-jobs
between k and `, then there is at least one 1-job on each machine. Also, the last 2-job is
either not followed by any job or is followed by at least one 1-job on each machine.

17

CHAPTER 2. SPLIT SCHEDULING

Proof. Let k and ` be two consecutive 2-jobs and assume there is at least one in-between
1-job on machine 1 and none on machine 2. Let t1, t2 be the start times of job k on
respectively machine 1 and 2. We may assume without loss of generality that t1 ≥ t2:
otherwise we just swap the schedules of the two machines on the interval [0, Ck] and then
this inequality will hold. We change the schedule for k and ` and the in-between 1-jobs
as follows. Job k is completely processed on machine 2, starting from time t2, and the
in-between 1-jobs from machines 1 are moved forward such that the first one starts at
time t1. Let x1k be the amount of processing on job k that was previously assigned to
machine 1, where we note that x1k ≤ 1

2
pk. We increase the part of job ` on machine 1 by

x1k, and decrease the part of job ` on machine 2 by x1k. This is possible, since the part
of job ` that was previously on machine 2 is at least 1

2
p` ≥ 1

2
pk ≥ x1k.

The completion time of each of the in-between 1-jobs decreases by x1k+s, the comple-
tion time of job k increases by x1k and the completion time of job ` remains unchanged.
The total completion time is thus reduced by at least s. If job k is the last 2-job, followed
only by 1-jobs on machine 1, we can make a similar adjustment and decrease the total
completion time.

Lemma 5. In the case of two machines, there are no 1-jobs after a 2-job in an optimal
schedule satisfying the properties of Lemmas 1, 2 and 3.

Proof. Suppose the lemma is not true. Then there must be a 2-job h that is directly
followed by a 1-job. By Lemma 4, there must be at least one such 1-job on each machine,
say jobs k and `. Assume without loss of generality that pk ≤ p`. Let x1h and x2h be the
processing time of h on machine 1 and 2, respectively. As argued before, without loss of
generality we assume that x1h ≥ x2h. Let us define the starting time of h as zero, and let
∆ = x1h − x2h. Note that Ch = 1

2
(∆ + ph + 2s). Then, the sum of the three completion

times is

Ch + Ck + C` = Ch + (Ch + pk + s) + C`

= ∆ + ph + 2s+ pk + s+ C`. (2.1)

We reschedule the jobs h, k, and ` as follows, while the remaining schedule stays the same.
Place job h, the shortest among h, k and `, on machine 1 (unsplit), job k on machine 2
(unsplit), and behind these two, job ` is split on machine 1 and 2, in such a way that it
completes on one machine at time Ck and at time C` on the other. We denote by C ′h, C

′
k

and C ′` the new completion times after this switch. The sum of these completion times
becomes

C ′h + C ′k + C ′` = (ph + s) + (∆ + pk + s) + C`,

which is exactly s less than the sum of the three completion times in (2.1) from before
the switch.

Given the previous lemmas, we see that the 2-jobs are scheduled in SPT order at the
end. By Lemma 2, the first 2-job, say job k, is not shorter than the preceding 1-jobs.
But this implies that the 1-jobs can be scheduled in SPT order without increasing the
completion time of job k or its following jobs. By considering each of the n jobs as the
first 2-job, we immediately obtain a O(n2)-time algorithm to solve the problem. Carefully
updating consecutive solutions leads to a faster method.

18

2.5. THREE AND MORE MACHINES

Theorem 1. There exists an O(n log n) algorithm for minimizing the total completion
time of jobs on two identical parallel machines with job splitting and uniform setup times.

Proof. Suppose we schedule the first k jobs (for any 1 ≤ k ≤ n) in SPT order as 1-jobs
and the other jobs in SPT order as 2-jobs. We would like to compute the change in
objective value that results from turning job k from a 1-job into a 2-job. However, this
happens to give a rather complicated formula. It is much easier to consider the change
for job k − 1 and k simultaneously.

The schedule for the 1-jobs j < k − 1 does not change. To facilitate the exposition,
suppose that job k − 1 starts at time zero and job k starts at time t. Then Ck−1 + Ck =
pk−1 + s+ t+pk + s. After turning the jobs into 2-jobs, the new completion times become
C ′k−1 = (t+ pk−1 + 2s)/2 and C ′k = (t+ pk−1 + pk + 4s)/2. Hence,

(C ′k−1 + C ′k)− (Ck−1 + Ck) = s− pk/2.

In addition, each job j > k completes s time units later. Hence, the total increase in
objective value due to turning both job k − 1 and k from a 1-job into a 2-job is

f(k) := (n− k + 1)s− pk/2.

Notice that f(k) is decreasing in k, since s > 0 and pk is non-decreasing in k. Hence,
either there exists some k ∈ {2, . . . , n} such that f(k) < 0 and f(k − 1) ≥ 0, or either
f(n) ≥ 0, or f(2) < 0.

Suppose there exists some k ∈ {2, . . . , n} such that f(k) < 0 and f(k − 1) ≥ 0. The
optimal schedule is to have either k−1 or k−2 unsplit jobs, since the first inequality and
monotonicity imply that a schedule with k − 2 unsplit jobs has a better objective value
than a schedule with k or more unsplit jobs, and the second inequality and monotonicity
imply that a schedule with k− 1 unsplit jobs has a better objective value than a schedule
with k − 3 or fewer unsplit jobs.

If f(n) ≥ 0 then the optimal solution is either to have only 1-jobs or have only job n
as a 2-job. If f(2) < 0 then the optimal solution is either to have only 2-jobs or have only
job 1 as a 1-job.

Straightforward implementation of the above gives the desired algorithm, the running
time of which is dominated by sorting the jobs in SPT order.

2.5 Three and more machines

The properties exposed in Section 2.3 have been proven to hold for any number of ma-
chines. The properties presented in Section 2.4 were shown specifically for two machines
only. In this section we investigate their analogues for three and more machines. We will
present some examples of instances that show that the extension is far from trivial. It
keeps the complexity of the problem on three and more machines as an intriguing open
problem.

Lemma 5 shows that for two machines, there always exists an optimal schedule in
which |Mj| is monotonically non-decreasing in j (if the jobs are in SPT order). The
following lemma shows that this does not hold for an arbitrary number of machines.

19

CHAPTER 2. SPLIT SCHEDULING

Lemma 6. There exist instances for which there is no optimal schedule in which |Mj| is
monotonically non-decreasing in j.

Proof. Consider the instance on three machines having 10 jobs with their vector of pro-
cessing times p = (3, 10, 10, 10, 10, 50, 50, 50, 50, 50) (1 small job, 4 medium-sized jobs and
5 large jobs) and s = 0.7. We slightly perturb the processing times if necessary, obtaining
pj < pj+1 for all j = 1, 2, . . . , n− 1.

We found all optimal solutions for this instance by exhaustive search. An optimal
solution is depicted in Figure 2.2(a). As we see, job 2 is split over machines 2 and 3, but
job 3, starting later than job 2, is not split. Jobs 4 and 5 are again 2-jobs and are split
over machines 2 and 3. The large jobs are all split over all three machines.

Below, we will describe all other optimal solutions to this instance. We will consider
two solutions to be the same, if one solution can be obtained from the other by a relabeling
of machines, and/or (repeatedly) swapping the schedule of two machines from some time
t till the end of the schedule, if these two machines both complete processing of some job
at time t.

The second optimal schedule, in Figure 2.2(b), is obtained by scheduling job 1 on
machine 1, job 2 split on machines 2 and 3, job 3 on machine 2 (or 3), and jobs 4 and 5 as
split jobs on the machines not used by job 3. The remaining jobs are again all split over

1 3 6 7 8 9 10
2 4 5 6 7 8 9 10
2 4 5 6 7 8 9 10

(a)

1 4 5 6 7 8 9 10
2 3 6 7 8 9 10
2 4 5 6 7 8 9 10

(b)

1 4 6 7 8 9 10
2 3 5 6 7 8 9 10
2 3 5 6 7 8 9 10

(c)

1 3 5 6 7 8 9 10
2 4 6 7 8 9 10
2 3 5 6 7 8 9 10

(d)

Figure 2.2: Gantt charts depicting the optimal solutions to the 3-machine instance with
processing times p = (3, 10, 10, 10, 10, 50, 50, 50, 50, 50) (1 small job, 4 medium-sized jobs
and 5 large jobs) and s = 0.7.

20

2.6. APPROXIMATION ALGORITHM

all three machines. It is easily verified that the objective of this schedule is the same as
the objective of the schedule in Figure 2.2(a): the completion time of job 3 increases by
2, and the completion times of jobs 4 and 5 each decrease by 1, and all other completion
times remain the same. The remaining two optimal schedules, in Figures 2.2(c) and 2.2(d)
are obtained by switching jobs 3 and 4 in the first two optimal schedules. We note that
these schedules continue to be optimal if the processing times are slightly perturbed, as
mentioned earlier.

All optimal solutions for this instance share the property that job 2 is a 2-job, and
either job 3 or job 4 is a 1-job, which proves the lemma.

If we slightly change the instance from the proof of Lemma 6 by deleting one of the
large jobs, then there is a unique optimal solution, which splits job 3 over machines 1 and
2 and continues with splitting job 4 over machines 1 and 3. Job 5 and the four large jobs
are split over all three machines, see Figure 2.3.

Lemma 6 and the fact that a subtle change in the problem instance causes such a
substantial change in the optimal schedule bodes ill for an algorithmic approach like the
one in Section 2.4.

Despite the negative result from Lemma 6, it is not the case that the properties in the
lemmas from Section 2.4 do not hold at all for more than two machines.

Consider, for example, Lemma 4. The statement also holds for a setting with more
than two machines, if there are two consecutive 2-jobs that are split over the same two
machines i and i′. If only machine i would have at least one in-between 1-job, and machine
i′ none, the same interchange argument can be made. However, at this point it seems
that observations like this are not sufficient to characterize an optimal solution for the
case of more than two machines.

2.6 Approximation algorithm

We will now show a constant-factor approximation algorithm for our problem, for an
arbitrary number of machines. We remark that we do not know whether this problem is
NP -hard, but the examples in the previous section do show that the way a job is scheduled
in an optimal schedule may depend on jobs that occur much later in the schedule. Our
approximation algorithm, on the other hand, is remarkably simple, and only uses a job’s
processing time and the setup time to determine how to schedule the job.

1 3 4 5 6 7 8 9
2 3 5 6 7 8 9
2 4 5 6 7 8 9

Figure 2.3: Gantt chart depicting the unique optimal solutions to the 3-machine instance
with processing times p = (3, 10, 10, 10, 10, 50, 50, 50, 50) (1 small job, 4 medium-sized
jobs and 4 large jobs) and s = 0.7.

21

CHAPTER 2. SPLIT SCHEDULING

We schedule the jobs in order of non-decreasing processing times. Let s > 0 and
let β be some constant that will be determined later. Job j will be scheduled such
that it completes as early as possible under the restriction that it uses at most gj :=
min{dβpj/se,m} machines. Thus, the job will be scheduled on the at most gj machines
that have minimum load in the schedule so far. It is easy to see that a job is always
balanced this way.

Theorem 2. The algorithm described above is a (2 + β)-approximation algorithm for
minimizing the total completion time with job splitting and uniform setup times, provided
that β ≥ 1

4
(
√

17− 1).

Proof. Let S be the schedule produced by the described algorithm. Note that the total
load (processing times plus setup times) of all jobs in S up to, but not including, job
j is upper bounded by Lj =

∑
k<j(pk + gks), since job k introduced at most gk setups.

Therefore, the average load on the gj least loaded machines is upper bounded by Lj/m.
Since job j is balanced, we can thus upper bound the completion time C̃j of job j in the
schedule by Lj/m+ pj/gj + s. Note that this is an upper bound on the completion time
of job j when we try to schedule it on at most gj machines.

Noting that

pj/gj = pj/min{dβpj/se,m}
≤ pj/dβpj/se+ pj/m

≤ (1/β)s+ pj/m,

and
gks = min{dβpk/se,m}s < βpk + s,

we obtain

C̃j ≤ Lj/m+ pj/gj + s

≤ 1

m

∑
k<j

(pk + gks) + pj/gj + s

<
1

m

∑
k<j

(
(1 + β)pk + s

)
+ pj/m+ (1 + 1/β)s

≤ 1 + β

m

∑
k≤j

pk +

(
j − 1

m
+ 1 +

1

β

)
s.

Suppose we only needed a setup time for the first job to be processed on a machine,
for any machine. Clearly, the optimal sum of completion times for this problem gives
a lower bound on the sum of completion times in the optimum of the original problem.
Now, the optimal schedule when we only need a setup time for the first job on a machine
processes the jobs in SPT order and splits each job over all machines, which gives a sum
of completion times of ∑

j

(s+
1

m

∑
k≤j

pk). (2.2)

22

2.6. APPROXIMATION ALGORITHM

This gives one lower bound on the sum of completion times in an optimal schedule.
Further, in any schedule, at most m jobs are preceded by only one setup, at most

anotherm by two setups, etc., giving a lower bound of
∑

jdj/mes on the sum of completion
times; this is exactly the optimal value when all processing times are 0.

To bound this last lower bound in a more practical way, let j = qm+a for some q ≥ 0
and a ∈ {1, . . . ,m}. Then⌈

j

m

⌉
− j − 1

m
= (q + 1)− (qm+ a− 1)/m

= 1− (a− 1)/m.

Now assume that n = rm+ b, for some integer r ≥ 0 and b ∈ {1, . . . ,m}. Then,

n∑
j=1

⌈
j

m

⌉
−

n∑
j=1

j − 1

m
= r

m∑
a=1

(
1− a− 1

m

)
+

b∑
a=1

(
1− a− 1

m

)

= rm+ b− r
m∑
a=1

a− 1

m
−

b∑
a=1

a− 1

m

= n− r(m− 1)/2− 1

2
(b− 1)b/m

≥ n− r(m− 1)/2− 1

2
(b− 1)

= n− (rm+ b)/2 + r/2 + 1/2

= n/2 + r/2 + 1/2 ≥ n/2.

Hence, bringing the second summation to the right-hand side, and multiplying both sides
with s yields

n∑
j=1

⌈
j

m

⌉
s ≥

n∑
j=1

j − 1

m
s+

1

2
ns. (2.3)

Using 1 + β times lower bound (2.2), and one time lower bound (2.3), we get

(2 + β)
∑
j

Cj ≥ (1 + β)
∑
j

(
s+

1

m

∑
k≤j

pk

)
+
(∑

j

j − 1

m
s+

1

2
ns
)

=
∑
j

(
1 + β

m

∑
k≤j

pk + (1 + β)s+
j − 1

m
s+

1

2
s

)
,

which is at least as large as
∑

j C̃j provided β > 0 and 3
2

+ β ≥ 1 + 1
β
, which is equivalent

to β ≥ 1
4
(
√

17− 1).

Corollary 1. There exists a 2 + 1
4
(
√

17− 1) ≈ 2.781-approximation algorithm for mini-
mizing total completion time with job splitting and uniform setup times.

23

CHAPTER 2. SPLIT SCHEDULING

2.7 Non-uniform setup times

The main part of this chapter considers uniform setup times. We use this term to denote
that the setup times are job-, machine- and sequence-independent. In this section we
will briefly reflect on how much of the results in this chapter remains valid if we consider
either job-dependent or machine-dependent setup times.

2.7.1 Machine-dependent setup times

We will go over the lemmas of Sections 2.3 and 2.4 and see to what extent they hold for
the case of machine-dependent setup times. It is very easy to see that the statements from
Claim 1 and Lemma 1 remain valid, as they only consider a given solution per machine.
And as the setup times per machine can be seen as uniform, the same proofs hold.

At first sight it seems that Lemma 2 should hold as well in the case of machine-
dependent setup times. It is, however, not so obvious how to show this. A simple counter
example shows that the proof given in Section 2.3 does not work for this case.

Consider jobs k and ` with p` = 3, pk = 9 and there is a machine (say machine 1) that
schedules job k right before job `. On machine 1, job k is processed for 2 time units and
job ` is processed there completely. The remaining part of job k is processed on machine
2 and completes no later than the part on machine 1. On machine 1, the setup time
s1 = 1, while on machine 2, s2 = 3. Following the proof of Lemma 2, we start by filling
the machines in Mk\M` (i.e., machine 2) with job `. So we need a setup time of 3, then
3 time units for job `. Then, there are 4 time slots remaining, to schedule another setup
and 1 unit of job k. Now the remaining part of k (of size 8) will not fit in the slots left
on machine 1, since after the setup time of 1, only 6 time units remain. The reason why
this proof does not work out in the same way for the machine-dependent setup times, is
that in the initial schedule we had two setups on machine 1 (of size 1, each) and one on
machine 2 (of size 3) and after rescheduling, we have two setups on machine 2 and one
on machine 1. Note that it is also not possible to simply switch the parts of job k and `
on machine 1, since then the new completion time of job `, C ′`, is strictly larger than Ck,
while C ′k = C` and the objective function is worsened.

The intuition, however, still is that Lemma 2 should hold, even for machine-dependent
setup times. Note that for the remaining lemmas, we are building upon schedules satisfy-
ing the previous lemmas, including Lemma 2. For the sake of argument, when discussing
the remaining lemmas, we will assume that an optimal schedule exists satisfying the
previous lemmas as stated.

For Lemma 3, given an optimal schedule with a minimum number of job parts, an LP
is defined and it is shown that all constraints are tight, and hence all jobs are balanced.
The constraints can be adjusted to incorporate machine-dependent setup times si without
anything changing, so the claim of the lemma also holds.

Lemmas 4 and 5 are specifically proven for two machines only. In Lemma 4 it is
assumed that k and ` are consecutive 2-jobs and only machine 1 has at least one 1-job in
between and machine 2 none. By an interchanging argument it is shown that changing
the order of these jobs improves the schedule by at least s. In the case of machine-
dependent setup times it can be shown that the same interchanging of the jobs results in

24

2.7. NON-UNIFORM SETUP TIMES

an improvement of the schedule of at least s1, the setup time on machine 1.
An interchange argument is also the basis for proving Lemma 5. Let us now assume

that machine 1 starts no later setting up job h than machine 2 and define ∆ as the
difference between the moments that the machines start setting up for job h, i.e., ∆ =
(s1 +x1h)− (s2 +x2h). Jobs k and ` are the 1-jobs following job h and we assume pk ≤ p`.
Then, repeating the argument from the proof of Lemma 5, it is not hard to see that
interchanging the jobs leads to an improvement of si in the objective function, if job k is
scheduled on machine i.

Note that even if all lemmas would hold, the construction of an optimal solution for
the two-machine case is more difficult than in the case of uniform setup times. It still
holds that we start with 1-jobs and from a certain job k we start splitting the jobs over
two machines. But since the setup times on both machines are different, it could be
the case that the leading 1-jobs are not alternately assigned to machines 1 and 2. For
example, consider an instance of two machines where s1 = 1 and s2 = 4. We have jobs
1, 2, 3, 4, with pj = j. There are two optimal schedules. In the first one, jobs 1, 2 and 3
are scheduled on machine 1, and job 4 is scheduled on machine 2. In the other optimal
schedule jobs 1, 2 and 4 are on machine 1 and job 3 is on machine 2. In both schedules
the 1-jobs are not alternately assigned to the machines.

2.7.2 Job-dependent setup times

For job-dependent setup times, we will also consider all lemmas and see to what extent
they hold.

In Claim 1, job parts that are on a machine are scheduled in a different order. Every
job is split in exactly as many parts as before and hence the total amount of setup times
is not changed. In the proof, we can define yij = sj + xij if xij > 0 and yij = 0 otherwise,
and the proof still holds. This implies that also Lemma 1 is valid for this case.

Like in the case of machine-dependent setup times, also for job-dependent setup times
the proof of Lemma 2 does not hold. Consider a job k and ` as in the proof. Thus,
p` < pk, but there is a machine i processing job k right before job `. Suppose machine
i is the only machine in M`, whereas job k is split into many parts, all smaller than p`.
And suppose sk < s`. Then, when rescheduling job ` into the slots of k in Mk\M`, job
` is split into at least two parts. Let job ` be split into π parts; then π − 1 extra setups
of length s` are incurred. This then implies that job k saves π − 1 setups, but since their
lengths sk are strictly smaller than s`, we will not have enough space to reschedule k and
` in the way the proof dictates. In fact, it is not intuitively clear that this lemma would
hold for job-dependent setup times.

In the proof of Lemma 3, we can adjust the constraints on the completion times such
that

∑
k≤j:Mk3i(sk + xik) ≤ Cj for all j and all i ∈ Mj. Thus, this lemma also holds for

job-dependent setup times.
The interchange argument of Lemma 4 can still be applied in the case of job-dependent

setup times. It is easy to see that interchanging the 2-jobs and the in-between 1-job(s)
gives an improvement of at least sk, the setup time of job k.

In Lemma 5, however, the interchange argument is not necessarily holding. After the
interchange, job h is set up one time less (i.e., from a 2-job it became a 1-job), and job

25

CHAPTER 2. SPLIT SCHEDULING

` is set up once more (it became a 2-job from a 1-job). If s` > sh it is not clear how the
extra time that should be spent on setting up can be scheduled. Especially if there are
other jobs after job `, the interchange does not have to lead to an improved schedule.

2.8 Epilogue

In the following table we gather the state of the art on scheduling problems with job
splitting and uniform setup times.

In the second column of the table, we summarize the complexity status of these prob-
lems. A question mark indicates that the complexity of the problem is unknown. In the
third column we give the best approximation guarantee known, where a “-” indicates that
no algorithm with a performance guarantee is known. If we consider it relevant, we also

Problem Complexity Algorithm

P | split |
∑
Cj in P

divide jobs equally over the
machines in SPT order

P2 | s, split |
∑
Cj in P algorithm of Section 2.4

Pm | s, split |
∑
Cj ? PTAS [63]

P | s, split |
∑
Cj ? 2.781-approx. of Section 2.6

cf. P | s,pmtn |
∑
Cj in P SPT

P |split |
∑
wjCj in P

divide jobs equally over the
machines in WSPT order

cf. P | pmtn |
∑
wjCj NP -hard [24] PTAS [1]

P | s, split |
∑
wjCj NP -hard [63] -

cf. P | s,pmtn |
∑
wjCj NP -hard -

P | s, split | Cmax NP -hard [70] (cf. [28]) 5
3
-approximate split/

assignment [28]

P | s, split | Cmax NP -hard 3
2
-approximate wrap-around

if pj ≥ s ∀j algorithm [70]
cf. P | s,pmtn | Cmax NP -hard [64] PTAS [64]

Table 2.1: State of the art on scheduling problems with job splitting and setup times

26

2.8. EPILOGUE

present, as a footnote, the knowledge on the comparable version with preemption instead
of splitting.

As can be seen from the table, the main open problem is the complexity of the schedul-
ing problem we have considered in this chapter with an arbitrary number of machines.
Already for 3 machines a complexity result would probably mean a breakthrough for the
general case.

Another direction for future research is the weighted case. It was shown [63] that
the problem of minimizing the weighted sum of completion times on parallel machines
with job splitting and setup times is NP -hard. One possible direction would be to try
adjusting the approximation algorithm from Section 2.6 to the weighted case. Or, for
the weighted case on 2 machines, it could be considered to use parts of the approach of
Sections 2.3 and 2.4 to obtain an approximation algorithm.

Note that apart from uniform setup times, there is a range of other interesting problems
with job splitting and setup times that can be studied. As can be seen from Section 2.7,
the setting with machine-dependent setup times is already more difficult than the setting
with uniform setup times, but the setting with job-dependent setup times is even more
complex. In the algorithm for two machines, we essentially split longer jobs, whereas the
shorter jobs remain unsplit. With job-dependent setup times, however, it might be the
case that a “longer” job has such a large setup time that it should never be split. This
highly complicates any (approximation) algorithm for this problem.

27

Chapter 3

Assigning real-time tasks to
unrelated machines

All results in this chapter appear in [58].

3.1 Introduction

This chapter considers scheduling of real-time tasks on unrelated machines. This model is
motivated from the trend in hardware design towards heterogeneous processors. Modern
hardware architectures often contain specialized processors for certain tasks (e.g., graphi-
cal processors, floating points units). To model the actual behavior of the different types
of processors when making scheduling decisions, the unrelated-machines model is used.
Therein it is assumed that the processing time of each task depends on the machine it
is executed on, including the possibility that some tasks cannot be executed on some
machines at all.

We search for an assignment of the tasks to the machines, such that all jobs released
by a task are scheduled on the machine that the task was assigned to and all jobs meet
their deadlines. Jobs are not allowed to migrate between machines. To the best of our
knowledge, the unrelated-machines setting has not been studied for arbitrary-deadline
sporadic tasks.

3.1.1 Related work for unrelated machines

The setting with unrelated machines is well-studied for the problem of assigning jobs
to minimize the makespan. Lenstra, Shmoys and Tardos [53] give a 2-approximation
algorithm for the problem of minimizing the makespan of a set of jobs and prove that it is
NP -hard to achieve a performance ratio better than 1.5. Despite a lot of effort, the only
improvements in the setting of an arbitrary number of machines are a 1.75-approximation
algorithm for the graph balancing case [35] and a 33/17 ≈ 1.94-estimation algorithm for
the restricted assignment case [69].

A generalization of this problem is the Generalized Assignment Problem (GAP).
In this problem, assigning a job j to a machine i incurs a certain cost ci,j. Shmoys and
Tardos [65] give a 2 approximation for this problem; to be more precise, they devise an

CHAPTER 3. ASSIGNING REAL-TIME TASKS TO UNRELATED MACHINES

algorithm computing a schedule with makespan 2T and cost at most C, given that a
solution with the same cost and a makespan of T exists. See Section 3.3.1 for a more
extensive description of this problem and the algorithm given by Shmoys and Tardos.

Azar and Epstein [8] consider `p norms (for finite p > 1, rather than the makespan)
for which they improved the previously best result of θ(p) [7] to a 2 approximation and
even a

√
2 approximation for the `2 norm. This was improved to a better-than-two result

for all p > 1 in [50].
For the case of a constant number of machines, polynomial-time approximation schemes

are known [45, 53]. Rather than focusing on a constant number of machines, one could
also consider the case of a constant number of machine types ; each machine belongs to
one of the types and the processing time of each job depends only on the job and the
type of the machine it is assigned to. For the problem of assigning implicit-deadline task
systems to unrelated machines of two different types, an approximation algorithm is given
in [61] based on the first-fit heuristic with a worst-case performance ratio of 2. For the
same problem, a PTAS was given later [62]. In the meantime, a PTAS was given [72] for
any constant number of machine types. The authors justify their contribution in [62] by
pointing out that their PTAS for two different types has a much lower run-time complexity
than the one in [72] applied to two machine types.

Note that when dealing with implicit-deadline task systems in the partitioned paradigm,
the feasibility problem is equivalent to Makespan Minimization [41]. Hence, the re-
sults that hold for this latter problem can be applied to implicit-deadline task systems to
minimize the maximum utilization over the processors.

3.1.2 Feasibility testing

The feasibility analysis of sporadic task systems on single processors has been extensively
studied (see, for example, [19] for an overview). It is known that the Earliest Deadline First
(EDF) algorithm, that schedules at any time the job with the earliest absolute deadline, is
optimal in the sense that for any sequence of jobs it produces a valid schedule, whenever
a valid schedule exists [56]. However, it is co-NP -hard to decide whether a task system
is feasible on a single machine [37].

Recall Proposition 2 from Section 1.2.1 where the demand bound function specifies a
necessary and sufficient condition for schedulability of a sporadic task system on a single
processor. There are, however, exponentially many time points t to check. Albers and
Slomka [2] suggested an approximate demand bound function, where for each task τ the
number of test points of dbfτ is limited. The approximation ratio then depends on this
fixed number of test points; for time points beyond that fixed number, the demand bound
function of each task is approximated by a linear function. Chen and Chakraborty [29]
use the variant of this approximate demand bound function that, for each task τ , starts
the linear approximation from the relative deadline dτ . This approximate demand bound
function gives a 2 approximation for the actual demand bound function and this fac-
tor is tight. It is, however, not tight in the resource augmentation setting. Chen and
Chakraborty [29] show that the speedup required when using this approximate demand
bound function for feasibility testing on a single processor is at most 2e−1

e
≈ 1.632.

On multiprocessor systems, there are two main paradigms for scheduling: global and

30

3.1. INTRODUCTION

partitioned scheduling. In the former, all tasks can use all machines, and jobs can even be
migrated from one machine to another. In the partitioned scheduling approach each task
has to be assigned to one of the machines such that all its jobs have to be executed on
this specific machine. Since the process of partitioning tasks among processors reduces a
multiprocessor scheduling problem to a series of single-processor problems, the optimality
of EDF for preemptive single-processor scheduling makes EDF a reasonable algorithm to
use as the run-time scheduling algorithm on each machine. Note that the setting studied
in this chapter follows the partitioned scheduling approach.

In the case of m identical processors, assuming the global paradigm, the natural EDF
policy is no longer optimal, but it is known that any feasible collection of jobs on m
machines of unit speed is schedulable using EDF on m machines of speed 2 − 1

m
[59].

Also, a corresponding test for task sets is known [16, 23]. Anand et al. [3] present an
online algorithm needing only a speedup factor of e/(e− 1) ≈ 1.58.

In the case of the partitioned paradigm, let us first consider the special case of implicit
deadlines. Then, a set of tasks is feasible on one machine if and only if the sum of the
utilizations cτ/pτ is at most 1 and the problem reduces to Makespan Minimization.
A PTAS is proposed for this problem where tasks are scheduled according to fixed prior-
ities [36]. In that paper also the existence of an FPTAS is ruled out, thus showing that
the problem is strongly NP -hard.

If deadlines are not implicit, much less is known. Baruah and Fisher [17] used the
approximate demand bound function by Albers and Slomka [2] to provide the first non-
trivial solution for partitioned scheduling of arbitrary- or constrained-deadline task sys-
tems on identical machines. They propose to use deadline-monotonic task partitioning;
considering tasks iteratively from the shortest relative deadline, the algorithm assigns
the task under consideration to a processor which is EDF schedulable when using the
approximate demand bound function for the schedulability test. They prove that the
deadline-monotonic partitioning has a 4 − 2

m
resource augmentation factor (where m is

the number of processors) for arbitrary-deadline systems [17] and a 3 − 1
m

resource aug-
mentation factor for constrained-deadline systems [18]. In [40] similar results are given if
the tasks are scheduled according to static priorities, rather than with the more powerful
EDF policy.

Chen and Chakraborty [29] improved the analysis of the deadline-monotonic policy
with approximate demand bound functions and showed that it gives a feasibility test with
speedup factor 3e−1

e
− 1

m
≈ 2.6322− 1

m
in case of constrained deadlines (dτ ≤ pτ for all τ)

and a speedup factor of 3− 1
m

for unconstrained deadlines.

3.1.3 Our results

To the best of our knowledge, no non-trivial algorithm is known for assigning a set of
arbitrary-deadline sporadic tasks to a set of unrelated machines. We first present an
algorithm that, given a task system for which a task assignment on m machines exists,
finds a task assignment that can be scheduled on m machines that are 8 + 2

√
6 ≈ 12.9

times as fast.
In order to obtain this result, one of the tools used is an LP rounding procedure that

is presented separately in Section 3.3. From the fractional solution to an LP relaxation

31

CHAPTER 3. ASSIGNING REAL-TIME TASKS TO UNRELATED MACHINES

it produces an integral solution that maintains an objective value not worse than that
of the optimal fractional solution, while guaranteeing a bound on the violation of any
constraint in the system. This procedure is based on ideas presented in [49], where a
solution for an integer linear program (without objective function) is found by rounding
the solution to the LP relaxation such that each variable is rounded up or rounded down
and each constraint of the program is violated by at most a constant factor (depending
on the maximum sum of elements over all columns of the coefficient matrix).

The rounding procedure that we developed is designed for rounding a fractional solu-
tion of the LP relaxation of any assignment-type problem where items (e.g., tasks in our
case) have to be assigned to resources (e.g., machines) while obeying some knapsack-type
constraints. Given that each resource-item combination appears in at most γ constraints,
the procedure preserves the constraint that every item is assigned and all other constraints
are violated by at most a factor of γ + 1. Further, the cost of this rounded solution is no
more than the optimal cost of the LP relaxation. In fact, the well-known 2-approximation
algorithm for the Generalized Assignment Problem by Shmoys and Tardos [65] can
be derived as a direct corollary from our rounding procedure.

We apply the rounding procedure to a sparse LP formulation which approximately
models the task assignment problem on unrelated machines and obtain the mentioned
result (after some technical modifications of the LP). Also, we show that no polynomial-
time algorithm can compute a task assignment needing a speedup factor of 2−ε for ε > 0,
unless P = NP . Note that this bound is stronger than the best known (3/2− ε)-hardness
result for the contained problem of minimizing the makespan when scheduling jobs on
unrelated machines [53].

For the case that the number of machines is fixed, we present a polynomial-time
algorithm that either finds a feasible task assignment on m machines that are 1 + ε times
as fast, or guarantees that no solution exists on unit-speed processors.

In order to be able to achieve these results, we need a deep understanding of the
demand bound function (dbf) which yields a necessary and sufficient condition for a task
system to be feasible on one machine. In particular, we present two new relaxations for
handling this well-studied function. For our result for an arbitrary number of machines, we
give a set of sparse linear constraints which approximate the dbf up to a constant factor.
Due to the sparsity we are able to design the efficient iterative rounding procedure.

For the case of a constant number of machines, we observe that we cannot exploit
the technique of partitioning the task set into “big” and “small” tasks as in the job
scheduling problem. A task having a small execution time or small utilization might
still be very tight in the sense that its relative deadline is fairly small. Therefore, even
if all large tasks are already assigned, assigning the small tasks is still very tricky. An
important feature of our dbf relaxation is that the feasibility test of assigning a task with
deadline D to a machine having tasks with deadlines smaller than D already assigned to
it, requires only limited information of the previously assigned tasks. To be more explicit,
the approximate demand bound function for each task only needs to be evaluated at a
constant number of points. Afterwards we just approximate the function by the task’s
utilization. We exploit this feature and other tricks to polynomially bound the running
time of a dynamic programming algorithm.

32

3.2. PRELIMINARIES

3.2 Preliminaries

Given is a set M of m unrelated machines and a sporadic task system T , with |T | = n.
Each task τ ∈ T is characterized by a set of values ({ci,τ}i∈M , dτ , pτ), where ci,τ is its
execution time on machine i, dτ is its deadline, and pτ is the period. We assume all
parameters to be integer and strictly positive. We study the problem of finding a task
assignment T = {Ti}i∈M such that ∪iTi = T . Without loss of generality we can restrict
to task assignments with the property that Ti ∩ Ti′ = ∅ for any two machines i 6= i′.

A task assignment is feasible if for any machine i, any job arrival sequence of the tasks
in Ti can be feasibly scheduled on machine i, allowing jobs to be preempted. Since each
task is assigned to exactly one machine, after finding an assignment, EDF will be our
scheduling algorithm of choice, by its optimality for single-machine scheduling [56].

Recall that an α-approximation test for the problem of assigning tasks to unrelated
machines is an algorithm that runs in polynomial time and either guarantees that there is
no feasible integral assignment of the tasks to the given machines (running at unit speed),
or finds an integral assignment which is feasible if the machines run at speed α.

By ui,τ we denote the utilization of task τ on machine i and we define it as ui,τ = ci,τ/pτ .
Given a task assignment T , we define the utilization of each machine i by ui =

∑
τ∈Ti ui,τ .

Note that in a feasible assignment ui ≤ 1, for all i ∈ M , is a necessary but not sufficient
condition for feasibility [56].

Clearly, the necessary condition ui ≤ 1 for all i ∈ M implies that if there is a task τ
such that ui,τ > 1, this task will never be assigned to machine i. Further, if for any task
τ and machine i it holds that ci,τ > dτ , then τ will not be assigned to machine i. If it
were assigned to machine i, the first job of τ clearly could not be completed before ci,τ
and would miss its deadline at dτ .

We adjust Proposition 2 for the setting of unrelated machines.

Proposition 3 ([21]). An assignment T = {Ti}i∈M is feasible for task system T if and
only if for all i ∈M

dbfT ,i(t) :=
∑

τ∈Ti:dτ≤t

⌊
t+ pτ − dτ

pτ

⌋
ci,τ ≤ t ∀t ≥ 0.

We write dbfi instead of dbfT ,i whenever the assignment T is clear from the context.
Further, we define dbfi(τ, t) := b(t+ pτ − dτ)/pτc ci,τ , i.e., dbfi(τ, t) denotes the contribu-
tion of task τ to dbfT ,i(t).

For some integer k, we let denote [k] = {1, . . . , k} all integers from 1 until k.

3.3 Rounding procedure

Almost any combinatorial optimization problem can be formulated as an integer linear
programming (ILP) problem with integral (or binary) decision variables and linear con-
straints. A feasible or optimal solution to this ILP is then a feasible or optimal solution to
the problem originally considered. Unfortunately, solving ILPs in general is NP -hard [48].
A common approach is to, instead, solve the corresponding LP relaxation, where the in-
tegrality constraints on the decision variables are relaxed. In a second step, one turns

33

CHAPTER 3. ASSIGNING REAL-TIME TASKS TO UNRELATED MACHINES

this fractional solution into an integral solution without (i) violating the constraints too
much, or (ii) losing too much in the objective value with respect to the LP optimum.

An iterative rounding procedure is a procedure that step-by-step rounds and fixes a
part (one or more variables) of a fractional solution, then computes a new fractional
solution to the residual problem and again rounds some variables, etc. This is repeated
until an integral solution is found for the original problem.

The interest in this type of methods was initiated by a breakthrough paper of Jain [44]
in which he obtained a 2-approximate algorithm for a large class of minimum-cost network
design problems in undirected networks. A later adaptation of his method by Singh and
Lau [66] surprisingly involves no rounding at all. Only variables whose values are set to 1
in the linear programming relaxation are fixed and then the program is carefully updated.
Indeed, it turned out that iterative methods can also be used to prove classic results in
combinatorial optimization in a new way. Lau, Ravi and Singh [51] present in their
monograph both new proofs for known results in exact optimization and approximation
algorithms for constrained versions of those polynomially solvable problems.

In this section we present an LP rounding procedure that is specially designed for ILPs
that stem from assignment problems. It guarantees that after applying the rounding, the
obtained integral assignment violates the constraints from the ILP by only a bounded
factor (depending on the structure of the LP matrix) and the objective value of the LP
optimum is preserved. In Section 3.4 we use this procedure to obtain a constant-factor
approximation test for the problem of assigning sporadic tasks to unrelated machines.

Since the procedure itself is independent of the application we will use it for, we present
it here in more general terminology than we will need later. The rounding procedure is
quite similar to the procedure presented in [49] by Karp et al., but in contrast to the latter,
ensures that in the resulting integral solution one obtains a feasible integral assignment.
A more detailed description of the procedure given by Karp et al. is given in Section 3.3.2.

Assume we want to solve the following assignment problem: given is a set of n items
and a set of m resources M and a set Ω ⊆ {1, . . . ,m} × {1, . . . , n} containing all combi-
nations (i, j) such that it is allowed to assign item j to resource i. For each combination
(i, j) ∈ Ω we are given a cost ci,j denoting the cost of assigning item j to i. The goal is
to assign each item j to a resource i to minimize the total cost, and such that for each
resource i a set of knapsack-type constraints is satisfied. Each item appears in at most
γ constraints per resource. Without loss of generality we assume that each item-resource
combination appears in exactly γ of these constraints.

Given the set Ω, for all (i, j) ∈ Ω we define decision variable zi,j, which is equal to
1 if item j is assigned to resource i, and 0 otherwise. Let θ := n γ. We are also given
non-negative values a`i,j and b`i for all (i, j) ∈ Ω and ` ∈ {1, . . . , θ}, such that for each
(i, j) ∈ Ω, a`i,j > 0 for at most γ out of the θ coefficients. We want to solve the following
integer linear program (ILP).

34

3.3. ROUNDING PROCEDURE

min
∑

(i,j)∈Ω

ci,jzi,j

s.t.
∑

i:(i,j)∈Ω

zi,j = 1 for j = 1, . . . , n; (3.1a)

∑
j:(i,j)∈Ω

a`i,jzi,j ≤ b`i for i = 1, . . . ,m, ` = 1, . . . , θ; (3.1b)

zi,j ∈ {0, 1} for all (i, j) ∈ Ω. (3.1c)

We denote by LP 0 the LP relaxation of the above ILP. The contribution of item j in
constraint ` of resource i is expressed by coefficient a`i,j. Note that if this is larger than
the “capacity” b`i , item j will never be assigned to resource i in an integral solution.
However, for our reasoning in Section 3.4 we need to round LP relaxations of the above
type where possibly a`i,j > b`i . We assume w.l.o.g. that a`i,j ≤ 1 for all i, j, ` (which can be
ensured by linear scaling).

Solving the LP relaxation of this problem usually does not give an integral solution and
hence items are fractionally assigned to multiple resources. Our rounding procedure turns
this solution into an integral solution, such that each capacity constraint is not violated
by more than γ times the maximum coefficient on the left-hand side. Further, the cost
of this rounded solution will not be more than the optimal cost from the fractional LP
solution. In typical assignment-type problems, the number of constraints where the same
resource-item combination appears, is often low. For example, in the linear program that
we will use in Section 3.4 for the problem of assigning tasks to unrelated machines, we
will have that γ = 2.

3.3.1 Generalized Assignment Problem

The Generalized Assignment Problem (GAP), as it was first presented by Shmoys
and Tardos [65], is defined as follows. Given are a set of n jobs and a set of m unrelated
machines, for each combination of a job j and a machine i we are given the running time
pi,j of job j on machine i and a cost ci,j. For given values C ≥ 0 and T ≥ 0, the goal is to
find an assignment of the jobs to the machines with total cost at most C and such that
each machine has a makespan of at most T . The canonical LP formulation for GAP is
the following:

min
m∑
i=1

n∑
j=1

ci,jxi,j

s.t.
m∑
i=1

xi,j = 1 for j = 1, . . . , n; (3.2a)

n∑
j=1

pi,jxi,j ≤ T for i = 1, . . . ,m; (3.2b)

xi,j ≥ 0 for all (i, j) s.t. pi,j ≤ T. (3.2c)

35

CHAPTER 3. ASSIGNING REAL-TIME TASKS TO UNRELATED MACHINES

After solving this LP, Shmoys and Tardos [65] construct a bipartite graph where the
vertices on one side represent the jobs, and the vertices on the other side represent the
machines. Edges in this graph correspond to machine-job pairs with xi,j > 0 and some
cost structure on the edges is defined. Subsequently, a minimum-cost integer matching
is found and each job is assigned to the machine that it is matched to in this matching.
This polynomial-time algorithm finds a solution with cost at most C and makespan at
most 2T , given that a solution of cost at most C and makespan at most T exists.

Note that the LP formulation (3.2) fits nicely in the more general LP formulation
given in (3.1). In fact, our iterative rounding procedure provides the same approximation
bound and hence generalizes the result of Shmoys and Tardos. In (3.2), there is exactly
one constraint per job-machine pair of the “capacity type” in (3.2b). Hence, when apply-
ing Theorem 4, that will follow in Section 3.3.3, the value of γ equals 1 and, as mentioned
above, each constraint in (3.2b) will be violated by at most γ times the maximum coeffi-
cient on the left-hand side, which is at most T . Hence, our algorithm also gives a solution
with cost at most C and makespan at most 2T , given that a solution of cost at most C
and makespan at most T exists. In fact, for this specific LP it is known that the iterative
rounding procedure described above gives the mentioned result, see, e.g., [51].

3.3.2 Iterative rounding procedure by Karp et al.

As mentioned earlier in this chapter, the rounding procedure that was newly developed
for the assignment of sporadic tasks to unrelated machines, is based on ideas from Karp
et al. [49]. They consider the problem of routing wires on a VLSI chip and present as
a tool a rounding algorithm for obtaining integral approximations to solutions of linear
equations. They give the following Rounding Theorem.

Theorem 3 ([49]). Let A be a real-valued r × s matrix, let x be a real-valued s-vector,
let b be a real-valued r-vector such that Ax = b, and let ∆ be a positive real number such
that in every column of A,

(i) the sum of the positive elements is ≤ ∆, and

(ii) the sum of the negative elements is ≥ −∆.

Then we can compute an integral s-vector x̂ such that

(i) for all i, 1 ≤ i ≤ s, either x̂i = bxic or x̂i = dxie (i.e., x̂ is a “rounded version” of
x), and

(ii) Ax̂ = b̂, where b̂i − bi < ∆ for 1 ≤ i ≤ r.

The approach is as follows. In each step of the algorithm, either one of the variables
is rounded up or down (if the number of constraints r is smaller than the number of
variables s), or a constraint is removed (if s ≤ r) and then the remaining program is
re-solved. When s ≤ r, constraint i will be picked to remove if it can be guaranteed
that Aiw < Aix + ∆ for all integral solutions w, such that, no matter how the final
rounding will be done, b̂i − bi < ∆. Hence, this constraint can be dropped from explicit
consideration.

36

3.3. ROUNDING PROCEDURE

Our own rounding procedure is quite similar to this one, but there is one important
difference. In the LP formulation given in (3.1) we distinguish between the constraints of
type (3.1a), assuring that each job is assigned to a machine, and the constraints of type
(3.1b), regarding some capacity per machine. If we would apply the rounding procedure
by Karp et al. to this LP, we would not be able to guarantee that the constraints in
(3.1a) are always satisfied exactly. Our new procedure will guarantee this, at a small cost
compared to the violation bound given by Karp et al. The next section describes our
algorithm and proves its performance.

3.3.3 Our rounding procedure

Our rounding procedure is also iterative and in each iteration h we compute an
extreme-point solution zh of a linear program LP h, where, as defined earlier, LP 0 equals
the LP relaxation of the original assignment problem (3.1) and for h ≥ 0 each LP h+1 is
obtained by fixing the value for some variable(s) or removing some constraint(s) of LP h.
Whenever during this process constraints have become redundant (e.g., because all their
variables have been already fixed), we remove them from the LP.

Given a feasible fractional solution zh, to obtain LP h+1 we first fix all variables which
are integral in zh, i.e., those variables are not allowed to be changed anymore in the
remainder of the procedure. Let s be the number of variables in LP h and let ra and rb
be the number of constraints of types (3.1a) and (3.1b), respectively. Let r = ra + rb.
To obtain LP h+1, we either fix and delete one or more variables (in case that s > r), or
delete a constraint while ensuring that in the final solution that constraint will not be

ALGORITHM 1: Iterative rounding procedure

Input: A set of m resources, a set of n items and a set Ω ⊆ {1, . . . ,m} × {1, . . . , n}
and for each (i, j) ∈ Ω and ` ∈ {1, . . . , θ} values ci,j ≥ 0, b`i ≥ 0 and a`i,j ≥ 0 and LP 0,
the LP relaxation of (3.1)
loop

Solve LP h consisting of s variables and r constraints and find extreme-point
solution zh.
if s > r then

zh has at least one integral entry.
fix all integral entries at their value, remove them from the program and update
right-hand side coefficients
remove all inequalities that have become redundant by fixing the integral values

else
find a resource i and ` ∈ {1, . . . , θ} such that maxw∈W

∑n
j=1 a

`
i,j(wi,j − zhi,j) ≤ γ,

where W = {0, 1}s
remove the inequality corresponding to the found i and `.

end if
The remaining linear program is LP h+1

end loop
return Integral solution ẑi,j for all (i, j) ∈ Ω such that c>ẑ ≤ c>z0 and (3.6) holds.

37

CHAPTER 3. ASSIGNING REAL-TIME TASKS TO UNRELATED MACHINES

violated too much. Later in this section we will explain how to identify these constraints
and bound the amount that these constraints can be violated in the final solution. Along
the way we ensure that the constraints of type (3.1a) are always satisfied exactly and that
the costs in the objective are not increased.

Note that if there is some variable zi,j that is fixed at value 1 and removed from the
program, for all i′ ∈ M\{i}, zi′,j will be set to 0 and also be removed from the program.
The constraint of type (3.1a) corresponding to this item j is then superfluous and will also
be removed. We also update the right-hand side of each constraint where zi,j appears,
taking into account that we decided to assign j to i which thus reduces the remaining
capacities of i, for each of the up to θ remaining constraints.

The following lemma is the key to show that this algorithm works correctly.

Lemma 7. Let LP h be the linear program that is solved in iteration h of the rounding
procedure, having s variables and r constraints. Let zh be an extreme-point solution to
this LP. If s > r, then zh has at least one integral entry. If s ≤ r, then there is a resource
i and some ` ∈ {1, . . . , θ} such that

max
w∈W

n∑
j=1

a`i,j(wi,j − zhi,j) ≤ γ,

where W is the integer solution space for all remaining variables, i.e., W = {0, 1}s.

Proof. Assume that the subproblem in iteration h (described by LP h) is defined as Az ≤
b. First assume that s > r. Then the null space of A is non-empty. Let z0 be a vector in
the null space of A. Since zh is an extreme-point solution to LP h it cannot be expressed
as the convex combination of two (or more) solutions to LP h (see also, e.g., [47]). If zh

would not have any integral entry then we could find a value δ > 0 such that zh+ δz0 and
zh−δz0 were both solutions to LP h and, in particular, zh would be a convex combination
of these two solutions. Therefore, zh must have at least one integral entry.

Now assume that s ≤ r. For this case, we show that there always exists a constraint
` of type (3.1b) such that maxw∈W{(Aw)` − (Az)`} ≤ γ. We show the statement by
contradiction. Assume that the statement is not true, that is, for each constraint ` of
type (3.1b) it holds that there exists a vector w ∈ W such that

(Aw)` − (Az)` > γ. (3.3)

In each previous round, if variables were removed from the program, also constraints
that had become redundant, were removed. Therefore, for all variables present in the
linear program in this round, the corresponding constraint of type (3.1a) is also still
present in the linear program (and this constraint is not present if all of its variables have
been removed from the program). It follows that

m∑
i=1

∑
j:zi,j

remaining

zi,j = ra. (3.4)

38

3.3. ROUNDING PROCEDURE

Define Λ as the set of constraints of type (3.1b) present in the current linear program.
For any π = (i, j), let Λπ denote the set of these constraints containing variable zπ. Then,

γ(r − ra) = γ rb
(3.3)
<
∑
`∈Λ

max
w∈W

((Aw)` − (Az)`)

a`,π≥0
=

∑
`∈Λ

((A1)` − (Az)`)

=
∑
`∈Λ

∑
π

a`,π(1− zπ)

=
∑
π

∑
`∈Λπ

a`,π(1− zπ)

≤
∑
π

γ(1− zπ)

= γs−
∑
π

γzπ

= γ(s− ra). (3.5)

The second inequality follows since each variable zπ appears in at most γ constraints of
type (3.1b) and since we assumed that a`,π ≤ 1 for all constraints ` ∈ Λ and all variables
π.

The chain of inequalities implies that γ(r − ra) < γ(s − ra) ⇒ r < s which is a
contradiction to being in the case that s ≤ r. Hence, we conclude that if s ≤ r, there
must be a constraint ` of type (3.1b), for which maxw∈W{(Aw)` − (Az)`} ≤ γ.

Given an extreme-point solution zh for a linear program LP h, we can find in polyno-
mial time a constraint which can be dropped, assuming that the number of variables is
bounded by the number of constraints (i.e., s ≤ r). For each of the polynomial number
of constraints, we try the most “pessimistic” vector w ∈ W = {0, 1}s. This vector w is
obtained by taking wi,j = 1 for all (i, j), since a`i,j ≥ 0 for all (i, j) and all ` ∈ {1, . . . , θ}.

Theorem 4. Let m,n, γ ∈ N. Let θ = n γ. Suppose we are given a set Ω ⊆ {1, . . . ,m}×
{1, . . . , n} of pairs (i, j) that we define a decision variable zi,j for. For each (i, j) ∈ Ω
and ` ∈ {1, . . . , θ} we are given values ci,j ≥ 0, b`i ≥ 0, and a`i,j ≥ 0, such that for each
(i, j) ∈ Ω, a`i,j > 0 for at most γ coefficients. Assume that the resulting linear program
LP 0, as given in (3.1), is feasible and denote by z∗ its optimal solution. Then there
is a polynomial-time algorithm computing an integral solution ẑ with c>ẑ ≤ c>z∗ which
satisfies ∑

i:(i,j)∈Ω

ẑi,j = 1 for j = 1, . . . , n; (3.6a)

∑
j:(i,j)∈Ω

a`i,j ẑi,j ≤ b`i + γ max
j
a`i,j for i = 1, . . . ,m, ` = 1, . . . , θ; (3.6b)

ẑi,j ∈ {0, 1} for all (i, j) ∈ Ω. (3.6c)

39

CHAPTER 3. ASSIGNING REAL-TIME TASKS TO UNRELATED MACHINES

Proof. Before applying the rounding procedure, we scale each linear constraint such that
maxj a

`
i,j = 1 for each combination of a resource i and a value ` ∈ {1, . . . , θ}.

We apply our iterative rounding procedure, where LP 0 equals the LP relaxation of
(3.1) and for each h ≥ 0, LP h+1 is obtained from LP h by either fixing the value of
some variable(s) or removing some constraint(s). Suppose we computed an extreme-point
solution zh for LP h. Then if s > r, according to Lemma 7, zh must have at least one
integral value. Those variables that have an integer value in zh are fixed at these values
and the variables are removed from the program. If a variable zi,j is fixed at value 1,
then for all i′ ∈ M\{i}, the variables zi′,j will be fixed at value 0 and be removed and
the constraint of type (3.1a) corresponding to j will also be removed. Also the right-
hand side of each constraint of type (3.1b) where zi,j appears will be updated, considering
that assigning item j to resource i used a`i,j of the capacity in constraint `. Note that
the optimal objective value of the resulting linear program LP h+1 is not larger than the
optimal objective in LP h since zh induces a solution to LP h+1 with the same objective
value as zh gives in LP h.

If s ≤ r, we know by Lemma 7 that a constraint ` exists such that

max
w∈W
{(Aw)` − (Az)`} ≤ γ (3.7)

and it can be found in polynomial time. To this end, we check for each resource i whether∑
j(1− zi,j) ≤ γ. This is sufficient since all a`i,j ≥ 0 and the maximum value any variable

zi,j can take is 1. (In fact, it is even true that if the latter condition is satisfied all
constraints of a given resource can be removed.) Since the removed constraint satisfies
(3.7), we know that whatever value the variables in this constraint will get in the final
solution, the additive error in the right-hand side of this constraint will be at most γ,
assuming that all a`i,j ≤ 1. Note that removing constraints cannot increase the costs of
the final solution. At the end we scale all constraints back to their original values. Thus,
the resulting solution satisfies (3.6b).

Finally, we know that in each iteration either of the two cases of Lemma 7 applies
and thus after a polynomial number of iterations either all constraints or all variables are
removed and we are done.

3.4 Arbitrary number of machines

In this section we present an 8 + 2
√

6 ≈ 12.9-approximation test for assigning tasks to
unrelated machines and we show that the problem is NP -hard to approximate to within
a ratio of 2− ε for any ε > 0.

3.4.1 Approximate demand bound function

As indicated earlier, the demand bound function gives a sufficient and necessary condition
for feasibility of a task system on a single processor [21] (see also Proposition 2 in Sec-
tion 1.2.1). It leads to an exponential-time test, however. This has led to the development
of approximate demand bound functions.

40

3.4. ARBITRARY NUMBER OF MACHINES

Albers and Slomka [2] propose an approximate demand bound function that after a
constant number of evaluations of the dbf, approximates it by a linear function. Starting
the linear approximation already at t = dτ , the following approximate dbf is obtained.

dbf ∗(τ, t) =

{
0 if t < dτ ,(
t−dτ
pτ

+ 1
)
cτ otherwise.

This is a 2 approximation for the real demand bound function [29].
In the next subsection, we give an LP formulation that approximates the demand

bound function with a higher approximation ratio, which leads to the question why the
approximate dbf given here was not used. The answer to that question lies in the round-
ing procedure presented in Section 3.3.3. The linear inequalities that we use in our LP
formulation have the property that each task-machine combination appears in only two
constraints. Recall that the number of times each combination appears in constraints
of type (3.1b) has a direct influence on the bound on the violation of each of the con-
straints when applying the rounding procedure. Using the above approximate dbf of
Albers and Slomka in an LP formulation would yield up to n appearances of a task-
machine combination in the “capacity”-type constraints. Hence, this would yield a much
worse approximation ratio for the overall problem.

3.4.2 Constant-factor approximation test

Relaxed dbf constraints

We will formulate the problem of assigning tasks to unrelated machines as a linear pro-
gram, such that the tasks on each machine can be feasibly scheduled using the EDF-
scheduler. First, we derive a set of linear inequalities which are

- necessary, meaning that they are fulfilled by any feasible assignment,

- approximately sufficient, meaning that any integral assignment which (approxi-
mately) fulfills the constraints is feasible if the speed of the machine is increased by
some constant factor, and

- sparse, meaning that each variable occurs in only two capacity constraints.

For each pair of a machine i and a task τ , such that ui,τ ≤ 1 and ci,τ ≤ dτ , we introduce
a variable yi,τ modeling to assign τ to machine i. Note that for pairs (i, τ) that do not
satisfy these conditions we do not need a variable yi,τ since it will be infeasible to assign
such a τ to machine i. The first constraints are utilization bounds on all tasks assigned
to the same machine i. We demand that∑

τ∈T

ui,τyi,τ ≤ 1 ∀i ∈M. (3.8)

Secondly, we require that for all tasks with their deadline in the interval (2k−1, 2k], the
sum of their execution time is at most 2k. This gives∑

τ∈T :dτ∈(2k−1,2k]

ci,τyi,τ ≤ 2k ∀i ∈M, ∀k ∈ N. (3.9)

41

CHAPTER 3. ASSIGNING REAL-TIME TASKS TO UNRELATED MACHINES

We call these conditions the relaxed dbf constraints. It is clear that these constraints
have to be fulfilled by any feasible task assignment. Since they are linear, they can be
used in an LP relaxation for the problem. Their sparsity gives the potential to use the
rounding procedure from Section 3.3 to obtain an integral solution that violates the relaxed
dbf constraints only by a constant factor. The following lemma shows that—even when
violated up to a constant factor–the presented constraints are approximately sufficient.

Lemma 8. Let T be an assignment for the task system T such that, for all machines i,∑
τ∈Ti ui,τ ≤ β and

∑
τ∈Ti:dτ∈(2k−1,2k] ci,τ ≤ β 2k. Then dbfT ,i(t) ≤ 6βt for all t ≥ 0 and T

is a feasible task assignment under a speedup factor of 6β.

Proof. Let q ∈ N and t := 2q. Consider an assignment T of the tasks in T to the machines
in M . For any machine i ∈M , we bound dbfi(t) := dbfT ,i(t) by

dbfi(t) =
∑

τ∈Ti: dτ≤t

⌊
t+ pτ − dτ

pτ

⌋
ci,τ

≤
∑

τ∈Ti: dτ≤t

(
t
ci,τ
pτ

+ ci,τ

)
≤ t

∑
τ∈Ti

ci,τ
pτ

+
∑

τ∈Ti: dτ≤t

ci,τ

= t
∑
τ∈Ti

ui,τ +

log2(t)∑
k=0

∑
τ∈Ti: dτ∈(2k−1,2k]

ci,τ

≤ βt+

q∑
k=0

β 2k

≤ βt+ β 2q+1

= βt+ 2βt = 3βt.

Hence, for any machine i and for arbitrary t we get that dbfi(t) ≤ dbfi(2
dlog2 te) ≤

3β 2dlog2 te ≤ 6βt. This implies that T is a feasible assignment for scheduling the tasks
in T to the set of unrelated machines whenever the machines receive a speedup factor of
6β.

The approximation algorithm

Let ρ > 1. We define the function r(x) := ρdlogρ xe. Assume we are given an instance of
our problem. Let dmax := maxτ∈T dτ and define the set Dρ := {ρ0, ρ1, . . . , r(dmax)}. We
now formulate the following linear program, denoted by Ass-LP, where the deadlines are
rounded up to the nearest power of ρ rather than to the nearest power of 2 (as implicitly

42

3.4. ARBITRARY NUMBER OF MACHINES

done in the relaxed dbf constraints given earlier).∑
i∈M

yi,τ = 1 ∀τ ∈ T ; (3.10a)∑
τ∈T

ui,τyi,τ ≤ 1 ∀i ∈M ; (3.10b)∑
τ∈T : r(dτ)=D

ci,τyi,τ ≤ D ∀D ∈ Dρ, ∀i ∈M ; (3.10c)

yi,τ ≥ 0 ∀τ ∈ T , ∀i ∈M : ui,τ ≤ 1 ∧ ci,τ ≤ dτ . (3.10d)

If Ass-LP is infeasible, then there can be no feasible (integral) task assignment. Now
assume that it is feasible and we have computed a feasible solution y∗. For each machine
i and deadline D ∈ Dρ we extract a value

Ui,D :=
∑

τ∈T : r(dτ)=D

ci,τy
∗
i,τ .

Based on these values, we define a strengthened variation of Ass-LP, denoted by SAss-LP
in the sequel. We obtain the latter by replacing the constraints (3.10c) by the following
set of constraints: ∑

τ∈T : r(dτ)=D

ci,τyi,τ ≤ Ui,D ∀D ∈ Dρ, ∀i ∈M. (3.10c’)

Clearly if y∗ is a feasible solution for Ass-LP, it is also a feasible solution for SAss-
LP and if SAss-LP is infeasible, then no feasible task assignment exists. We now round
y∗ to an integral solution which approximately satisfies SAss-LP by using the rounding
procedure presented in Section 3.3. Note that each machine-task combination appears
in one constraint of type (3.10b) and in one of type (3.10c’). Hence, when applying
Theorem 4, we have that γ = 2. Therefore, applying the rounding procedure from
Theorem 4 gives a task assignment ŷ that satisfies constraints (3.10a) and (3.10d) and
the following two inequalities∑

τ∈T

ui,τ ŷi,τ ≤ 3 ∀i ∈M ; (3.11)∑
τ∈T : r(dτ)=D

ci,τ ŷi,τ ≤ Ui,D + 2D ∀D ∈ Dρ, ∀i ∈M. (3.12)

Observe that Ui,D ≤ D for all D ∈ Dρ and all machines i, and hence the vector ŷ
violates the relaxed dbf constraints by at most a factor of β = 3. Hence, Lemma 8 directly
implies that the task assignment given by the vector ŷ is feasible with a speedup of 18 if
we choose ρ = 2. However, using the definition of Ui,D and a more careful calculation, we
can bound the needed speedup even further.

Lemma 9. If we choose ρ = 1 +
√

6/3, the task assignment implied by the variables ŷ is
feasible if the machines run at speed 8 + 2

√
6.

43

CHAPTER 3. ASSIGNING REAL-TIME TASKS TO UNRELATED MACHINES

Proof. Let T denote the assignment implied by the integral variables ŷ. Correspondingly,
for all i, Ti denotes the set of tasks that are assigned to machine i, that is Ti = {τ ∈ T :
ŷi,τ = 1}. We show that for the task assignment implied by ŷ, dbfT ,i(t) ≤ (8 + 2

√
6)t for

all t and any machine i, if we choose ρ = 1 +
√

6/3:

dbfT ,i(t) =
∑

τ∈Ti: dτ≤t

⌊
t+ pτ − dτ

pτ

⌋
ci,τ

≤
∑

τ∈Ti: r(dτ)≤r(t)

(
t
ci,τ
pτ

+ ci,τ

)
≤ t
∑
τ∈T

ci,τ
pτ

ŷi,τ +
∑

τ∈T : r(dτ)≤r(t)

ci,τ ŷi,τ

= t
∑
τ∈T

ui,τ ŷi,τ +

logρ(r(t))∑
k=0

∑
τ∈T : r(dτ)=ρk

ci,τ ŷi,τ

(3.11)&(3.12)

≤ 3t+

logρ(r(t))∑
k=0

(
Ui,ρk + 2ρk

)
≤ 3t+ ρlogρ(r(t)) + 2

logρ(r(t))∑
k=0

ρk

= 3t+ r(t) + 2
ρlogρ(r(t))+1 − 1

ρ− 1

≤ 3t+ r(t) + 2ρ
r(t)

ρ− 1

≤ t(3 + ρ+ 2
ρ2

ρ− 1
) =

(
8 + 2

√
6
)
t.

The last inequality follows since r(t) ≤ ρt, whereas the last equality follows by optimiza-
tion of the value of ρ, i.e., by setting ρ := 1 +

√
6/3.

Theorem 5. There is a (8 + 2
√

6)-approximation test for the problem of assigning tasks
to unrelated machines.

Proof. We solve the linear program Ass-LP and if feasible, we formulate the program SAss-
LP given by (3.10a), (3.10b), (3.10c’) and (3.10d). We then apply Theorem 4 to obtain
the integral vector ŷ, noting that γ = 2. The result follows from choosing ρ = 1 +

√
6/3

and applying Lemma 9.

3.4.3 Hardness result

Finally, we show that it is NP -hard to decide whether a task system T has an assignment
which is feasible on m unrelated machines, even with a speedup factor of 2 − ε, for any
ε > 0; the proof follows the lines of the (3

2
− ε)-hardness result for makespan minimization

in [53]. We reduce from the 3-Dimensional Matching problem which is known to be
NP -complete [53] and is defined below.

44

3.4. ARBITRARY NUMBER OF MACHINES

Instance of 3-Dimensional Matching: Given are three disjoint sets, consisting of
n elements each: E = {e1, e2, . . . , en}, G = {g1, g2, . . . , gn} and H = {h1, h2, . . . , hn}.
Also, given is a family F = {F1, F2, . . . , Fm} of m ≥ n triples such that each triple
contains exactly one element from the set E, one from G, and one from H, that is,
|Fi ∩ E| = |Fi ∩G| = |Fi ∩H| = 1 for all i ∈ {1, . . . ,m} .
Question: Does F contain a 3-dimensional matching, i.e., a subfamily F ′ ⊆ F for which
|F ′| = n and

⋃
Fi∈F ′ Fi = E ∪G ∪H ?

Let ε > 0. Consider an instance I of 3-Dimensional Matching. We create an
instance (task system) T for sporadic real-time scheduling on unrelated machines in the
following way:

- Define a large constant M := 2/ε.

- Associate a machine i with each triple Fi, yielding m machines.

- Let F (ej) ⊆ F be the set of triples containing element ej ∈ E. We will slightly
abuse notation and also use F (ej) to refer to the set of machines corresponding to
the triples in F (ej). Further, let f(ej) := |F (ej)|. Note that

∑
ej∈E f(ej) = m.

- For each element gk ∈ G, create one task τk such that dτk = 1 and pτk =∞. Further,
ci,τk = 1 if gk ∈ Fi, and ci,τk = 2, otherwise. We refer to these tasks as being type I
tasks. There will be n tasks of type I.

- For each element hl ∈ H, create one task τl such that dτl = M and pτl = ∞.
Further, ci,τl = M − 1 if hl ∈ Fi, and ci,τl = 2M , otherwise. We refer to these tasks
as being type II tasks. There will be n tasks of type II.

- For each element ej ∈ E, create f(ej)− 1 dummy tasks dum(j1), . . . , dum(jf(ej)−1)
which have a deadline and period equal to 1. Each dummy task dum(jq) has ci,jq = 1
if i ∈ F (ej), and ci,jq = 2, otherwise. Note that in total there will be m− n dummy
tasks.

In Lemmas 10 and 11 we show that the reduction from 3-Dimensional Matching
is valid.

Lemma 10. If there exists a 3-dimensional matching for I, then there exists a feasible
assignment for T .

Proof. Let F ∗ ⊆ F be the triples in the 3-dimensional matching. For all triples Fi =
{ej, gk, hl} ∈ F ∗, schedule tasks τk and τl on machine i. Note that machine i can process
the tasks assigned to it. Also, all tasks corresponding to elements in G and H have been
scheduled. As the element ej is only covered by one triple in F ∗, it follows that there are
f(ej)− 1 machines remaining in F (ej) which are not assigned any tasks yet. Assign the
f(ej)−1 dummy tasks dum(j1), . . . , dum(jf(ej)−1) to these machines. Note that a machine
in F (ej) can process exactly one dummy task corresponding to the element ej.

Before giving Lemma 11, we first need to show some propositions about the elements
in the created scheduling instance T .

Proposition 4. For any ρ < 2, no task τk corresponding to an element gk ∈ G can be
scheduled on a machine i if gk /∈ Fi, even under a speedup of ρ.

45

CHAPTER 3. ASSIGNING REAL-TIME TASKS TO UNRELATED MACHINES

Proposition 5. For any ρ < 2, no task τl corresponding to an element hl ∈ H can be
scheduled on a machine i if hl /∈ Fi, even under a speedup of ρ.

Proposition 6. For any ρ < 2, no dummy task dum(jq) corresponding to an element
ej ∈ E can be scheduled on a machine i if i /∈ F (ej), even under a speedup of ρ.

Proof. We argue for Proposition 4. Propositions 5 and 6 follow similarly. The proof is
by contradiction; let a task τk corresponding to an element gk ∈ G be scheduled on a
machine i such that gk /∈ Fi. Then ci,τk = 2. At time dτk = 1 the first job of task τk needs
to be completed and hence a speedup of 2 is required.

Proposition 7. For any ρ < 2− ε/2, no dummy task dum(jq) can be scheduled together
with another task on the same machine, even under a speedup of ρ.

Proof. We argue by contradiction. We consider three cases:

- Suppose that two dummy tasks were scheduled on the same machine. Both dummies
would need to finish their first job by their first deadline which is at time 1. Their
accumulated processing requirement to the machine would be at least 2 and hence
a speedup of at least 2 would be required.

- Suppose a dummy task and a task of type I were scheduled on the same machine.
We reason analogously to the previous case.

- Suppose a dummy task and a task of type II were scheduled on the same machine.
Consider time instant M , where the dummy task should have finished M jobs,
whereas the other task should have finished its first job. The accumulated processing
requirement for the machine by time M would be at least M ·1+(M−1) = 2M−1.
Hence, a speedup of 2M−1

M
= 2 − 1

M
= 2 − ε/2 > ρ would be required, by our

definition of M .

Lemma 11. For any ρ < 2− ε/2, if there exists a feasible assignment for T with speedup
ρ, then there exists a 3-dimensional matching for I.

Proof. Proposition 7 yields that each dummy task gets its own machine, even under a
speedup of ρ < 2 − ε/2. Therefore, and by Proposition 6, for all ej ∈ E, there remains
in each group F (ej) one machine available to process tasks of type I or II, even under a
speedup of ρ < 2. In total there are m− (m− n) = n machines left which do not process
a dummy task. There are 2n tasks of type I and II. Since a single machine cannot process
two tasks of the same type under a speedup less than 2, it follows that each machine which
does not process a dummy task, processes one task of type I and one task of type II. Let
ij ∈ F (ej) be the machine which does not process a dummy task but instead one task of
type I and one task of type II. By Propositions 4 and 5, the only way for machine ij to
be feasible, even under a speedup of ρ < 2, is when it processes the tasks corresponding
to gk and hl where Fij = {ej, gk, hl}. It follows that the machines ij, for j = 1, . . . ,m,
define a 3-dimensional matching for I.

Theorem 6. Let ε > 0. There is no (2−ε)-approximation test for the problem of assigning
tasks to unrelated machines, unless P = NP .

46

3.5. CONSTANT NUMBER OF MACHINES

Proof. Theorem 6 follows by Lemmas 10 and 11, and by the 3-Dimensional Matching
problem being NP -complete.

We remark that our hardness result is different from the one by Andersson and To-
var [4]. They show that any algorithm needs a speedup factor of at least 2− ε for finding
a feasible partition on m related parallel machines for a given task system with implicit
deadlines in case the task system is feasible when migration is allowed.

3.5 Constant number of machines

Assuming that the number of machines m is a constant, in this section we present a
polynomial-time dynamic-programming (DP) algorithm that gives a (1+ε)-approximation
test for any ε > 0.

3.5.1 Approximate demand bound function

The dynamic program works in phases. During phase ϕ, ϕ = 1, 2, . . . , n, the DP computes
a possible assignment of task τϕ, using assignments of the first ϕ − 1 tasks. In order to
obtain a DP table of bounded size, we introduce an approximation of the demand bound
function such that the contribution of each task can be derived by using only a constant
number of values.

By scaling all parameters, we assume that dmin = minτ∈T dτ = 1. Let ε > 0, and
assume without loss of generality that ε < 1/2. Let L be the minimum integer that
satisfies 1 ≤ (1 + ε)L−1ε2. We define the approximate demand bound function dbf ∗ as

dbf ∗i (τ, t) :=

{⌊
t+pτ−dτ

pτ

⌋
ci,τ if t < (1 + ε)Ldτ ,

ci,τ
pτ
t otherwise.

Given a task assignment T of the tasks in T to the machines, we define

dbf ∗T ,i(t) :=
∑
τ∈Ti

dbf ∗i (τ, t) ∀t > 0.

We write dbf ∗i (t) instead of dbf ∗T ,i(t) in case the assignment T is clear from the context.

The key observation is that for computing the function dbf ∗i (τ, t) for some task τ , it
suffices to know the utilization of the task τ and the values of the demand bound function
dbfi(τ, t) for t ∈

[
dτ , (1 + ε)Ldτ

)
. Exploiting the properties of the functions dbfT ,i(t) and

dbf ∗T ,i(t) yields that dbf ∗T ,i is a 1 + ε approximation of the “real” demand bound function
dbfT ,i.

Lemma 12. Given an assignment T and a constant ε < 1/2. Then, for all machines i,

(i) if dbf ∗T ,i((1 + ε)k) ≤ α(1 + ε)k for all k ∈ N≥0, then dbfT ,i(t) ≤ (1 + ε)2αt for all t ≥ 0;

(ii) if dbfT ,i(s) ≤ s for all s ≥ 0, then dbf ∗T ,i(t) ≤ (1 + ε)t for all t ≥ 0.

47

CHAPTER 3. ASSIGNING REAL-TIME TASKS TO UNRELATED MACHINES

Proof. For the first claim, we first show that a slightly stronger statement holds for all
powers of 1 + ε. We show that if for all k ∈ N≥0 it holds that dbf ∗T ,i((1 + ε)k) ≤ α(1 + ε)k,
then for all k ∈ N≥0 it holds that

dbfT ,i((1 + ε)k) ≤ (1 + ε)α(1 + ε)k. (3.13)

Subsequently, we show that for all t it holds that dbfT ,i(t) ≤ (1 + ε)2αt.

Inequality (3.13) trivially holds for all k with (1+ε)k ≤ dmin, as then dbfi(τ, (1+ε)k) = 0
for all tasks τ ∈ T . Assume that (3.13) holds for all k′ ∈ N≥0 with k′ < k, we show that
it then also holds for k. Let t := (1 + ε)k. Consider some partition of the tasks T =
{T1, . . . , Tm}. For some time t, let T early

i := {τ ∈ Ti|(1 + ε)Ldτ < t} and T late
i := Ti\T early

i .
The tasks in T early

i are tasks τ that have their relative deadline so early that time t is
larger than (1 + ε)Ldτ . These are the tasks for which dbf ∗i (τ, t) differs from dbfi(τ, t). By
definition of dbf ∗T ,i it follows that

dbfT ,i(t) ≤
∑
τ∈Ti

dbf ∗i (τ, t) +
∑

τ∈T early
i

ci,τ = dbf ∗T ,i(t) +
∑

τ∈T early
i

ci,τ . (3.14)

Further, since for τ ∈ T early
i it holds that dτ <

t
(1+ε)L

,

∑
τ∈T early

i

ci,τ ≤
∑

τ∈T early
i

⌊
t

(1+ε)L
+ pτ − dτ
pτ

⌋
ci,τ

=
∑

τ∈T early
i

dbfi

(
τ,

t

(1 + ε)L

)
≤ dbfT ,i

(
t

(1 + ε)L

)
(∗)
≤ αt

(1 + ε)L−1
≤ ε2αt ≤ εαt. (3.15)

The inequality at (∗) is due to the induction hypothesis; we assumed (3.13) to be correct

for all k′ < k and
(

t
(1+ε)L

)
= (1 + ε)k

′
for k′ = k − L. (Note that although this was only

shown for k′ ∈ N≥0, it holds also if k′ = k − L < 0, since then (1 + ε)k
′ ≤ 1 = dmin.) The

penultimate inequality follows from 1
(1+ε)L−1 < ε2. Inequalities (3.14) and (3.15) imply

that dbfT ,i(t) ≤ dbf ∗T ,i(t) + εαt ≤ (1 + ε)αt. For all values of t which are not powers of
1 + ε, we observe that the function dbfT ,i(t) is non-decreasing and thus if (3.13) holds for
all k ∈ N≥0, then (i) holds for all t. That is, for values t that are not powers of 1 + ε we
need an additional factor of 1 + ε.

48

3.5. CONSTANT NUMBER OF MACHINES

For the second claim, no induction is necessary and we calculate that

dbf ∗T ,i(t) <
∑

τ∈T late
i

dbfi(τ, t) +
∑

τ∈T early
i

t− dτ + t
(1+ε)L

pτ
ci,τ

≤
∑

τ∈T late
i

dbfi(τ, t) +
∑

τ∈T early
i

(⌊
t− dτ + pτ

pτ

⌋
+

t

(1 + ε)Lpτ

)
ci,τ

≤ dbfT ,i(t) +
∑

τ∈T early
i

(ε2ui,τ)t

= dbfT ,i(t) + ε2dbf ∗
T early
i ,i

(t)

≤ dbfT ,i(t) + ε2dbf ∗T ,i(t).

Therefore, (1− ε2)dbf ∗T ,i(t) ≤ dbfT ,i(t), i.e., dbf ∗T ,i(t) ≤ (1 + ε)dbfT ,i(t), for any ε < 1/2.

Note that, in contrast to other approximations of the demand bound function consid-
ered in the literature (e.g., in [2]), in Lemma 12 we do not use an analysis task by task,
and we do not bound the ratio dbf(τ, t)/dbf ∗(τ, t). In fact, the latter can be unbounded:
consider for example a task τ with cτ = 1, dτ = 1, and pτ = M for a very large value M ,
then dbf(τ, t) ≥ 1 for all t ≥ 1 whereas dbf ∗(τ, (1 + ε)L) = (1 + ε)L/M .

Observe that Lemma 12 implies that at the cost of a (1 + ε)2 speedup it suffices
to check whether the condition dbf ∗T ,i(t) ≤ t is (approximately) satisfied at powers of
1 + ε. Therefore, the DP may characterize each task τ only by its utilization and the
constantly many values dbf ∗i (τ, (1 + ε)k) (namely those values for integers k such that
dτ ≤ (1 + ε)k < (1 + ε)Ldτ), for each machine i.

3.5.2 The dynamic program

For each task τ and each machine i, we introduce a vector v(i, τ) that stores the (nor-
malized) approximate demand bound function. For all ` ∈ N≥0 position v(i, τ)` is defined
as

v(i, τ)` :=
dbf ∗i (τ, (1 + ε)`)

(1 + ε)`
.

Recall that for any vector a the infinity norm ‖a‖∞ = maxi {ai}. The following proposi-
tion follows by definition.

Proposition 8. Consider an assignment T . For all machines i ∈ M , it holds that∥∥∑
τ∈Ti v(i, τ)

∥∥
∞ ≤ α if and only if dbf ∗T ,i((1 + ε)`) ≤ α(1 + ε)`, for all ` ∈ N≥0.

We present a dynamic programming algorithm which either (i) asserts that there is no
feasible assignment of the tasks to the machines by showing that there is no assignment
T of tasks to machines such that

∥∥∑
τ∈Ti v(i, τ)

∥∥
∞ ≤ 1 + ε for each machine i, or (ii) finds

an assignment T such that
∥∥∑

τ∈Ti v(i, τ)
∥∥
∞ ≤ 1 +O(ε) for each machine i. In the latter

case, Lemma 12 and the above proposition imply an approximation test for the problem

49

CHAPTER 3. ASSIGNING REAL-TIME TASKS TO UNRELATED MACHINES

of assigning tasks to a constant number of unrelated machines. The test either concludes
that the task system is not feasible (without speedup) or provides an assignment which
is feasible in case the machines have a speedup factor of 1 +O(ε).

In order to obtain these results, we construct a DP table where each entry represents
the subset of the tasks already scheduled, and for each machine information on the load
on that machine due to different subsets of the already scheduled tasks. Then, each entry
stores either “YES” or “NO”, where an entry stores “YES” if there exists an assignment
of the tasks corresponding to this entry yielding the loads for all machines specified by
the other parameters for this entry. In the remainder of this section we will give the
details on the entries of the DP table and how this table is filled. Before doing that, some
preprocessing is needed in order to obtain a DP table of bounded size.

Preprocessing

Assume without loss of generality that the tasks τ1, . . . , τn are ordered such that dτϕ ≤
dτϕ+1 for each ϕ ∈ [n − 1]. We partition the tasks into groups Gk := {τ |(1 + ε)k ≤ dτ <
(1 + ε)k+1} for each k ∈ N≥0. The proposed DP works in phases; one phase for each task.
The key idea is that when trying to assign task τ ∈ Gk, the DP needs only a constant
number of values from the assignment of the previously considered tasks.

Define L(k) := min{k, L} (such that k − L(k) ≥ 0). For all tasks having a deadline at
most a factor (1 + ε)L smaller than dτϕ , the DP needs to know how much the vectors of
tasks from each group Gk′ (with k − L(k) < k′ ≤ k) contribute towards dimension ` on
machine i, for k ≤ ` ≤ k+L. For the same groups Gk′ the DP needs to know the summed
utilization per machine i over group Gk′ . For the remaining groups Gk′ with k′ ≤ k−L(k)

(i.e., the tasks that have a deadline at least a factor (1 + ε)L smaller than dτϕ) for each
machine i, only the aggregated utilization over all groups is needed. Summarizing, we
need, for all i,

- the sum
∑

τ ∈ Ti ∩

k−L(k)⋃
k′=0

Gk′

ui,τ ,

- the sum
∑

τ∈Ti∩Gk′

ui,τ , for all k′ s.t. k − L(k) < k′ ≤ k, and

- the sum
∑

τ∈Ti∩Gk′

v(i, τ)`, for all ` s.t. k ≤ ` ≤ k+L and all k′ s.t. `−L(`) < k′ ≤ k.

Ideally, we would like the DP to store all possible combinations of the above quantities that
can result from assigning the tasks of previous iterations. Then, the DP could compute the
values for the next iteration by taking each combination of values from the last iteration
and additionally schedule task τ to one of the machines. Unfortunately, the number of
possible combinations of the above values is not polynomially bounded, as already the
input values (which then imply the utilization, etc.) might be in an exponential range.
In order to bound them, we round entries of the vectors v(i, τ). The DP then performs
the described procedure with the rounded vectors. This will result in a polynomial-time
procedure.

50

3.5. CONSTANT NUMBER OF MACHINES

Consider a group Gk, for k ∈ N≥0. For all i and τ ∈ Gk, define v′(i, τ)` := ε
n

⌊
n
ε
v(i, τ)`

⌋
for each ` ≤ k + L, and v′(i, τ)` := u′i,τ := ε

n

⌊
n
ε
ui,τ
⌋

for each ` > k + L. The following
lemma bounds the rounding error.

Lemma 13. Let i be a machine and Ti be a set of tasks. For all ` ∈ N≥0, it holds that∑
τ∈Ti v

′(i, τ)` ≤
∑

τ∈Ti v(i, τ)` ≤
∑

τ∈Ti v
′(i, τ)` + ε.

Proof. Consider a task τ ∈ Ti. Define k(τ) such that τ ∈ Gk(τ). We show for each
τ ∈ Ti and the corresponding k(τ) that v′(i, τ)` ≤ v(i, τ)` ≤ v′(i, τ)`+ε/n. The statement
trivially follows. The case where ` ≤ k(τ)+L follows trivially from the relation bxc ≤ x <
bxc+ 1 which holds for any x. Therefore, consider the case ` > k(τ) +L. Since τ ∈ Gk(τ),
it follows that dτ < (1 + ε)k(τ)+1. Hence, dbf ∗i (τ, (1 + ε)`) =

ci,τ
pτ

(1 + ε)` = ui,τ (1 + ε)`

which yields v(i, τ)` = ui,τ . The result for the case ` > k(τ) + L now also follows from
bxc ≤ x < bxc+ 1.

Note that each rounded vector v′(i, τ) can be described with only constantly many
pieces of information. When working with the rounded vectors, for the quantities men-
tioned above, there are only a polynomial number of combinations (assuming that m is a
constant). In particular, the dynamic-programming table will be of polynomial size. In
the next subsection we describe what the entries of the DP will be.

Entries of the DP table

The dynamic-programming table consists of entries of the form (ϕ,µ,ν, ξ) where

- ϕ ∈ {0, . . . , n} denotes the phase of the DP. In phase ϕ, task τϕ is being assigned
to a machine. Let k be an integer such that τϕ ∈ Gk;

- in phase ϕ, for each machine i, the value µ
(ϕ)
i is of the form q ε

n
for some integer q,

denoting the rounded aggregated utilization for machine i due to the tasks having
a deadline at least a factor of (1 + ε)L smaller with respect to the deadline of task
τϕ;

- in phase ϕ, for each machine i and each k′ with k − L(k) < k′ ≤ k, the value ν
(ϕ)
i,k′

is of the form q ε
n

for some integer q, denoting the rounded utilization of tasks in
Gk′ ∩ Ti;

- in phase ϕ, for each triple (i, k′, k′′) ∈ Cϕ with Cϕ = {(i, k′, k′′) : 1 ≤ i ≤ m; k ≤
k′′ < k + L and k′′ − L(k′′) < k′ ≤ k}, the value ξ

(ϕ)
i,k′,k′′ is of the form q ε

n
for

some integer q, denoting the quantity
∑

τ∈Ti∩Gk′
v′(i, τ)k′′ , expressing how much the

vectors of the tasks in Gk′ on machine i contribute towards dimension k′′.

We require the following set of conditions to be satisfied for a DP cell (ϕ,µ,ν, ξ) to
exist; for each machine i ∈M and all k′′ ∈ {k, . . . , k + L}

µi +
k′′−L(k′′)∑

k′=k−L(k)+1

νi,k′ +
k∑

k′=k′′−L(k′′)+1

ξi,k′,k′′ ≤ 1 + ε. (3.16)

This condition implies that, for all parameters, µi, νi,k′ , ξi,k′,k′′ ≤ 1 + ε.

51

CHAPTER 3. ASSIGNING REAL-TIME TASKS TO UNRELATED MACHINES

Proposition 9. The number of DP cells is bounded by n((1 + ε)n/ε)2mL2
.

Proof. The values µi, νi,k′ and ξi,k′,k′′ are all stored with accuracy ε
n

and hence each of
those can take (1 + ε)n/ε many different values. Further, i can take m different values
whereas k′ and k′′ can take L different values if the DP is in a certain phase ϕ. Further,
there are at most n phases for the DP. It follows that the number of cells of the DP table
is no more than

n ·
(

(1 + ε)n

ε

)m
·
(

(1 + ε)n

ε

)mL
·
(

(1 + ε)n

ε

)mL2

≤ n

(
(1 + ε)n

ε

)2mL2

Each entry (ϕ,µ,ν, ξ) of the DP table either stores “YES” or “NO” depending on
whether or not there is an assignment of the tasks τ1, . . . , τϕ to the machines which yields
the quantities given by the vectors µ,ν and ξ.

Filling the DP table

We proceed by describing how to fill the DP table. First, initialize the table by assigning
a ‘YES’ entry to (0,0,0,0) and a ‘NO’ entry to any other entry with ϕ = 0. Assume that
for some ϕ, all entries of the form (ϕ− 1,µ(ϕ−1),ν(ϕ−1), ξ(ϕ−1)) have been computed. The
DP table is then iteratively extended to phase ϕ. Phase ϕ considers each combination of
assigning task τϕ to some machine i and a DP cell (ϕ − 1,µ(ϕ−1),ν(ϕ−1), ξ(ϕ−1)) with a

‘YES’ entry. Intuitively, the DP computes which values for µ(ϕ), ν(ϕ), and ξ(ϕ) are ob-
tained if it takes the task assignment encoded in the DP cell (ϕ− 1,µ(ϕ−1),ν(ϕ−1), ξ(ϕ−1))
and additionally schedules task τϕ to machine i.

Let tasks τϕ−1 and τϕ be in group Gh and Gk, respectively. Almost all entries of the
vectors remain equal when going to phase ϕ and hence we only list the values which differ
with respect to the entries from phase ϕ− 1. If h = k and task τϕ is assigned to machine

i, then ν
(ϕ)
i,k = ν

(ϕ−1)
i,k + u′i,τϕ , and ξ

(ϕ)
i,k,k′′ = ξ

(ϕ−1)
i,k,k′′ + v′(i, τϕ)k′′ for all k′′ ∈ {k, . . . , k + L}.

If h 6= k, w.l.o.g. we assume that h = k − 1 (e.g., by creating dummy tasks of
zero processing requirement to fill in-between groups that otherwise would be empty and
thus, non-existent). Then, µ

(ϕ)
g = µ

(ϕ−1)
g + ν

(ϕ−1)

g,k−L(k) for all machines g ∈ M ; as we have

moved up one group, tasks from group Gk−L(k) now have their deadline at least a factor
(1 + ε)L away from dτϕ and their utilizations are not stored separately anymore, but in a
aggregated way. For the tasks in groups Gk′ such that k−L(k) < k′ < k and all machines
g ∈ M we still store the utilizations per group and thus ν

(ϕ)
g,k′ = ν

(ϕ−1)
g,k′ . For group Gk we

also store the utilization for the machine i that it was assigned to, so ν
(ϕ)
i,k = u′i,τϕ and

ν
(ϕ)
g,k = 0 for all machines g 6= i. Since τϕ is assigned to machine i, ξ

(ϕ)
i,k,k′′ = v′(i, τϕ)k′′ for

all k′′ : k ≤ k′′ ≤ k +L; and for all machines g 6= i, ξ
(ϕ)
g,k,k′′ = 0 for all k′′ : k ≤ k′′ ≤ k +L.

Finally, ξ
(ϕ)
g,k′,k′′ = ξ

(ϕ−1)
g,k′,k′′ for all machines g ∈ M , all k′′ : k ≤ k′′ ≤ k + L and all

k′ : k′′ − L(k′′) < k′ < k.
Hereafter, the DP checks whether the computed values µ(ϕ), ν(ϕ) and ξ(ϕ) satisfy the

condition given in (3.16). If this is the case, then the corresponding DP cell
(ϕ,µ(ϕ),ν(ϕ), ξ(ϕ)) is filled with a ‘YES’ entry and we say that this DP cell extends the DP
cell (ϕ− 1,µ(ϕ−1),ν(ϕ−1), ξ(ϕ−1)). In case there does not exist a DP cell

52

3.5. CONSTANT NUMBER OF MACHINES

(ϕ − 1,µ(ϕ−1),ν(ϕ−1), ξ(ϕ−1)) which can be extended to the DP cell (ϕ,µ(ϕ),ν(ϕ), ξ(ϕ)),
the latter DP cell is filled with a ‘NO’ entry.

The DP table is filled inductively, phase by phase, until each cell in the DP table is
filled. In the next two lemmas we show for any machine i the equivalence between the
inequality

∥∥∑
τ∈Ti v

′(i, τ)
∥∥
∞ ≤ 1 + ε on the one hand, and condition (3.16) on the other

hand.

Lemma 14. For phase ϕ, if there exists a DP cell of the form (ϕ,µ(ϕ),ν(ϕ), ξ(ϕ)) with a
‘YES’ entry, then there exists a task assignment T of the first ϕ tasks to the machines,
such that for each i ∈M it holds that

∥∥∑
τ∈Ti v

′(i, τ)
∥∥
∞ ≤ 1 + ε.

Proof. Consider some phase ϕ and assume that the statement is correct for all phases
ϕ′ < ϕ. Let k be such that τϕ ∈ Gk. As no first job of any task in Gk has its deadline
before (1 + ε)k, it follows by induction that for all ` such that 0 ≤ ` < k it holds that∑

τ∈Ti v
′(i, τ)` ≤ 1 + ε. Next, we show the statement for phase ϕ and the corresponding

dimension k. Consider DP cell of the form (ϕ,µ(ϕ),ν(ϕ), ξ(ϕ)) with a ‘YES’ entry. We

denote by (3.16)(ϕ) the corresponding inequality given in (3.16) at phase ϕ of the DP,
that is, when task τϕ is being assigned to a machine. For all machines i it follows that,

∑
τ∈Ti

v′(i, τ)k =
k−L(k)∑
k′=0

∑
τ∈Ti∩Gk′

u′i,τ +
k∑

k′=k−L(k)+1

∑
τ∈Ti∩Gk′

v′(i, τ)k

= µ
(ϕ)
i +

k∑
k′=k−L(k)+1

ξ
(ϕ)
i,k′,k

(3.16)(ϕ)

≤ 1 + ε.

The last inequality follows by setting the parameter k′′ of (3.16)(ϕ) equal to k. Next,
consider the dimensions ` : k < ` ≤ k + L. Note that dτϕ < (1 + ε)k+1. Consequently,
every task in ∪kk′=0Gk′ has its first deadline before (1 + ε)k+1, that is, while being in phase
ϕ of the DP where τϕ ∈ Gk it follows that Gk′ = ∅ for all k′ > k. This insight is used in
the first equality below.

∑
τ∈Ti

v′(i, τ)` =
`−L(`)∑
k′=0

∑
τ∈Ti∩Gk′

u′i,τ +
k∑

k′=`−L(`)+1

∑
τ∈Ti∩Gk′

v′(i, τ)`

=

µ(ϕ)
i +

`−L(`)∑
k′=k−L(k)+1

ν
(ϕ)
i,k′

+
k∑

k′=`−L(`)+1

ξ
(ϕ)
i,k′,`

(3.16)(ϕ)

≤ 1 + ε.

The last inequality follows by setting the parameter k′′ of (3.16)(ϕ) equal to `. Finally,
the analysis for any dimension ` > k + L is equal to that of the dimension ` = k + L as
the contribution of each task to any dimension ` ≥ k + L will be approximated by its
utilization. Thus,

∥∥∑
τ∈Ti v

′(i, τ)
∥∥
∞ ≤ 1 + ε and the statement follows.

Lemma 15. For phase ϕ, there exists a DP cell of the form (ϕ,µ(ϕ),ν(ϕ), ξ(ϕ)) with a
‘YES’ entry, if there exists a task assignment T of the first ϕ tasks to the machines, such
that for each i ∈M it holds that

∥∥∑
τ∈Ti v

′(i, τ)
∥∥
∞ ≤ 1 + ε.

53

CHAPTER 3. ASSIGNING REAL-TIME TASKS TO UNRELATED MACHINES

Proof. Consider the assignment T (ϕ) where the first ϕ tasks are assigned to the machines

such that
∥∥∥∑

τ∈T (ϕ)
i

v′(i, τ)
∥∥∥
∞
≤ 1 + ε for all machines i ∈ M . Let τϕ ∈ Gk. Define the

following values for each machine i:

µ
(ϕ)
i :=

k−L(k)∑
k′=0

∑
τ∈T (ϕ)

i ∩Gk′

u′i,τ ;

ν
(ϕ)
i,k′ :=

∑
τ∈T (ϕ)

i ∩Gk′

u′i,τ for k′ ∈ {k − L(k), . . . , k};

ξ
(ϕ)
i,k′,k′′ :=

∑
τ∈T (ϕ)

i ∩Gk′

v′(i, τ)k′′ for k′′ ∈ {k, . . . , k + L}, for k′ ∈ {k′′ − L(k′′), . . . , k}.

First we need to show that the DP cell (ϕ,µ(ϕ),ν(ϕ), ξ(ϕ)) exists, that is, we need to

check whether inequality (3.16)(ϕ) holds. From the lemma statement, it is known that∑
τ∈Ti v

′(i, τ)` ≤ 1 + ε, for all `. Thus, in particular, this inequality also holds for all
dimensions k′′ ∈ {k, . . . , k + L}. Therefore, for each machine i and each dimension
k′′ ∈ {k, . . . , k + L} it holds that

µ
(ϕ)
i +

k′′−L(k′′)∑
k′=k−L(k)+1

ν
(ϕ)
i,k′ +

k∑
k′=k′′−L(k′′)+1

ξ
(ϕ)
i,k′,k′′

=
k′′−L(k′′)∑
k′=0

∑
τ∈Gk′

v′(i, τ)k′′ +
k∑

k′=k′′−L(k′′)+1

ξ
(ϕ)
i,k′,k′′

=
k′′−L(k′′)∑
k′=0

∑
τ∈Gk′

v′(i, τ)k′′ +
k∑

k′=k′′−L(k′′)+1

∑
τ∈Gk′

v′(i, τ)k′′

=
∑
τ∈T (ϕ)

i

v′(i, τ)k′′ ≤ 1 + ε.

Consequently, the DP cell (ϕ,µ(ϕ),ν(ϕ), ξ(ϕ)) exists. The DP cell (ϕ,µ(ϕ),ν(ϕ), ξ(ϕ)) triv-
ially extends the DP cell (ϕ − 1,µ(ϕ−1),ν(ϕ−1), ξ(ϕ−1)) by assigning task τϕ to machine i

if τϕ ∈ T (ϕ)
i . By induction it follows that the DP cell (ϕ,µ(ϕ),ν(ϕ), ξ(ϕ)) contains a ‘YES’

entry, for all ϕ ∈ {0, 1, . . . , n}.

A PTAS feasibility test

Combining Lemmas 12, 13, 14 and 15, and Proposition 8 yields a (1 + 7ε)-approximation
test, for any ε and a constant number of machines. The claim on the running time follows
from Proposition 9. If for a given ε > 0 we run the above procedure with ε′ := ε/7, rather
than with ε, we obtain a (1 + ε)-approximation test.

Theorem 7. For a constant number of machines and for any ε > 0 there exists a (1 + ε)-
approximation test, that runs in time polynomial in the number of tasks.

54

3.6. EPILOGUE

Proof. We show that for a constant number of unrelated machines, the algorithm given
above either concludes that the task system is infeasible, or returns an assignment of
tasks to machines that is feasible with a speedup factor of 1 + 7ε. The running time is
polynomial in n, given that m and ε are constants. First, we redefine ε = min{ε, 1/2}.

Suppose that there is a DP cell of the form (n,µ,ν, ξ) containing a ‘YES’ entry.
Due to Lemma 14 there is an assignment T of all tasks to the machines such that∥∥∑

τ∈Ti v
′(i, τ)

∥∥
∞ ≤ 1 + ε, for each machine i ∈ M . By Lemma 13 this implies that∥∥∑

τ∈Ti v(i, τ)
∥∥
∞ ≤ 1 + 2ε. Due to Proposition 8 this implies that dbf ∗T ,i((1 + ε)k) ≤

(1 + 2ε)(1 + ε)k for each k ∈ [n]. Finally, Lemma 12 implies that the computed task as-
signment is feasible if the machines run with speed (1 + ε)2(1 + 2ε) ≤ 1 + 7ε (as ε ≤ 1/2).

On the other hand, if all DP cells of the form (n,µ,ν, ξ) have a ‘NO’ entry, then, by
Lemma 15, for any task assignment T there must be a machine i with

∥∥∑
τ∈Ti v

′(i, τ)
∥∥
∞ >

1 + ε. By Lemma 13 this yields then that also
∥∥∑

τ∈Ti v(i, τ)
∥∥
∞ > 1 + ε. Proposition 8

yields that for this machine i there exists a time instant t which is a power of (1 + ε)
such that dbf ∗T ,i(t) > (1 + ε)t. Finally, (the negation of) Lemma 12 yields that there is a
time instant s for which dbfT ,i(s) > s. Since, for any partition T , there exist a machine i
and a time instant s such that T violates the feasibility condition, it follows that the task
system T is infeasible if the machines run at unit speed.

The claim that the running time is polynomial in n for given constant m and ε follows
from Proposition 9 and the fact that each entry of the table can be decided upon in
polynomial time. Herewith, note that L = O(log(1+ε)(1/ε

2)), which is constant if ε is
constant.

3.6 Epilogue

In this chapter we present the first results for assigning sporadic tasks with arbitrary
deadlines to unrelated parallel processors. Through the development of a new LP rounding
procedure and approximations of the demand bound function we found a 8 + 2

√
6 ≈

12.9-approximate feasibility test for an arbitrary number of machines. We hope that
future research might bring the approximation ratio down and close the gap between
12.9 and our lower bound of 2. One possible tool might be configuration LPs which are
often stronger than assignment LPs like the one that we use here (see, e.g., [5, 10, 69]).
Another interesting direction would be to obtain better approximations for the case that
the processors are unrelated but there are only a few types of processors (e.g., CPUs and
GPUs), as done in, e.g., [61, 62, 72].

Our rounding procedure is very general and can not only be applied to the problem
of assigning tasks to machines but for any assignment problem which allows for a sparse
linear program. It would be interesting to see other new applications for it. Additionally,
it would be interesting if a better rounding procedure can be given for large values of γ.

For a constant number of machines we give a polynomial-time approximation scheme.
While for scheduling jobs on unrelated machines, a PTAS is relatively easy to obtain once
one has the tools from Lenstra, Shmoys and Tardos [53] at hand, for assigning sporadic
tasks, much more sophisticated machinery was required.

55

Chapter 4

Real-time tasks on identical
machines

All results in this chapter appear in [9].

4.1 Introduction

We consider a setting with multiple machines and a task set that we want to partition
over the machines. As opposed to the previous chapter, the machines are now assumed
to be identical. We denote by m the number of machines. The problem of partitioning
a sporadic task set over m machines is a co-NP -hard problem [37] and hence we need
to find a good approximation algorithm. Recall that for a given parameter α ≥ 1, an
α-approximate feasibility test either returns a partition of the tasks into sets {Ti}1≤i≤m
such that each set Ti can be feasibly scheduled on a machine that runs at speed α, or
returns “infeasible” if no feasible partition of the tasks exists that can be scheduled on m
machines running at unit speed.

Recall that we call a family of feasibility tests a polynomial-time approximation scheme
(PTAS), if for any arbitrarily small constant ε > 0, there exists a (1 + ε)-approximate
feasibility test in this family with running time polynomial in n and m (with n being the
number of tasks and m the number of machines). Note that the running time depen-
dence on ε can be any arbitrary function. If the running time dependence on 1/ε is also
polynomial, we call the test a fully polynomial-time approximation scheme (FPTAS).

4.1.1 Related work

In the single-processor case, an FPTAS feasibility test is known [26]. In particular, in this
test, one only checks the feasibility of the EDF schedule for the job sequence at about
(1/ε) log(dmax/dmin) time steps, where dmax and dmin are the largest and the smallest
relative deadline, respectively.

For partitioned scheduling on multiple machines, Chen and Chakraborty [30] gave a
PTAS, generalizing a previous result of [17], for the case that the maximum to minimum
deadline ratio is a constant. The idea of [30] is to view the problem as a vector scheduling
problem in (roughly) D = (1/ε) log(dmax/dmin) dimensions.

CHAPTER 4. REAL-TIME TASKS ON IDENTICAL MACHINES

Definition 3 (Vector Scheduling). In the Vector Scheduling problem we are given
a set V of n rational D-dimensional vectors v1, . . . , vn from [0, 1]D and a positive integer
m. The goal is to determine whether there is a partition of V into m sets V1, . . . , Vm such
that for each set Vi, the sum of vectors in that set does not exceed 1 in any coordinate.
That is, such that max1≤i≤m

∥∥∑
v∈Vi v

∥∥
∞ ≤ 1.

This problem is a D-dimensional generalization of the makespan minimization prob-
lem, where each job is a D-dimensional vector and the machines are D-dimensional ob-
jects as well. Chekuri and Khanna [27] give the following result for the vector scheduling
problem.

Theorem 8 ([27]). Given any fixed ε > 0, for the vector scheduling problem there exists a
(1 + ε)-approximation algorithm, i.e., an algorithm that finds a partition V1, . . . , Vm such
that max1≤i≤m

∥∥∑
v∈Vi v

∥∥
∞ ≤ 1 + ε, if a solution with max1≤i≤m

∥∥∑
v∈Vi v

∥∥
∞ ≤ 1 exists.

This algorithms runs in time (nD/ε)O(ψ), where ψ = O

((
ln(D/ε)

ε

)D)
.

Chen and Chakraborty [30] view each task as a D-dimensional vector, and the tasks
can be feasibly scheduled on a machine, if the corresponding vectors can be feasibly packed
in a unit D-dimensional bin. This connection essentially follows from the property for the
single-processor test mentioned above [26]. Then, the PTAS for vector scheduling [27] is
used in a black-box manner to obtain a (1 + ε)-approximate feasibility test that runs in

time roughly1 nO(exp((1
ε
) log(dmax/dmin))). Note that this running time is doubly exponential

in log(dmax/dmin), and while this is polynomial time for constant ratios dmax/dmin, it is
super-polynomial if dmax/dmin is super-constant.

4.1.2 Our results

Let us denote from now on the maximum to minimum deadline ratio dmax/dmin by λ. We
provide a (1+ε)-approximate feasibility test which substantially improves upon the result
of Chen and Chakraborty [30]. The running time of our feasibility test is O

(
mO(f(ε) log λ)

)
,

where f(ε) := exp(O(1
ε

log(1
ε
))) is a function depending solely on ε.

Note that the running time of our algorithm only has a singly exponential dependence
on log λ, and hence it gives an exponential improvement over the result of Chen and
Chakraborty [30]. Thus, our algorithm can run over a substantially wider range of input
instances, beyond just the ones with λ = O(1). For example, even if λ is polynomially
large in n (where n denotes the number of tasks), our algorithm runs in time nO(logn) =
2O(log2 n) and hence yields a quasi-polynomial-time approximation scheme, as opposed to
exponential time for the algorithm in [30].

As in Chen and Chakraborty [30], our result is also based on reducing the feasibility
problem to vector scheduling in roughlyD = (1/ε) log λ dimensions. However, we crucially
exploit the special structure of the vectors that arise in this transformation and give a
faster vector scheduling algorithm for such instances. In fact, it was shown [11] that
exploiting this structure is necessary to obtain any major improvement. In particular,

1For clarity, we suppress some dependence on terms involving log log(dmax/dmin).

58

4.2. PRELIMINARIES

in [11] it is shown that any PTAS for a general D-dimensional vector scheduling problem
must incur a running time of exp((1/ε)Ω(D)) (under suitable complexity assumptions), and
hence the running time in [30] is essentially the best one can hope for if one uses vector
scheduling as a black box.

The idea of our algorithm is as follows. A vector in the vector scheduling problem
represents for a task τ the (normalized) demand bound function in D different time points.
Then, a partitioning V1, . . . , Vm of the vectors implies a partitioning T1, . . . , Tm of the task
set T . If the sum of all vectors in Vi is at most 1 + ε for each coordinate, this means that
the corresponding tasks in Ti can be scheduled on machine i such that dbfT (t) ≤ (1 + ε)t
for all time points t that are represented in one of the coordinates. There are, however,
too many time points to check, so in the end, this will only be approximately true.

Many steps are needed to obtain the algorithm as described here. The vectors that
we start with have (1/ε) log λ coordinates, but we will reduce the number of coordinates
that are relevant to essentially 1/ε many. In particular, only 1/ε consecutive coordinates
of a vector will have “arbitrary” values, and all subsequent coordinates have an identical
value.

To exploit the structure of the vectors created, we design a sliding-window based
algorithm for vector scheduling, where we carefully build a schedule by considering the
coordinates in left to right order, and only keeping track of the relevant short-range
information in a dynamic program. The main technical difficulty is to combine the sliding-
window approach with the exhaustive enumeration techniques of [27] for vector scheduling.
In particular, to ensure that the sliding window does not build up too much error as it
moves over the various coordinates, we keep track of different coordinates for a task
with different accuracy. Moreover, to keep the running time low, we need more refined
enumeration techniques to handle and combine small and large vectors.

4.2 Preliminaries

The input consists of a sporadic task system T consisting of tasks τ1, . . . , τn and a set of
m identical processors. Let us denote by [k] all integers from 1 until k, for some integer
k. That is, [k] := {1, . . . , k}.

Recall that in the partitioned scheduling paradigm, we want to find a partition
T1, T2, . . . , Tm of T such that all jobs generated by the tasks in Ti can be feasibly sched-
uled on machine i, for all i ∈ [m]. Recall Proposition 2 from Chapter 1 which states that
dbfTi(t) ≤ t, for all t ≥ 0, is a necessary and sufficient condition for task set Ti to be
feasible upon machine i.

As mentioned above, our goal is to develop a (1 + ε)-approximate feasibility test for
any ε > 0. As we shall see soon, if we only care about 1 + ε feasibility, it suffices to
check the demand bound function at only log(1+ε)(dmax/(ε

2dmin)) ≈ O(log(dmax/dmin)/ε)
time points. This allows to transform the feasibility problem into the so-called vector
scheduling problem, as defined in Section 4.1.1.

In the following section, we show how 1 + ε feasibility reduces to vector scheduling
with dimension O((1/ε) log(dmax/dmin)). While similar results have been used before (e.g.,
[30, 58]), we will repeat the proof here, as we explicitly need the structure of the vectors in

59

CHAPTER 4. REAL-TIME TASKS ON IDENTICAL MACHINES

the resulting vector scheduling instance, which our algorithm will crucially exploit later.

4.3 Task systems and vector scheduling

Observe that over the long run, a task τ uses cτ units of time every pτ units of time,
but the relative deadlines, that may be different from the periods, complicate the demand
bound function. The demand bound function has sharp jumps at the (absolute) deadlines
dτ , pτ + dτ , 2pτ + dτ , . . ., but the effects of these jumps become milder as time progresses.
A machine that is 1 + ε times faster gives ε t units of extra processing time up to time
t, which allows ignoring these sharp jumps after a certain point in time and instead it is
sufficient to use the utilization uτ = cτ

pτ
.

The next lemma shows that it is approximately sufficient to check the demand bound
function only at time points which are a factor 1 + ε apart.

Lemma 16. For any task τ , if dbfτ ((1 + ε)kdmin) ≤ (1 + ε)kdminα for all k ∈ N≥0, then
dbfτ (t) ≤ (1 + ε)αt for all t ≥ 0.

Proof. For any t, define integer kt such that (1 + ε)kt−1dmin < t ≤ (1 + ε)ktdmin. Then

dbfτ (t) ≤ dbfτ ((1 + ε)ktdmin) ≤ (1 + ε)ktdminα < (1 + ε)αt,

where the first inequality follows from the demand bound function being non-decreasing.

We will use the same approximate demand bound function dbf ∗τ (t) used in Chapter 3
(see also Marchetti-Spaccamela et al. [58]). Let L be the smallest integer such that
1 ≤ (1 + ε)L−1ε2. Note that L ≤ 2 + log(1+ε)(1/ε

2). Let

dbf ∗τ (t) =

{⌊
t+pτ−dτ

pτ

⌋
cτ if t < (1 + ε)Ldτ ,

uτ t otherwise.
(4.1)

Note that dbf ∗ differs from dbf only when t ≥ dτ (1 + ε)/ε2, and is proportional to the
utilization of τ in that case. The following lemma shows that it is a good approximation
to dbf .

Lemma 17 (see Chapter 3). For every task τ and every time t ≥ 0,

1

(1 + ε)
dbfτ (t) ≤ dbf ∗τ (t) ≤ (1 + ε)dbfτ (t). (4.2)

Another obvious property of dbf and dbf ∗ is the following, which allows us to start our
feasibility analysis at the first deadline only.

Observation 1. For all tasks τ , for all t < dτ , we have that

dbfτ (t) = dbf ∗τ (t) = max{0, b(t+ pτ − dτ)/pτc} = 0.

In particular, dbfτ (t) = dbf ∗τ (t) = 0 for all t < dmin and all tasks τ ∈ T .

60

4.3. TASK SYSTEMS AND VECTOR SCHEDULING

Using Lemma 16, Lemma 17 and Observation 1, we can encode our approximate
demand bound function dbf ∗τ into a vector wτ . More precisely, we will use a normalized
demand bound function which is dbf ∗τ (t)/t. Define tk := (1+ ε)kdmin, tmax := (1+ ε)Ldmax,
and let K := dlog(1+ε)(tmax/dmin)e.

For each task τ we define the vector wτ , with coordinates wτk as follows:

wτk :=

{
dbf∗τ (tk−1)

tk−1
if k = 1, . . . , K − 1,

uτ if k = K.

Note that the first K − 1 coordinates of these vectors consider times that are each
a factor 1 + ε apart and lie between dmin and tmax. Recall that for t ≥ tmax, it holds
that dbf ∗τ (t) = uτ t for each task τ1, . . . , τn. Thus, there is no need to consider additional
coordinates. The coordinate K is equal to the utilization and will play a special role in
our algorithm.

We note that the vectors wτ as defined above have the structural property that they
have initial coordinates zero (for time points that are smaller than the relative deadline
of task τ), then L coordinates that equal dbf ∗τ (tk)/tk for some k (that might all have
different values), followed by the remaining entries that all equal the utilization uτ . This
observation is formalized below.

Observation 2. Define k̃τ := dlog(1+ε)(dτ/dmin)e − 1. A task τ is associated to a vector

wτ from [0, 1]K such that

wτk =

0 if k ≤ k̃τ ,
dbf∗τ (tk)

tk
if k = k̃τ + 1, . . . , k̃τ + L,

uτ otherwise.

(4.3)

In particular, each vector has initial coordinates zero, followed by L entries of arbitrary
value, followed by all entries equal to uτ .

The following theorem connects the vector scheduling problem to the sporadic task
system scheduling, and follows directly from Proposition 2, Lemmas 16 and 17 and Obser-
vation 1. It states that if we can partition the set of vectors wτ ∈ W into sets W1, . . .Wm

such that ‖
∑

wτ∈Wi
wτ‖∞ ≤ 1 + ε, for all i ∈ [m], then we can feasibly schedule the corre-

sponding tasks in set Ti on machine i if this machine has a speed of (1 + ε)3. Moreover, if
T can be partitioned into sets Ti such that each of these can be scheduled on a unit-speed
machine, then the corresponding sets of vectors Wi satisfy ‖

∑
wτ∈Wi

wτ‖∞ ≤ 1 + ε, for all
i ∈ [m].

Theorem 9. Define the vectors wτ as in (4.3). Given is a partition of vectors wτ into m
sets W1, . . . ,Wm and the corresponding partition of tasks τ ∈ T into m sets T1, . . . , Tm.
Then, for all machines i,

(i) if
∥∥∑

wτ∈Wi
wτ
∥∥
∞ ≤ α, then dbfTi(t) ≤ (1 + ε)2αt for all t ≥ 0;

(ii) if dbfTi(t) ≤ αt for all t ≥ 0, then
∥∥∑

wτ∈Wi
wτ
∥∥
∞ ≤ (1 + ε)α.

61

CHAPTER 4. REAL-TIME TASKS ON IDENTICAL MACHINES

Thus, for 0 < ε < 1, a (1 + ε)-approximation algorithm for vector scheduling implies a
(1 + ε)3 = (1 +O(ε))-approximate feasibility test for partitioned scheduling. The result of
Chen and Chakraborty [30] follows directly from this connection, and applying Theorem 8.
In the next section we show how the running time can be improved for vector scheduling
by exploiting the special structure of the vectors wτ as described in Observation 2.

4.4 The special-case vector scheduling problem

In this section we develop a substantially faster (1+ε)-approximation algorithm for vector
scheduling, which is specifically tailored towards vectors described in Observation 2. We
combine several techniques from bin packing and vector scheduling and design a sliding-
window dynamic programming approach.

Recall from Section 4.3 that the dimension of our vectors wτ was defined as K =
dlog(1+ε)

tmax

dmin
e = 1 + dlog(1+ε)(dmax/ε

2dmin)e and recall that the number of relevant dbf

entries is at most L = 1 + dlog(1+ε)(1/ε
2)e. Then, let C =

(⌈
8L+19
ε

⌉)L ⌈
K(8L+19)

ε

⌉
. Given

a set of vectors W from [0, 1]K as defined in Observation 2, our algorithm determines
O(mO(C)) time whether the set of vectors W can be scheduled on m machines such that
in every coordinate the load is at most 1 + ε, or whether no assignment exists such that
in every coordinate the load is at most 1.

After some rounding of the vectors, the main idea of the algorithm is as follows.
First, the vectors are classified according to the position of the first non-zero coordinate,
then it is determined how the vectors of one class can possibly be scheduled and finally,
the schedules of the different classes are combined into one overall schedule. In order
to give a high-level overview of our algorithm in Section 4.4.2 and its details in the
subsequent subsections, we first need to introduce some notation and concepts in the
following subsection.

4.4.1 Notation and definitions

Given ε > 0, let K and L be defined as above. Let 0 < η < 1 be a small constant and
define δ := η/K.

We associate each task τ to a vector wτ from [0, 1]K as defined in (4.3). We classify
these vectors into several classes depending on the index of the first non-zero coordinate.
We call a vector a t-vector if its first non-zero coordinate is coordinate t.

A t-configuration is an (L+1)-tuple (f1, . . . , fL, fu) with fk ∈ {0, η, 2η, . . . , ηb1/ηc, 1},
for all k ∈ [L] and fu ∈ {0, δ, 2δ, . . . , δb1/δc, 1}. Note that although the tuple itself is in-
dependent of t, the definition of conforming to a t-configuration is not. We say that (a set
of vectors assigned to) a machine i conforms to a t-configuration f = (f1, . . . , fL, fu) if
the contribution to coordinate t+k−1 is at most fk, for all k ∈ [L], and if the contribution
to all coordinates k ≥ t+L is at most fu. As the first L elements in a t-configuration can
attain one of d1/ηe different values and the last element can attain one of d1/δe different

values, the number of different t-configurations, denoted by C, is C :=
(⌈

1
η

⌉)L ⌈
1
δ

⌉
.

62

4.4. THE SPECIAL-CASE VECTOR SCHEDULING PROBLEM

A t-profile Q defines a t-configuration for each machine. Therefore, it can be repre-
sented by an m-tuple Q = 〈q1, . . . , qm〉 where qi denotes the t-configuration corresponding
to machine i. Since all machines are identical and the number of t-configurations is
bounded by C, a t-profile can also be represented by a C-tuple Q = (n1, . . . , nC) where
nf denotes the number of machines that conform to configuration f . Since the numbers
nf sum up to m, we find that the number of different t-profiles is at most mC .

Finally, we define the addition of a t-profile Q and a vector e = (e1, . . . , eL, eu) ∈
[0, 1]L+1, i.e., the addition Q + e = Q′ = 〈q′1, . . . , q′m〉, as the pointwise addition of the
vector e to each configuration qi ∈ Q, i.e., q′i = qi + e for all i ∈ [m].

4.4.2 Overview of the algorithm

Our algorithm, as given in Algorithm 2, determines whether we can feasibly schedule all
vectors such that each machine has a load of at most 1 + ε in every coordinate. The
algorithm first applies two rounding steps (see Steps 2 and 3), to limit the number of
different vectors.

In Step 4 of the algorithm, we determine for each t = 1, . . . , K and t-profile R, whether
all t-vectors can be scheduled conforming to R; see Section 4.4.4 for the detailed descrip-
tion of how this is determined.

Once we know, for every t, conforming to which t-profiles the set of all t-vectors can
be scheduled, we can determine conforming to which t-profiles all vectors together can
be scheduled. To accomplish this, we design a sliding-window dynamic program (DP). In
the DP table, the entry T [t, Q] is evaluated to true if all t̂-vectors, with t̂ < t, can be
combined with all t-vectors to conform to a given t-profile Q. Section 4.4.5 describes this
procedure in detail. The final result can then easily be obtained by taking t = K and Q
equal to the all-1 profile, i.e., qi = 1 for all i. If T [K,1] returns true, Algorithm 2 can
also be used to find the corresponding partition.

Both Step 4 and Step 5 of Algorithm 2 need to be able to determine whether a t-profile

ALGORITHM 2: Vector scheduling algorithm

1: Input: a set W of vectors wτ as defined in Section 4.3, and η ∈ [0, 1].
2: Define δ := η/K.
3: For each vector wτ round each component wτk down to the nearest power of 1

1+η
.

4: Modify each vector (Lemma 18)

zτk :=

{
0 if wτk ≤ δ ‖wτ‖∞ ,
wτk otherwise.

5: Determine whether all t-vectors can be scheduled conforming to t-profile R, for all
possible t-profiles R and all t.

6: Let T [t, Q] be true if all k-vectors with k ≤ t can be scheduled conform to t-profile
Q, and false otherwise. Determine T [t, Q] for all possible t-profiles Q and all t.

7: Return T [K,1].

63

CHAPTER 4. REAL-TIME TASKS ON IDENTICAL MACHINES

R and a (t−1)-profile (or t-profile) S can be combined into a t-profile Q. In Section 4.4.6,
we show that this can be determined in advance in O(mO(C)) time.

4.4.3 Preprocessing

In the preprocessing part, Steps 2 and 3 of Algorithm 2, the vectors are rounded. First,
every element of each vector is rounded down to the nearest power of 1/(1 + η). The
second rounding step ensures that the positive values in one vector are not more than a
factor 1/δ apart. For all τ ∈ T and all k ∈ [K]

zτk :=

{
0 if wτk ≤ δ ‖wτ‖∞ ,
wτk otherwise.

(4.4)

The same rounding step is applied by Chekuri and Khanna [27]. The following lemma
states that by rounding the vectors like this, we do not lose too much. It follows directly
from the proof of Lemma 2.1 in [27].

Lemma 18 (Chekuri and Khanna [27]). Given a set W of vectors from [0, 1]K, let Z be
a modified set of W where we replace each vector wτ in W with a vector zτ according
to (4.4), with δ = η/K. Then, for any subset of vectors Z ′ ⊆ Z and corresponding subset
W ′ ⊆ W , we have

∑
wτ∈W ′ w

τ
k ≤

∑
zτ∈Z′ z

τ
k + 3η‖

∑
w∈W ′ w‖∞.

4.4.4 Scheduling t-vectors

In this subsection we determine, for each t, conforming to which t-profiles R the set
of t-vectors can be scheduled (Step 4 of Algorithm 2). The result of this is used in Step
5 of the algorithm.

For ease of notation, let us denote the set of all t-vectors zτ in Z by Zt. Note that
any vector in Zt has value zero in the first t− 1 coordinates and coordinates t+L, . . . ,K
all have the same value. Therefore, in this subsection we act as if zτ only has dimension
L+ 1.

We define B[t, R] to be true if all t-vectors can be scheduled conforming to t-profile
R+ (2η, . . . , 2η, (L+ 1)δ) and false otherwise. For a given t and R, Algorithm 3 gives the
algorithm for evaluating B[t, R]. The idea is to partition the set Zt into a set of big vectors

ALGORITHM 3: Scheduling the vectors in Zt conforming to a t-profile R

1: Input: profile R, a set Zt of vectors zτ ∈ [0, 1]L+1, η ∈ [0, 1] and δ := η/K.
2: Let Zbig

t = {zτ ∈ Zt | ‖zτ‖∞ > δ} and Zsmall
t = Zt \ Zbig

t .
3: for all t-profiles Rsmall and Rbig that R can be split into do
4: Return true iff the following two statements are true:
5: (a) Zbig

t can be scheduled conforming to Rbig + (η, . . . , η, δ) (Lemma 19);
6: (b) Zsmall

t can be scheduled conforming to Rsmall + (η, . . . , η, (L+ 1)δ) (Lemma 20).
7: end for
8: Return false.

64

4.4. THE SPECIAL-CASE VECTOR SCHEDULING PROBLEM

Zbig
t , having ‖zτ‖∞ > δ, and a set of small vectors Zsmall

t . Further, we split the t-profile
R into two t-profiles Rbig and Rsmall corresponding to big vectors and small vectors. If all
vectors in Zbig

t can be scheduled conforming to t-profile Rbig and if all vectors in Zsmall
t

can be scheduled conforming to t-profile Rsmall then B[t, R] returns true.
Since the t-configurations are “coarse valued” (all values are multiples of either η or

δ), it is not so straightforward to split the t-profile R as it would seem. It could be that a
coordinate fk of the t-configuration can be split into two parts yielding a feasible t-profile
Rbig and a t-profile Rsmall, but not in such a way that the two parts are multiples of η.
In that case, the corresponding DP cell is erroneously evaluated to false. To circumvent
this issue, an additional small error is allowed. For this reason the vector (η, . . . , η, δ) is
added to the t-profile Rbig.

Note that even then, it is not obvious what the correct splitting of profile R should
be. Therefore, all possibilities of profiles Rbig and Rsmall that R can be split into are tried
and in this way we “guess” the correct splitting into Rbig and Rsmall.

Scheduling big vectors

By definition, we know that the maximum value of the coordinates of a big vector is at
least δ. Fixing an arbitrary coordinate c, at most 1/δ vectors having coordinate c as their
maximum coordinate can be scheduled on one machine when the load in that coordinate
may not exceed 1. This reasoning holds for each of the L + 1 coordinates, and hence at
most (L + 1)/δ big vectors can be scheduled on one machine such that the load of each
coordinate may not exceed 1. These big vectors are therefore scheduled using a DP, which
we call the inner DP.

To determine whether the big vectors in Zbig
t can be scheduled conforming to a t-profile

Rbig, note that each non-zero coordinate of a big vector is at least δ2, due to the rounding
in Step 3 of Algorithm 2 and the definition of Zbig

t . Furthermore, due to the rounding in
Step 2 of Algorithm 2, we know that the number of different values that each coordinate
of a big vector can take is at most 1 + log(1+η)(1/δ

2). Therefore, there can be at most

(1 + log(1+η)(1/δ
2))L+1 different big vectors.

For given t-profile Rbig = 〈r1, . . . , rm〉, the inner DP computes entries DP [i, V] for
i = 1, . . . ,m and V ⊆ Zbig

t , where DP [i, V] is true if the vectors V ⊆ Zbig
t can be

scheduled on machines 1, . . . , i conforming to t-profile Rbig, that is, conforming to the
corresponding t-configurations r1, . . . , ri. The recursion in the DP is as follows.

DP [i, V] =
∨

Y⊆V :Y on machine i according to ri

DP [i− 1, V \ Y].

We take the union over all sets Y ⊆ V such that the vectors zτ in Y can be scheduled on
machine i conforming to the t-configuration ri of machine i. This condition can easily be
checked by validating that

∑
zτ∈Y z

τ
k ≤ ri,k for all k ∈ [L+1]. (Recall that we are abusing

notation here as we assumed in this subsection that the vector zτ has only dimension L+1
and hence zτk can directly be compared with ri,k.) The base case DP [1, V], which asks
whether the vectors in V can be scheduled to machine 1 conforming to t-configuration r1,
follows similarly. This is checking whether

∑
zτ∈V z

τ
k ≤ r1,k for all k ∈ [L+ 1].

The following lemma states that the inner DP can be run in O
(
mO(1

δη
)
)

time.

65

CHAPTER 4. REAL-TIME TASKS ON IDENTICAL MACHINES

Lemma 19 ([27]). Given are (L + 1)-dimensional big vectors Zbig
t and a t-profile Rbig.

There is an algorithm that determines in O
(
mO(1

δη
)
)

time whether there exists a schedule

that conforms to t-profile Rbig or outputs that there is no schedule conforming to Rbig.

Proof. There are at most (1 + log(1+η)(1/δ
2))L+1 different big vectors possible and this is

asymptotically dominated by 1
δη

for small enough δ. Hence, any packing of big vectors

can be described as a tuple (b1, . . . , b 1
δη

) where bv indicates the number of vectors of type

v that are packed.
As mentioned before, at most L+1

δ
big vectors can be scheduled on any machine such

that the load in each coordinate is not more than 1. Hence, there are at most m(L+1)
δ

big
vectors in any feasible instance.

Since the numbers bv sum up to at most m(L+1)
δ

, there are at most O(mO(1/δη)) different
states in the dynamic program. The number of states is also an upper bound on the time
needed to iterate through all different ways to schedule a single machine. The running

time is therefore O
(
mO(1

δη
)
)

.

Scheduling small vectors

The feasibility question of scheduling the small vectors in Zsmall
t conforming to the t-profile

Rsmall is resolved by finding and rounding a vertex of an appropriate polytope. Let the
t-profile Rsmall be identified by the tuple 〈r1, r2, . . . , rm〉 of t-configurations. Moreover, we
define variables xτi = 1 if vector zτ is assigned to machine i and 0 otherwise. Then, the
feasibility question can be solved by determining whether or not a feasible solution exists
satisfying the following constraints.∑

zτ∈Zsmall
t

xτi z
τ
k ≤ ri,k ∀i ∈ [m], k ∈ [L+ 1];

m∑
i=1

xτi = 1 ∀zτ ∈ Zsmall
t ;

xτi ∈ {0, 1} ∀i ∈ [m], zτ ∈ Zsmall
t .

By relaxing the binary constraints for xτi to xτi ∈ [0, 1], we obtain a polytope. Let us
denote by nsmall = |Zsmall

t |. By classical polyhedral theory [22], we know that in any vertex
solution of this polytope, there are at most m(L + 1) + nsmall positive variables because
there are m(L+ 1) + nsmall constraints. We show that this implies that there are at most
m(L+1) vectors that are fractionally assigned to machines. Suppose by contradiction that
m(L+1)+1 vectors are assigned to multiple machines. Then there are nsmall−(m(L+1)+1)
vectors assigned to precisely one machine and m(L+1)+1 vectors assigned to at least two
machines, which implies that there are at least nsmall− (m(L+ 1) + 1) + 2m(L+ 1) + 2 =
nsmall +m(L+ 1) + 1 positive variables, which contradicts the fact that there are at most
nsmall + m(L + 1) positive variables. Hence, it must be the case that there are at most
m(L+ 1) vectors which are fractionally assigned to multiple machines.

We then round such a vertex solution to an integral solution by partitioning all vectors
that are assigned to at least two machines arbitrarily into m groups of at most L+1 vectors

66

4.4. THE SPECIAL-CASE VECTOR SCHEDULING PROBLEM

and assign one such group to each machine. Because the vectors are small and each
coordinate is smaller or equal to δ, the extra load for every machine on each coordinate is
at most (L+1)δ and (L+1)δ ≤ Kδ = η (note that L+1 ≤ K holds only if dmax/dmin > 1+ε,
which we can safely assume in an arbitrary instance). Since a vertex solution of the
polytope can be found by simple linear programming techniques, we have the following
lemma.

Lemma 20 ([27]). Given a set Zsmall
t of (L+1)-dimensional small vectors and a t-profile

Rsmall, there is an algorithm that decides in polynomial time whether there exists a schedule
for the vectors Zsmall

t that conforms to t-profile Rsmall + (η, . . . , η, (L+ 1)δ) or outputs that
there is no schedule conforming to t-profile Rsmall.

Combining the big and small vectors

The following lemma combines Lemmas 19 and 20, yielding the correctness of Algorithm 3.
It additionally states the running time of the algorithm.

Lemma 21. Given a set Zt of (L+1)-dimensional vectors and a t-profile R, Algorithm 3
decides in O(mO(C)) time whether there exists a schedule for the vectors in Zt conforming
to profile R + (2η, . . . , 2η, (L + 2)δ) or that there exists no schedule for the vectors in Zt
conforming to profile R.

Proof. Since the t-profiles are tracked with accuracy η in the first L coordinates and with
accuracy δ in their utilization, there are no more than mC different t-profiles. Therefore,
there are at most m2C combinations of Rsmall and Rbig that the profile R can be split
into. Lemma 23, which follows in Section 4.4.6, shows that it takes O(mO(C)) time to
determine whether t-profile R can be split into two t-profiles Rsmall and Rbig. Thus, in
total, it takes at most m2CO(mO(C)) = O(mO(C)) time to split the t-profile R into the
t-profiles Rsmall and Rbig. Solving the linear program in Step 5 takes polynomial time and

scheduling the big vectors in Step 4 takes O
(
mO(1

δη
)
)

time (Lemma 19). The incurred

error follows immediately from Lemma 20 and the addition of (η, . . . , η, δ) to Rbig in Step
4.

4.4.5 The sliding-window dynamic program

In this subsection, we introduce a dynamic program to determine whether all t̂-vectors
with t̂ ≤ t can be scheduled conforming to t-profile Q. To be precise, we compute a table
of entries T [t, Q], where T [t, Q] evaluates to true if all t̂-vectors with t̂ ≤ t can be scheduled
conforming to t-profile Q. The dynamic program works in K phases as it moves from
the first coordinate to coordinate K. While scheduling all t-vectors in a certain phase t,
the DP also looks ahead to the next L− 1 coordinates and the last utilization coordinate
to ensure no conflicts arise in these coordinates. That is, we slide a window covering L
coordinates from coordinate 1 to coordinate K in as many phases.

Intuitively, phase t corresponds to scheduling the t-vectors, given a partial schedule
for all t̂-vectors with t̂ < t. To determine the value of T [t, Q], we split the t-profile Q into
a t-profile R and a (t − 1)-profile S that capture the division of space per machine and

67

CHAPTER 4. REAL-TIME TASKS ON IDENTICAL MACHINES

per coordinate between the t-vectors and the other t̂-vectors with t̂ < t, that are dealt
with in a recursive way in the dynamic program.

The recursive formula for T can be computed by considering all possible combinations
of t-profiles R and (t − 1)-profiles S that t-profile Q can be split into, and determining
whether or not all t-vectors can be scheduled conforming to R and all other t̂-vectors with
t̂ < t can be scheduled conforming to S + (η, . . . , η, δ). That is, for t > 1,

T [t, Q] =
∨

(R,S)∈X (Q)

(B[t, R] ∧ T [t− 1, S + (η, . . . , η, δ)]), (4.5)

where X (Q) contains all tuples (R, S) of t-profiles R and (t− 1)-profiles S that Q can be
split into.

Note that since the t-configurations are “coarse valued” (all values are multiples of
either η or δ), it is unclear how to split the t-profile Q: perhaps a coordinate fk of the
t-configuration can be split into two parts yielding a feasible t-profile R and a (t − 1)-
profile S, but not in such a way that the two parts are multiples of η. In that case,
the corresponding DP cell is erroneously evaluated to false. To circumvent this issue, an
additional small error in each phase of the sliding-window DP is allowed. For this reason
the vector (η, . . . , η, δ) is added to the (t− 1)-profile S.

The base case of the recursion is

T [1, Q] = B[1, Q]. (4.6)

To evaluate the running time of computing T [K,Q], we note that B[t, R] is precom-
puted, as described in Section 4.4.4, and can be accessed in O(1) time.

Lemma 22. Let W be a set of vectors wτ as defined in (4.3) and let η > 0 be small
enough. Algorithm 2 decides in O(KmO(C)) time whether there exists a partition of the
vectors W into m sets W1, . . . ,Wm such that

∥∥∑
wτ∈Wi

wτ
∥∥
∞ < 1 + (8L + 19)η for all i,

or that there does not exist a partition with
∥∥∑

wτ∈Wi
wτ
∥∥
∞ ≤ 1.

Proof. We first focus on the running time of the procedure, which is dominated by Steps
4 and 5. In Lemma 21 in Section 4.4.4, the running time of Step 4 is proven to be
O(mO(C)). Note that there exist C different t-configurations. As there are at most m
machines having a certain t-configuration, there are at most mC different t-profiles and
therefore the dynamic program has O(KmC) different states. For evaluating a recursive
step, each possible split of a t-profile into a new t-profile and a (t−1)-profile is considered.
Since there exist at most mCmC such combinations and splitting takes O(mO(C)) time
(see Lemma 23 in Section 4.4.6), the total running time is O(KmO(C)).

To show correctness, note that in each recursive step an error is introduced due to
the addition of a vector (η, . . . , η, δ). Furthermore, in the computation of B[t, R] we also
incur an error, as it only decides whether all t-vectors can be scheduled conforming to
R + (2η, . . . , 2η, (L + 2)δ). Fix any coordinate c on any machine and consider the total
error on this coordinate. In each phase t for c − L ≤ t ≤ c an additional error of η + 2η
is introduced and in each phase t ≤ c− L− 1 an additional error of δ + (L + 2)δ by the
“utilization” of the vectors assigned in those phases. Therefore, the maximum additional

68

4.4. THE SPECIAL-CASE VECTOR SCHEDULING PROBLEM

error is at most (L+ 1)3η +K(L+ 3)δ = (4L+ 6)η for each coordinate on any machine,
as δ = η/K.

Finally, let us consider the error that the rounding procedures might introduce. The
first rounding procedure rounds each entry of the vector wτ down to a power of 1

1+η
.

The resulting error per coordinate per machine is at most a factor 1 + η. The second
modifying step rounds wτk down to zero in case wτk ≤ δ ‖wτ‖∞. Lemma 18 shows that
the corresponding error for the final schedule amounts to an additional factor of at most
3η per coordinate per machine. As the total error incurred by Step 5 amounts to at
most (4L + 6)η, we conclude that the total multiplicative error is bounded by a factor
(1 + η)(1 + (4L+ 9)η) ≤ 1 + (8L+ 19)η for η ≤ 1.

Theorem 10. Given ε > 0, let C =
(⌈

8L+19
ε

⌉)L ⌈
K(8L+19)

ε

⌉
where L = 1+dlog(1+ε)(1/ε

2)e
and K = 1+dlog(1+ε)(dmax/ε

2dmin)e. Then, given a set of vectors W from [0, 1]K as defined

in Observation 2, Algorithm 2 determines in O(mO(C)) time whether the set of vectors W
can be scheduled on m machines such that in every coordinate the load is at most 1 + ε,
or whether no feasible assignment exists.

Proof. The theorem follows directly from Lemma 22. Setting η := ε/(8L + 19) in this
lemma leads to a schedule with height at most 1 + (8L+ 19)η = 1 + ε.

4.4.6 Splitting t-profiles

Recall that a t-configuration f = (f1, . . . , fL, fu) specifies how much space might be
used by the vectors not scheduled yet on a certain machine in the coordinate k ∈
{t, . . . , t+ L− 1} and in coordinate K. In the inner DP we want to split a t-configuration
into two other t-configurations, one specifying the space for the big t-vectors and the other
specifying the space for the small t-vectors. In the sliding-window DP on the other hand,
we want to split a t-configuration into another t-configuration and a (t−1)-configuration,
specifying the space the vectors in Zt might use and the space the vectors in ∪t−1

t̂=1
Zt̂ might

use, respectively, per machine per relevant coordinate.
A t-configuration f = (f1, . . . , fL, fu) can be split into a t-configuration g and a t-

configuration h if and only if

- fk ≥ gk + hk for all 1 ≤ k ≤ L;

- and fu ≥ gu + hu.

A t-configuration f can be split into a t-configuration g and a (t − 1)-configuration h if
and only if

- fk ≥ gk + hk+1 for all 1 ≤ k ≤ L− 1;

- and fL ≥ gL + hu;

- and fu ≥ gu + hu.

Splitting of t-profiles is done in a similar way. A t-profile Q = 〈q1, . . . , qm〉 can be
split into a t-profile R = 〈r1, . . . , rm〉 and a t-profile S = 〈s1, . . . , sm〉 if and only if there
are permutations α, β : [m] → [m] such that the t-configuration qi can be split into the
t-configuration rα(i) and t-configuration sβ(i). In the same way a t-profile can be split into
a t-profile and a (t− 1)-profile.

69

CHAPTER 4. REAL-TIME TASKS ON IDENTICAL MACHINES

Lemma 23. Determining whether a t-profile Q can be split into a t-profile R and a
(t− 1)-profile S can be done in O(mO(C)) time.

Proof. The goal is to pair configurations from R and configurations from S such that each
pair can be combined into a unique configuration from Q. We use the fact that there are
at most mC different profiles because there are C different configurations and a profile
can be alternatively denoted as the tuple (n1, . . . , nC) where nf is the number of machines
conforming to configuration f .

In a simple dynamic programming approach we can keep track of configurations not yet
paired. This gives at most mO(C) states. In each state we need to find a configuration from
Q that can be split into a configuration from R and a configuration from S, and check
whether the remaining configurations can be matched. This can be done in O(mO(C))
time for each state by considering all possibilities. This lead to an algorithm that runs in
O(mO(C)) time.

4.5 Conclusion

Combining all ingredients from the previous sections yields our main theorem.

Theorem 11. Given ε > 0, a task set T and m parallel identical processors, there is
an algorithm which correctly decides in O

(
mO(f(ε) log λ)

)
time whether T can be feasibly

partitioned with a speedup of 1+ ε, or no feasible partition exists in case the machines run
at unit speed, where λ = dmax/dmin, the ratio between the largest and smallest deadline,
and f(ε) is a function depending solely on ε.

Proof. Theorem 10 states that in O(mO(C)) time it can be determined whether a feasible
solution to the vector scheduling problem exists with a speedup factor of 1+ε, or whether
no such partition of the vectors over the machines exists without speedup. Thus in light
of Theorem 10, Theorem 9 implies that if there exists a feasible partition for the vector
scheduling problem, then this partition is feasible for our real-time scheduling problem
if the machines receive a speedup factor of (1 + ε)3, and that if no feasible partition for
the vector scheduling problem exists, then no feasible partition exists for the real-time
scheduling problem in case the machines run at speed 1/(1+ε). Rescaling ε appropriately
yields the stated result.

70

Chapter 5

Mixed-criticality scheduling

Most results in this chapter previously appeared in [14] and [15].

5.1 Introduction

Work in the field of mixed-criticality scheduling is highly motivated from embedded sys-
tems where multiple functionalities are implemented on a shared computing device. In
safety-critical systems, it is often the case that not all functionalities implemented have
the same importance (or criticality) to the overall system. Such systems are called mixed-
criticality (MC) systems. We start with an example, taken from the domain of unmanned
aerial vehicles (UAVs).

UAVs are aircrafts without a human pilot on board. Its flight may be controlled
remotely by a pilot on the ground, or autonomously by computers in the vehicle. UAVs
(or drones, as they are called as well) are mainly used for military purposes, for example for
reconnaissance and surveillance operations. The functionalities on board such a vehicle
can be divided into two classes. There is the class of mission-related functionalities,
like capturing images and transmitting them further. Then there are the functionalities
related to a safe flight of the vehicle. The flight-related functionalities are subject to
mandatory certification by statutory certification authorities (CAs) to obtain permission
to operate over civilian airspace. These CAs are not interested in the mission-related
functionalities. For the flight-related functionalities, however, they need a very high level
of certainty about schedulability of all computational tasks. The manufacturer (and user)
of the vehicle on the other hand, are interested in both types of functionalities, but are
typically satisfied with a lower level of assurance on the flight-related functionalities.

This reasoning gives us a two-level mixed-criticality system, where the two types of
functionalities are in two levels of criticality.

Level 1: the mission-critical functionalities, concerning reconnaissance and surveillance;

Level 2: the flight-critical functionalities, concerning a safe operation of the aircraft.

In the certification process, the CA makes certain assumptions about the worst-case run-
time behavior of the system. We focus here on one aspect of run-time behavior: the
worst-case execution time (WCET) of pieces of code. Determining the exact WCET of

CHAPTER 5. MIXED-CRITICALITY SCHEDULING

an arbitrary piece of code is intractable, but system engineers use tools and techniques to
determine upper bounds on them. As the CAs are seeking a higher level of correctness,
they will choose to use more conservative tools for determining WCET bounds than the
manufacturer does. This will typically result in higher WCET bounds for validating the
higher-critical functionalities.

Finding procedures that certify efficiently such mixed-criticality systems has been
identified as a challenging collection of problems [12]. In Section 5.2 we will define the
scheduling problem that we are interested in formally, but we will sketch it here already,
using the example given above. Functionalities that are of criticality level 1 are only
interesting to the manufacturer, while the level-2 functionalities are interesting to both
the manufacturer and the certification authority, but the latter will have a higher WCET
estimate for them than the former. The level-2 tasks will therefore have two WCETs
parameters, one in the lower criticality level (level 1—relevant to the manufacturer) and
one in the higher criticality level (level 2—relevant to the CA). The scheduling goal is to
find a schedule such that the following requirements are satisfied:

- (Validation by manufacturer:) if all execution times are no larger than the level-1
WCETs, it is required that all jobs meet their deadlines.

- (Certification by CA:) if the level-2 jobs have execution times that are larger than the
level-1 WCETs, but no larger than the level-2 WCETs, only all level-2 critical jobs
are required to complete by their deadlines, disregarding the level-1 functionalities.

The difficulty of finding a schedule that meets these requirements is that scheduling de-
cisions must be made prior to run time. The actual execution times will only be learned
by executing the jobs, until they signal that they have completed.

Note that while in the example only two criticality levels are specified, generally more
criticality levels can be present. In Section 5.3 we will give results for a system consisting
of K criticality levels, where K is an arbitrary integer.

5.1.1 Related work

Based on the observation that although the CAs need to use very conservative tools
for determining WCETs, less conservative tools should suffice for validating less critical
functionalities, Vestal [71] was the first to propose that different WCET values be used
in different criticality levels. He studied the fixed-priority scheduling of mixed-criticality
sporadic task systems on a single preemptive processor, but gives only empirical results.

Baruah et al. [13] show that schedulability analysis of MC systems is strongly NP -
hard. This continues to hold, even in a two-level instance where all jobs arrive simul-
taneously. In [20] the scheduling of a finite collection of independent jobs in a two-level
MC system on a single processor was studied. The authors analyze the effectiveness of
two techniques widely used in practice in real-time scheduling: the reservations-based
approach and the priority-based approach. They propose an algorithm called Own Crit-
icality Based Priority (OCBP) and show that this has a processor speedup factor equal
to the golden ratio φ. Later, these results were extended to tight bounds for any number
of criticality levels [13].

72

5.1. INTRODUCTION

The mixed-criticality model has been extended to recurrent task systems in [55].
For a two-level mixed-criticality task system, the authors give a scheduling policy and
a pseudo-polynomial-time schedulability test for a single preemptive processor with a
speedup bound of φ. Guan et al. [43] subsequently proposed an algorithm called PLRS
that only has quadratic run-time complexity, able to schedule a wider range of instances.

The algorithm EDF-VD, that will be presented in Section 5.3, was introduced in [15]
and the performance (for two-level systems only) was improved in [14]. The idea of EDF-
VD is that higher-criticality tasks have their deadlines reduced as long as the system is
in lower criticality levels, to ensure schedulability across a criticality change. Others have
proposed different algorithms for finding the adjusted deadlines.

The approach of Ekberg and Yi [38, 39] is that for each task separately (both low- and
high-criticality tasks) they consider to what extent its deadline can be lowered to shape
the demand bound function differently. Since it would require too much computation to
consider all possibilities, a pseudo-polynomial-time heuristic is proposed that is essentially
greedy. The downside of their more general approach is that no worst-case guarantees can
be given and the authors’ claim that their test outperforms EDF-VD is only supported
by experimental results. A beautiful contribution of [39] concerns a generalization of the
mixed-criticality task model to models where not only the execution time changes in a
criticality change, but all task parameters are allowed to change.

Easwaran [34] introduces a different technique for determining the virtual deadlines,
that also tries to decrease the deadlines of the high-criticality tasks separately. This
technique combined with his new schedulability test seems to be able to schedule a larger
fraction of randomly generated instances than the algorithm of Ekberg and Yi.

A different approach to using spare capacity is derived by Su and Zhu [68] by exploiting
elastic scheduling. A minimum service requirement is defined for low-criticality tasks,
expressed by a maximum period. The system should be schedulable if the high-criticality
tasks have a high-criticality execution time and for the low-criticality tasks this maximum
period is considered. If there is some slack because high-criticality tasks use less than their
high-criticality execution time, the low-criticality tasks can have smaller periods and thus
run more frequently. Simulation results again show that (for certain parameters settings)
an improvement over EDF-VD can be obtained, at the cost of higher overhead.

See [25] for an extensive survey of the research that has been conducted within the
real-time scheduling community on mixed-criticality scheduling problems.

5.1.2 Our results

In Section 5.3 we present a schedulability test, combined with a scheduling policy, called
EDF-VD, designed for scheduling implicit-deadline MC task systems on a single preemp-
tive processor. The test can be applied to MC task systems with K levels, thereby ex-
tending the result from [55]. For 2-level and 3-level systems we subsequently give speedup
bounds. We show that any 2-level (respectively, 3-level) implicit-deadline task system
that can be scheduled by a clairvoyant1 algorithm on a given processor, can be scheduled
by EDF-VD on a processor that is 4/3 (respectively, 2) times as fast. Finally we show

1See Section 5.2 for the definition of clairvoyance.

73

CHAPTER 5. MIXED-CRITICALITY SCHEDULING

that no non-clairvoyant algorithm can guarantee correctness on a processor that is less
than 4/3 times as fast as the processor available to the clairvoyant algorithm. Hereby, we
show that for an implicit-deadline dual-criticality system, EDF-VD is optimal from the
processor speedup viewpoint.

Whereas EDF-VD is a policy with dynamic priorities, in Section 5.4 we study schedul-
ing implicit-deadline tasks with a fixed-priority policy. Although fixed-priority policies
are more restrictive with respect to the processor utilization of tasks systems they can
handle, they can be preferred over dynamic priorities due to ease of implementation. The
priority list is determined beforehand and needs no updating during the scheduling pro-
cess, while the priority list needs constant updating in case of dynamic priorities. For
a dual-criticality system we show that our fixed-priority algorithm RM-VP can schedule
any task system that is clairvoyantly feasible on a unit-speed processor, on a processor
running at speed φ/ ln 2 ≈ 2.334. Further we show that no fixed-priority scheduling policy
can schedule a task system that is clairvoyantly feasible on a unit-speed machine on a
processor that has speed lower than 2.

Section 5.5 considers a finite collection of independent jobs, to be scheduled on multiple
identical processors. The OCBP scheduling procedure from [13] is extended to dual-
criticality systems on multiple machines. We show that any system that is clairvoyantly
feasible on m processors running at unit speed, is schedulable by OCBP on m processors
that are φ+ 1− 1

m
times as fast.

Before giving these results, notation and concepts needed are formally introduced in
Section 5.2.

5.2 Preliminaries

Let K ≥ 1 be an integer, denoting the number of criticality levels. We will formally define
MC jobs and MC tasks and give some definitions on feasibility of MC systems.

MC jobs A job in a K-level MC system is characterized by a 4-tuple of parameters:
Jj = (χj, aj, dj, cj), where

- χj is the job’s criticality level in {1, . . . , K};
- aj is the arrival time of the job;

- dj is the deadline (where dj ≥ aj); and

- cj is a vector (cj(1), cj(2), . . . , cj(K)) of WCETs, one for each criticality level up to
K. It is assumed that cj(1) ≤ cj(2) ≤ · · · ≤ cj(χj) and cj(k) = cj(χj), for each
k > χj.

Each job Jj in a collection J1, . . . , Jn should receive execution time γj (where γj ∈
[0, cj(χj)]), within time window [aj, dj]. The value of γj is not known in advance, but
is discovered by executing job Jj until it signals completion. A collection of realized val-
ues (γ1, γ2, . . . , γn) is called a scenario. The criticality level of a scenario (γ1, . . . , γn) is
defined as the smallest integer k such that γj ≤ cj(k) for each job Jj. The crucial aspect
of the model is that, in a scenario of level k, it is necessary to guarantee only that jobs of

74

5.2. PRELIMINARIES

criticality at least k are completed before their deadlines. In other words, once a scenario
is known to be of level k, the jobs of criticality k − 1 or less can be safely dropped.

MC task systems Let T = (τ1, . . . , τn) be a system of n tasks, where each task τi
releases a possibly infinite sequence of MC jobs. Each task τi is characterized by a tuple
(χi, di, pi, ci), where

- the criticality level of the task is χi;

- di is the deadline, relative to the arrival of a job;

- the period pi denotes the minimum interarrival time between two consecutive jobs
of task τi; and

- the vector ci = (ci(1), . . . , ci(K)) denotes the WCETs at all criticality levels up to
K. Again, ci(1) ≤ ci(2) ≤ · · · ≤ ci(χi) and ci(k) = ci(χi), for each k > χi.

The jobs generated by task τi are denoted as (Ji1, Ji2, . . .). An MC job Jij generated by
τi is defined by the parameters of τi and the parameters (aij, γij), where

- aij is the arrival time of the job (such that ai,j+1 ≥ aij + pi for all Jij);

- γij ∈ [0, ci(χi)] is the execution requirement of job Jij and is only discovered by
execution of Jij; and

- the absolute deadline dij of Jij is defined as dij = aij + di.

A collection I = (aij, γij)i∈[n],j≥1 of arrival times and execution requirements now consti-
tutes a scenario. The criticality level of a scenario is defined as the smallest integer k such
that γij ≤ ci(k) for all jobs Jij. Such an integer always exists since γij is assumed to be
at most ci(χi). As before, in a scenario of level k, only jobs from tasks of criticality at
least k need to meet their deadlines and jobs from tasks with criticality strictly less than
k can be omitted.

In the remainder of this section we will give some definitions that are formulated for
task systems. The definitions also hold for a collection of independent jobs. Just note
that there will be only one job Ji1 per “task” and their arrival times are known. So the
differences between scenarios will only be in the realized execution times.

Definition 4. Given a scenario generated by task system T , a schedule for it is called
feasible if it schedules every job such that, if the level of the scenario is k, every job Jij
with χi ≥ k receives execution time γij between its arrival time aij and deadline dij. A
task system T is (clairvoyantly) feasible if for every possible scenario a feasible schedule
exists.

An online (or non-clairvoyant) scheduling policy for an MC task system discovers the
criticality of a scenario only by executing the jobs. Scheduling decisions can be based
only on the partial information revealed thus far.

Definition 5. An online scheduling policy A is correct for a feasible task system T if for
every scenario of T the policy generates a feasible schedule.

Definition 6. A mixed-criticality task system T is called MC-schedulable if it admits
some correct scheduling policy. Note that MC-schedulability implies clairvoyant feasibility.

75

CHAPTER 5. MIXED-CRITICALITY SCHEDULING

In later parts of this chapter, we want to assess the quality of scheduling policies
by calculating the required speedup factor to schedule a task set, given that it is MC-
schedulable. However, since we cannot determine MC-schedulability in a different way
than by giving a correct scheduling policy, and since MC-schedulability implies clairvoyant
schedulability, in fact we compare to the conditions given for clairvoyant schedulability.

5.3 Implicit-deadline tasks on a single processor

In this section we study scheduling implicit-deadline task systems on a single processor.
Recall that in implicit-deadline systems di = pi for all τi ∈ T . This also means that the
parameter vector characterizing such tasks will now be of the form τi = (χi, pi, ci).

For MC tasks we need to extend the notion of utilization (see Chapter 1) to capture the
different execution time parameters at different criticality levels. We define the utilization
of task τi at level k as

ui(k) =
ci(k)

pi
, for i = 1, . . . , n, for k = 1, . . . , χi.

The total utilization at level k of tasks with criticality level ` is then defined as

U`(k) =
∑
τi:χi=`

ui(k), for ` = 1, . . . , K, for k = 1, . . . , `.

Proposition 1 gives a schedulability condition for an implicit-deadline task system that
consists of one criticality level. Reading

∑
τi∈T ui(1) instead of

∑
τ∈T uτ , it tells us that

a 1-level task system is feasible on a speed-σ processor if and only if U1(1) ≤ σ. In a
feasible instance of K levels, this condition holds for any level. This yields the following
necessary condition for feasibility in mixed-criticality systems.

Proposition 10. If T is feasible on a unit-speed processor, then

max
k=1,...,K

K∑
`=k

U`(k) ≤ 1. (5.1)

Proof. For each k = 1, . . . , K, consider a scenario where each task τi with χi ≥ k releases
jobs with execution requirement ci(k).

In the presence of multiple criticality levels, however, EDF does not necessarily produce
a feasible schedule, even if the utilization in each level is less than 1, i.e., if the necessary
conditions given above are satisfied. Consider the following example.

Example 3. Consider a task system T = (τ1, τ2) with the following parameters:

τi χi pi ci(1) ci(2)
τ1 1 4 2 2
τ2 2 6 1 5

76

5.3. IMPLICIT-DEADLINE TASKS ON A SINGLE PROCESSOR

Note that the total utilization at level 1 is U1(1) + U2(1) = 2/3, while at level 2 it is
U2(2) = 5/6. However, EDF may fail to meet deadlines, as follows. Assume jobs are
released as early as possible. At time 0, EDF schedules the first job of τ1, since that has
the earliest deadline. The job finishes at time 2 and EDF starts running the first job of
τ2. If it turns out that this job exhibits level-2 behavior, it will execute for 5 time units
and it will miss its deadline at time 6. If we had started the other way around, either
the first job of τ2 would have finished after 1 time unit and there would have been enough
time to schedule the job from τ1 before its deadline at time 4, or the scenario would have
exhibited level-2 behavior and we could have discarded the job from τ1.

The scheduling algorithm that we propose is called EDF with Virtual Deadlines (EDF-
VD) and is an adaptation of EDF that handles the problem sketched above, while main-
taining some of the desirable properties of EDF. In the remainder of this section, we first
introduce the algorithm EDF-VD and give a corresponding schedulability condition for a
system of K criticality levels. Then, for the cases of 2 and 3 levels, we assess the quality
of the algorithm by calculating the required speedups.

5.3.1 Overview of EDF-VD

We denote by T the MC implicit-deadline task system that we want to schedule on a
unit-speed preemptive processor. EDF-VD performs a schedulability test prior to run
time, to determine whether or not T can be feasibly scheduled on the processor. If the
task system is deemed schedulable, the schedulability test also provides us with an integer
parameter k (with 1 ≤ k ≤ K) that will serve as an input for the scheduling algorithm
and, for each task τi ∈ T , with a parameter that we call a virtual (relative) deadline,
denoted d̂i, which is never larger than di. The algorithm for computing these parameters
is described in pseudo-code form in Algorithm 4. The details of this algorithm are best
understood after reading Section 5.3.2, where the correctness of the algorithm is proved.

Run-time scheduling in EDF-VD consists of K variants, called EDF-VD(1), EDF-
VD(2), . . . , EDF-VD(K). Each of these is related to a different value of the parameter
that was provided by the schedulability conditions. If the value of the parameter returned
by Algorithm 4 is k, then the corresponding variant EDF-VD(k) is applied.

Algorithm EDF-VD(k) While the system is in level 1, 2, . . . , k all tasks have a virtual
(relative) deadline d̂i assigned. For tasks of criticality level k or below this virtual deadline
will be equal to the original deadline, but for tasks of criticality level k + 1, . . . , K, their
deadline is scaled by a factor x ≤ 1. The tasks are then scheduled according to EDF with
respect to the virtual deadlines. As soon as the system reaches criticality level k + 1, all
jobs from tasks of criticality k or below have been discarded and for all other tasks, the
original deadlines are restored. Algorithm 5 gives a pseudo-code describing this algorithm.
The function current_level() returns the level exhibited by the scenario so far, that is,

current_level() = min{l : γ̃ij ≤ ci(l) for all jobs Jij (partially) scheduled so far},

where γ̃ij is the part of γij that has been observed thus far. Note that if k = K then
Algorithm 5 is simply EDF, as no scaling of the deadlines occurs in Algorithm 4.

77

CHAPTER 5. MIXED-CRITICALITY SCHEDULING

5.3.2 Schedulability conditions

Theorem 12. Given an implicit-deadline task system T , if either

K∑
`=1

U`(`) ≤ 1 (5.2)

or, for some k (1 ≤ k < K), the following condition holds:

1−
k∑
`=1

U`(`) > 0 and

K∑
`=k+1

U`(k)

1−
k∑
`=1

U`(`)

≤

1−
K∑

`=k+1

U`(`)

k∑
`=1

U`(`)

, (5.3)

then T can be correctly scheduled by EDF-VD.

Proof. If (5.2) holds, then all jobs can be scheduled for their worst-case execution time at
their own criticality level. Hence EDF-VD(K), that is, EDF without deadline scaling, will

ALGORITHM 4: EDF with Virtual Deadlines (EDF-VD) – Offline preprocessing phase

Input: task system T = (τ1, . . . , τn) to be scheduled on a unit-speed preemptive
processor

if
∑K

l=1 Ul(l) ≤ 1 then
k ← K
for i = 1, 2, . . . , n do
d̂i ← di

end for
else

Let k (1 ≤ k < K) be such that (5.3) holds
if no such k exists then

return unschedulable
else

Let x ∈ (0, 1] be such that (5.6) and (5.7) hold
for i = 1, 2, . . . , n do

if χi ≤ k then
d̂i ← di

else
d̂i ← xdi

end if
end for

end if
end if
return (schedulable, k, (d̂i)

n
i=1)

78

5.3. IMPLICIT-DEADLINE TASKS ON A SINGLE PROCESSOR

yield a correct schedule. Therefore, from here on the proof focuses on the case that (5.2)
does not hold and (5.3) holds for some k < K.

The proof consists of two steps. In the first step, we show that if there is a scaling
parameter x ≤ 1 such that the following two inequalities hold

k∑
`=1

U`(`) +
K∑

`=k+1

U`(k)

x
≤ 1, (5.4)

x

k∑
`=1

U`(`) +
K∑

`=k+1

U`(`) ≤ 1, (5.5)

then EDF-VD(k) is a correct scheduling policy for T .
In the second step, we show that if (5.3) holds for some k < K, then there exists x ≤ 1

such that (5.4) and (5.5) hold. Further, we show how to find such x.
For the first step, we determine an upper bound on the “virtual utilization” as long

as the virtual deadlines are applied, if EDF-VD(k) is our scheduling algorithm. We
will slightly abuse notation and write p̂i for the “virtual” period that equals the virtual
deadline d̂i for all tasks τi, in order to define the “virtual” utilization. Assume for all
tasks τi with χi at most k, that all jobs are executed at their own-criticality execution
requirement. For all tasks τi with χi > k, the jobs are executed at criticality level k. Note
that by this assumption, no complications can occur at criticality changes before level
k + 1 is reached. The “virtual utilization” of this tasks system in level 1, 2, . . . , k equals

Û(k) :=
∑
τi

ci(k)

p̂i
=
∑
τi

ci(k)

d̂i

=
∑

τi:χi≤k

ci(χi)

di
+
∑

τi:χi>k

ci(k)

xdi

=
∑

τi:χi≤k

ci(χi)

pi
+
∑

τi:χi>k

ci(k)

xpi

=
k∑
`=1

U`(`) +
K∑

`=k+1

U`(k)

x
.

Note that a sufficient condition for correctness in levels 1, 2, . . . , k is that Û(k) ≤ 1. Hence,
we find that (5.4) ensures correctness in levels 1, 2, . . . , k.

For any level ` > k, assume by contradiction that a deadline miss occurs in some
scenario. We bound the execution requirement of all tasks until the time of the first
deadline miss, which is denoted by tf . Let I denote a minimal collection of jobs released
by T on which a deadline is missed (by minimal, we mean that EDF-VD would meet all
deadlines if scheduling any proper subset of I). Without loss of generality we assume that
the first job arrival is at time zero, and further that (5.4) and (5.5) hold. Hence the job
that misses a deadline is of level ` > k, because at time tf the system is at least in level
k + 1. Let t∗ denote the time where behavior of level k + 1 is first seen and the system
transfers to level k + 1.

79

CHAPTER 5. MIXED-CRITICALITY SCHEDULING

Fact 1. All jobs receiving execution in [t∗, tf) have deadline at most tf .

Proof. Suppose there is a job that has deadline larger than tf and receives some execution
between t∗ and tf , say in the interval [t1, t2). This means that during [t1, t2) there are
no jobs pending with deadline at most tf . Then, the set of jobs obtained by considering
only jobs with arrival time at least t2 will also miss a deadline at tf , which contradicts
the assumed minimality of I.

We define the quantity ωi(t) as the cumulative execution requirement of jobs of task
τi until time t and derive upper bounds for this quantity for all tasks. Among all jobs
executing in [t∗, tf), let J0 be the job with the earliest arrival time. Denote by a0 its
arrival time and by d0 its absolute deadline.

Fact 2. For any task τi having χi ≤ k, it holds that

ωi(tf) ≤
(
a0 + x(tf − a0)

)
ui(χi).

Proof. Note that no job of τi will receive execution after t∗. If such a job executes after a0,
it must have a deadline no larger than the virtual deadline of J0, which is a0 +x(d0− a0).
Since tf ≥ d0 by Fact 1, this means that no job of task τi with deadline greater than
a0 + x(tf − a0) will execute after a0.

ALGORITHM 5: EDF with Virtual Deadlines (EDF-VD) – Run-time dispatching

Input: task system T = (τ1, . . . , τn), integer k (1 ≤ k ≤ K), modified deadlines (d̂i)
n
i=1

loop
on job arrival:
if a job of task τi arrives at time t, assign it a virtual deadline equal to t+ d̂i
on job arrival/completion:
schedule the active job, among the tasks τi such that χi ≥ current level(), having
earliest absolute virtual deadline (ties broken arbitrarily)
on current level() > k:
break from the loop

end loop

/* schedule the active job, among the tasks τi such that χi > k, having

earliest absolute deadline (ties broken arbitrarily) */

loop
on job arrival:
if a job of task τi arrives at time t, assign it a deadline equal to t+ di
on job arrival/completion:
schedule the active job, among the tasks τi such that χi ≥ current level(), having
earliest absolute deadline (ties broken arbitrarily)

end loop

80

5.3. IMPLICIT-DEADLINE TASKS ON A SINGLE PROCESSOR

Suppose now that a job with χi ≤ k and deadline larger than a0 + x(tf − a0) was
executed for some time before a0. Let t2 denote the latest instant at which any such job
executes. This means that at this instant, there were no jobs with absolute deadline at
most a0+x(tf−a0) awaiting execution. Hence, the set of jobs obtained by considering only
those jobs in I that have arrival time at least t2 also misses a deadline. This contradicts
the assumed minimality of I.

This implies that there are at most (a0 + x(tf − a0))/pi jobs of τi until time tf ; each
of them requires an execution time of at most ci(χi). Therefore, the total execution
requirement of τi is bounded by

(
a0 + x(tf − a0)

)
ui(χi).

Fact 3. Any task τi with χi > k has

ωi(tf) ≤
a0

x
ui(k) + (tf − a0)ui(χi).

Proof. We distinguish two cases.
Case 1: Task τi does not release a job at or after a0. Note that each job of τi has a virtual
deadline of at most a0 + x(tf − a0). To show that this is true, suppose there was a job
with a larger virtual deadline and let t2 denote the latest time instant at which this job
executes. The job sequence consisting of only those jobs with an arrival time larger than
t2 also misses a deadline and this is in contradiction with the assumed minimality of I.

Hence, each job of τi has an actual deadline of at most a0/x+ tf − a0 and there are at

most
a0/x+tf−a0

pi
of them. Since these jobs do not execute in [t∗, tf) (else, J0 would not be

the one with earliest release among those), the execution requirement per job is at most
ci(k). Combining these observations, we bound the execution requirement of jobs from
task τi by

(a0

x
+ tf − a0

)ci(k)

pi
=
a0

x
ui(k) + (tf − a0)ui(k)

≤ a0

x
ui(k) + (tf − a0)ui(χi).

Case 2: Task τi releases one or more jobs at or after a0. Let ai denote the first release
of a job from τi greater than or equal to a0. The previously released job of τi did not
execute in [t∗, tf), by definition of ai and a0. Therefore, it is safe to assume that until
ai the execution requirement per job from τi was bounded by ci(k) and after that it is
bounded by ci(χi). Hence, the cumulative requirement of all jobs from τi is bounded by

aiui(k) + (tf − ai)ui(χi) ≤ a0ui(k) + (tf − a0)ui(χi)

≤ a0

x
ui(k) + (tf − a0)ui(χi),

where the first inequality comes from the facts that a0 ≤ ai and ui(k) ≤ ui(χi) and the
second one from x ≤ 1.

81

CHAPTER 5. MIXED-CRITICALITY SCHEDULING

Summing the cumulative requirements over all tasks gives∑
i:χi≤k

ωi(tf) +
∑
i:χi>k

ωi(tf)

≤
∑
i:χi≤k

(
a0 + x(tf − a0)

)
ui(χi) +

∑
i:χi>k

(a0

x
ui(k) + (tf − a0)ui(χi)

)

= a0

(k∑
`=1

U`(`) +
K∑

`=k+1

U`(k)

x

)
+ (tf − a0)

(
x

k∑
`=1

U`(`) +
K∑

`=k+1

U`(`)

)

≤ a0 + (tf − a0)

(
x

k∑
`=1

U`(`) +
K∑

`=k+1

U`(`)

)
,

where the last inequality comes from the assumption that (5.4) holds.

The assumed deadline miss implies

a0 + (tf − a0)

(
x

k∑
`=1

U`(`) +
K∑

`=k+1

U`(`)

)
> tf

⇔ (tf − a0)

(
x

k∑
`=1

U`(`) +
K∑

`=k+1

U`(`)

)
> tf − a0

⇔ x
k∑
`=1

U`(`) +
K∑

`=k+1

U`(`) > 1,

but this directly contradicts (5.5).

Now that we have shown that (5.4) and (5.5) are sufficient for the correctness of EDF-
VD(k), it remains to show that if (5.3) holds, then (5.4) and (5.5) also hold. Rewriting
(5.4) gives

k∑
`=1

U`(`) +
K∑

`=k+1

U`(k)

x
≤ 1

⇔ x

k∑
`=1

U`(`) +
K∑

`=k+1

U`(k) ≤ x

⇔
K∑

`=k+1

U`(k) ≤ x

(
1−

k∑
`=1

U`(`)

)

⇔

K∑
`=k+1

U`(k)

1−
k∑
`=1

U`(`)

≤ x, (5.6)

82

5.3. IMPLICIT-DEADLINE TASKS ON A SINGLE PROCESSOR

where in the last step we used 1−
∑k

`=1 U`(`) > 0. Rewriting (5.5) gives

x

k∑
`=1

U`(`) +
K∑

`=k+1

U`(`) ≤ 1

⇔ x

k∑
`=1

U`(`) ≤ 1−
K∑

`=k+1

U`(`)

⇔ x ≤

1−
K∑

`=k+1

U`(`)

k∑
`=1

U`(`)

. (5.7)

Hence, if (5.3) holds, there must exist an x that satisfies both (5.6) and (5.7). This
concludes the proof of Theorem 12. Note that any x satisfying (5.6) and (5.7) suffices as
a scaling parameter.

5.3.3 Speedup bounds for two and three levels

Between the sufficient condition for schedulability given by (5.3) and the necessary con-
dition (5.1) there is a gap. Note that the necessary conditions in (5.1) would be sufficient
if the scheduler was clairvoyant and would know in which level the system was going to
be. To analyze this gap due to non-clairvoyance, we consider a task system satisfying the
necessary condition given in (5.1) and determine how much faster the processor should
be to correctly schedule the task set by EDF-VD.

Recall from Section 1.3.2, that the speedup factor of a scheduling algorithm A is
the smallest real number σ such that any task system T that is feasible on a unit-speed
processor (in the sense of Definition 4) is correctly scheduled by A on a speed-σ processor.
Also recall that the smaller the speedup factor is, the closer the behavior of the algorithm
is to that of a clairvoyant exact algorithm.

We provide speedup bounds for EDF-VD when K equals 2 or 3. The computation of
speedup bounds when K > 3 is an analytically challenging problem that we leave open.

Two levels

Theorem 13. If a 2-level task system T satisfies

max{U1(1) + U2(1), U2(2)} ≤ 1,

then EDF-VD correctly schedules T on a processor of speed 4/3. In particular, if T is
schedulable on a unit-speed processor, then it is schedulable by EDF-VD on a processor of
speed 4/3.

Proof. For a 2-level system, the schedulability condition (5.3) is

1− U1(1) > 0 and
U2(1)

1− U1(1)
≤ 1− U2(2)

U1(1)
. (5.8)

83

CHAPTER 5. MIXED-CRITICALITY SCHEDULING

To prove the claim, we find the largest q such that, if

U1(1) + U2(1) ≤ q, (5.9)

U2(2) ≤ q,

then sufficient condition (5.8) still holds. The required speedup then equals 1/q. Note that
since U2(2) only appears with a negative sign on the right-hand side of (5.8) and U2(1)
only appears on the left-hand side, the worst case in terms of tightness of the condition
is that U2(2) = q and U2(1) = q − U1(1). Henceforth, this assumption is made. Further,
we define y := 1− q. Then, sufficient condition (5.8) becomes

1− y − U1(1)

1− U1(1)
≤ y

U1(1)
. (5.10)

This condition is satisfied if and only if U1(1)2 − U1(1) + y ≥ 0 (where we use that
1− U1(1) > 0). This inequality has at most one solution if y ≥ 1/4. Hence, the largest q
such that (5.9) implies (5.8) is q = 3/4, and the required speedup is 1/q = 4/3.

The second part of the statement follows from the first and Proposition 10.

Three levels

Theorem 14. If a 3-level task system T satisfies

max
k=1,2,3

K∑
`=k

U`(k) ≤ 1, (5.11)

then EDF-VD correctly schedules T on a processor of speed 2. In particular, if T is feasible
on a unit-speed processor, then it is schedulable by EDF-VD on a processor of speed 2.

Proof. We recall the schedulability conditions for a 3-level system from (5.3) for k = 1, 2:

1− U1(1) > 0 and
U2(1) + U3(1)

1− U1(1)
≤ 1− U2(2)− U3(3)

U1(1)
(5.12)

1− U1(1)− U2(2) > 0 and
U3(2)

1− U1(1)− U2(2)
≤ 1− U3(3)

U1(1) + U2(2)
, (5.13)

We find the speedup in a similar way as for a 2-level system. That is, we search for the
largest q, such that if

U1(1) + U2(1) + U3(1) ≤ q,

U2(2) + U3(2) ≤ q,

U3(3) ≤ q,

then at least one of the conditions in (5.12) and (5.13) holds. Note that the worst-case
speedup appears when the above inequalities hold with equality. To see this, we reason
as follows.

84

5.3. IMPLICIT-DEADLINE TASKS ON A SINGLE PROCESSOR

The term U3(3) only appears in the right-hand side of (5.12) and (5.13) and the
expressions are monotonically decreasing in U3(3). Hence, the worst case (lowest right-
hand side value) is when U3(3) is largest, i.e., U3(3) = q.

Since U3(2) appears only in the left-hand side of (5.13) and this side is monotonically
increasing in U3(2), the worst case is if U3(2) = q − U2(2).

Since U2(1) and U3(1) appear only in the left-hand side of (5.12) and this side is
monotonically increasing in U2(1) +U3(1), the worst case is if U2(1) +U3(1) = q −U1(1).

Now we substitute the above expressions in the conditions in (5.12) and (5.13) to
obtain the following two conditions

q − U1(1)

1− U1(1)
≤ 1− q − U2(2)

U1(1)

q − U2(2)

1− U1(1)− U2(2)
≤ 1− q
U1(1) + U2(2)

.

In the two equations above we substitute y = 1− q and after rewriting we find

(1− U1(1))(U1(1) + U2(2)) ≤ y

(1− U2(2))(U1(1) + U2(2)) ≤ y.

It is easily verified that the minimum of these two bounds attains its maximum value
when U1(1) = U2(2). Hence, if we substitute one for the other, we obtain

2U1(1)2 − 2U1(1) + y ≥ 0.

This has at most one solution if y ≥ 1/2, which gives q ≤ 1/2; and that gives a speedup
of 2.

Again, the second part of the claim follows from the first and Proposition 10.

5.3.4 Optimality of EDF-VD for two levels

We now show that—at least in the case of 2-level implicit-deadline systems—EDF-VD is
optimal with regard to the speedup factor metric.

Theorem 15. No non-clairvoyant algorithm for scheduling 2-level implicit-deadline mixed-
criticality sporadic task systems can have a speedup bound better than 4/3.

Proof. Consider the example task system T = (τ1, τ2), with the following parameters,
where ε is an arbitrary small positive number.

τi χi pi ci(1) ci(2)
τ1 1 2 1 + ε 1 + ε
τ2 2 4 1 + ε 3

This system is feasible according to Definition 4: EDF would meet all deadlines in scenar-
ios of level 1 (since U1(1) +U2(1) < 1), while only jobs of τ2 are required to be scheduled
in scenarios of level 2 (and U2(2) < 1).

To see that T cannot be scheduled correctly by an online scheduler, suppose both
tasks were to generate jobs simultaneously. It need not be revealed prior to one of the

85

CHAPTER 5. MIXED-CRITICALITY SCHEDULING

jobs receiving 1 + ε units of execution, whether the level of the scenario is 1 or 2. We
consider two cases.
Case 1: The job from τ1 receives 1 + ε units of execution before the job from τ2 does.
In this case, the scenario is revealed to be of level 2. But now there is not enough time
remaining for τ2’s job to complete by its deadline at time instant 4.
Case 2: The first job from τ2 receives 1 + ε units of execution before τ1’s job does. In
this case, the scenario is revealed to be of level 1, as the job from τ2 signals that it has
completed execution. There is not enough time now remaining for τ1’s job to complete
by its deadline at time 2.
We have thus shown that no non-clairvoyant algorithm can correctly schedule T . The
theorem follows, based on the observation that max{U1(1) +U2(1), U2(2)} exceeds 3/4 by
an arbitrarily small amount.

5.4 Fixed priorities for implicit-deadline task systems

In this section we consider a sporadic implicit-deadline MC task system, consisting of
two criticality levels to be executed on a single machine. The objective is to schedule the
tasks according to fixed priorities rather than dynamic priorities like in an EDF-based
policy. The rate-monotonic priority assignment orders the tasks in non-decreasing order
of periods and schedules at any point in time the available job with highest priority in
this ordering (i.e., the lowest rank in the ordering). We use the following long-standing
result for the non-MC setting.

Proposition 11 ([56]). If a feasible priority assignment exists for implicit-deadline task
set T , the rate-monotonic priority assignment is feasible for that task set. Furthermore,
there exists a feasible priority assignment if the summed utilization over all tasks from T
is not larger than ln 2 ≈ 0.693.

The algorithm we propose in this section is called RM-VP (Rate-Monotonic with
Virtual Periods). If a MC task system is deemed schedulable, virtual periods p̂i are
computed for all τi ∈ T . We give a necessary condition for MC-schedulability on a unit-
speed machine and derive a speedup bound of φ/ ln 2, where φ equals the golden ratio.
Finally, we give an example that shows a lower bound of 2 on the speedup that can be
attained by any fixed-priority algorithm for a two-level implicit-deadline task system.

5.4.1 Overview of RM-VP

Let T be the task system to be scheduled, consisting of two criticality levels. Let U1(1),
U2(1) and U2(2) be defined as before. Our algorithm RM-VP has a similar approach as
EDF-VD. A schedulability condition is given and two cases are distinguished. In one of
the cases, the virtual periods are equal to the original periods, whereas in the other case
the periods are scaled by a factor λ.

Algorithm RM-VP All tasks are assigned a virtual period p̂i. The tasks are then
ordered in non-decreasing order of p̂i. While the system is in level 1, priorities are assigned

86

5.4. FIXED PRIORITIES FOR IMPLICIT-DEADLINE TASK SYSTEMS

according to this ordering. Then, at any point in time the available job with highest
priority (of its task) is scheduled for execution. As soon as the system reaches level 2, the
level-1 tasks are discarded and priorities are assigned according to the original periods
(yielding the same ordering over the level-2 tasks anyway).

The algorithm distinguishes two cases for the scaling of the periods.

1. If U2(2) ≤ U2(1)
1−U2(2)/ ln 2

, p̂i = pi for all τi. Thus, the priorities are assigned with
respect to the original periods.

2. If U2(2) > U2(1)
1−U2(2)/ ln 2

, p̂i = pi for all τi ∈ T with χi = 1 and p̂i = λpi for all τi ∈ T
with χi = 2, where λ = U2(1)

ln 2−U1(1)
.

5.4.2 Schedulability conditions

Theorem 16. If task system T satisfies the following condition

U1(1) + min

{
U2(2),

U2(1)

1− U2(2)
ln 2

}
≤ ln 2, (5.14)

our algorithm RM-VP schedules the task system correctly on a unit-speed processor

Proof. If condition U1(1) + U2(2) ≤ ln 2 is satisfied, by Proposition 11, it is clear that we
can schedule T using the rate-monotonic scheduling policy, since in both levels we can
schedule each job for its own-level execution time.

If condition U1(1) + U2(1)
1−U2(2)/ ln 2

≤ ln 2 is satisfied, we first show that in level 1, all jobs
will meet their deadlines when using the rate-monotonic schedule based on the virtual
periods. The total utilization of the system in level 1 equals

∑
τi

ci(1)

p̂i
=
∑

τi:χi=1

ci(1)

pi
+
∑

τi:χi=2

ci(1)

λpi

=
∑

τi:χi=1

ci(1)

pi
+

ln 2− U1(1)

U2(1)

∑
τi:χi=2

ci(1)

pi

= U1(1) +
ln 2− U1(1)

U2(1)
U2(1)

= ln 2,

which is a sufficient condition for a system to be feasible for scheduling by a rate-monotonic
policy (Proposition 11).

Denote by t∗ the moment in time where the system reaches level 2. All level-1 tasks
are discarded at this point, and we only need to schedule the level-2 tasks to meet their
deadlines. For a job of task τi that was released before t∗ and is still active at time t∗,
its virtual period of length λpi did not pass yet, since in level 1, the task was guaranteed
to meet its deadline. Hence, after t∗, there is at least (1 − λ)pi of its period left. This
reasoning holds for all level-2 tasks that have an active job at time t∗. So we define a

87

CHAPTER 5. MIXED-CRITICALITY SCHEDULING

new task system T ′, consisting only of level-2 tasks, with periods (1− λ)pi and the same
execution time as before. By (5.14), we know that

U2(1)

1− U2(2)
ln 2

≤ ln 2− U1(1)

⇔ λ =
U2(1)

ln 2− U1(1)
≤ 1− U2(2)

ln 2

⇔ 1− λ ≥ U2(2)

ln 2
.

The utilization of the new system T ′ in level 2 will be∑
τi:χi=2

ci(2)

(1− λ)pi
≤ ln 2

U2(2)

∑
τi:χi=2

ci(2)

pi

=
ln 2

U2(2)
U2(2) = ln 2,

and the task system T ′ can be scheduled by a rate-monotonic scheduling policy (Propo-
sition 11). Since the level-2 jobs that were active at the time of the criticality change can
be scheduled, the level-2 jobs that arrive after the criticality change form no problem at
all.

ALGORITHM 6: Rate Monotonic with Virtual Periods (RM-VP)

Input: task system T = (τ1, . . . , τn) to be scheduled on a unit-speed preemptive
processor with fixed priorities

if U1(1) + U2(2) ≤ ln 2 then
for i = 1, 2, . . . , n do
p̂i ← pi

end for
else

if U1(1) + U2(1)

1−U2(2)
ln 2

≤ ln 2 then

λ← U2(1)
ln 2−U1(1)

for i = 1, 2, . . . , n do
if χi = 1 then
p̂i ← pi

else
p̂i ← λpi

end if
end for

else
return unschedulable

end if
end if
return (schedulable, (p̂i)

n
i=1)

88

5.4. FIXED PRIORITIES FOR IMPLICIT-DEADLINE TASK SYSTEMS

5.4.3 Speedup factor

Theorem 17. A dual-criticality task system T satisfying

max{U1(1) + U2(1), U2(2)} ≤ 1, (5.15)

is schedulable by algorithm RM-VP on a processor of speed φ/ ln 2 ≈ 2.334, where φ =
1+
√

5
2
≈ 1.618 equals the golden ratio.

Proof. We prove an equivalent statement: if task system T satisfies

max{U1(1) + U2(1), U2(2)} ≤ ln 2/φ, (5.16)

the system is schedulable on a unit-speed machine. We distinguish two cases:
Case 1: U2(1) ≥ 1

φ
U1(1). Then, by condition (5.16), we have

ln 2

φ
≥ U1(1) + U2(1) ≥ (1 +

1

φ
)U1(1),

which gives

U1(1) ≤ ln 2/φ

1 + 1/φ
=

ln 2

φ2
.

Hence,

U1(1) + U2(2) ≤ ln 2

φ2
+

ln 2

φ

= ln 2

(
1

φ2
+

1

φ

)
= ln 2,

since 1
φ2

+ 1
φ

= φ−1
φ

+ 1
φ

= 1. Hence, by Theorem 16, RM-VP correctly schedules this
system on a unit-speed processor.
Case 2: U2(1) ≤ 1

φ
U1(1). Then we have by (5.16), that

ln 2

φ
≥ U1(1) + U2(1) ≥ (φ+ 1)U2(1).

Using that φ2 − φ = φ(φ − 1) = φ · 1
φ

= 1, we find that φ + 1 = φ + (φ2 − φ) = φ2, the
above formula gives

U2(1) ≤ ln 2/φ

φ2
=

ln 2

φ3
.

89

CHAPTER 5. MIXED-CRITICALITY SCHEDULING

Hence, using Theorem 16, it is sufficient to show that

U1(1) +
U2(1)

1− U2(2)/ ln 2
= U1(1) + U2(1)

(
1 +

U2(2)/ ln 2

1− U2(2)/ ln 2

)
≤ U1(1) + U2(1)

(
1 +

1/φ

1− 1/φ

)
= (U1(1) + U2(1)) +

U2(1)

φ− 1

≤ ln 2

φ
+

ln 2

φ3
φ

= ln 2

(
1

φ
+

1

φ2

)
= ln 2,

and RM-VP correctly schedules this system on a unit-speed processor.

5.4.4 Lower bound on speedup

We show that there exist instances with utilization greater than 1
2

+ ε which are not MC-
schedulable by any fixed-priority algorithm on a unit-speed processor, for any ε ∈ [0, 1],
but that are MC-schedulable under dynamic priorities.

Let us consider the following task system for k ∈ N, c1 < p1, p1 > 1, and f ∈ [0, 1].

τi χi pi ci(1) ci(2)
τ1 1 p1 c1 c1

τ2 2 kp1 + 1 (f − c1
p1

)p2 fp2

The utilizations in level 1 and 2 are

U1(1) + U2(1) =
c1

p1

+
c2(1)

p2

= f,

U2(2) =
c2(2)

p2

= f.

If τ1 has a higher priority than τ2 and the system reveals to be in level 2, then, in
order to schedule the first job of τ2, we need that⌈

p2

p1

⌉
c1 + c2(2) ≤ p2

⇔ (k + 1)c1 + fp2 ≤ p2

⇔ f ≤ 1− c1
k + 1

kp1 + 1
. (5.17)

If τ2 has a higher priority than τ1 and the system reveals to be in level 1, then, in

90

5.5. FINITELY MANY JOBS ON MULTIPLE PROCESSORS

order to schedule the first job of τ1, we need that

c2(1) + c1 ≤ p1

⇔
(
f − c1

p1

)
(kp1 + 1) + c1 ≤ p1

⇔ f ≤ p1 − c1

kp1 + 1
+
c1

p1

. (5.18)

The right-hand side of (5.17) tends to 1− c1
p1

as k tends to infinity, while the right-hand

side of (5.18) tends to c1
p1

as k tends to infinity. It follows that, for k big enough, if

f > max{1− c1
p1
, c1
p1
}, then the system is not schedulable by any fixed-priority algorithm.

As 1− c1
p1

is decreasing with c1 and c1
p1

is increasing with c1, we get a the maximum value

for f when 1− c1
p1

= c1
p1

, that is, c1 = 1
2
p1 and hence f = 1

2
. It follows that for f > 1

2
, the

system is not MC-schedulable by any fixed-priority algorithm with speed 1.
However, the system is MC-schedulable when using EDF-VD. In fact, the schedula-

bility condition for a two-level system (see (5.8)) will become

f − c1
p1

1− c1
p1

≤ 1− f
c1
p1

giving

f ≤ 1− c1

p1

+

(
c1

p1

)2

. (5.19)

Note that 1− c1
p1

+
(
c1
p1

)2

≥ 3
4
, for any c1

p1
∈ [0, 1].

Now, as shown above, if f = 1
2

+ ε and c1 = 1
2
p1, then inequalities (5.17) and (5.18)

are not satisfied while (5.19) is satisfied. Hence, this task system T is schedulable by
EDF-VD, but not by RM-VP.

5.5 Finitely many jobs on multiple processors

In the final section of this chapter, we do not schedule a sporadic task system, but a
finite collection of independent jobs. Whereas in the sporadic task model each task could
generate infinitely many jobs, here all jobs are known and so are their release times. For
a single machine and a 2-level system of independent jobs, Baruah et al. [13] analyzed the
Own Criticality Based Priority (OCBP) rule and showed that it guarantees a speedup

bound of φ on a collection of independent jobs (where φ = 1+
√

5
2
≈ 1.618 denotes the golden

ratio). We show that this approach can be extended to multiple identical machines at the
cost of a slightly increased bound.

The OCBP algorithm uses an approach that is commonly referred to in the real-time
scheduling literature as the “Audsley approach” [6]. A priority ordering of the jobs is
recursively determined off-line, before knowing the actual execution times. The OCBP
schedulability test starts by determining the lowest-priority job: job Jh is assigned lowest

91

CHAPTER 5. MIXED-CRITICALITY SCHEDULING

priority (priority parameter πh will be assigned highest rank) if there is at least ch(χh)
time in [ah, dh] assuming that every other job Jj is executed before Jh for cj(χh) units of
time. This procedure is recursively applied to the collection of jobs obtained by excluding
the jobs that have a priority assigned already, until all the jobs are ordered or no lowest-
priority job can be found. A collection of jobs is called OCBP-schedulable if the algorithm
finds a complete ordering of the jobs. During run time, for each scenario, at each moment
in time, the available job with the highest priority is executed.

Theorem 18. Let J̃ be a collection of jobs that is schedulable on m unit-speed processors.
Then J̃ is schedulable using OCBP on m processors of speed φ+ 1− 1/m.

Proof. We will prove this theorem by contradiction. Let J̃ be a minimal collection of
jobs that is MC-schedulable on m unit-speed processors, but not OCBP-schedulable on
m processors of speed σ > 1. By a minimal instance we mean that a proper subset of J̃
is OCBP-schedulable on m speed-σ processors.

Let ω1 =
∑

j∈J̃ :χj=1 cj(1) denote the cumulative WCET for jobs with criticality level

1, and let ω2(1) =
∑

j∈J̃ :χj=2 cj(1) and ω2(2) =
∑

j∈J̃ :χj=2 cj(2) denote the cumulative

WCETs for jobs with criticality level 2, at levels 1 and 2, respectively. Let d̃1 and d̃2

denote the latest deadlines at levels 1 and 2, respectively and let J̃1 and J̃2 denote the
corresponding jobs.

Fact 4. The job in J̃ with latest deadline must be of criticality 2, that is, d̃1 < d̃2.

Proof. Suppose that d̃1 ≥ d̃2. Consider the collection of jobs J̃ ′ obtained from J̃ by setting
the level-2 WCETs of criticality-2 jobs to their level-1 WCET. The MC-schedulability of
J̃ implies that also J̃ ′ is MC-schedulable.

Note that J̃\J̃1 should be OCBP-schedulable by the assumed minimality of the in-
stance. If J̃1 can be assigned the lowest priority, and J̃\J̃1 is OCBP-schedulable, then the
entire instance is OCBP-schedulable. Since we have assumed this is not the case, J̃1 can
not be assigned the lowest priority. But this implies that there is not enough available
execution time between the release time of J̃1 and d̃1 for executing J̃1 if all the other jobs

ALGORITHM 7: Own Criticality Based Priority (OCBP)

Input: job set J = (J1, . . . , Jn) to be scheduled on m preemptive processors

for k = 1 to n do
if ∃ Jh ∈ J such that there is at least ch(χh) time in [ah, dh] assuming every other
job Jj is executed before Jh for cj(χh) units of time then

priority πh ← n− k + 1 (where lower index denotes higher priority)
J ← J \ {Jh}

else
return not OCBP-schedulable

end if
end for
return (OCBP-schedulable, (πh)

n
h=1)

92

5.5. FINITELY MANY JOBS ON MULTIPLE PROCESSORS

Jj are executed for cj(1) units of time. Then, level-1 behaviors of J̃ ′ cannot be scheduled,
which is a contradiction to the MC-schedulability of J̃ ′. Hence, d̃1 < d̃2.

A work-conserving schedule is a schedule that never leaves a processor idle if there is
a job available. We define Λ1 as the set of time intervals in [0, d̃1) on which all processors
are idle, for any work-conserving schedule. For the interval [d̃1, d̃2), Λ2 is defined similarly.
For ` ∈ {1, 2}, λ` is defined as the total length of the intervals in Λ`.

Fact 5. For ` ∈ {1, 2}, and for each job Jj in J̃ such that χj ≤ `, we have [aj, dj]∩Λ` = ∅.
This implies that λ2 = 0.

Proof. Any job Jj in J̃ such that χj ≤ ` and [aj, dj] ∩ Λ` 6= ∅ would meet its deadline
if it were assigned lowest priority. As J̃ is not OCBP-schedulable on speed-σ processors,
the collection of jobs obtained by removing such Jj from J̃ is also not OCBP-schedulable.
This contradicts the assumed minimality of J̃ .

Since J̃ is MC-schedulable on m speed-1 processors, ω1 cannot exceed m(d̃1 − λ1) in
any criticality-1 scenario. Moreover, in scenarios where all jobs execute for their WCET
at criticality 1, ω1+ω2(1) cannot exceed m(d̃2−λ1) and in scenarios where all jobs execute
for their WCET at criticality 2, ω2(2) cannot exceed m(d̃2 − λ2). Hence, the following
inequalities hold:

ω1 ≤ m(d̃1 − λ1), (5.20)

ω1 + ω2(1) ≤ m(d̃2 − λ1) ≤ md̃2, (5.21)

ω2(2) ≤ m(d̃2 − λ2) = md̃2. (5.22)

Since J̃ is not OCBP-schedulable on m speed-σ processor and it is a minimal instance,
J̃1 and J̃2 cannot be the lowest-priority jobs. This implies that

1

m
(ω1 + ω2(1)− cJ̃1(1)) + cJ̃1(1) > σ(d̃1 − λ1),

1

m
(ω1 + ω2(2)− cJ̃2(2)) + cJ̃2(2) > σ(d̃2 − λ2) = σd̃2.

Hence,

ω1 + ω2(1) > σm(d̃1 − λ1)− (m− 1)cJ̃1(1), (5.23)

ω1 + ω2(2) > σmd̃2 − (m− 1)cJ̃2(2). (5.24)

By inequalities (5.21) and (5.23), it follows that

md̃2 > σm(d̃1 − λ1)− (m− 1)cJ̃1(1)

⇔
(

1− 1

m

)
cJ̃1(1) + d̃2 > σ(d̃1 − λ1).

93

CHAPTER 5. MIXED-CRITICALITY SCHEDULING

Let us define ψ = (d̃1 − λ1)/d̃2. By MC-schedulability, we have: cJ̃1(1) ≤ d̃1 − λ1.
Therefore, (

1− 1

m

)
(d̃1 − λ1) + d̃2 > σ(d̃1 − λ1)

⇔ σ < 1− 1

m
+

d̃2

d̃1 − λ1

= 1 +
1

ψ
− 1

m
.

By inequalities (5.20), (5.22) and (5.24), we obtain

m(d̃1 − λ1) +md̃2 > σmd̃2 − (m− 1)cJ̃2(2)

⇔ d̃1 − λ1 + d̃2 + (1− 1/m)cJ̃2(2) > σd̃2.

By MC-schedulability, we have cJ̃2(2) ≤ d̃2. Therefore,

d̃1 − λ1 +

(
2− 1

m

)
d̃2 > σd̃2

⇔ σ <
d̃1 − λ1

d̃2

+ 2− 1

m

= ψ + 2− 1

m
.

Hence,

σ < min

{
1 +

1

ψ
− 1

m
,ψ + 2− 1

m

}
.

As ψ + 2 − 1
m

increases and 1 + 1
ψ
− 1

m
decreases with increasing ψ, the minimum value

of σ occurs when ψ + 2 − 1
m

= 1 + 1
ψ
− 1

m
, that is, when ψ =

√
5−1
2

= φ − 1. Hence,

σ < φ+ 1− 1
m

.

Since the assumption that J̃ is not OCBP-schedulable led to the conclusion that
σ < φ + 1− 1

m
, a set of jobs that is MC-schedulable on m unit-speed processors, can be

scheduled by OCBP on m processors running at speed φ+ 1− 1
m

.

5.6 Epilogue

In this chapter various scheduling problems are considered in the mixed-criticality setting.
Many problems that are considered, have natural extensions that remain open. Take for
example the result from Section 5.5 concerning a job set on multiple machines. The OCBP
scheduling policy works only for 2 criticality levels. A natural extension would be to have
a policy for K levels.

For the scheduling policy EDF-VD given in this chapter, we have used a single scaling
factor x for tasks from all levels. It could be interesting to see if better speedup bounds

94

5.6. EPILOGUE

can be attained by choosing different scaling factors for tasks from different criticality
levels. Next to that, for K > 3, no explicit speedup bound was found at all, which also
leaves a direction for further research.

For the scheduling of MC task systems, essentially the only known results are for a
single machine. In [15] a small result is given for scheduling an implicit-deadline MC task
system on multiple identical machines. There, the utilization vectors of tasks are scheduled
to the machines using the vector scheduling approach of Chekuri and Khanna [27] in a
black-box manner (see Chapter 4, where we also refer to the Vector Scheduling problem).

A nice extension of different parts of this dissertation would be to consider mixed-
criticality scheduling (of implicit-deadline task systems, to start with) on unrelated ma-
chines.

95

Bibliography

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, S. Khanna, I. Milis,
M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko. Approximation schemes
for minimizing average weighted completion time with release dates. In Proceedings
of 40th Symposium on Foundations of Computer Science, pages 32–43. IEEE, 1999.

[2] K. Albers and F. Slomka. An event stream driven approximation for the analysis
of real-time systems. In Proceedings of 16th Euromicro Conference on Real-Time
Systems, pages 187–195. IEEE, 2004.

[3] S. Anand, N. Garg, and N. Megow. Meeting deadlines: How much speed suffices?
In L. Aceto, M. Henzinger, and J. Sgall, editors, Proceedings of 38th International
Colloquium on Automata, Languages and Programming, volume 6755 of Lecture Notes
in Computer Science, pages 232–243. Springer, 2011.

[4] B. Andersson and E. Tovar. Competitive analysis of partitioned scheduling on uni-
form multiprocessors. In Proceedings of 21st International Parallel and Distributed
Processing Symposium, pages 1–8. IEEE, 2007.

[5] A. Asadpour, U. Feige, and A. Saberi. Santa Claus meets hypergraph matchings.
In A. Goel, K. Jansen, J.D.P. Rolim, and R. Rubinfeld, editors, Approximation,
Randomization and Combinatorial Optimization: Algorithms and Techniques, volume
5171 of Lecture Notes in Computer Science, pages 10–20. Springer, 2008.

[6] N.C. Audsley. Flexible scheduling of hard real-time systems. PhD thesis, Department
of Computer Science, University of York, 1993.

[7] B. Awerbuch, Y. Azar, E.F. Grove, M.-Y. Kao, P. Krishnan, and J.S. Vitter. Load
balancing in the Lp norm. In Proceedings of 36th Symposium on Foundations of
Computer Science, pages 383–391. IEEE, 1995.

[8] Y. Azar and A. Epstein. Convex programming for scheduling unrelated machines.
In Proceedings of 37th Symposium on Theory of Computing, pages 331–337. ACM,
2005.

[9] N. Bansal, C. Rutten, S. van der Ster, T. Vredeveld, and R. van der Zwaan. Approxi-
mating real-time scheduling on identical machines. In A. Pardo and A. Viola, editors,
Proceedings of 11th Latin American Theoretical Informatics Symposium, volume 8392
of Lecture Notes in Computer Science, pages 550–561. Springer, 2014.

BIBLIOGRAPHY

[10] N. Bansal and M. Sviridenko. The Santa Claus problem. In Proceedings of 38th
Symposium on Theory of Computing, pages 31–40. ACM, 2006.

[11] N. Bansal, T. Vredeveld, and R. van der Zwaan. Approximating vector scheduling:
Almost matching upper and lower bounds. In A. Pardo and A. Viola, editors, Pro-
ceedings of 11th Latin American Theoretical Informatics Symposium, volume 8392 of
Lecture Notes in Computer Science, pages 47–59. Springer, 2014.

[12] J. Barhorst, T. Belote, P. Binns, J. Hoffman, J. Paunicka, P. Sarathy,
J. Scoredos, P. Stanfill, D. Stuart, and R. Urzi. White paper: A research
agenda for mixed-criticality systems. Technical report, 2009. Available at
http://www.cse.wustl.edu/∼cdgill/CPSWEEK09 MCAR/.

[13] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, N. Megow,
and L. Stougie. Scheduling real-time mixed-criticality jobs. IEEE Transactions on
Computers, 61(8):1140–1152, 2012.

[14] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. van der
Ster, and L. Stougie. The preemptive uniprocessor scheduling of mixed-criticality
implicit-deadline sporadic task systems. In Proceedings of 24th Euromicro Conference
on Real-Time Systems, pages 145–154. IEEE, 2012.

[15] S. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. van der Ster, and
L. Stougie. Mixed-criticality scheduling of sporadic task systems. In C. Demetrescu
and M.M. Halldórsson, editors, Proceedings of 19th European Symposium on Algo-
rithms, volume 6942 of Lecture Notes in Computer Science, pages 555–566. Springer,
2011.

[16] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller. Improved multipro-
cessor global schedulability analysis. Real-Time Systems, 46(1):3–24, 2010.

[17] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of sporadic
task systems. In Proceedings of 26th Real-Time Systems Symposium, pages 321–329.
IEEE, 2005.

[18] S. Baruah and N. Fisher. The partitioned multiprocessor scheduling of deadline-
constrained sporadic task systems. IEEE Transactions on Computers, 55(7):918–923,
2006.

[19] S. Baruah and J. Goossens. Scheduling real-time tasks: Algorithms and complexity.
In J.Y.-T. Leung, editor, Handbook of Scheduling: Algorithms, Models and Perfor-
mance Evaluation, chapter 28. CRC Press, 2004.

[20] S. Baruah, H. Li, and L. Stougie. Towards the design of certifiable mixed-criticality
systems. In Proceedings of 16th Real-Time and Embedded Technology and Applica-
tions Symposium, pages 13–22. IEEE, 2010.

98

BIBLIOGRAPHY

[21] S. Baruah, A. Mok, and L. Rosier. Preemptively scheduling hard-real-time sporadic
tasks on one processor. In Proceedings of 11th Real-Time Systems Symposium, pages
182–190. IEEE, 1990.

[22] D. Bertsimas and J.N. Tsitsiklis. Introduction to Linear Optimization. Athena Sci-
entific, Belmont, Massachusetts, 1997.

[23] V. Bonifaci, A. Marchetti-Spaccamela, and S. Stiller. A constant-approximate feasi-
bility test for multiprocessor real-time scheduling. Algorithmica, 62(3–4):1034–1049,
2012.

[24] J. Bruno, E.G. Coffman Jr., and R. Sethi. Scheduling independent tasks to reduce
mean finishing time. Communications of the ACM, 17(7):382–387, 1974.

[25] A. Burns and R. Davis. Mixed criticality systems - A review. Technical report, 2013.
Available at http://www-users.cs.york.ac.uk/∼burns/review.pdf.

[26] S. Chakraborty, S. Künzli, and L. Thiele. Approximate schedulability analysis. In
Proceedings of 23rd Real-Time Systems Symposium, pages 159–168. IEEE, 2002.

[27] C. Chekuri and S. Khanna. On multi-dimensional packing problems. SIAM Journal
on Computing, 33(4):837–851, 2004.

[28] B. Chen, Y. Ye, and J. Zhang. Lot-sizing scheduling with batch setup times. Journal
of Scheduling, 9(3):299–310, 2006.

[29] J.-J. Chen and S. Chakraborty. Resource augmentation bounds for approximate
demand bound functions. In Proceedings of 32nd Real-Time Systems Symposium,
pages 272–281. IEEE, 2011.

[30] J.-J. Chen and S. Chakraborty. Partitioned packing and scheduling for sporadic
real-time tasks in identical multiprocessor systems. In Proceedings of 24th Euromicro
Conference on Real-Time Systems, pages 24–33. IEEE, 2012.

[31] J. Correa, A. Marchetti-Spaccamela, J. Matuschke, O. Svensson, L. Stougie, V. Ver-
dugo, and J. Verschae. Strong LP formulations for scheduling splittable jobs on
unrelated machines. In Proceedings of 17th Conference on Integer Programming and
Combinatorial Optimization, to appear, 2014.

[32] M. Drozdowski. Scheduling for Parallel Processing. Springer, 2009.

[33] J. Du, J.Y.-T. Leung, and G.H. Young. Minimizing mean flow time with release time
constraint. Theoretical Computer Science, 75(3):347–355, 1990.

[34] A. Easwaran. Demand-based scheduling of mixed-criticality sporadic tasks on one
processor. In Proceedings of 34th Real-Time Systems Symposium, pages 78–87. IEEE,
2013.

99

BIBLIOGRAPHY

[35] T. Ebenlendr, M. Krčál, and J. Sgall. Graph balancing: A special case of scheduling
unrelated parallel machines. In Proceedings of 19th Symposium on Discrete Algo-
rithms, pages 483–490. SIAM-ACM, 2008.

[36] F. Eisenbrand and T. Rothvoß. A PTAS for static priority real-time scheduling with
resource augmentation. In L. Aceto, I. Damg̊ard, L.A. Goldberg, M.M. Halldórsson,
A. Ingólfsdóttir, and I. Walukiewicz, editors, Proceedings of 35th International Col-
loquium on Automata, Languages and Programming, volume 5125 of Lecture Notes
in Computer Science, pages 246–257. Springer, 2008.

[37] F. Eisenbrand and T. Rothvoß. EDF-schedulability of synchronous periodic task
systems is coNP-hard. In Proceedings of 21st Symposium on Discrete Algorithms,
pages 1029–1034. SIAM-ACM, 2010.

[38] P. Ekberg and W. Yi. Bounding and shaping the demand of mixed-criticality sporadic
tasks. In Proceedings of 24th Euromicro Conference on Real-Time Systems, pages
135–144. IEEE, 2012.

[39] P. Ekberg and W. Yi. Bounding and shaping the demand of generalized mixed-
criticality sporadic task systems. Real-Time Systems, 50(1):48–86, 2014.

[40] N. Fisher, S. Baruah, and T.P. Baker. The partitioned scheduling of sporadic tasks
according to static-priorities. In Proceedings of 18th Euromicro Conference on Real-
Time Systems, pages 118–127. IEEE, 2006.

[41] R.L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal of Applied
Mathematics, 17(2):416–429, 1969.

[42] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals of
discrete mathematics, 5(2):287–326, 1979.

[43] N. Guan, P. Ekberg, M. Stigge, and W. Yi. Effective and efficient scheduling of
certifiable mixed-criticality sporadic task systems. In Proceedings of 32nd Real-Time
Systems Symposium, pages 13–23. IEEE, 2011.

[44] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network
problem. Combinatorica, 21(1):39–60, 2001.

[45] K. Jansen and L. Porkolab. Improved approximation schemes for scheduling unre-
lated parallel machines. In Proceedings of 31st Symposium on Theory of Computing,
pages 408–417. ACM, 1999.

[46] B. Kalyanasundaram and K. Pruhs. Speed is as powerful as clairvoyance. Journal of
the ACM, 47(4):617–643, 2000.

[47] H. Karloff. Linear Programming. Birkhäuser, 1991.

[48] R.M. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, 40:85–103, 1972.

100

BIBLIOGRAPHY

[49] R.M. Karp, F.T. Leighton, R.L. Rivest, C.D Thompson, U.V. Vazirani, and V.V.
Vazirani. Global wire routing in two-dimensional arrays. Algorithmica, 2:113–129,
1987.

[50] V.S.A. Kumar, M.V. Marathe, S. Parthasarathy, and A. Srinivasan. Approximation
algorithms for scheduling on multiple machines. In Proceedings of 46th Symposium
on Foundations of Computer Science, pages 254–263. IEEE, 2005.

[51] L.C. Lau, R. Ravi, and M. Singh. Iterative methods in combinatorial optimization.
Cambridge University Press, 2011.

[52] J.K. Lenstra. The mystical power of twoness: in memoriam Eugene L. Lawler.
Journal of Scheduling, 1(1):3–14, 1998.

[53] J.K. Lenstra, D.B. Shmoys, and É. Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming, 46(1–3):259–271, 1990.

[54] J.Y.-T. Leung. Some basic scheduling algorithms. In J.Y.-T. Leung, editor, Handbook
of Scheduling: Algorithms, Models and Performance Evaluation, chapter 3. CRC
Press, 2004.

[55] H. Li and S. Baruah. An algorithm for scheduling certifiable mixed-criticality sporadic
task systems. In Proceedings of 16th Real-Time Systems Symposium, pages 183–192.
IEEE, 2010.

[56] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard real-
time environment. Journal of the ACM, 20:46–61, 1973.

[57] Z. Liu and T.C.E. Cheng. Minimizing total completion time subject to job release
dates and preemption penalties. Journal of Scheduling, 7:313–327, 2004.

[58] A. Marchetti-Spaccamela, C. Rutten, S. van der Ster, and A. Wiese. Assigning spo-
radic tasks to unrelated parallel machines. In A. Czumaj, K. Mehlhorn, A. Pitts, and
R. Wattenhofer, editors, Proceedings of 39th International Colloquium on Automata,
Languages and Programming, volume 7391 of Lecture Notes in Computer Science,
pages 665–676. Springer, 2012.

[59] C.A. Phillips, C. Stein, E. Torng, and J. Wein. Optimal time-critical scheduling via
resource augmentation. Algorithmica, 32:163–200, 2002.

[60] C.N. Potts and L.N. van Wassenhove. Integrating scheduling with batching and lot-
sizing: A review of algorithms and complexity. Journal of the Operational Research
Society, 43(5):395–406, 1992.

[61] G. Raravi, B. Andersson, and K. Bletsas. Assigning real-time tasks on heterogeneous
multiprocessors with two unrelated types of processors. Real-Time Systems, 49(1):29–
72, 2013.

101

BIBLIOGRAPHY

[62] G. Raravi and V. Nélis. A PTAS for assigning sporadic tasks on two-type heteroge-
neous multiprocessors. In Proceedings of 33rd Real-Time Systems Symposium, pages
117–126. IEEE, 2012.

[63] F. Schalekamp, R. Sitters, S. van der Ster, L. Stougie, V. Verdugo, and A. van Zuylen.
Split scheduling with uniform setup times. Journal of Scheduling, to appear. Avail-
able at http://link.springer.com/article/10.1007%2Fs10951-014-0370-4.

[64] P. Schuurman and G.J. Woeginger. Preemptive scheduling with job-dependent setup
times. In Proceedings of 10th Symposium on Discrete Algorithms, pages 759–767.
SIAM-ACM, 1999.

[65] D.B. Shmoys and É. Tardos. An approximation algorithm for the generalized assign-
ment problem. Mathematical Programming, 62(1–3):461–474, 1993.

[66] M. Singh and L.C. Lau. Approximating minimum bounded degree spanning trees to
within one of optimal. In Proceedings of 39th Symposium on Theory of Computing,
pages 661–670. ACM, 2007.

[67] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202–208, 1985.

[68] H. Su and D. Zhu. An elastic mixed-criticality task model and its scheduling algo-
rithm. In Proceedings of Conference on Design, Automation & Test in Europe, pages
147–152, 2013.

[69] O. Svensson. Santa Claus schedules jobs on unrelated machines. SIAM Journal on
Computing, 41(5):1318–1341, 2012.

[70] S. van der Ster. The allocation of scarce resources in disaster relief. Master’s thesis,
VU University, Amsterdam, 2010.

[71] S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees
of execution time assurance. In Proceedings of 28th Real-Time Systems Symposium,
pages 239–243. IEEE, 2007.

[72] A. Wiese, V. Bonifaci, and S. Baruah. Partitioned EDF scheduling on a few types
of unrelated multiprocessors. Real-Time Systems, 49(2):219–238, 2013.

[73] W. Xing and J. Zhang. Parallel machine scheduling with splitting jobs. Discrete
Applied Mathematics, 103(1–3):259–269, 2000.

102

Samenvatting

Het benaderen van uitvoerbaarheid in real-time scheduling

De snelheid opvoeren om deadlines te halen

Het vakgebied van scheduling houdt zich bezig met het toewijzen van middelen aan een
verzameling van opdrachten die moeten worden uitgevoerd. Problemen die in dit vakge-
bied naar voren komen hebben met elkaar gemeen dat er wordt gezocht naar de beste
manier om die middelen toe te wijzen aan de opdrachten. Wat “de beste” manier is kan
variëren tussen de verschillende problemen en ook andere probleemparameters kunnen
verschillende vormen aannemen.

De middelen waarmee deze taken worden uitgevoerd worden machines genoemd.
Daarbij kan gedacht worden aan een machine in een fabriek die bijvoorbeeld losse onderde-
len tot een eindproduct verwerkt, maar de machines in het model zouden in werkelijkheid
ook teams van mensen kunnen voorstellen die bepaalde opdrachten moeten volbrengen.
De oplossing die we vinden voor een gegeven probleem noemen we een schedule (schema).
Het vinden van het optimale schedule is in veel gevallen NP -moeilijk, waardoor we onze
toevlucht moeten nemen tot benaderingsalgoritmen.

In Hoofdstuk 1 leggen we eerst nauwkeuriger uit wat schedulingproblemen precies zijn
en wat het verschil is tussen klassieke schedulingproblemen en problemen in de real-time
scheduling. Vervolgens behandelen we kort wat complexiteitstheorie en introduceren we
benaderingsalgoritmen.

Het probleem dat in Hoofdstuk 2 wordt bekeken is een zogeheten klassiek scheduling-
probleem. Daarin hebben we te maken met een verzameling opdrachten die moet worden
ingedeeld op meerdere machines. Voor iedere opdracht kijken we naar de completeringstijd
van de opdracht, dat wil zeggen, het moment dat de opdracht voltooid wordt. We pogen
de som van deze completeringstijden te minimaliseren. Hierbij mogen de opdrachten wor-
den opgesplitst in meerdere delen (die ook tegelijkertijd op meerdere machines mogen
worden uitgevoerd), maar voordat een (deel van een) opdracht kan worden uitgevoerd is
er een instellingstijd s nodig. Tijdens het instellen kan een machine niet gebruikt worden
voor het uitvoeren van een opdracht, of voor het instellen van een andere opdracht. De
instellingstijd s wordt verondersteld onafhankelijk te zijn van de opdracht, de machine
waarop de opdracht wordt uitgevoerd, en de volgorde van de opdrachten. Voor het spe-
ciale geval van twee machines geven we een algoritme dat in polynomiale tijd een optimaal
schedule vindt. Voor het geval van meerdere machines geven we aan waarom de oplos-
sing voor twee machines niet eenvoudig te generaliseren valt. Wel geven we een simpel
benaderingsalgoritme met een benaderingsgarantie van 2 + 1

4
(
√

17− 1) ≈ 2.781 voor het

BIBLIOGRAPHY

algemene geval.

De overige drie hoofdstukken in dit proefschrift behandelen problemen uit de real-time
scheduling. In real-time scheduling gaat het erom te bepalen wat de uitvoerbaarheid is
van een systeem van taken op een verzameling machines. Een taak geeft herhaaldelijk
een opdracht af die moet worden voltooid voor een gegeven deadline. De frequentie
waarmee deze opdrachten worden afgegeven is bekend en iedere opdracht van dezelfde taak
heeft dezelfde uitvoeringstijd en dezelfde relatieve deadline. Een takensysteem bestaat uit
meerdere taken, ieder met zijn eigen parameters. Een uitvoerbaarheidstest moet uitwijzen
of een gegeven systeem van taken kan worden uitgevoerd op een gegeven verzameling
machines, zodanig dat iedere opdracht zijn deadline haalt.

In het probleem beschreven in Hoofstuk 3 zijn de machines ongerelateerd. Dit betekent
dat de uitvoeringstijd van een opdracht afhangt van de machine waarop de opdracht
wordt uitgevoerd. We zoeken naar een splitsing van de taken over de machines zodat alle
opdrachten van een taak worden uitgevoerd op de machine waaraan de taak is toegewezen,
zodanig dat alle opdrachten hun deadlines halen. Voor het algemene geval geven we een
benaderingsalgoritme dat de taken zo verdeelt over de machines dat alle deadlines worden
gehaald als de machines een factor 8 + 2

√
6 ≈ 12.9 sneller werken, gegeven dat het

systeem uitvoerbaar is op machines zonder extra snelheid. Om dit resultaat te behalen
introduceren we lineaire benaderingen van de vraagbegrenzingsfunctie (demand bound
function) en daarbovenop ontwikkelen we een nieuw afrondingsalgoritme voor lineaire
programma’s (LP’s). Voor het geval dat het aantal machines een constante is, geven we
een Polynomiale Tijd Approximatie Schema (PTAS). Voor een kleine constante ε > 0,
bepaalt deze test of een systeem van taken kan worden ingedeeld op de machines als deze
een snelheid 1+O(ε) krijgen, of dat het systeem niet uitvoerbaar is als de machines snelheid
1 hebben. De looptijd van deze test is polynomiaal in de grootte van de probleeminstantie,
maar kan exponentieel zijn in 1/ε.

In Hoofdstuk 4 beschouwen we identieke machines en bouwen voort op het PTAS
uit het voorgaande hoofdstuk. We vinden een (1 + ε)-benaderingsalgoritme voor het
probleem waarin we een verzameling taken willen opsplitsen over een willekeurig aantal
identieke machines. Hiermee verbeteren we ten opzichte van resultaat van anderen in de
looptijd van het algoritme. Er was een PTAS bekend voor het geval dat de verhouding
tussen de maximum en minimum relatieve deadline een constante is. Ons algoritme
geeft een exponentiële verbetering in de looptijd en kan daardoor een breder scala aan
probleeminstanties verwerken. Als bijvoorbeeld de verhouding tussen de maximum en
minimum relatieve deadline polynomiaal in het aantal taken is, heeft ons algoritme een
quasi-polynomiale looptijd, terwijl het vorige resultaat al op een exponentiële looptijd
uitkwam.

Het laatste hoofdstuk behandelt scheduling in de mixed-criticality omgeving. Dit
houdt in dat iedere taak een gegeven criticality niveau heeft, dat aangeeft in hoeverre
een taak kritiek is. Het systeem bevindt zich ook in één van deze K niveaus en elke taak
heeft verschillende uitvoeringstijden voor de verschillende niveaus waarin het systeem zich
kan bevinden. We bestuderen de uitvoerbaarheid van een mixed-criticality takensysteem
met impliciete deadlines op één processor. Hiervoor geven we een schedulingalgoritme
EDF-VD dat in polynomiale tijd beslist of een takensysteem van K niveaus kan worden
uitgevoerd op een snellere processor, of dat het niet uitvoerbaar is als de processor snelheid

104

BIBLIOGRAPHY

1 heeft. De extra benodigde snelheid hangt af van het aantal niveaus. Voor een systeem
met 2 niveaus laten we zien dat een snelheid van ten hoogste 4/3 benodigd is, terwijl voor
een systeem van 3 niveaus deze snelheid ten hoogste 2 is. Verder tonen we aan dat geen
enkel niet-helderziend algoritme (dat niet van te voren weet in welk niveau het systeem
zich zal bevinden) de uitvoerbaarheid van een takensysteem correct kan bepalen met een
snelheid minder dan 4/3.

Voor systemen bestaande uit twee niveaus geven we ook een algoritme dat werkt met
vaste prioriteiten. Dit houdt in dat vooraf een vaste ordening van de taken wordt gemaakt
en de opdrachten die door deze taken worden afgegeven worden afgehandeld volgens de
prioriteiten bepaald door deze ordening. Ons vaste-prioriteitenalgoritme RM-VP bepaalt
of een takensysteem kan worden uitgevoerd op één processor die snelheid φ/ ln 2 ≈ 2.334
heeft, of dat het niet kan worden uitgevoerd op een processor met snelheid 1, waarbij
φ = 1+

√
5

2
≈ 1.618 de gulden snede is. Ten slotte geven we een vaste-prioriteitenalgoritme

dat we OCBP noemen voor het uitvoeren van een verzameling van mixed-criticality op-
drachten op m identieke machines. Dit algoritme bepaalt of de opdrachten kunnen worden
uitgevoerd zodat alle deadlines worden gehaald als de machines snelheid φ+1− 1

m
hebben,

of dat ze niet kunnen worden uitgevoerd als de machines snelheid 1 hebben.

105

Acknowledgments

This dissertation would never have seen daylight if it was not for my promotor Leen
Stougie. After supervising my Master’s thesis he asked me apply for the PhD project
that he filed with the faculty and that is where my adventure began. I wish to thank
Leen for his support and guidance during the past years. I am glad that we got to work
together on some nice projects. Apart from working together in Amsterdam, I enjoyed
the work trips that we made, to Rome, Berlin, Corsica, and other places, and the chats
we had about doing sports and life in general. I am grateful that Leen introduced me to
lots of people in the OR community, from which I benefitted a lot.

I am also indebted to my other promotor Alberto Marchetti-Spaccamela. Alberto is
one of the people I was introduced to through Leen and I am happy that he took up the
role as my promotor next to Leen. Thank you, Alberto, for making it possible for me to
visit La Sapienza for two extended periods, adding up to six months in total. In terms of
productivity, especially the first visit was extremely fruitful and led to a wonderful paper.

Next, I would like to thank the thesis committee, consisting of Sanjoy Baruah, Vin-
cenzo Bonifaci, Nicole Megow and René Sitters for their assessment of this dissertation
and their helpful comments to improve it.

Then, there is a long list of co-authors that I would like to thank for their collaboration.
The first project I got involved in after starting the PhD trajectory was with René Sitters,
Sylvia Boyd and Leen. Thank you for letting me join your project at a later stage.
Although the paper that this project led to did not end up in this dissertation, it got me
my first publication and allowed me to already get a feeling for writing papers in an early
stage of my PhD.

The initial topic of my PhD trajectory was “Mixed-criticality scheduling” and the
research in this area led to the findings in Chapter 5. I want to thank my co-authors
Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li, Alberto Marchetti-
Spaccamela and Leen Stougie for collaboration on this theme.

My first longer visit to Rome was in the fall of 2011. I was lucky that Andreas
Wiese and Cyriel Rutten happened to be there during that period and we had a fruitful
collaboration together with Alberto that led to the results as presented in Chapter 3.
Andreas and Cyriel, thank you for working together, but also for the many (pasta) lunches
and all the caffè that we had together.

Following up on some of the work in Rome was a project that in my e-mail inbox was
called “Team Eindhoven”. Thanks to Cyriel, I was invited to join this project of which
the results appear in Chapter 4. This chapter is technically the most challenging from
the whole dissertation and it was not so easy to target the right conference for it. I want
to thank my co-authors on this paper, Nikhil Bansal, Cyriel Rutten, Tjark Vredeveld and

BIBLIOGRAPHY

Ruben van der Zwaan for the efforts needed to obtain the results that we did and to get
it published in a suitable conference.

Finally, there is the chapter on split scheduling, for which the inspiration came out of
my Master’s thesis. This chapter is the one closest to my heart and I wish to thank my
co-authors Frans Schalekamp, René Sitters, Leen Stougie, Vı́ctor Verdugo and Anke van
Zuylen for their collaboration. The paper would not have the good shape that it does
now without their contributions.

During both stays in Rome, Vincenzo Bonifaci was always available for questions,
whether it concerned research, practical issues or Italian bureaucratics. Further, Vincenzo,
and the following people at La Sapienza made me enjoy the Roman life more: Aris
Anagnostopoulos, Marek Adamczyk, Lukasz Jeż and Stefano Leonardi. Thank you for
going for caffè with me, for having an aperitivo, for taking me for pastries at Regoli, for
lunch, and for gelati on Wednesdays at the “Palazzo del Freddo”.

My second stay in Rome would also not have been the same without the great friends
that I met through my Italian language course. Katie Shields, you are a linguistic genius
and a wonderful, cheerful person to hang out with. Thank you for the sight seeing and
dinners in Rome and for spending a nice (but rainy) weekend in Firenze with me. Marisella
Cruz, although our lives are completely different, we found some funny similarities and
I always enjoyed hanging out with you! Thank you for inviting me to the beautiful
Monestevole, where I hope to be again. Finally, Ed Slesak and Elena Past, thank you
for being great friends, for having dinner, discovering new gelaterias, discussing politics,
Dutch names in Michigan, and anything else you could think of. Elena inspired me to
pursue a challenging goal in sports during the writing of my dissertation and this May I
will participate in a 100k rowing regatta.

The past four years I have had a pleasant working environment at the Vrije Uni-
versiteit. I would like to thank my colleagues at the department of Econometrics and
Operations Research for providing that environment. A special thanks for all my office
mates over the past four years: Bahar, Chris, Nigel, Warren, Ping, Yuyu, Chao, Joost,
Martijn and Max.

My professional life would not have been any success if my personal life was not filled
with great friends. Mariëtte, we have been friends from the first day of our Bachelor’s in
Econometrics and Operations Research. Thank you for being there for me, in good times
and not so good. I was very happy when you were accepted at the VU, first for the JR
position and then as a PhD. It was great to share the PhD experience with you for the
last few years.

Ay May, thank you for designing the wonderful cover of my dissertation. Without
you, the cover would have been plain and boring, and you made it much more fun. And
that also holds for you being a friend in my life; you make it much more fun!

Thomas, when I persuaded you to come to the “open day” of the Econometrics study
in 2003, I guess that neither of us expected that you would be standing by my side as my
friend and my paranymph 11 years later. Max, in the introduction week of our studies
you did not participate so much and I was afraid that you were a bit boring. I could
not have been more wrong! You have become my friend, my party buddy and now my
paranymph, too. Guys, thank you for willing to be my paranymphs at my defense. I am
sure that I will feel safe, accompanied by my two tall defenders.

108

BIBLIOGRAPHY

Binte and Ramsy, together with Jet, Ay, Thomas en Max, you were my buddies
during the Bachelor’s phase. I believe that we have all brought each another to better
achievements and I want to thank you all for that unique friendship.

I always liked doing activities on the side and the place for me to do that was my
rowing club Skøll. Both while studying and during my PhD I have spent a lot of time
there and made a lot of friends. My first rowing team FAME’r, fellow board members
from Bestuur’08 (lieverds!), my “Koninklijke Clubacht” rowing team, my former roomies,
all the lightweight rowers I have coached, my fellow coaches, and everyone else; thank you
for being friends and adding so much pleasure to my life.

I wish to thank my parents, Peter and Ineke, for always supporting me, both during
the period I was studying (also financially) and during the PhD trajectory. You always
let me make my own decisions, but believed in me every step of the way. My beloved
sisters, Tamara and Jessica, I am lucky to have such great supportive sisters. It feels
great to have you so close to me in Amsterdam and to know that you are always there
for me. Pap, mam, Tam and Jes, I love you!

Finally, I am thanking my love Adriaan for his faith in me. He believes in me more
than I do, and always encourages me to pursue my dreams. Adriaan, thank you so much
for supporting me in writing my dissertation, for kicking my ass when I needed it, and
thank you for loving me.

Suzanne van der Ster
Amsterdam, April 2014

109

The Tinbergen Institute is the Institute for Economic Research, which was founded in
1987 by the Faculties of Economics and Econometrics of the Erasmus University Rotter-
dam, University of Amsterdam and VU University Amsterdam. The Institute is named
after the late Professor Jan Tinbergen, Dutch Nobel Prize laureate in economics in 1969.
The Tinbergen Institute is located in Amsterdam and Rotterdam. The following books
recently appeared in the Tinbergen Institute Research Series:

536 B. VOOGT, Essays on Consumer Search and Dynamic Committees

537 T. DE HAAN, Strategic Communication: Theory and Experiment

538 T. BUSER, Essays in Behavioural Economics

539 J.A. ROSERO MONCAYO, On the importance of families and public policies for
child development outcomes

540 E. ERDOGAN CIFTCI, Health Perceptions and Labor Force Participation of Older
Workers

541 T. WANG, Essays on Empirical Market Microstructure

542 T. BAO, Experiments on Heterogeneous Expectations and Switching Behavior

543 S.D. LANSDORP, On Risks and Opportunities in Financial Markets

544 N. MOES, Cooperative decision making in river water allocation problems

545 P. STAKENAS, Fractional integration and cointegration in financial time series

546 M. SCHARTH, Essays on Monte Carlo Methods for State Space Models

547 J. ZENHORST, Macroeconomic Perspectives on the Equity Premium Puzzle

548 B. PELLOUX, the Role of Emotions and Social Ties in Public On Good Games:
Behavioral and Neuroeconomic Studies

549 N. YANG, Markov-Perfect Industry Dynamics: Theory, Computation, and Applications

550 R.R. VAN VELDHUIZEN, Essays in Experimental Economics

551 X. ZHANG, Modeling Time Variation in Systemic Risk

552 H.R.A. KOSTER, The internal structure of cities: the economics of agglomeration,
amenities and accessibility

553 S.P.T. GROOT, Agglomeration, globalization and regional labor markets: micro
evidence for the Netherlands

554 J.L. MÖHLMANN, Globalization and Productivity Micro-Evidence on Heterogeneous
Firms, Workers and Products

555 S.M. HOOGENDOORN, Diversity and Team Performance: A Series of Field Experiments

556 C.L. BEHRENS, Product differentiation in aviation passenger markets: The impact
of demand heterogeneity on competition

557 G. SMRKOLJ, Dynamic Models of Research and Development

558 S. PEER, The economics of trip scheduling, travel time variability and traffic information

559 V. SPINU, Nonadditive Beliefs: From Measurement to Extensions

560 S.P. KASTORYANO, Essays in Applied Dynamic Microeconometrics

561 M. VAN DUIJN, Location, choice, cultural heritage and house prices

562 T. SALIMANS, Essays in Likelihood-Based Computational Econometrics

563 P. SUN, Tail Risk of Equidity Returns

564 C.G.J. KARSTEN, The Law and Finance of M&A Contracts

565 C. OZGEN, Impacts of Immigration and Cultural Diversity on Innovation and
Economic Growth

566 R.S. SCHOLTE, The interplay between early-life conditions, major events and health
later in life

567 B.N. KRAMER, Why don’t they take a card? Essays on the demand for micro health
insurance

568 M. KILIÇ, Fundamental Insights in Power Futures Prices

569 A.G.B. DE VRIES, Venture Capital: Relations with the Economy and Intellectual
Property

570 E.M.F. VAN DEN BROEK, Keeping up Appearances

571 K.T. MOORE, A Tale of Risk: Essays on Financial Extremes

572 F.T. ZOUTMAN, A Symphony of Redistributive Instruments

573 M.J. GERRITSE, Policy Competition and the Spatial Economy

574 A. OPSCHOOR, Understanding Financial Market Volatility

575 R.R. VAN LOON, Tourism and the Economic Valuation of Cultural Heritage

576 I.L. LYUBIMOV, Essays on Political Economy and Economic Development

577 A.A.F. GERRITSEN, Essays in Optimal Government Policy

578 M.L. SCHOLTUS, The Impact of High-Frequency Trading on Financial Markets

579 E. RAVIV, Forecasting Financial and Macroeconomic Variables: Shrinkage, Dimension
reduction, and Aggregation

580 J. TICHEM, Altruism, Conformism, and Incentives in the Workplace

581 E.S. HENDRIKS, Essays in Law and Economics

582 X. SHEN, Essays on Empirical Asset Pricing

583 L.T. GATAREK, Econometric Contributions to Financial Trading, Hedging and
Risk Measurement

584 X. LI, Temporary Price Deviation, Limited Attention and Information Acquisition
in the Stock Market

585 Y. DAI, Efficiency in Corporate Takeovers

586 S.L. VAN DER STER, Approximate feasibility in real-time scheduling: Speeding up
in order to meet deadlines

