442 research outputs found

    Data-efficient machine learning for design and optimisation of complex systems

    Get PDF

    Predictive Maintenance of an External Gear Pump using Machine Learning Algorithms

    Get PDF
    The importance of Predictive Maintenance is critical for engineering industries, such as manufacturing, aerospace and energy. Unexpected failures cause unpredictable downtime, which can be disruptive and high costs due to reduced productivity. This forces industries to ensure the reliability of their equip-ment. In order to increase the reliability of equipment, maintenance actions, such as repairs, replacements, equipment updates, and corrective actions are employed. These actions affect the flexibility, quality of operation and manu-facturing time. It is therefore essential to plan maintenance before failure occurs.Traditional maintenance techniques rely on checks conducted routinely based on running hours of the machine. The drawback of this approach is that maintenance is sometimes performed before it is required. Therefore, conducting maintenance based on the actual condition of the equipment is the optimal solu-tion. This requires collecting real-time data on the condition of the equipment, using sensors (to detect events and send information to computer processor).Predictive Maintenance uses these types of techniques or analytics to inform about the current, and future state of the equipment. In the last decade, with the introduction of the Internet of Things (IoT), Machine Learning (ML), cloud computing and Big Data Analytics, manufacturing industry has moved forward towards implementing Predictive Maintenance, resulting in increased uptime and quality control, optimisation of maintenance routes, improved worker safety and greater productivity.The present thesis describes a novel computational strategy of Predictive Maintenance (fault diagnosis and fault prognosis) with ML and Deep Learning applications for an FG304 series external gear pump, also known as a domino pump. In the absence of a comprehensive set of experimental data, synthetic data generation techniques are implemented for Predictive Maintenance by perturbing the frequency content of time series generated using High-Fidelity computational techniques. In addition, various types of feature extraction methods considered to extract most discriminatory informations from the data. For fault diagnosis, three types of ML classification algorithms are employed, namely Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Naive Bayes (NB) algorithms. For prognosis, ML regression algorithms, such as MLP and SVM, are utilised. Although significant work has been reported by previous authors, it remains difficult to optimise the choice of hyper-parameters (important parameters whose value is used to control the learning process) for each specific ML algorithm. For instance, the type of SVM kernel function or the selection of the MLP activation function and the optimum number of hidden layers (and neurons).It is widely understood that the reliability of ML algorithms is strongly depen-dent upon the existence of a sufficiently large quantity of high-quality training data. In the present thesis, due to the unavailability of experimental data, a novel high-fidelity in-silico dataset is generated via a Computational Fluid Dynamic (CFD) model, which has been used for the training of the underlying ML metamodel. In addition, a large number of scenarios are recreated, ranging from healthy to faulty ones (e.g. clogging, radial gap variations, axial gap variations, viscosity variations, speed variations). Furthermore, the high-fidelity dataset is re-enacted by using degradation functions to predict the remaining useful life (fault prognosis) of an external gear pump.The thesis explores and compares the performance of MLP, SVM and NB algo-rithms for fault diagnosis and MLP and SVM for fault prognosis. In order to enable fast training and reliable testing of the MLP algorithm, some predefined network architectures, like 2n neurons per hidden layer, are used to speed up the identification of the precise number of neurons (shown to be useful when the sample data set is sufficiently large). Finally, a series of benchmark tests are presented, enabling to conclude that for fault diagnosis, the use of wavelet features and a MLP algorithm can provide the best accuracy, and the MLP al-gorithm provides the best prediction results for fault prognosis. In addition, benchmark examples are simulated to demonstrate the mesh convergence for the CFD model whereas, quantification analysis and noise influence on training data are performed for ML algorithms

    Applications of Hyper-parameter Optimisations for Static Malware Detection

    Get PDF
    Malware detection is a major security concern and a great deal of academic and commercial research and development is directed at it. Machine Learning is a natural technology to harness for malware detection and many researchers have investigated its use. However, drawing comparisons between different techniques is a fraught affair. For example, the performance of ML algorithms often depends significantly on parametric choices, so the question arises as to what parameter choices are optimal. In this thesis, we investigate the use of a variety of ML algorithms for building malware classifiers and also how best to tune the parameters of those algorithms – a process generally known as hyper-parameter optimisation (HPO). Firstly, we examine the effects of some simple (model-free) ways of parameter tuning together with a state-of-the-art Bayesian model-building approach. We demonstrate that optimal parameter choices may differ significantly from default choices and argue that hyper-parameter optimisation should be adopted as a ‘formal outer loop’ in the research and development of malware detection systems. Secondly, we investigate the use of covering arrays (combinatorial testing) as a way to combat the curse of dimensionality in Gird Search. Four ML techniques were used: Random Forests, xgboost, Light GBM and Decision Trees. cAgen (a tool that is used for combinatorial testing) is shown to be capable of generating high-performing subsets of the full parameter grid of Grid Search and so provides a rigorous but highly efficient means of performing HPO. This may be regarded as a ‘design of experiments’ approach. Thirdly, Evolutionary algorithms (EAs) were used to enhance machine learning classifier accuracy. Six traditional machine learning techniques baseline accuracy is recorded. Two evolutionary algorithm frameworks Tree-Based Pipeline Optimization Tool (TPOT) and Distributed Evolutionary Algorithms in Python (Deap) are compared. Deap shows very promising results for our malware detection problem. Fourthly, we compare the use of Grid Search and covering arrays for tuning the hyper-parameters of Neural Networks. Several major hyper-parameters were studied with various values and results. We achieve significant improvements over the benchmark model. Our work is carried out using EMBER, a major published malware benchmark dataset of Windows Portable Execution (PE) metadata samples, and a smaller dataset from kaggle.com (also comprising of Windows Portable Execution metadata). Overall, we conclude that HPO is an essential part of credible evaluations of ML-based malware detection models. We also demonstrate that high-performing hyper-parameter values can be found by HPO and that these can be found efficiently

    Multiscale Machine Learning and Numerical Investigation of Ageing in Infrastructures

    Get PDF
    Infrastructure is a critical component of a country’s economic growth. Interaction with extreme service environments can adversely affect the long-term performance of infrastructure and accelerate ageing. This research focuses on using machine learning to improve the efficiency of analysing the multiscale ageing impact on infrastructure. First, a data-driven campaign is developed to analyse the condition of an ageing infrastructure. A machine learning-based framework is proposed to predict the state of various assets across a railway system. The ageing of the bond in fibre-reinforced polymer (FRP)-strengthened concrete elements is investigated using machine learning. Different machine learning models are developed to characterise the long-term performance of the bond. The environmental ageing of composite materials is investigated by a micromechanics-based machine learning model. A mathematical framework is developed to automatically generate microstructures. The microstructures are analysed by the finite element (FE) method. The generated data is used to develop a machine learning model to study the degradation of the transverse performance of composites under humid conditions. Finally, a multiscale FE and machine learning framework is developed to expand the understanding of composite material ageing. A moisture diffusion analysis is performed to simulate the water uptake of composites under water immersion conditions. The results are downscaled to obtain micromodel stress fields. Numerical homogenisation is used to obtain the composite transverse behaviour. A machine learning model is developed based on the multiscale simulation results to model the ageing process of composites under water immersion. The frameworks developed in this thesis demonstrate how machine learning improves the analysis of ageing across multiple scales of infrastructure. The resulting understanding can help develop more efficient strategies for the rehabilitation of ageing infrastructure

    Improving aircraft performance using machine learning: a review

    Full text link
    This review covers the new developments in machine learning (ML) that are impacting the multi-disciplinary area of aerospace engineering, including fundamental fluid dynamics (experimental and numerical), aerodynamics, acoustics, combustion and structural health monitoring. We review the state of the art, gathering the advantages and challenges of ML methods across different aerospace disciplines and provide our view on future opportunities. The basic concepts and the most relevant strategies for ML are presented together with the most relevant applications in aerospace engineering, revealing that ML is improving aircraft performance and that these techniques will have a large impact in the near future

    Efficient Bayesian inference via Monte Carlo and machine learning algorithms

    Get PDF
    Mención Internacional en el título de doctorIn many fields of science and engineering, we are faced with an inverse problem where we aim to recover an unobserved parameter or variable of interest from a set of observed variables. Bayesian inference is a probabilistic approach for inferring this unknown parameter that has become extremely popular, finding application in myriad problems in fields such as machine learning, signal processing, remote sensing and astronomy. In Bayesian inference, all the information about the parameter is summarized by the posterior distribution. Unfortunately, the study of the posterior distribution requires the computation of complicated integrals, that are analytically intractable and need to be approximated. Monte Carlo is a huge family of sampling algorithms for performing optimization and numerical integration that has become the main horsepower for carrying out Bayesian inference. The main idea of Monte Carlo is that we can approximate the posterior distribution by a set of samples, obtained by an iterative process that involves sampling from a known distribution. Markov chain Monte Carlo (MCMC) and importance sampling (IS) are two important groups of Monte Carlo algorithms. This thesis focuses on developing and analyzing Monte Carlo algorithms (either MCMC, IS or combination of both) under different challenging scenarios presented below. In summary, in this thesis we address several important points, enumerated (a)–(f), that currently represent a challenge in Bayesian inference via Monte Carlo. A first challenge that we address is the problematic exploration of the parameter space by off-the-shelf MCMC algorithms when there is (a) multimodality, or with (b) highly concentrated posteriors. Another challenge that we address is the (c) proposal construction in IS. Furtheremore, in recent applications we need to deal with (d) expensive posteriors, and/or we need to handle (e) noisy posteriors. Finally, the Bayesian framework also offers a way of comparing competing hypothesis (models) in a principled way by means of marginal likelihoods. Hence, a task that arises as of fundamental importance is (f) marginal likelihood computation. Chapters 2 and 3 deal with (a), (b), and (c). In Chapter 2, we propose a novel population MCMC algorithm called Parallel Metropolis-Hastings Coupler (PMHC). PMHC is very suitable for multimodal scenarios since it works with a population of states, instead of a single one, hence allowing for sharing information. PMHC combines independent exploration by the use of parallel Metropolis-Hastings algorithms, with cooperative exploration by the use of a population MCMC technique called Normal Kernel Coupler. In Chapter 3, population MCMC are combined with IS within the layered adaptive IS (LAIS) framework. The combination of MCMC and IS serves two purposes. First, an automatic proposal construction. Second, it aims at increasing the robustness, since the MCMC samples are not used directly to form the sample approximation of the posterior. The use of minibatches of data is proposed to deal with highly concentrated posteriors. Other extensions for reducing the costs with respect to the vanilla LAIS framework, based on recycling and clustering, are discussed and analyzed. Chapters 4, 5 and 6 deal with (c), (d) and (e). The use of nonparametric approximations of the posterior plays an important role in the design of efficient Monte Carlo algorithms. Nonparametric approximations of the posterior can be obtained using machine learning algorithms for nonparametric regression, such as Gaussian Processes and Nearest Neighbors. Then, they can serve as cheap surrogate models, or for building efficient proposal distributions. In Chapter 4, in the context of expensive posteriors, we propose adaptive quadratures of posterior expectations and the marginal likelihood using a sequential algorithm that builds and refines a nonparametric approximation of the posterior. In Chapter 5, we propose Regression-based Adaptive Deep Importance Sampling (RADIS), an adaptive IS algorithm that uses a nonparametric approximation of the posterior as the proposal distribution. We illustrate the proposed algorithms in applications of astronomy and remote sensing. Chapter 4 and 5 consider noiseless posterior evaluations for building the nonparametric approximations. More generally, in Chapter 6 we give an overview and classification of MCMC and IS schemes using surrogates built with noisy evaluations. The motivation here is the study of posteriors that are both costly and noisy. The classification reveals a connection between algorithms that use the posterior approximation as a cheap surrogate, and algorithms that use it for building an efficient proposal. We illustrate specific instances of the classified schemes in an application of reinforcement learning. Finally, in Chapter 7 we study noisy IS, namely, IS when the posterior evaluations are noisy, and derive optimal proposal distributions for the different estimators in this setting. Chapter 8 deals with (f). In Chapter 8, we provide with an exhaustive review of methods for marginal likelihood computation, with special focus on the ones based on Monte Carlo. We derive many connections among the methods and compare them in several simulations setups. Finally, in Chapter 9 we summarize the contributions of this thesis and discuss some potential avenues of future research.Programa de Doctorado en Ingeniería Matemática por la Universidad Carlos III de MadridPresidente: Valero Laparra Pérez-Muelas.- Secretario: Michael Peter Wiper.- Vocal: Omer Deniz Akyildi

    Adaptive Automated Machine Learning

    Get PDF
    The ever-growing demand for machine learning has led to the development of automated machine learning (AutoML) systems that can be used off the shelf by non-experts. Further, the demand for ML applications with high predictive performance exceeds the number of machine learning experts and makes the development of AutoML systems necessary. Automated Machine Learning tackles the problem of finding machine learning models with high predictive performance. Existing approaches incorporating deep learning techniques assume that all data is available at the beginning of the training process (offline learning). They configure and optimise a pipeline of preprocessing, feature engineering, and model selection by choosing suitable hyperparameters in each model pipeline step. Furthermore, they assume that the user is fully aware of the choice and, thus, the consequences of the underlying metric (such as precision, recall, or F1-measure). By variation of this metric, the search for suitable configurations and thus the adaptation of algorithms can be tailored to the user’s needs. With the creation of a vast amount of data from all kinds of sources every day, our capability to process and understand these data sets in a single batch is no longer viable. By training machine learning models incrementally (i.ex. online learning), the flood of data can be processed sequentially within data streams. However, if one assumes an online learning scenario, where an AutoML instance executes on evolving data streams, the question of the best model and its configuration remains open. In this work, we address the adaptation of AutoML in an offline learning scenario toward a certain utility an end-user might pursue as well as the adaptation of AutoML towards evolving data streams in an online learning scenario with three main contributions: 1. We propose a System that allows the adaptation of AutoML and the search for neural architectures towards a particular utility an end-user might pursue. 2. We introduce an online deep learning framework that fosters the research of deep learning models under the online learning assumption and enables the automated search for neural architectures. 3. We introduce an online AutoML framework that allows the incremental adaptation of ML models. We evaluate the contributions individually, in accordance with predefined requirements and to state-of-the- art evaluation setups. The outcomes lead us to conclude that (i) AutoML, as well as systems for neural architecture search, can be steered towards individual utilities by learning a designated ranking model from pairwise preferences and using the latter as the target function for the offline learning scenario; (ii) architectual small neural networks are in general suitable assuming an online learning scenario; (iii) the configuration of machine learning pipelines can be automatically be adapted to ever-evolving data streams and lead to better performances
    corecore