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ABSTRACT

In many fields of science and engineering, we are faced with an inverse problem where
we aim to recover an unobserved parameter or variable of interest from a set of observed
variables. Bayesian inference is a probabilistic approach for inferring this unknown pa-
rameter that has become extremely popular, finding application in myriad problems in
fields such as machine learning, signal processing, remote sensing and astronomy. In
Bayesian inference, all the information about the parameter is summarized by the poste-
rior distribution. Unfortunately, the study of the posterior distribution requires the com-
putation of complicated integrals, that are analytically intractable and need to be approxi-
mated. Monte Carlo is a huge family of sampling algorithms for performing optimization
and numerical integration that has become the main horsepower for carrying out Bayesian
inference. The main idea of Monte Carlo is that we can approximate the posterior distri-
bution by a set of samples, obtained by an iterative process that involves sampling from a
known distribution. Markov chain Monte Carlo (MCMC) and importance sampling (IS)
are two important groups of Monte Carlo algorithms. This thesis focuses on develop-
ing and analyzing Monte Carlo algorithms (either MCMC, IS or combination of both)
under different challenging scenarios presented below. In summary, in this thesis we ad-
dress several important points, enumerated (a)–(f), that currently represent a challenge in
Bayesian inference via Monte Carlo. A first challenge that we address is the problem-
atic exploration of the parameter space by off-the-shelf MCMC algorithms when there
is (a) multimodality, or with (b) highly concentrated posteriors. Another challenge that
we address is the (c) proposal construction in IS. Furtheremore, in recent applications we
need to deal with (d) expensive posteriors, and/or we need to handle (e) noisy posteriors.
Finally, the Bayesian framework also offers a way of comparing competing hypothesis
(models) in a principled way by means of marginal likelihoods. Hence, a task that arises
as of fundamental importance is (f) marginal likelihood computation.

Chapters 2 and 3 deal with (a), (b), and (c). In Chapter 2, we propose a novel popu-
lation MCMC algorithm called Parallel Metropolis-Hastings Coupler (PMHC). PMHC is
very suitable for multimodal scenarios since it works with a population of states, instead
of a single one, hence allowing for sharing information. PMHC combines independent
exploration by the use of parallel Metropolis-Hastings algorithms, with cooperative ex-
ploration by the use of a population MCMC technique called Normal Kernel Coupler.
In Chapter 3, population MCMC are combined with IS within the layered adaptive IS
(LAIS) framework. The combination of MCMC and IS serves two purposes. First, an
automatic proposal construction. Second, it aims at increasing the robustness, since the
MCMC samples are not used directly to form the sample approximation of the posterior.
The use of minibatches of data is proposed to deal with highly concentrated posteriors.
Other extensions for reducing the costs with respect to the vanilla LAIS framework, based



on recycling and clustering, are discussed and analyzed.

Chapters 4, 5 and 6 deal with (c), (d) and (e). The use of nonparametric approximations
of the posterior plays an important role in the design of efficient Monte Carlo algorithms.
Nonparametric approximations of the posterior can be obtained using machine learning
algorithms for nonparametric regression, such as Gaussian Processes and Nearest Neigh-
bors. Then, they can serve as cheap surrogate models, or for building efficient proposal
distributions. In Chapter 4, in the context of expensive posteriors, we propose adaptive
quadratures of posterior expectations and the marginal likelihood using a sequential algo-
rithm that builds and refines a nonparametric approximation of the posterior. In Chapter
5, we propose Regression-based Adaptive Deep Importance Sampling (RADIS), an adap-
tive IS algorithm that uses a nonparametric approximation of the posterior as the proposal
distribution. We illustrate the proposed algorithms in applications of astronomy and re-
mote sensing. Chapter 4 and 5 consider noiseless posterior evaluations for building the
nonparametric approximations. More generally, in Chapter 6 we give an overview and
classification of MCMC and IS schemes using surrogates built with noisy evaluations.
The motivation here is the study of posteriors that are both costly and noisy. The classifi-
cation reveals a connection between algorithms that use the posterior approximation as a
cheap surrogate, and algorithms that use it for building an efficient proposal. We illustrate
specific instances of the classified schemes in an application of reinforcement learning.
Finally, in Chapter 7 we study noisy IS, namely, IS when the posterior evaluations are
noisy, and derive optimal proposal distributions for the different estimators in this setting.

Chapter 8 deals with (f). In Chapter 8, we provide with an exhaustive review of meth-
ods for marginal likelihood computation, with special focus on the ones based on Monte
Carlo. We derive many connections among the methods and compare them in several
simulations setups. Finally, in Chapter 9 we summarize the contributions of this thesis
and discuss some potential avenues of future research.
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1. INTRODUCTION

This chapter introduces the preliminary concepts of the thesis. This chapter is or-
ganized as follows. Section 1.1 gives a summary of Bayesian inference and introduces
the notation used in the chapter. Then, Section 1.2 introduces Monte Carlo methods for
the application of Bayesian inference, with special emphasis on the Markov chain Monte
Carlo (MCMC) and importance sampling (IS) families. The MCMC and IS when work-
ing with noisy realizations of the posterior are briefly discussed in 1.2.4. Section 1.3
address the construction of a nonparametric approximation to the posterior and discuss
the potential uses within Monte Carlo. Finally, Section 1.4 describes the structure of the
thesis and the main contributions.

1.1. Bayesian inference

This section introduces the basics of the Bayesian inference. In many applications, after
receiving a set of observations, the goal is to infer the underlying mechanism that have
generated the data. Frequently, a parametric approach is considered. Let x ∈ X ⊆ Rdx

be the parameter of interest and y ∈ Rdy denote the vector of observations. A Bayesian
statistical model comprises a likelihood function, ℓ(y|x) : Rdy × Rdx → R≥0, and a prior
probability density function (pdf), g(x) : Rdx → R≥0. The conditional distribution of x
given y, namely, the posterior pdf, is given by

p(x|y) =
ℓ(y|x)g(x)∫︁

X
ℓ(y|x′)g(x′)dx′

. (1.1)

Inferences about x are then obtained in terms of posterior expectations, i.e., by computing
integrals of some function f (x) : Rdx → R with respect to p(x|y),

Ep(x|y)
[︁
f (x)

]︁
=

∫︂
X

f (x)p(x|y)dx. (1.2)

The setting described above is referred to as parameter estimation or level 1 of inference.
The level 2 of inference addresses the problem of model selection [28, Ch. 28]. Let
Mi, i = 1, . . . , L, denote L different models, each one comprising its likelihood function
and prior pdf, and with parameters of possibly different dimension. A key quantity of
modelMi is the so-called marginal likelihood or Bayesian evidence,

p(y|Mi) =
∫︂
Xi

ℓ(y|xi,Mi)g(xi|Mi)dxi , (1.3)

which expresses the probability of the data under modelMi. Note that p(y|Mi) is essen-
tially the normalizing constant of the parameter posterior p(xi|y,Mi), as per Eq. (1.1).
The interest lies then in the model posterior,

p(Mi|y) =
p(y|Mi)p(Mi)∑︁L

j=1 p(y|M j)p(M j)
, (1.4)

1



where p(M j), j = 1, . . . , L, are prior probabilities associated to the models.

1.1.1. Approximate Bayesian inference

In a nutshell, Bayesian inference revolves around the study of the two posterior distribu-
tions in Eqs. (1.1) and (1.4). The applicability hence resides in being able to compute the
integrals in Eqs. (1.2) and (1.3). Except for the most trivial settings, these integrals are
intractable, hence numerical methods are required.

There are two popular strategies for carrying approximate Bayesian inference based on
sampling and optimization, each one having its own advantages and disadvantages [42][7,
Ch. 10]. The sampling-based approach use stochastic approximations via Monte Carlo,
while the optimization-based approach relies on variational inference for approximating
probability densities. The focus of this thesis is on Monte Carlo, that is introduced in the
next section.

1.1.2. Notation

To simplify notation, from now on the vector of observations y is assumed to be fixed.
Moreover, the focus is restricted to a single model. The following notation will be used in
the subsequent sections. The posterior pdf is denoted as π̄(x) = p(x|y), π(x) = ℓ(y|x)g(x)
denotes the unnormalized posterior, and Z =

∫︁
ℓ(y|x)g(x)dx is the marginal likelihood,

such that π̄(x) = 1
Zπ(x).

The notation x for the parameter of interest will be used throughout this chapter. Note
however that, while this is a standard notation in the engineering literature, using the
Greek letter θ to denote model parameters is a more common choice in the statistics liter-
ature. This is the reason we use θ, instead of x, in several of the works appearing in this
dissertation.

1.2. Monte Carlo methods

This section overviews Monte Carlo, starting from the basic identity and then introducing
two families of methods for implementing Monte Carlo in practice, namely, Markov chain
Monte Carlo and importance sampling, that are the main focus of this work. Let us
formulate the problem of parameter estimation as that of computing the following integral,

I =
∫︂
X

f (x)π̄(x)dx, (1.5)

where f (x) is some function of interest (scalar for simplicity). Let xi for i = 1, . . . ,N,
denote a set of independent and identically distributed samples from π̄(x). Equivalently,

2



we write {xi}
N
i=1 ∼ π̄(x). Hence, the above integral can be approximated by the following

Monte Carlo estimator,

I ≈
1
N

N∑︂
i=1

f (xi), where {xi}
N
i=1 ∼ π̄(x). (1.6)

The Monte Carlo estimator is a random variable with desirable properties such as unbi-
asedness, asymptotic normality and variance decaying at rate O( 1

N ) [42].

Sample independently from the Bayesian posterior π̄(x) is not possible in practice (see
[33] for a review of independent random sampling methods). Hence, in the following
sections we review Monte Carlo methods that deal with this issue.

1.2.1. Markov chain Monte Carlo

When it is not possible to sample independently from a probability distribution, a popular
strategy is instead to generate dependent samples . Markov chain Monte Carlo (MCMC)
is a family of Monte Carlo methods that rely on Markov chains for generating dependent
samples from a probability distribution [42]. As an illustration, let us consider the well-
known Metropolis-Hastings (MH) algorithm. Let xt be the current state of chain. A
proposed state is sampled from a proposal distribution conditional on xt, x′ ∼ q(x|xt).
The state x′ is accepted with probability

α(xt, x′) = min
{︄

1,
π(x′)q(xt|x′)
π(xt)q(x′|xt)

}︄
. (1.7)

Note that Z need not be known. The next state of the chain is then xt+1 = x′ when ac-
cepted, or, in case of rejection, the current state is repeated, xt+1 = xt. An analogous of
the Monte Carlo estimator in Eq. (1.6) can be then formed by using the resulting set of
dependent samples. The efficiency of this MCMC estimator is reduced due to the pres-
ence of correlation in the samples. Moreover, although the convergence of this algorithm
is ensured under very mild conditions, this convergence can be very slow in practice, such
as when the posterior is multimodal or is concentrated is a small region [9, 42].

The literature devoted to improve MCMC algorithms is very vast (see e.g. [27, 43] and
references therein). Adaptive MCMC algorithms aim at changing the proposal on the fly
based on the history of chain [24, 4]. In this group, several works attempt to build an
independent proposal using non-parametric approximations to the posterior [30]. Other,
more sophisticated, proposal generating mechanism and transition kernels can be used to
build more efficient Markov chains, such as Hamiltonian Monte Carlo and Multiple-try
MCMC, among others [9, Ch. 5][22][29]. Tempering and data-tempering are used to
artificially increase the variance of the posterior and facilitate the subsequent exploration
of the MCMC chains [27, Ch. 4][18, 19, 12]. Parallelization, although not directly ap-
plicable due to the sequencial nature of these algorithms, is also of great interest to the
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MCMC community not only for the potential speed-ups but also because it fosters the ex-
ploration of the state space. Namely, running several parallel MCMC algorithms can help
in discovering important regions of the posterior support [9, Ch. 6]. Population MCMC
algorithms work by evolving a population of states, rather than a single one, so the in-
formation discovered by the individual chains is shared in order to improve the overall
efficiency [27, Ch. 5]. Furthermore, population MCMC algorithms can be combined with
independent parallel chains by running “horizontal” and “vertical” steps in the orthogonal
MCMC framework [32].

Let us consider N independent parallel MCMC chains, and let xn,t denote the state of
the n-th chain at iteration t. Let Tn(xn,t → xn,t+1) denote the transition kernel applied to
the state xn,t in order to obtain the next state. For simplicity, consider that all Tn(xn,t →

xn,t+1) are MH steps with proposal q(x|xn,t) as described above. More generally, each
Tn(xn,t → xn,t+1) could represent the application of one step of a different MCMC algo-
rithm. By applying Tn(xn,t → xn,t+1) to each chain, the population Xt = {x1,t, . . . , xN,t}

advances to Xt+1 = {x1,t+1, . . . , xN,t+1}. The whole update can be written as T V(Xt →

Xt+1) =
∏︁N

n=1 Tn(xn,t → xn,t+1). Since the MH steps target the posterior π̄(x), the popu-
lation Xt+1 is an independent sample from π̄(x). Now, consider advancing the population
by applying another transition “horizontal” kernel T H(Xt+1 → Xt+2) that works on the
whole population simultaneously. This transition kernel represents the application of one
step of a population MCMC algorithm, whose target distribution is also π̄(x). The Or-
thogonal MCMC algorithms alternate between applying these two types of kernels, hence
leveraging independent and cooperative exploration [32].

1.2.2. Importance sampling

Importance sampling (IS) consists in rewriting the integral of interest in Eq. (1.5) as a
expected value with respect to a pdf q(x), called importance density or proposal,

I =
∫︂
X

f (x)
π̄(x)
q(x)

q(x)dx = Eq(x)

[︄
π̄(x)
q(x)

f (x)
]︄
. (1.8)

This identity immediately suggests the following standard IS estimator

I ≈ ˆ︁IIS =
1
N

N∑︂
i=1

π̄(zi)
q(zi)

f (zi), {zi}
N
i=1 ∼ q(x). (1.9)

In comparison with Eq. (1.6), here the evaluations f (zi) are weighted according to the
ratio π̄(zi)

q(zi)
, that accounts to the mismatch between target and proposal. However, since it is

not possible to evaluate π̄(x), but only π(x), due to Z being unknown, the above estimator
is not used in practice. Let wi =

π(zi)
q(zi)

denote the importance weight associated with sample
zi. The following self-normalized IS estimator has to be used in practice,

I ≈ ˆ︁Isn-IS =

∑︁N
i=1 wi f (zi)∑︁N

j=1 w j
=

N∑︂
i=1

w̄i f (zi), {zi}
N
i=1 ∼ q(x), (1.10)
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where w̄i =
wi∑︁N

j=1 w j
. The estimator ˆ︁Isn-IS is not unbiased but consistent [42].

Compared to MCMC, the IS algorithms have the advantage of using independent sam-
ples, which facilitates their theoretical validation. Another advantage is that they provide
with an straightforward estimation of the marginal likelihood,

Z =
∫︂
X

π(x)dx , (1.11)

by taking the average of the importance weights,

Z ≈ ˆ︁Z = 1
N

N∑︂
i=1

wi, (1.12)

which is an unbiased estimation of Z. However, IS algorithms should not be viewed as a
disjunctive alternative to MCMC. In fact, state-of-the-art Monte Carlo methods combine
MCMC and IS [36, 35, 31]. This is particularly noticeable in the task of marginal likeli-
hood computation, since MCMC do not provide with an straightforward estimation and
so it is often employed in conjunction with IS [36, 35].

A crucial aspect of any IS algorithm is the choice of proposal q(x). Optimal expres-
sions of q(x) can be analytically derived for the estimators ˆ︁Isn-IS and ˆ︁Z. Unsurprisingly,
the optimal proposal for ˆ︁Z,

qopt = arg min
q

Var[ˆ︁Z] = arg min
q

Var
[︄
π(x)
q(x)

]︄
, (1.13)

is qopt(x) = π̄(x), since in this case it is trivial to obtain ˆ︁Z = Z. Although implementing
this qopt(x) is not possible in practice, it informs us that q(x) should be chosen so that it is
close to π̄(x) in order to minimize the variance of the importance weights. Additionally,
minimizing the variance of the importance weights is a sensible strategy for obtaining
an efficient ˆ︁Isn-IS, as the mean squared error of this estimator scales with the Pearson
divergence between posterior and proposal [1]. As a consequence, IS algorithms that
iteratively build q(x) have been proposed, going under the name of adaptive IS, that we
discuss in the next section.

1.2.3. Adaptive Importance Sampling

The basic idea of adaptive IS (AIS) algorithms is to use the information gained about π̄(x)
from past weighted samples to improve the proposal. Many AIS algorithms iterate the
flow “sample–weigh–adapt” [10]. The proposal qt(x) has now a subindex that depends
on the iteration step. Starting with an initial proposal q0(x), an AIS algorithm iterates the
following block.

• Sample {xn,t}
N
n=1 ∼ qt(x);
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• Weigh wn,t =
π(xn,t)
qt(xn,t)

for n = 1, . . . ,N;

• Adapt qt(x).

Many AIS algorithms rely on updating a population of proposals, rather than a single
proposal. The simultaneous use of several proposals is called multiple IS (MIS), and it
allows for distinct weighting schemes that differ in computation cost and efficiency [14].
In order to introduce the basics of MIS, let us consider a static population of M proposals,
qm(x), m = 1, . . . ,M. Assume we have drawn N samples from each proposal, denoted as
{xn,m}

N
n=1 ∼ qm(x), m = 1, . . . ,M. Let

w(xn,m) =
π(xn,m)
Ψ(xn,m)

, (1.14)

denote the weight associated with sample xn,m. The different weighting schemes differ in
the choice of Ψ(·). It can be shown that the so-called full-deterministic mixture (f-DM)
scheme,

Ψf-DM(xn,m) =
1
M

M∑︂
j=1

q j(xn,m), (1.15)

has lower variance than the standard choice Ψstd(xn,m) = qn,m(xn,m) [14]. Note that in
Ψf-DM, the samples are weighted according to the uniform mixture of all proposals, while
in Ψstd each sample is only weighted according to the proposal that actually generated it.
Intuitively, Ψf-DM is more stable than Ψstd since samples from a “bad” proposal can be
compensated by the presence of “good” ones, at the expense of an increase in the com-
putation cost. In fact, Ψf-DM requires NM2 proposal evaluations, compared to Ψstd that
requires NM proposal evaluations. Frequently, evaluating π(x) is the main computation
bottleneck, so choosing between Ψf-DM and Ψstd has very little impact on the overall com-
putation time.

The layered AIS (LAIS) is a class of AIS algorithms that rely on MCMC algorithms to up-
date the proposal qt(x), hence separating the updating step from the sampling–weighting
steps [31]. LAIS take advantage of the exploratory behavior of MCMC algorithms to
sample the location parameters of a population of proposals. Let {qm,t(x|µm,t)}Mm=1 denote
the population of proposals at time t. LAIS applies a MCMC transition kernel to evolve
the location parameters {µm,t}

M
m=1 for T iterations. For instance, in the simplest case, M

independent MH algorithms are used. The final set of T M proposals is sampled and the
samples are assigned weights according to three possible MIS weighting schemes. Con-
sider for simplicity that exactly one sample is obtained from each proposal, the following
spatial and temporal f-DM denominators are possible,

Ψs(xm,t) =
1
M

M∑︂
j=1

q j,t(xm,t), (1.16)

Ψt(xm,t) =
1
T

T∑︂
τ=1

qm,τ(xm,τ). (1.17)
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The LAIS framework allows for different choices in both the upper layer and lower layer,
regarding the sampling of the locations parameters µm,t, and the weighting of the samples
xm,t, resulting in algorithms with different efficiency and computation cost.

Instead of adapting a population of parametric proposals, another possibility is the con-
struction of a single proposal that mimics the posterior distribution using techniques of
nonparametric regression, that we discuss in Sect. 1.3.

1.2.4. Noisy Monte Carlo

This section discusses Monte Carlo methods in scenarios where π(x) cannot evaluated.
These scenarios include latent variable models [3], doubly-intractable posteriors [37], and
the likelihood-free setting [38, 6]. In some cases, specific algorithms have been designed
(see e.g. [37]). A powerful result is the following: if evaluations of π(x) are substituted
with unbiased estimations, the algorithms remain exact. To illustrate, let us informally
introduce the noisy versions of the MH algorithm and standard IS..

Let ˜︁π(x) denote an unbiased estimation of π(x) at x, i.e., E[˜︁π(x)|x] = π(x). A noisy MH
algorithm is obtained by substituting the exact evaluations π(x′), π(xt) with ˜︁π(x′), ˜︁π(xt) in
Eq. (1.7), namely

˜︁α(xt, x′) = min
{︄

1,
˜︁π(x′)q(xt|x′)˜︁π(xt)q(x′|xt)

}︄
. (1.18)

The use of this acceptance probability give rise to two algorithms known in the literature
as pseudo-marginal MH and Monte Carlo-within-Metropolis. These algorithms differ in
whether ˜︁π(xt) is recomputed at each iteration or reused from past iteration. The pseudo-
marginal theorem states that the latter alternative ensures the algorithm is exact . More
generally, instead of using unbiased estimations of π(x), the noisy Monte Carlo frame-
work in [2] analyzes the discrepancy between the exact MH and noisy algorithms, where
the acceptance probability in Eq. (1.7) is substituted with stochastic approximations.

Similarly, let us denote with ˜︁wi =
˜︁π(xi)
q(xi)

the noisy importance weight obtained by sub-
stituting the exact evaluation π(xi) with the unbiased estimation ˜︁π(xi). The noisy versions
of the estimators in Eqs. (1.10) and (1.12) can be shown to converge to the true quantities.
The noisy IS is also named IS squared and random-weight IS in the literature [15, 16, 49].

In both noisy MH and noisy IS, the use of random realizations produces efficiency losses
in the final estimators that scale with the noise variance. In the case of noisy IS, the noise
contribute with an additional term in the variance of the estimators, and hence change
the expression of optimal proposals. Furthermore, obtaining such unbiased estimations is
often a costly step. The use of surrogates ˆ︁π(x) of π(x), built with regression techniques,
can help in alleviating these problems.
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1.3. Nonparametric approximations

This section deals with the approximation of π(x) from a set of evaluations π(x1), . . . , π(xN),
at a set of points X = {x1, . . . , xN}. The set X is usually referred to as nodes or design
points, and they do not necessarily have to be distributed from π̄(x). The evaluations of
π(x) are assumed to be noiseless for simplicity, but they could be corrupted with noise in-
stead. This task is known as the recovery problem in the literature of function approxima-
tion from scattered data [50, 44]. Finding an approximation π(x) from a set of evaluations
is also the goal of machine learning regression algorithms, such as k−nearest neighbor
or Gaussian processes [11, 40]. Below, we give a general description of nonparametric
approximations based on combinations of basis functions placed at the design points.
Alternatively, one could seek an approximation of some transformation of π(x) or some
internal part such as the likelihood function or a forward model. The latter approach is
very popular in, e.g., the study of physical phenomena by the use of surrogate models of
expensive computer simulators [26, 45, 41, 48].

We consider approximations of π(x) as linear combinations of basis functions φi(x), each
one centered at a different node xi,

ˆ︁π(x) =
N∑︂

i=1

βiφi(x), (1.19)

where β = [β1, . . . , βN]⊤ is the vector of coefficients. Denote with d = [π(x1), . . . , π(xN)]⊤

the vector of evaluations. The coefficients are determined by imposing the interpolation
condition, i.e., ˆ︁π(xi) = π(xi) for i = 1, . . . ,N. Writing it in matrix form gives

Kβ = d⇒ β = K−1d, (1.20)

where Ki j = φ j(xi) for 1 ≤ i, j ≤ N. Hence the basis functions must satisfy that K is
invertible. Substituting Eq. (1.20) in Eq. (1.19) results in ˆ︁π(x) being a linear combina-
tion of the evaluations d. The passing condition can be relaxed by adding σ2 times the
identity matrix to K, hence having β = (K+σ2I)−1d. Connections with kernel regression
and radial-basis interpolation can be established by imposing properties on the basis func-
tions φi(x), such as φi(x) being a proper covariance function (i.e. a kernel) or φi(x) being a
radial-basis function (i.e. a stationary kernel). For instance, if φi(x) ∝ e−

1
2h2 ∥x−xi∥

2
, namely,

a Gaussian kernel, then ˆ︁π(x) corresponds to the predictive mean function of a Gaussian
process with Gaussian kernel [40]. See, e.g., [34, 25] for connections between Gaussian
process and kernel methods.

The error in the approximation of π(x) by ˆ︁π(x) has been studied in the related literatures
of function approximation [50]. Clearly, this error depends on the assumed properties
of π(x), the chosen φi(x), as well as on the selection of X. Adding more nodes to X is
likely to improve the approximation, but it also requires more evaluations of π(x). This
trade-off has been addressed in the active learning and experimental design literatures
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[39, 46]. Experimental designs aim at finding X that optimize some utility function. In
active learning, the idea is to use the current approximation of π(x) to guide the search
of new nodes by optimizing acquisition functions that balance exploration of new regions
with exploitation of the already-discovered important regions. Indeed, when the view
of GP can be adopted, the uncertainty in the approximation can be used to build these
acquisition functions [17].

1.3.1. Uses of the interpolant

Here, we discuss different uses of the interpolant ˆ︁π(x) within Monte Carlo algorithms.
The main reason of employing an approximation to the posterior instead of the true pos-
terior is the promise of computational savings, as it is assumed that the surrogate is much
cheaper to evaluate than the exact model. Hence, a first possibility is to apply a Monte
Carlo algorithm directly on ˆ︁π(x), rather than on π(x). For instance, in the MH algorithm
this account to using ˆ︁π(x) in the computation of the acceptance probability in Eq. (1.7).
Similarly, the interpolant ˆ︁π(x) can be used to compute the weights in IS algorithms. The
resulting Monte Carlo algorithms are approximate, in the sense of the final estimators
converging to expectations with respect to (the density proportional to) ˆ︁π(x). However,
the increase in bias can be compensated with a greater reduction in variance as the algo-
rithms can be run for more iterations in the same computation time. Furthermore, when
only unbiased estimations of the posterior are available, the use of a surrogate can be
motivated by a denoising effect. A related approach is to substitute ˆ︁π(x) directly in the
integrals in Eqs. (1.5) and (1.11), giving rise to quadrature formulas [47, 8]. In some
cases, the resulting integrals can have closed form. In other cases, intensive Monte Carlo
algorithms or other quadratures can be applied as they no longer require the evaluation of
π(x). These approaches can be used jointly with strategies for improving the interpolantˆ︁π(x) in order to reduce the bias.

A second possibility is employingˆ︁π(x) as proposal within Monte Carlo. The use of inter-
polative proposals in Monte Carlo has a long history, and can be ascribed to the rejection
sampling and adaptive rejection sampling schemes [21, 20, 23]. Informally, a Monte
Carlo algorithm can be viewed as a method for generating samples from a target density
by “filtering” samples from a proposal. Then, the closer the proposal to the target density,
the higher the efficiency. Ifˆ︁π(x) is employed as independent proposal in a MH algorithm,
the acceptance probability in Eq. (1.7) approaches 1 asˆ︁π(x) gets closer to π(x). In the case
of IS, we already saw in Eq. (1.13) that the optimal proposal (that minimizes the variance
of the importance weights) is qopt(x) ∝ π(x). Hence, using q(x) ∝ˆ︁π(x) is a sensible option.
However, finding a construction ofˆ︁π(x) that is sufficiently close to π(x) but is still easy to
sample is not trivial. Indeed, the task of sampling ˆ︁π(x) can be as hard as the original task
of sampling π(x). The popular delayed-acceptance schemes employ a two-step procedure
to deal with this issue [13, 5]. First, a MH step is applied considering ˆ︁π(x) as the target
density, i.e., substituting ˆ︁π(x) instead of π(x) in Eq. (1.7). Upon acceptance, another MH
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step is applied to correct the algorithm, substituting ˆ︁π(x) instead of q(x|xt) and using π(x)
as the target density in Eq. (1.7). When the proposed state is accepted in the first step, it
is considered as it were sampled from ˆ︁π(x). This algorithm can be also viewed as way of
saving computation time for “bad” proposals, since those that are rejected in the first step
are not tested against π(x).

1.4. Main contributions

The contributions of this thesis are divided in seven different chapters. The seven chapters
can be classified according to the following related topics.

• Chapters 2 and 3 introduce two novel Monte Carlo algorithms based on parallel and
population MCMC.

• Chapters 4 and 5 introduce two novel Monte Carlo algorithms that use a nonpara-
metric approximation of the posterior.

• Chapters 6 and 7 study Monte Carlo algorithms in presence of noise in the posterior
evaluation.

• Chapters 8 is framed within the theme of Bayesian model selection.

Chapters 2 and 3 deal with the problem of applying Monte Carlo algorithms when the
posterior is multimodal or highly concentrated, in which case exploration becomes dif-
ficult. Chaper 2 proposes a novel MCMC scheme called Parallel Metropolis-Hastings
Coupler (PMHC), that combines the use of parallel independent MH algorithms with a
population MCMC algorithm called Normal Kernel Coupler (NKC). The use of indepen-
dent MCMC chains allows to explore different regions, hence avoiding that they all be
trapped in the same region. The combination with NKC, a powerful population MCMC
algorithm, allows also to share the information discovered by the different chains. Hence,
PMHC is especially suitable for multimodal scenarios. Chapter 3 propose MCMC-driven
importance samplers for Bayesian inference. More specifically, the proposed algorithms
are extensions of the LAIS framework for dealing with challenging problems such as con-
centrated posteriors. Here, the MCMC chains use subsets of data in order to produce a
data-tempering effect, which allows to locate faster the regions of high-posterior probabil-
ity. Since LAIS is an adaptive IS algorithm, the states of the MCMC are not used directly
in the estimators, but they serve as location parameters for the subsequent MIS scheme.
This also contributes to a more robust overall behavior. Several MCMC algorithms and
MIS weighting strategies, as well as recycling and compression schemes to reduce the
cost of the approaches, are proposed and tested.

Chapters 4 and 5 both deal with the construction of a nonparametric approximation of
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the posterior using regression techniques. The work in Chapter 4 is motivated by pos-
terior densities that are costly to evaluate. Hence, our goal, instead of applying Monte
Carlo algorithms directly on the posterior, is to make a more efficient use of the posterior
evaluations by a building a surrogate model. The framework proposed in Chapter 4 em-
ploys the approximation to build quadratures of posterior expectations and the marginal
likelihood. Two types of regression techniques are applied, namely, interpolation with
Gaussian kernels and nearest neighbor approximation. These constructions then lead to
quadratures that require the use of additional Gaussian quadratures and IS, respectively,
but do not depend on evaluating further the posterior. A procedure is proposed for sequen-
tially improving the interpolant by maximizing a suitable acquisition function, composed
of two terms to balance exploration and exploitation. The algorithms are tested in simu-
lated examples and a real application of exoplanet detection. On the other hand, Chapter 5
proposes to employ the interpolant as a proposal within an adaptive IS algorithm, named
Regression Adaptive Deep Importance Sampling (RADIS). The motivation here is to build
a very efficient Monte Carlo algorithm by building a proposal that mimics the posterior
distribution. Compared to Chapter 4, the resulting algorithm targets the true posterior
since the interpolant is employed only as proposal density. The same nonparametric con-
structions are considered in this work for building the interpolant. The challenge here is
to be able to sample from the interpolant. This is achieved by an additional sampling-
importance-resampling procedure. The resulting samples are approximately distributed
from the interpolant. These samples are weighted according to the posterior and then are
used to update the interpolant for the next iteration. RADIS is tested in the retrieval of
biophysical parameters of the radiatrive transfer PROSAIL model.

Chapter 6 and 7 consider Monte Carlo algorithms with noisy evaluations of the poste-
rior. Chapter 6 surveys the use of surrogates (i.e. approximations of the posterior built
with noisy evaluations) within Monte Carlo algorithms for dealing with noisy and costly
posteriors. Hence, Chapter 6 serves as a bridge between the cited scenario and Chapter
5. The main contribution of Chapter 6 is the classification of the studied algorithms in
different families, and providing several explanatory tables and figures. Specifically, the
Monte Carlo algorithms using surrogates are divided in three broad classes (i) two-stage,
(ii) iterative refinement, and (iii) exact. A schematic view of the different families in
terms of a series of building blocks is also provided. For instance, RADIS from Chap-
ter 5 is included in the family of exact methods, and it is indeed the IS analogous of the
well-known delayed-acceptance MCMC schemes. Chapter 6 also discusses several ap-
plication scenarios where it is common to work with noisy posterior evaluations, such as
Approximate Bayesian Computation (ABC) and reinforcement learning. Chapter 7 focus
the study on noisy IS, i.e., IS when the posterior evaluations are corrupted with noise. The
expressions for the optimal proposals of the standard, self-normalized and marginal likeli-
hood estimators are derived, which is the main contribution of the work. The expressions
of the optimal proposals feature the noise variance, allowing practitioners to account for
it when designing IS algorithms in the presence of noise.
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Chapter 8 is devoted to Bayesian model selection. Chapter 8 reviews computational ap-
proaches for estimating the marginal likelihood of a model, which is the key quantity for
performing model comparison. We have classified the approaches in 4 families, namely,
(1) Deterministic approximations, (2) Methods based on density estimation, (3) Impor-
tance sampling schemes, and (4) Methods based on a vertical representation. Special
focus is on IS based approaches, which are the largest family containing the most popular
algorithms. The different techniques are presented with a unified notation, highlighting
their differences, connections, limitations and strengths. Other aspects such as the use of
improper priors and the connection of marginal likelihoods with information criteria and
Bayesian predictive model selection are briefly discussed.
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Abstract

Bayesian methods and their implementations by means of sophisticated Monte Carlo (MC) tech-

niques, such as Markov chain Monte Carlo (MCMC) and particle filters, have become very pop-

ular in signal processing over the last years. In this work, we present a novel interacting parallel

MCMC scheme, called Parallel Metropolis-Hastings Coupler (PMHC), where the information

provided by different parallel MCMC chains is properly combined by the use of another advanced

MCMC method, called Normal Kernel Coupler (NKC). The NKC employs a mixture of densities

as proposal density, which is updated according to a population of states. The PMHC is particu-

larly efficient in multimodal scenarios since it obtains a faster exploration of the state space with

respect to other benchmark techniques. Several numerical simulations are provided showing the

efficiency and robustness of the proposed method.

Keywords: Bayesian Inference, MCMC algorithms, Normal Kernel Coupler, parallel
MCMC, population MCMC.

2.1. Introduction

The Markov Chain Monte Carlo (MCMC) are well-known Monte Carlo (MC) method-
ologies, which have become very popular in signal processing, statistics and machine
learning during the past decades, in order to perform Bayesian inference and stochastic
optimization [1, 5, 6, 14]. They generate a Markov chain which converges to the desired
stationary probability density function (pdf).

In the last decades, the available computing power has also grown substantially. For
instance, the possible use of a network of processors/machines has become common and
widespread. For this reason, the interest in running several independent parallel MCMC
chains has also increased in the last years. Clearly, If N chains of length T are run in par-
allel processors, the total number of generated samples is NT instead of N, obtained with
the same running time of a unique chain. Even if only one processor is used, employing
independent parallel chains (IPCs) speeds up the exploration of the state space, which is
crucial for the performance of a MCMC technique, specially in high-dimensional applica-
tions [4, 12, 13, 7]. Thus, several MC schemes consider the application of parallel chains
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for building efficient samplers, even when only one processor is employed [12, 13, 3, 2].
For instance, in [4, 8] , several chains are run in parallel, and a unique joint proposal or
different proposal densities are adapted using the samples generated by all the chains. In
[15, 10] a modified target pdf is considered to produce a repulsion among the parallel
chains. In [11], the authors design an importance sampling scheme, where the IPCs are
used for adapting the location parameters of different proposal densities.

In this work, we present a novel MCMC scheme, called Parallel Metropolis-Hastings
Coupler (PMHC). The PMHC combines efficiently the use of the IPCs with a population-
based MCMC technique, called Normal Kernel Coupler (NKC) [16]. The PMHC obtains
a fast exploration of the state space, ensuring the overall ergodicity. The information pro-
vided by N parallel MCMC chains are properly shared by the use of the NKC. The NKC
is an advanced MCMC technique which uses a mixture of densities as proposal pdf. This
mixture is updated using the information given by a cloud of generated states. Specifi-
cally, NKC induces a suitable random walk over a population of states which determines
the means of components of the proposal mixture, ensuring the ergodicity [16].

When it is run in a unique processor, the PMHC can be considered a population
MCMC scheme, which is particularly efficient in highly multimodal scenarios. When
several independent processors are also employed, the computational speed up, as result
of the parallelization of the IPCs, is considered an additional advantage of the proposed
approach.

More specifically, the PMHC belongs to the class of Orthogonal MCMC algorithms
(OMCMC) [12], formed by vertical and horizontal iterations. The vertical iterations, i.e.,
the IPCs, and the horizontal iterations, i.e., the NKC scheme, are cyclically repeated until
reaching the desired number of samples. Unlike the OMCMC schemes proposed in [12],
the PMHC employs a random walk kernel in the horizontal steps, due to the application
of the NKC. This explorative behavior in the horizontal steps increases the robustness and
the efficiency of the resulting algorithm, as shown in the numerical simulations.

The remaining of the paper is organized as follows. The problem statement is de-
scribed in Section 2.2. The proposed technique is introduced in Section 2.3. Section 2.4
contains the numerical experiments. We conclude with a brief summary in Section 2.5.

2.2. Bayesian inference

In many applications, we aim at inferring a variable of interest given a set of observations
or measurements. Let us denote the variable of interest by x ∈ D ⊆ Rdx , and let y ∈ Rdy

be the observed data. The posterior pdf is then

π̄(x) = p(x|y) =
ℓ(y|x)g(x)

Z(y)
, (2.1)

where ℓ(y|x) is the likelihood function, g(x) is the prior pdf and Z(y) is the model evidence
(a.k.a. marginal likelihood). Generally, Z(y) is unknown, so we are able to evaluate the
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unnormalized target function,
π(x) = ℓ(y|x)g(x). (2.2)

The analytical study of the posterior density π̄(x) ∝ π(x) is unfeasible, so that numerical
approximations are required. Our goal is to approximate efficiently the measure of π̄(x)
employing a cloud of random samples. Thus, an integral involving π̄(x) can be approxi-
mated via Monte Carlo quadrature. Generally, a direct method for drawing independent
samples from π̄(x) is not available and alternative approaches (e.g., MCMC algorithms)
are needed. The only required assumption is being able to evaluate the unnormalized
target function π(x).

2.3. Parallel Metropolis-Hastings Coupler

In this section we describe the Parallel Metropolis-Hastings Coupler (PMHC) scheme. At
the t-th iteration, with t ∈ N, the PMHC algorithm considers a population of samples

Pt = {x1,t, x2,t, . . . , xN,t} = {xn,t}
N
n=1. (2.3)

In a first stage of the algorithm, N independent parallel MH chains are run considering
Pt = {xn,t}

N
n=1 as current states. Each chain performs TV (vertical) iterations, yielding

a new population Pt+TV = {xn,t+TV }
N
n=1 of samples. Then, the information of the parallel

independent chains is mixed by the use of TH (horizontal) iterations of the Normal Ker-
nel Coupler (NKC) technique. The NKC employs a mixture of densities φ(x|µn,t,Σn) as
proposal density Ψ(x|Pt) (where µn,t and Σn represent a mean and a covariance matrix,
respectively). In the horizontal iterations, the current cloud of samples Pt are used as
means, µn,t, of the N components φ(x|µn,t,Σn). The NKC generates a random walk behav-
ior, where the mixture Ψ(x|Pt) changes with the iterations, considering only the last state
of chain. After TH iterations of the NKC, one epoch of the PMHC has been completed.
Another epoch of the PMHC consists of running again TV iterations of the N parallel MH
chains using as initial states the samples contained in the current population Pt, and then
performing again the TH of the NKC. The total number of epochs is denoted as M.

The general outline of the PMHC algorithm is given in Table 2.1. The standard MH
algorithm used in a vertical chain is described in Table 2.2. The NKC is summarized in
Table 2.3 and also described in Section 2.3.1. It is possible to ensure the ergodicity of
the PMHC since its kernel function can be expressed as product of kernel functions with
invariant density π̄(x) (for further details, see [12]).

2.3.1. Normal Kernel Coupler (NKC)

Let us denote with τ ∈ N another iteration index, in order to avoid confusion with the
global index t of the PMHC. At iteration τ, given the current population of samplesPτ−1 =
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Table 2.1: Parallel Metropolis-Hastings Coupler

- Initialization: Choose the N starting vectors, P0 = {xn,0}
N
n=1, three values

M,TV ,TH ∈ N
+, and set t = 0,

- For m = 1, . . . ,M:

1. Parallel MH steps: Using the cloud Pt as initial states, perform TV iterations
of N parallel MH schemes, obtaining the populations Pt+1,Pt+2... Pt+TV .

2. NKC steps: Using the cloud Pt+TV , perform TH iterations of the NKC, obtain-
ing the populations Pt+TV+1, Pt+TV+2... Pt+TV+TH .

3. Set t ← t + TV + TH.

- Outputs: The NT = NM(TV + TH) samples contained in {Pt}
T
t=1 with T = M(TV +

TH).

Table 2.2: n-th Metropolis-Hastings (MH) chain

- Initialization: Choose the initial state, xn,0, and TV ∈ N.
- For τ = 1, . . . ,TV:

1. Draw x′ ∼ qn(x|xn,τ−1).

2. Set xn,τ = x′ with probability

α = min
[︄
1,

π(x′)q(xn,τ−1|x′)
π(xn,τ−1)q(x′|xn,τ−1)

]︄
, (2.4)

otherwise, set xn,τ = xn,τ−1 (with probability 1 − α).

- Outputs: The TV samples {xn,τ}
TV
τ=1.

{xn,τ−1}
N
n=1, the NKC [16] employs the following mixture

Ψ(x|Pτ−1) =
1
N

N∑︂
n=1

φ(x|xn,τ−1, σ
2
hI), (2.5)

as proposal density in a MH-type algorithm. Note that φ(x|µ,Σ) denotes a density with
mean µ, covariance matrix Σ; σh > 0 is chosen by the user and I is a dx × dx identity
matrix.

The NKC scheme can be seen as MH-type method where: (a) a “past” sample xk,τ−1

is selected uniformly within Pτ−1, to compare it with a new candidate x′ as new state of
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the chain; (b) a new candidate x′ is drawn from the mixture Ψ(x|Pτ−1); (c) then a test
involving xk,τ−1 and x′ is performed, in order to choose the next state xk,τ of the chain;
more precisely, with a suitable probability α shown Eq. (2.7), we set xk,τ = x′; otherwise,
with probability 1 − α, we set xk,τ = xk,τ−1; (d) we update the population Pτ = {xn,τ}

N
n=1.

Note that the new population, Pτ, differs to the previous one, Pτ−1, at most for one sample.
Namely, if the new candidate has been accepted, i.e., xk,τ = x′, then Pτ differs to Pτ−1 in
the k-th element. Otherwise, if xk,τ = xk,τ−1, then we have Pτ = Pτ−1.

Since the populationPτ varies with τ, then the proposal mixtureΨ(x|Pτ) is also chang-
ing with τ. For this reason, several authors have classified the NKC as an adaptive MCMC
scheme. More precisely, the NKC is a MH-type algorithm with a random walk proposal
density. Indeed, only the last state of the chain is employed to update the proposal. The
difference with respect to (w.r.t.) the standard MH method is that the random walk is
carried out in a mixture of densities, in a suitable way such that the ergodicity is ensured.
Indeed, the NKC can be interpreted as a MH-within-Gibbs scheme working in an ex-
tended space with a generalized target π̄(x1:N) =

∏︁N
n=1 π̄(xn) [16]. Unlike for the adaptive

MCMC techniques, no additional theoretical requirements are needed. Table 2.3 provides
a detailed description of the NKC, where we have rewritten the mixture in Eq. (2.5) as

Ψ(x|Pτ−1) = Ψ(x|P(−k)
τ−1 , xk,τ−1)

=
1
N

N∑︂
n≠k

φ(x|xn,τ−1, σ
2
hI) +

1
N
φ(x|xk,τ−1, σ

2
hI). (2.6)

where P(−k)
τ−1 = Pτ−1\{xk,τ−1}. Note that equations (2.5) and (2.6) are the same. How-

ever, the expression above is required to properly understand the Eq. (2.7) below. The
name with the attribute “Normal” is due to the use of Gaussian components, φ(x|µ,Σ) =
N(x|µ,Σ), in the original work [16].

Now, let us consider the PMHC. The use of the IPCs for generating the initial popula-
tion of states allows the construction of a tailored proposal mixture that can be interpreted
as a kernel density estimation of the target π̄. Moreover, the NKC is an excellent tool to
share the information of different parallel chains as we show in the numerical results.

2.3.2. Computational cost and running time

In the Monte Carlo techniques, the most costly step is often the evaluation of the target
posterior density π̄, due to the use of complex models and/or a large number of data
to be analyzed (i.e., a costly likelihood). Generally the other factors, such as sampling
from the proposal or performing the MH test, are negligible w.r.t. the cost of evaluating
the posterior. Note that in the MH and the NKC methods at each iteration we have just
one new evaluation of the target at the novel candidate x′. Therefore, in each epoch of
the PMHC, we have NTV + TH evaluations of π̄(x). Hence, the total number of target
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Table 2.3: Normal Kernel Coupler (NKC)

- Initialization: Denote as P0 = {xn,0}
N
n=1 the starting cloud of states, and choose the

variance, σ2
h, of each component of the mixture.

- For τ = 1, . . . ,TH:

1. Draw uniformly an index k ∈ {1, ...,N}.

2. Draw x′ from Ψ(x|Pτ−1) = Ψ(x|P(−k)
τ−1 , xk,τ−1), given in Eq. (2.6).

3. Set xk,τ = x′ with probability

α = min

⎡⎢⎢⎢⎢⎢⎣1, π(x′)Ψ(xk,τ−1|P
(−k)
τ−1 , x

′)

π(xk,τ−1)Ψ(x′|P(−k)
τ−1 , xk,τ−1)

⎤⎥⎥⎥⎥⎥⎦ , (2.7)

otherwise, set xk,τ = xk,τ−1 with probability 1 − α.

4. Set xn,τ = xn,τ−1 for all n ≠ k, and Pτ = {xn,τ}
N
n=1.

- Outputs: The NTH samples {Pτ}
TH
τ=1.

evaluations is E = M(NTV + TH) 1.
In terms of running time, i.e., the length of time required to perform a run of the PMHC,
we have to take into account that the vertical iterations in one epoch can be parallelized.
Therefore, denoting as su = 1 the unit of time required for performing one iteration of
an MCMC algorithm,2 we have that the total amount of time is T = M(TV + TH), where
the factor N disappears, w.r.t. E, due to the parallelization. Taking into account these
two quantities, E and T , is essential for providing a fair comparison w.r.t. other MCMC
algorithms.

2.4. Numerical Simulations

In this section, we test the performance of proposed PMHC technique comparing with
other benchmark schemes. We consider a bivariate and highly multimodal target pdf,
which is a mixture of 5 Gaussian densities, i.e.,

π̄(x) =
1
5

5∑︂
i=1

N(x; νi,Λi), x ∈ R2, (2.8)

1 Note that we assume that communication cost among the parallel processors/workers is negligible. We
plan to relax this assumption in future works (following, e.g., [9]).

2We assume that su is the same for each processors. We also consider negligible the difference of running
a MH or NHC sampler, since they address the same posterior pdf.
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with means ν1 = [−10,−10]⊤, ν2 = [0, 16]⊤, ν3 = [13, 8]⊤, ν4 = [−9, 7]⊤, and ν5 =

[14,−14]⊤, and with covariance matrices Λ1 = [2, 0.6; 0.6, 1], Λ2 = [2, −0.4;−0.4, 2],
Λ3 = [2, 0.8; 0.8, 2], Λ4 = [3, 0; 0, 0.5], and Λ5 = [2, −0.1;−0.1, 2]. Note that
the target pdf π̄(x) has 5 different modes. We apply different MCMC algorithms to es-
timate the expected value E[X] of the random variable X ∼ π̄(x). The ground-truth
is [1.6, 1.4]⊤. We compute the Mean Square Error (MSE) averaging the results over
500 independent runs. For the vertical MH chains, we consider Gaussian proposals
qn(x|xn,t−1) = N(x|xn,t−1, σ

2
vI), using the same isotropic covariance matrix. For the hori-

zontal NKC iterations, we employ also Gaussian components for the mixture Ψ(x), i.e.,
φ(x|xn,t−1) = N(x|xn,t−1, σ

2
hI). Moreover, for the sake of simplicity, we set σv and σh to a

common value denoted as σ, i.e., σv = σh = σ.

(a) (b)

Figure 2.1: MSE in a log-scale as function (a) as function of TH and TV = 6 − TH (first
experiment; each curve corresponds to a different value of σ), or (b) as function of N
(second experiment; each curve corresponds to a different MCMC method with σ = 5).

First Experiment. For a first numerical test, we set N = 10, we fix the total number of
target evaluations E = 104, and we consider different values of σ ∈ {3, 5, 7, 10}. We also
set that TV + TH = 6 and TH ∈ {0, 1, 2, 3, 4, 5, 6}, hence in each epoch we do 6 iterations
where TH are the horizontal NKC steps, and TV = 6 − TH the vertical steps. Note that
when TH = 0, we only perform the independent parallel chains (IPCs). Otherwise, when
TH = 6, we have only NKC steps. Therefore, we can compare the PMHC, the IPCs and
the NKC schemes. Since we have fixed E = 104, the number of epochs is M =

⌊︁ E
NTV+TH

⌋︁
.

Furthermore, we choose deliberately an inappropriate initialization to test the robustness
of the different schemes (we can observe the exploration abilities of the different meth-
ods). Indeed, the initialization does not contain the modes of π̄(x). More specifically, we
set xn,0 ∼ U([−4, 4] × [−4, 4]), for all n ∈ {1, . . . ,N} and P0 = {xn,0}

N
n=1.

Discussion. The results in terms of MSE are given in Figure 2.1(a). Each curve corre-
sponds to a value of σ ∈ {3, 5, 7, 10}. All the points at TH = 0 corresponds to the IPCs,
and all the points for TH = 6 represents the MSE of the NKC. All the intermediate points,
for 1 ≤ TH ≤ 5, corresponds to the PMHC algorithms. We can observe that the PMHC
always outperforms the IPCs and NKC for any value of σ and TH, i.e., regardless the
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choices of σ and TH. Given the same target evaluations E (i.e., a fair comparison), these
results clearly show that the PMHC improves the performance of the IPCs and the NKC.
Namely, the PMHC is a clever and efficient mix of the IPCs and the NKC kernels (the
product of these kernels) that improves the performance of each single method (i.e., IPCs
and NKC) applied independently. Note that, in this highly multimodal scenario, the NKC
has worse performance compared with the the IPCs. Clearly, this is because the IPCs
are able to discover all the modes in a faster way. After this observation, it is surpris-
ing to note that the best results of the PMHC with σ = 10 are obtained for TH = 5 and
TV = 6− TH = 1. Again, this shows the potentiality of the PMHC. Indeed, only changing
one iteration of NKC with one iteration of the IPCs (i.e., TH = 5 and TV = 1, keeping the
target evaluations E constant), provides a remarkable drop in the MSE. Notice that the
optimal number of horizontal iterations (TH) increases as σ grows. Indeed, the increase of
σ allows the IPC’s to explore the state space in a easier way (less iterations are required).
This simple example shows that the NKC is an excellent tool for sharing information
among the IPCs. At the same time, the IPCs are also excellent tools for improving the
performance of the NKC.
Second Experiment. In this case, we setσ = 5, M = 50 and vary N ∈ {5, 10, 20, 50, 80, 100}.
We compare the PMHC with different MCMC schemes: the IPCs, the NKC, the OMCMC-
SMH algorithm in [12], and two single MH methods with a longer chain (one with an
independent proposal Ψ(x|P0) and T = 300, denoted as IMH, and a second one with a
random walk proposal with T = 300N, denoted as RWMH). Here, we compare the dif-
ferent methods considering the same running time, T = M(TV + TH) = 300, and the use
of N different parallel processors. Thus, since we set TH = TV = 3 for the PMHC, we
have TV = 6 for the IPCs (and TH = 0) and we have TH = 6 for NKC (and TV = 0).
For the OMCMC-SMH algorithm, we also set TH = TV = 3 and the same proposals qn

and φ, for providing a fair comparison with the PMHC. For all these techniques, we have
T = 300. For the same reason, we set T = 300 for the single Independent MH (IMH)
chain with proposal Ψ(x|P0). Note that, when N varies the only change is the number
of component in the proposal mixture Ψ(x|P0). Here, we consider a good initialization,
setting xn,0 ∼ U([−20, 20] × [−20, 20]) for all n, and P0 = {xn,0}

N
n=1, which covers all the

modes of π̄(x).
Discussion. The results in terms of MSE are shown in Figure 2.1(b). Again, the PMHC
outperforms the rest of methodologies, providing the smallest MSEs. Comparing the re-
sults of the NKC and the longer MH chain with a static proposal mixture, we can see the
importance of moving the components of the mixture Ψ(x|P0) according to the suitable
random walk induced by NKC. The use of the IPCs is even more convenient with the
good initialization and with an increasing number of chains. Again, this is owing to the
ability to reach quickly all the modes of the target π̄(x). The PMHC also outperforms the
OMCMC-SMH algorithm, where the Sample Metropolis Hastings (SMH) with an adap-
tive proposal pdf is employed in the horizontal steps. This confirms that the NKC fits
particularly well within the OMCMC scheme as horizontal technique. The benefit of the
PMHC with respect to OMCMC-SMH is more evident for small values of N. When N
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grows, the performance of the IPCs, OMCMC-SMH and the PMHC becomes more sim-
ilar due to the good initialization considered in this experiment. Indeed, as N grows, the
population-based methods discover in a easier way all the modes of π̄(x).

2.5. Conclusions

In this work, we have introduced the Parallel Metropolis-Hastings Coupler (PMHC). The
PMHC combines the use of the IPCs with the application of the NKC. The numerical
results show that the PMHC outperforms the use of IPCs and NKC applied separately,
as well as other benchmark techniques. The PMHC fits particularly well in highly mul-
timodal scenarios, since it obtains a faster exploration of the state space. If several inde-
pendent processors are available, the IPCs steps in the PMHC can be parallelized, and the
computational speed up is an additional advantage of the proposed approach.
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Abstract

Monte Carlo sampling methods are the standard procedure for approximating complicated inte-
grals of multidimensional posterior distributions in Bayesian inference. In this work, we focus on
the class of layered adaptive importance sampling algorithms, which is a family of adaptive impor-
tance samplers where Markov chain Monte Carlo algorithms are employed to drive an underlying
multiple importance sampling scheme. The modular nature of the layered adaptive importance
sampling scheme allows for different possible implementations, yielding a variety of different per-
formances and computational costs. In this work, we propose different enhancements of the clas-
sical layered adaptive importance sampling setting in order to increase the efficiency and reduce
the computational cost, of both upper and lower layers. The different variants address computa-
tional challenges arising in real-world applications, for instance with highly concentrated posterior
distributions. Furthermore, we introduce different strategies for designing cheaper schemes, for
instance, recycling samples generated in the upper layer and using them in the final estimators in
the lower layer. Different numerical experiments show the benefits of the proposed schemes, com-
paring with benchmark methods presented in the literature, and in several challenging scenarios.

Keywords: Bayesian inference; Importance Sampling; Quadrature methods; Computa-
tional algorithms.

3.1. Introduction

The general framework called Layered Adaptive Importance Sampling (LAIS) is a com-
bination of the desirable exploratory behavior of Markov chain Monte Carlo (MCMC)
algorithms, and the robustness (and easier theoretical validation) of the importance sam-
pling (IS) schemes [20]. Let us denote with π̄(x) = π̄(x|y) the posterior density in a
Bayesian inference problem. The main underlying idea of this algorithm is the layered
(i.e., hierarchical) procedure for generating samples. In order to generate one sample,
a location parameter is drawn from a probability density function (pdf) µi ∼ p(µ) (that
plays the role of a prior pdf over a location parameter in the hierarchical procedure) and,
conditionally on it, a sample is generated from a proposal density centered at µi, i.e.,
xi ∼ qi(x|µi). Then, the sample xi is properly weighted according to a multiple IS (MIS)
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procedure [10, 34]. Hence, the upper layer is formed by the generation of µ’s, while in
the lower layer, we have the generation of x’s and its weighting. More generally, parallel
MCMC algorithms addressing different pi(µ)’s, for i = 1, ...,N, can be employed to obtain
the location parameters µi. The use of parallel MCMC chains in the upper layer makes
the LAIS framework particularly suitable in multimodal scenarios. Note that the samples
µi are not included in the final estimators (just the samples xi), but only used as location
parameters for the proposal densities. In [20], the specific choice pi(µ) = π̄(µ) has been
suggested and successfully tested.

With respect to other benchmark AIS techniques in the literature (see, e.g.,[4]), the LAIS
scheme provides very competitive results and exhibits a relevant robustness with respect
to tuning of the parameters of proposal densities qi (such as the scale parameters). The
interested reader can observe these properties in the numerical comparison, provided in
Section 3.9.1. Moreover, LAIS can be interpreted as:

• An efficient procedure of combining the outputs of several parallel MCMC chains.
Several other attempts can be found in the literature (see, e.g., [5]).

• An efficient procedure for estimating the marginal likelihood by using MCMC
chains, which is a well-known difficult task for the MCMC techniques [17].

These strengths of the LAIS scheme are very appealing for practitioners and researchers.
At the same time, the generic LAIS framework offers a remarkable flexibility which have
not been completely exploited in [20], and have been not explored in the further works.
For instance, in the upper layer, the user must specify the choices of pi(µ) and the type of
MCMC algorithms; in the lower layer, a specific MIS weighting scheme must be selected.
This flexibility allows the LAIS algorithm to handle efficiently different complex infer-
ence scenarios, not only multimodality. Introducing specific LAIS schemes for tackling
other difficult scenarios of inference is the first main goal of this work. The second main
objective of this paper is to describe different procedures for reducing the computational
cost of the LAIS scheme.

In this work, as disclosed above, we introduce different schemes for improving the over-
all performance and reduce the total computational cost. Specifically, we discuss suitable
configurations of the LAIS algorithm for addressing the problem of sampling concen-
trated posteriors (due to complex model or great number of data) and posteriors in high
dimensional spaces. This is possible by the use of data-tempered posteriors in the up-
per layer, that we refer to as partial posteriors (see Section 3.4), and advanced MCMC
schemes such as Hamiltonian MC (HMC) and sophisticated Gibbs-type techniques (see
Section 3.5) [13]. We also discuss different strategies for reducing the overall compu-
tational cost. For instance, we propose a procedure for recycling the samples in upper
layer and use them in the final estimators, in such a way that the sampling step in the
lower layer can be avoided. This drastically reduces the number of evaluations of the
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posterior. Moreover, in the lower layer, the cost of weighting can be quite high if we
have run long MCMC chains in the upper layer. This problem can also be alleviated by
using ideas such as compression or alternative weighting schemes, that reduce the cost
but maintain the same performance for the final estimators (see, e.g., [8] or [18]). We
test the variants in different scenarios with synthetic and real data. A theoretical discus-
sion about the optimal choice of p(µ) is also provided in the Appendix 3.11.1. Several
numerical simulations show the benefits of the proposed LAIS techniques in different
challenging sampling problems. Table 3.1 summarizes the main contributions (and the
novel schemes) and main acronyms employed in this work. Finally, Table 3.2 summa-
rizes the main notation of the work. In Table 3.2, with the acronym MH, we denote the
Metropolis-Hastings algorithm [30]. Related Python and Matlab codes are available at
https://github.com/FLlorente/LAIS_extensions.

Table 3.1: Summary of the main contributions and the main acronyms of the work.

Contribution/Proposed scheme Section Reducing cost Improving performance
Partial posteriors LAIS (PLAIS) 3.4 ✓ ✓

Hamiltonian-driven IS (HMC-LAIS) 3.5 ✓

Gibbs-driven IS (Gibbs-LAIS) 3.5 ✓

Compressed LAIS (CLAIS) 3.6 ✓

Recycling LAIS (RLAIS) 3.7 ✓

Partial posteriors RLAIS (PA-RLAIS) 3.7 ✓ ✓

Discussion about the computation cost 3.8 related
Numerical comparisons 3.9 related related
Theoretical discussion App. 3.11.1-3.11 related

Table 3.2: Main notation of work.

x ∈ Xtot ⊆ RDX vector of parameters to infer π̄(x|ytot) normalized full posterior
ytot data π(x|ytot) unnormalized full posterior
yn subset of data π̄n(x|yn) normalized partial posterior
DY total number of data (in ytot) πn(x|yn) unnormalized partial posterior
Kn number of data in yn L(y|x) likelihood function

qn(x|µn) proposal density in the lower layer g(x) prior density
φn(x|µn) proposal density within MH (in RLAIS) Z = p(ytot) marginal likelihood
µn location parameter (e.g., mean) I integral of interest
N number of the MCMC chains w = π(x|ytot)

Φ(x) importance weight
T length of the MCMC chains Φ(x) denominator in MIS weights
M number of samples per proposal Ψ(x) denominator in MIS weights (in RLAIS)
B number of sub-regions Xm Xm m-th sub-region, X1 ∪ . . . ∪ XB = Xtot

3.2. Problem statement

In many applications, the interest lies in making inference about the vector x = [x1, . . . , xDX ] ∈
Xtot ⊆ R

DX . A set of DY measurements, ytot = [y1, y2, . . . , yDY ], is received, related to
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the variable of interest x. The complete likelihood function is denoted as L(ytot|x). Con-
sidering a prior probability density function (pdf) g(x), the complete posterior pdf can be
written as

π̄(x|ytot) =
1

p(ytot)
L(ytot|x)g(x) =

1
Z
π(x|ytot), (3.1)

where we have denoted Z = p(ytot), and π(x|ytot) = L(ytot|x)g(x). Note that π̄(x|ytot) ∝
π(x|ytot) for fixed ytot.

Goal. The objective is to make inference about the variable x given the information
provided by the knowledge of ytot. Generally, this task requires computing integrals of
type

I =
∫︂
Xtot

f(x)π̄(x|ytot)dx, (3.2)

where f(x) : RDX → Rs and I ∈ Rs with s ≥ 1. When f(x) = x, the integral I represents
the minimum mean square error (MMSE) estimator of x [30]. Moreover, we are also
interested in the so-called marginal likelihood,

Z = p(ytot) =
∫︂
Xtot

π(x|ytot)dx. (3.3)

This quantity is particularly useful for the model selection purposes [17, 30]. Generally,
we are not able to calculate analytically the integrals above. Importance sampling (IS)
and Markov chain Monte Carlo (MCMC) are popular Monte Carlo techniques for ap-
proximating integrals as in Eq. (3.2) using random samples [16]. IS provides also an
estimator of Eq. (3.3), something that is not straightforward with MCMC (see e.g. [17]
for a review of methods for estimating Z). In this work, we consider the LAIS framework
which mixes the benefits of MCMC and IS algorithms [20]. In the rest of the work,
the dependence on the data y is often not (explicitly) included in the notation, using for
instance π̄(x) and π(x) instead of π̄(x|ytot) and π(x|ytot).

3.3. Layered adaptive importance sampling (LAIS)

LAIS is an adaptive IS framework that consists of two sampling layers, which are detailed
in Table 3.3 and described next. Let {qn,0(x|µn,0)}Nn=1 denote an initial set of N parametric
proposals. In the upper layer, the location parameters of the proposals are updated by
means of MCMC algorithms. In the simplest case, at iteration t, each µn,t−1 independently
evolves to µn,t (n = 1, . . . ,N) by running one iteration of a MCMC algorithm with in-
variant density pn(µ). More generally, the whole population {µn,t−1}

N
n=1 can be updated to

{µn,t}
N
n=1, e.g., considering more sophisticated population MCMC algorithms [15]. Then,

after performing T such iterations, a population of NT location parameters is obtained
{µn,t}

N
n=1 for all t. In the lower layer, we sample xn,t ∼ qn,t(x|µn,t) for n = 1, . . . ,N and
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t = 1, . . . ,T , and assign weights to each sample.
The weighting procedure is done according to the so-called deterministic mixture ap-
proach [10]. Some possible choices of the denominator of the importance weights are
given in Table 3.4. Clearly, in the specific case of a unique chain N = 1, the spatial
denominator becomes the standard IS denominator. If N single MCMC steps are per-
formed, i.e., T = 1, then the temporal denominator becomes the standard IS denominator.
Note that, in LAIS, the adaptation (upper layer) is independent from the sampling and
weighting steps (lower layer). As an example, we can run first, e.g., N parallel chains for
T iterations each in order to obtain the NT locations parameters {µn,t}, and then perform
standard IS with the NT proposals.
The estimators of Eq. (3.2) and Eq. (3.3) are then given by

ˆ︁I = 1

NTˆ︁Z
N∑︂

n=1

T∑︂
t=1

wn,tf(xn,t), (3.4)

ˆ︁Z =
1

NT

T∑︂
t=1

N∑︂
n=1

wn,t. (3.5)

Some bounds and theoretical results related to these estimators can be found in [1].

Table 3.3: LAIS algorithm

Choose {qn,0}
N
n=1, {µn,0}

N
n=1 and the MCMC algorithms in the upper layer.

Upper layer (MCMC).

• Adaptation: Apply MCMC transitions with invariant pdf pn(µ), e.g., pn(µ) =
π̄(µ|ytot), i.e.,

{µn,t−1}
N
n=1

MCMC
−−−−−→ {µn,t}

N
n=1, ∀t = 1, ...,T.

Lower layer (IS).

• Sampling: xn,t ∼ qn,t(x|µn,t), for all n, t.

• Weighting:

wn,t =
π(xn,t|ytot)
Φ(xn,t)

, ∀n, t, (3.6)

where different denominators, Φ(xn,t), are possible. See Table 3.4.

Consistency. The LAIS scheme can be interpreted as a standard, static IS scheme with
NT proposals, and the consistency only depends on the proper choice of the denominator
Φ(x) in the importance weights. In Table 3.4, some proper choices, that ensure consis-
tency, are provided which follows the deterministic mixture approach [34]. It is important
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Table 3.4: Possible denominators Φ(xn,t).

complete temporal spatial standard

1
NT

∑︁T
τ=1

∑︁N
i=1 qi,τ(xn,t|µi,τ) 1

T

∑︁T
τ=1 qn,τ(xn,t|µn,τ) 1

N

∑︁N
i=1 qi,t(xn,t|µi,t) qn,t(xn,t|µn,t)

to remark that the consistency does not depend on the choice of the densities pn(µ) in the
upper layer, but, clearly, the efficiency of LAIS is affected by the selected pdfs pn(µ).

Remark. For the sake of simplicity, we have assumed to draw only one sample xn,t

from each proposal qn,t(x|µn,t), in the lower layer. More generally, one could draw M > 1
samples, x(1)

n,t , ..., x
(M)
n,t from each qn,t(x|µn,t). This is often necessary for performing a fair

comparison with other AIS techniques and is an additional degree of freedom offered by
the LAIS framework (see Sections 3.9.1 and 3.9.4). For simplicity, in the rest of work we
consider M = 1, unless state otherwise that M > 1.

Evaluations of the posterior. In the standard LAIS implementation (i.e. setting pn(µ) =
π̄(µ|ytot) for all n), the total number of evaluations E of the posterior is E = 2NT (or,
more generally, E = NT +MNT ), where NT evaluations are performed in the upper layer
and NT (or, more generally, MNT ) in the lower layer. However, the final estimators only
involve S = NT samples. With M > 1, the final estimators would involve S = MNT
samples.

3.3.1. About the choice of the denominator

The computation of the weights in the lower layer allows for different possible denom-
inators, shown in Table 3.4. The function Φ(xn,t) can be taken to be the proposal that
actually generated xn,t (standard), the mixture of proposals across different chains (spa-
tial), the mixture of proposals within the chain (temporal), or the mixture of all proposals
(complete). Note that, we always have the evaluation of the complete posterior in the nu-
merator, hence all the weighting strategies have the same number of posterior evaluations,
i.e., NT . However, in practice, the cost of the complete, temporal and spatial weighting
schemes is higher than the standard one, and it will increase the overall computation time.
This is more obvious in real applications where many chains are run for a long time, i.e.,
T and N are very large. Commonly, T ≫ N, so that the spatial scheme is cheaper than the
temporal scheme, and both are much cheaper than the complete scheme. In return, these
schemes can produce a remarkable improvement in the performance of the final estima-
tors. It can be theoretically proved that the deterministic mixture denominators produce
estimators with lower (or equal) variance than the standard weighting [10]. Indeed, our
experiments in Section 3.9.3 show that the complete denominator consistently produces
more stable estimators with only a small increase in computational cost, as compared to
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the overall cost of the algorithm.

3.3.2. Elements for the design of a specific LAIS implementation

A specific implementation of the LAIS algorithm is determined by the choices of

1. the invariant densities pn(µ);

2. the MCMC approach (e.g., parallel or single longer chain Metropolis-Hastings, ad-
vanced MCMC schemes, etc.);

3. the proposals qn,t(x|µn,t); and

4. the denominator Φ(x).

Namely, a particular LAIS implementation is completely defined by the choice of those
four elements. Below, we present several variants and improvements for the LAIS frame-
work concerning each one of the elements above. For instance, regarding the pdfs pn(µ),
we describe the suitable use of different type of tempered posteriors. The application of
sophisticated MCMC algorithms in the upper layer is also discussed. Recycling sample
schemes (which involve the selection of proposals qn,t as well) and the design of cheap
denominators Φ in the lower layer are also introduced in the next sections.

3.4. Data tempering and partial posteriors in the upper layer

The LAIS framework has flexibility in the upper layer design of selecting different invari-
ant densities pn(µ). A theoretical discussion regarding the optimal choice of the invariant
densities, pn(µ), is given in Appendix 3.11.1. In this section, we introduce the possibil-
ity of using partial posteriors (i.e., posteriors considering a reduced number of data) as
invariant pdfs pn(µ). The benefit is twofold: (a) reducing the cost of the posterior eval-
uations in the upper layer, and (b) helping the space exploration of MCMC chains. This
second effect is often called data tempering. See Appendix 3.11.1 for further details.
Specifically, let yn ∈ R

Kn denote a subset of data points, i.e., yn ⊂ ytot (with Kn ≪ DY) and
assume we have N subsets y1, . . . , yN . For the sake of simplicity, we assume that {yn}

N
n=1

represents a partition of ytot, i.e., N non-overlapping pieces such that
∑︁N

n=1 Kn = DY .
However, more generally, we could also have yn ∩ yn′ ≠ ∅. Note that we are keeping the
vector notation for data subset yn but sometimes we use it as a set notation, just for the
sake of simplicity. Hence, let us define the partial posteriors, for using them as invariant
densities in the upper layer,

pn(x) = π̄n(x|yn) ∝ Ln(yn|x)gn(x), (3.7)

where Ln(yn|x) is the likelihood of the batch yn, and gn(x) plays the role of a partial
prior pdf. For our purpose, we can keep gn(x) = g(x) for all n, or we can split the prior
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contribution into each data subset, for instance, setting gn(x) = g(x)
1
N for all n, which is

a typical choice in several distributed settings (motivated so that the product of π̄n(x|yn)
is proportional to the complete posterior) (e.g., see [33]) . Therefore, the partial posterior
π̄n(x|yn) is a tempered version of the complete posterior since its likelihood Ln(yn|x) is less
informative, i.e., wider, than in the case where we consider all data.
Thus, we consider that each MCMC chain in the upper layer addresses a different partial
posterior pn(x) = π̄n(x|yn) (n = 1, . . . ,N). Hence, there are as many chains as number
of partial posteriors. We call this scheme as partial posteriors LAIS (PLAIS) method.
Note that, in PLAIS, we still evaluate the complete posterior in the lower layer, so the
total number of full posterior evaluations is NT (in the lower layer). Furthermore, the use
of partial posteriors produces more dispersed location parameters of the proposals in the
lower layer. This increases the robustness of the method, since it reduces the chance of
obtaining huge weight values and, as a consequence, avoids IS estimators with infinite
variance (see the example 1 in [17]).

3.5. Hamiltonian and Gibbs-driven importance samplers

The simplest choice of MCMC schemes in the upper layer is a unique Metropolis-Hastings
(MH) chain, or to employ N independent parallel MH algorithms. However, more sophis-
ticated algorithms can be considered (such as Langevin, Hamiltonian and Gibbs sam-
plers), which can further enhance the performance of the algorithm. On the other hand,
the LAIS algorithm can be interpreted as a way to help these MCMC schemes to improve
their efficiency and allow them to estimate efficiently the marginal likelihood Z (as shown
in the numerical experiments in Section 3.9).

Hamiltonian MC in the upper layer. The Hamiltonian Monte Carlo (HMC) algorithm
is usually considered as the state-of-the-art technique in the MCMC world [25]. However,
as with the rest of MCMC methods, it is not straightforward to estimate the marginal like-
lihood with HMC samples [17]. Additionally, it is well-known the difficulty of tuning its
hyperparameters for obtaining efficient sampling [25]. In this context, we propose using
different HMC algorithms in the upper layer in Table 3.3 , each chain employing possibly
different parameters. Thus, several sets of parameters are jointly used. Note also that we
do not need to fine-tune the hyperparameters since the states in the upper layer are not
used directly as samples in our framework. The lower layer in the LAIS scheme provides
a straightforward estimation of the marginal likelihood. We compare the performance of
these algorithms, denoted as HMC-LAIS, with HMC in Sect. 3.9.3.

Gibbs algorithms in the upper layer. Another possibility is to use Gibbs samplers in
the upper layer [30]. The Gibbs sampler is component-wise scheme, i.e., at each iter-
ation each component of the parameter vector x is drawn from the corresponding full-
conditional density keeping fixed the rest of components. Thus, they have the advantage
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of working in lower dimension at each iteration, which allows the design more efficient
samplers in high dimensional spaces. For instance, extremely efficient MH-within-Gibbs
algorithms can be designed using Adaptive Rejection Metropolis schemes for drawing
from each one-dimensional full-conditional (e.g., see [11] and [23]). Another important
benefit is the use of a Gibbs sampler is particularly useful for drawing from very tight
posteriors, as shown in [22] (see also Section 3.9.5).

More generally, the joint use of HMC, Langevin, and Gibbs-based schemes can be poten-
tially applied in the upper layer. For instance, an extension of the Gibbs sampling idea
is the so-called adaptive direction sampling, which can speed up the mixing of generated
chains, choosing different one-dimensional direction of sampling at each iteration [12].
Note that both, HMC-LAIS and Gibbs-LAIS, are very useful schemes for sampling from
concentrated/tight posteriors or high-dimensional posteriors (see the numerical simula-
tions in Section 3.9).

3.5.1. Optimizers versus samplers

Let us consider for simplicity the choice pn(µ) = π̄(µ) suggested in [20]. Instead of sam-
pling, a simpler alternative could be simply to perform optimization steps for obtaining
the location parameters µi. However, a sampler takes into account not just the modes of
π̄(µ) but all the probability mass around these modes. Therefore, using a sampler, location
parameters π̄(µ) would be spread out in the regions of high probability mass (not only at
the modes; or close to the modes). This aspect ensures and induces robustness in the IS
scheme which uses proposal densities with location parameters µi, since the full-mixture
of proposal densities tends to have a greater variance than the variance of posterior dis-
tribution. See Appendix 3.11.1, for further details. This property is extremely important
since it avoids the catastrophic scenario of infinite variance in the final IS estimators,
which can occur when the proposal density has smaller variance than the target pdf (see
the illustrative example 1 in [17]).

3.5.2. Upper layer design: a summary

So far (in Sections 3.4 and 3.5), we have proposed strategies for improving the efficiency
of the final estimators of LAIS, focusing so far on the upper layer in Table 3.3. These
enhancements are particularly relevant in different challenging inference scenarios, such
as tight posteriors and/or high dimensional problems. For other complex settings, such
as multimodal posteriors, the use of parallel MCMC chains (already suggested in [20])
is important. Table 3.5 outlines the correspondence between inference scenarios (as well
as other features and benefits) and the proposed procedures to employ in the upper layer.
For instance, the data tempering is useful in multimodal and high-dimensional scenarios,
and particularly useful in the case of concentrated posteriors. The cost of running the
upper layer gets also reduced when using partial posteriors since the MCMC algorithms
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do not require to process all the data at each iteration. Moreover, the data tempering
generally increases the robustness of the LAIS algorithm. Last but not least, observe
that all the techniques can be employed jointly in the upper layer, for instance, parallel
HMC (or Gibbs) chains (with different parameters) considering each one a different partial
posterior. In this sense, LAIS can ensure good and robust performance. See Section 3.9
for further details.

Table 3.5: Table of correspondence between benefits and inference scenarios, versus the proposed
procedures (and methods) in the upper layer (✓ = useful, and⋆ = very useful).

Methods/ Multimodality/ Robustness concentrated/tight high
Procedures helping (e.g., to the choice posteriors dimensional
(upper layer) the exploration of proposal parameters) spaces

parallel chains ⋆ ⋆

data-tempering ✓ ✓ ⋆ ✓

HMC-driven ✓ ⋆

Gibbs-driven ⋆ ✓

3.6. Compression for parsimonious sampling and weighting

The complete weighting scheme (see Table 3.4) provides the best performance in terms
of variance, at the expense of an increase in the computational cost, especially in real ap-
plications since T and N can be very large (note that it requires NT proposal evaluations
per sample). One possibility in order to reduce this cost, without decreasing T or N, is
the use of partial MIS denominators [10]. Another approach consists in using some tech-
nique that summarizes the population of NT samples. A first attempt has been provided
in [8]. Another possible way is to apply a compression of Monte Carlo samples [18], as
we describe below. These schemes reduce the cost of both sampling and weighting in the
lower layer.

Compressed LAIS (CLAIS). Let consider a set of R means {µk}
R
k=1 generated by MCMC

in the upper layer, and let B be a constant value such that B < R. Note that, in the case
of N parallel chains of length T in the upper layer, we have R = NT . Given a partition
of Xtot, i.e., X1 ∪ X2 ∪ . . . ∪ XB = Xtot formed by convex, disjoint sub-regions Xm, we
denote the subset of the set of indices {1, . . . ,R},

Jm = {i = 1, . . . ,R : µi ∈ Xm} , m = 1, ..., B,

which are associated with the samples in the m-th sub-region Xm. The partition X1∪X2∪

. . . ∪ XB = Xtot can be obtained using some a-priori information or, as an example, by
means of a clustering method. The cardinality |Jm| denotes the number of samples in
Xm and we have

∑︁B
m=1 |Jm| = R. We can compress the information contained in samples,

constructing a stratified approximation based on B weighted particles {sm, am}
B
m−1, where
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sm is a (properly chosen) point in Xm and am =
|Jm |

R .

Possible choices of sm. The summary points sm can be randomly chosen, picking uni-
formly a mean in Xm, in the set {µi}i∈Jm or using a deterministic procedure, e.g.,

sm =
1
|Jm|

∑︂
j∈Jm

µ j. (3.8)

For the statistical properties of these choices see [18]. Other choices based on empiri-
cal quantiles are also possible. As an example, a suitable compression scheme can be
provided applying a clustering method to the set {µk}

R
k=1, where B represents the number

of clusters. After the compression, we can consider as proposal and denominator in the
lower layer the following mixture of densities p(x|s,Σ) where s, Σ represent a location
parameter and a covariance matrix,

qB(x) =
B∑︂

m=1

am p (x|sm,Σ) . (3.9)

Thus, the mixture qB is used for sampling and computing the weights in the lower layer.
A suitable choice of sm and Σ is the key point for the success of the compressed scheme.
For the summary points sm, we suggest the use of the deterministic procedure in Eq. (3.8).

Suitable choice of Σ. We suggest to obtain the DX × DX covariance matrix Σ as

Σ = Qµ −QC + σ
2
pI. (3.10)

where Qµ =
1
R

∑︁R
k=1 (µk −m) (µk −m)⊤ with m = 1

R

∑︁R
k=1 µk is the covariance matrix of

all R means µk, and QC =
∑︁B

m=1 am (sm −mC) (sm −mC)⊤ with mC =
∑︁B

m=1 amsm is the
covariance matrix of the summary samples. Clearly, if sm are chosen as in Eq. (3.8), then
m = mC. Finally, σ2

p is chosen by the user. With sm in Eq. (3.8), it is possible to show
that

Qµ −QC =

B∑︂
m=1

am

⎛⎜⎜⎜⎜⎜⎜⎝ 1
|Jm|

∑︂
j∈Jm

(︂
µ j − sm

)︂ (︂
µ j − sm

)︂⊤⎞⎟⎟⎟⎟⎟⎟⎠ . (3.11)

That is, the covariance of each component in qB(x) is the weighted average of the covari-
ances within clusters plus the term σ2

pI. We remark that a suitable choice of Σ is crucial
for the performance of the compression technique. The proposed covariance matrix Σ
in Eq. (3.10) is a robust choice which provides good performance, as shown in Section
3.9.3, and below we explain the reasons.
The combined choice of sm in Eq. (3.8) and Σ in (3.10) has the following property. Let
us assume the use of denominator with B components (1 ≤ B ≤ R) in the mixture qB(x).
Without compression, we have B = R, sk = µk, Qµ = QC, so we have the covariance
of each mixture component is Σ = σ2

pI, as expected. With the maximum compression,
B = 1, then QC is the null matrix and Σ = Qµ +σ

2
pI. Hence, with maximum compression,

the proposal qB takes into account the dispersion set by the user (by the term σ2
pI) plus
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the covariance matrix of the R location parameters µk (i.e., the term Qµ), obtained in the
upper layer. Finally, note that the cost of the employed compression technique must be
lower than the cost of evaluating the full denominator. We test the performance of CLAIS
with several choices of R, and compare it with standard LAIS in Section 3.9.3.

3.7. Recycling LAIS (RLAIS)

In this Section, we discuss the possibility of recycling the samples, and their correspond-
ing evaluations, from the upper layer for their use in the lower layer, hence reducing the
overall computational cost. For simplicity, let us assume the use of N parallel Metropolis-
Hastings (MH) algorithms in the upper layer. Moreover, in this first part of the section,
assume that pn = π̄ for all n. Given the initial state µn,0, a proposal pdf φn, and a length
value T , the n-th MH chain follows the following steps:

- For t = 1, . . . ,T :

1. Draw zn,t ∼ φn(x|µn,t−1).

2. Set µn,t = zn,t with probability

α = min
[︄
1,

π(zn,t|ytot)φn(µn,t−1|zn,t)
π(µn,t−1|ytot)φn(zn,t|µn,t−1)

]︄
, (3.12)

otherwise, set µn,t = µn,t−1 (with probability 1 − α).

- Outputs: The chain {µn,t}
T−1
t=0 . Additionally, we obtain and store {zn,t}

T
t=1,

{π(zn,t|ytot)}Tt=1 and {φn(zn,t|µn,t−1)}Tt=1.

Therefore, at each iteration, a candidate is drawn zn,t ∼ φn(x|µn,t−1) and then it is tested
(accepted or discarded) as possible new state, according to the acceptance MH probabil-
ity. If we store all candidates {zn,t}

T
t=1 and the corresponding evaluations of the posterior

{π(zn,t|ytot)}Tt=1 (for all n), required in the computation of α in Eq. (3.12), we can use
them in the lower layer as samples, i.e., we set xn,t−1 = zn,t. In this way, we reduce the
computation time since we do not need to draw additional samples.
Note that φn(x|µn,t−1) becomes the proposal in the lower layer, i.e., we set qn,t(x) =
φn(x|µn,t−1). The evaluations of the proposal φn(zn,t|µn,t−1) can be also stored. Depend-
ing on the choice of the weighting scheme, other evaluations of different proposals φ j,
with j ≠ n, can be required. This also produces a slight reduction of the cost of evalu-
ating the denominator of the weights in the lower layer. See the next section for further
details. The algorithm is outlined in Table 3.6, and Table 3.7 shows different weighting
procedures. Since pn = π̄ and the posterior evaluations are recycled, the total number of
posterior evaluations in RLAIS is only E = NT .

Consistency. It is important to note that we can find an equivalent proposal ˜︁qMH(x) of
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MH-type algorithms which can be expressed as a convolution integral, similarly as we
have done in LAIS. See the Appendix 3.11 for more details. In RLAIS, the different MIS
denominators can be considered as Monte Carlo approximations of this equivalent pro-
posal ˜︁qMH, expressed as an integral in Eq. (3.24). Therefore, in the case of the first 3 dif-
ferent MIS denominators (the complete, spatial and temporal mixtures) as N and T grow,
the chosen denominator provides a better approximation of the ˜︁qMH and the MIS weights
becomes closer and closer to standard importance weights of the form wn,t =

π(xn,t |ytot)˜︁qMH(xn,t)
.

RLAIS can be seen as a multiple-chain generalization of [31, 32].

Table 3.6: LAIS with recycling (RLAIS)

1. Sampling: Let consider Metropolis-Hastings (MH)-type schemes with random
walk proposal densities φn,t(x|µn,t) (φn,t can vary with t since we assume they
can be also adaptive schemes), generating N MCMC chains of length T .

Then, the states of the chains are µn,t, for n = 1, . . . ,N and t = 1, ...,T . At each
iteration of one MH scheme, we draw a candidate zn,t ∼ φn,t(x|µn,t−1) that will
be accepted or rejected in the MH step. We save all the NT candidates zn,t for
n = 1, . . . ,N and t = 1, ...,T .

2. Weighting: Assign to zn,t the weights

wn,t =
π(zn,t|ytot)
Ψ(zn,t)

, (3.13)

where different possible choices for Ψ(zn,t) are possible (see Table 3.7).

3. Output: Return all the pairs {zn,t,wn,t}, and/or the estimators given in Eqs (3.5)
and (3.4).

Table 3.7: Possible denominators Ψ(xn,t).

complete temporal spatial standard

1
NT

∑︁T−1
τ=0

∑︁N
n=1 φn,τ(xn,t|µn,τ) 1

T

∑︁T−1
τ=0 φn,τ(xn,t|µn,τ) 1

N

∑︁N
n=1 φn,t(xn,t|µn,t) φn,t(xn,t|µn,t)

PLAIS with recycling (PA-RLAIS). We can combine the idea of using the partial poste-
riors and the RLAIS approach. Indeed, also in PLAIS, it is possible to avoid the sampling
step if we recycle all candidates produced within the MH algorithms in the upper layer.
We denote the resulting scheme as PA-RLAIS. We can recycle the candidates {zn,t}

T
t=1 and

the proposal evaluations {φn(zn,t|µn,t−1)}Tt=1 (for all n) but, in this scenario, we have not
evaluations of the full posterior in the upper layer (then we cannot recycle the posterior
evaluations).
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3.8. Computation costs of the proposed schemes

Generally, the most costly step is the evaluation of the complete posterior π(x|ytot) (due
to a costly model or number of data). The evaluation of the partial posteriors is not
that costly since we choose the batch sizes such that Kn ≪ DY for all n = 1, . . . ,N.
Thus, the comparison among PLAIS, RLAIS and PAPIS, as well as with other methods,
must be done in terms of number of evaluations of the (unnormalized) posteriors, the
complete posterior π(x), and/or the partial posteriors πn(x)’s. A summary of the number
of evaluations of π(x) and all partial posteriors πn(x)’s is given below:

Method
Upper layer Lower layer Drawing samples

evals of π(x|ytot) evals of π(x|yn) evals of π(x|ytot) in the lower layer
LAIS NT 0 NT ✓

PLAIS 0 NT NT ✓

RLAIS NT 0 0 X
PA-RLAIS 0 NT NT X

— — cheaper — —

CLAIS can be also combined with the other schemes above for building cheaper denominators.

Therefore, the total number of full-posterior evaluations of the standard LAIS scheme is
E = NT + NT = 2NT . If we draw M > 1 samples from each proposal density qn,t in the
lower layer, the total number of full-posterior evaluations is E = NT+MNT = (M+1)NT .

If we denote as C the atomic cost of evaluating once the likelihood function with only
one data point, then the total cost associated to the total number of the target evaluations
(considering evaluations of full-posterior and/or evaluations of partial posteriors) of the
different techniques is given below:

Method Total cost associated to the posterior evaluations

LAIS 2NTCDY

PLAIS
TC

(︂∑︁N
n=1 Kn

)︂
+ NTCDY

= TCDY + NTCDY = (N + 1)TCDY

RLAIS NTCDY

PA-RLAIS TCDY + NTCDY = (N + 1)TCDY

where N is the number of chains (with length T ) in the upper layer, DY is the total number
of data, and C is the atomic cost previously described. We have used that

∑︁N
n=1 Kn = DY

where Kn are the number of data in the n-th partial posterior. Clearly, RLAIS and standard
LAIS are the algorithms with lowest and greatest costs, respectively, as shown below.
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Inequalities in terms of cost of total posterior evaluations:
Cost of RLAIS < Cost of PA-RLAIS = Cost of PLAIS < Cost of LAIS

⇓ ⇓ ⇓ ⇓

NTCDY < (N + 1)TCDY = (N + 1)TCDY < 2NTCDY

However, considering also the cost of sampling from the proposal pdfs, PA-RLAIS is
less costly than PLAIS since it does not require extra samples in the lower layer. This
is an additional advantage of RLAIS as well. We recall that the reason of using partial
posteriors is not only a reduction on the computational cost. Indeed, the use of partial
posteriors fosters the space exploration due to the data-tempering effect. Finally, we also
remark that the overall computational cost also depends on the denominator choice: this
is the reason of employing the proposed scheme in Section 3.6, denoted as CLAIS. The
number of proposal evaluations per sample in the lower layer with the different possible
denominators is given below:

Method complete temporal spatial standard
Stand. LAIS NT T N 1

RLAIS NT − 1 T − 1 N − 1 0

Recall that, for simplicity, throughout this work we have considered to draw M = 1
sample from each proposal, in the lower layer. However, all the formulas above just
suffer some mild changes for M > 1.

3.9. Numerical experiments

In this section, we test the performance of the algorithms described in this work. We have
considered different challenging scenarios. As an example, we tackle multimodal target
densities (in Sections 3.9.1 and 3.9.4), high-dimensional problems (in Section 3.9.4) and
extremely sharp/tight posteriors (in Section 3.9.5). In the last experiment (Section 3.9.6),
we also analyze real data in a regression problem on the daily deaths during the COVID-
19 pandemic in Italy. The correspondence between proposed algorithms and sections is
given below:

Method Section 3.9.1 Section 3.9.2 Section 3.9.3 Section 3.9.4 Section 3.9.5 Section 3.9.6
Stand. LAIS ✓ ✓

PLAIS ✓

CLAIS ✓

RLAIS ✓

PA-RLAIS ✓

HMC-LAIS ✓ ✓

Gibbs-LAIS ✓ ✓

Diff. Den. Φ(x) ✓

40



3.9.1. Comparison with benchmark AIS schemes

In this section, we compare LAIS with the most relevant and benchmark AIS schemes
proposed in the literature [4, 6, 9, 19]. The objective of this section is to highlight the ro-
bustness of the LAIS scheme with respect to the choice of the parameters, comparing with
the results of the other AIS techniques. With this aim, we consider a highly-multimodal
bivariate target pdf defined as a mixture of five Gaussians, i.e.,

π(x) =
1
5

5∑︂
i=1

N(x; νi,Λi), x ∈ R2, (3.14)

where N(x; νi,Λi) denotes a Gaussian density with mean vector νi and covariance ma-
trix Λi, ν1 = [−10,−10]⊤, ν2 = [0, 16]⊤, ν3 = [13, 8]⊤, ν4 = [−9, 7]⊤, ν5 = [14,−14]⊤,
Λ1 = [2, 0.6; 0.6, 1], Λ2 = [2, −0.4;−0.4, 2], Λ3 = [2, 0.8; 0.8, 2], Λ4 = [3, 0; 0, 0.5],
and finally Λ5 = [2, −0.1;−0.1, 2]. This is a very challenging scenario since we have 5
different modes, far away one from another. In this example, we can analytically compute
different moments of the target in (3.14), and therefore we can easily validate the perfor-
mance of the different techniques. In particular, we consider the computation of the mean
of the target, E[X] = [1.6, 1.4]⊤, and the normalizing constant, Z = 1, for X ∼ 1

Zπ(x). We
compute the mean squared error (MSE) in the estimation of E[X] and in the normalizing
constant Z (which usually represents a marginal likelihood, when the density of interest
is a Bayesian posterior).

We apply LAIS with N parallel MH chains in the upper layer (of length T ). We assume
Gaussian proposal densities for all of the methods compared, and deliberately choose a
bad initialization of the means in order to test the robustness and the adaptation capabil-
ities. Specifically, the initial location parameters of the proposals are selected uniformly
within the [−4, 4]× [−4, 4] square, i.e., µn,0 ∼ U([−4, 4]× [−4, 4]) for n = 1 , . . . ,N. Note
that none of the modes of the target are contained within this initialization square. We
test all the alternatives using the same isotropic covariance matrices for all the Gaussian
proposals, Cn = σ2I2, where in some simulations we vary σ. All the results have been
averaged over 103 independent runs, where the total number of target evaluations E is the
same in all the techniques (see Section 3.8 for LAIS). In order to make possible a fair
comparison with other schemes, in LAIS we draw M > 1 samples from each proposal
density qn,t in the lower layer, so that the total number of full-posterior evaluations in
LAIS is E = NT +MNT = (M + 1)NT (as shown in the previous section). We apply also
the following schemes: the standar Population Monte Carlo (PMC) technique [4], the
Adaptive Population Importance Sampling (APIS) method [19], the improved PMC
schemes GR-PMC and LR-PMC [9], and the Adaptive Multiple Importance Sam-
pling (AMIS) approach [6]. We remark that all the comparisons have been performed
with the same number of target evaluations E.
For instance, in Figure 3.1(a), we vary the standard deviation of the proposal densities σ,
and we set N = 10, M = 9, T = 100 for LAIS, N = 10, M = 10 T = 100 for APIS, GR-
PMC and LR-PMC, and M = 100 and T = 100 in AMIS (since in AMIS we have a unique
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proposal density). We repeat the experiment in Figure 3.1(b), but considering N = 100.
In Figure 3.1(c), we set σ = 5 and vary N. We can observe that stand. LAIS generally
outperforms the other techniques. Even when LAIS does not provide the smallest MSE,
it obtains close results. Namely, LAIS provides competitive results for any of the values
σ or N, proving its robustness. As N grows, LAIS becomes even more competitive.

2 4 6 8 10 12 14

100

101
LAIS
APIS
GR-PMC
LR-PMC
Standard PMC
AMIS

(a) N = 10

2 4 6 8 10 12 14 16

10-1

100

101 LAIS
APIS
GR-PMC
LR-PMC
Standard PMC
AMIS

(b) N = 100

0 100 200 300 400 500
N

10-2

10-1

100

101
LAIS
APIS
GR-PMC
LR-PMC
Standard PMC
AMIS

(c) σ = 5

Figure 3.1: MSE in log-scale obtained by different techniques, of the experiment in Sec-
tion 3.9.1. (a) With N = 10, and varying σ; (b) with N = 100 and varying σ; (c) with
σ = 5 and varying N.

3.9.2. Parameter fitting in a non-linear regression problem

In this section, we consider a non-linear regression problem. This is a simplified version
of astronomical models, e.g., see the second numerical example in [21]. We generate 50
observations, ytot = {yi}

50
i=1, from the following observation model

yi = exp(−αti) sin(βti) + vi
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where the values α and β were fixed at 0.1 and 2, respectively. The error terms vi were
independently generated from a Gaussian,N(0, 0.12). For this model, we take x = [α, β]⊤

and set a uniform density over the rectangle [0, 10] × [0, 2π] as prior density for x. Fig-
ure 3.2(a) shows the function exp(−αt) sin(βt) and some data generated according to the
model. The goal is to investigate the use of partial posteriors in the LAIS framework
when computing E[x|ytot], var[x|ytot] (marginal variances) and Z = p(ytot). By us-
ing a very thin grid over the space, we are able to calculate the true values, obtaining
E[x|ytot] = [0.1, 2]⊤, var[x|ytot] = [6.88 · 10−5, 8.38 · 10−5]⊤ and Z = 3.03 · 10−15. We
compute the MSE in estimating those quantities with the following methods: (a) LAIS,
(b) PLAIS, and (c) PA-RLAIS.

For all the methods, the upper layer consists of N independent random walk Metropolis-
Hastings (MH) algorithms with Gaussian proposals (the same for all the schemes). In the
upper layer, PLAIS and PA-RLAIS differ from LAIS in that, instead of the full posterior,
each of the N chains targets a different partial posterior (with the same number of data Kn

for all n). In the lower layer, one sample was drawn from each of the Gaussian proposal
pdf. The covariance matrix of all the Gaussian proposals was set to Cn =2I2 where I2

is a 2 × 2 unit matrix. In the lower layer, PA-RLAIS differs from LAIS and PLAIS, in
that we do not need to draw samples, but all samples are recycled from the chains in the
upper layer. In a first experiment, we test the values N ∈ {1, 2, 5, 10, 25}, and set T = 20,
Kn = 10 for all n. The results (averaged over 103 runs) in terms of MSE are shown in
Figure 3.2(b). We can already see the benefits of PLAIS and PA-RLAIS.
In a second experiment, we fix the number of total evaluations of the full-posterior to
E = 2000. In this case, for any value of N ∈ {1, 2, 5, 10, 25, 50} we change T , in order
to keep constant the total number evaluations of the full-posterior (see Section 3.8). In
each simulation the partial posteriors were created by choosing randomly Kn data, with
Kn ∈ {5, 10}. Figure 3.2(a) depicts some data generated according to the model. The
orange dots are the observations chosen to construct the partial posterior in one simula-
tion with Kn = 5. Finally, in all the methods, the initial mean vectors were drawn from
the prior, i.e., µn,0 ∼ U ([0, 10] × [0, 2π]), for all n. The results are averaged over 500
independent simulations.

In Figure 3.3, we show the obtained results of this a second experiment. In both figures
(a)-(b), we see the behavior of the MSE as N grows (and also T decreases, since we keep
E = 2000 constant). The solid line corresponds to the standard LAIS implementation
where we use all the data available for the computation of the likelihood in the upper layer.
The dashed lines show the behavior of the errors when partial posteriors are considered
in the upper layer. The left side shows the case Kn = 5 for all n, while, on the right side,
we show Kn = 10 for all n. In both graphics, it can be seen that PLAIS and PA-RLAIS
outperform the results of standard LAIS, for the values of N considered. Hence, in this
simple example, using partial posteriors improves the performance of the algorithms. For
all methods, the error tends to grow after certain optimal N (recall that T is also varying
in this figure). However, the methods that use partial posteriors show better performance,

43



0 2 4 6 8 10
t

-1

-0.5

0

0.5

1

(a)

0 5 10 15 20 25
N

10-3

10-2

10-1

Stand. LAIS
PLAIS
PA-RALIS

(b)

Figure 3.2: Results corresponding to the experiment in Section 3.9.2. (a) The solid line
is the function that defines the model, and the blue dots are the observations generated
from it. The yellow dots represent an example of random subset of data used in a partial-
posterior. (b) MSE versus N, with T = 20 and Kn = 10 for all n = 1, ...,N.

as compared to standard LAIS, when N increases, that is, when there is more number of
shorter chains. This can be due to the fact that the partial posteriors are wider, and hence
easier to explore in a small number of iterations. Also in both cases, the errors of PLAIS
and PA-RLAIS are rather similar, although, as expected, PLAIS outperforms PA-RLAIS.
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Figure 3.3: Results corresponding to the experiment in Section 3.9.2. MSE obtained by
the different algorithms for distinct numbers of data in the partial posteriors. Note that
we keep fixed the total number of posterior evaluations to E = 2000. This means that as
N grows, then T decreases (e.g., in standard LAIS we have E = 2NT ); (a) with Kn = 5;
(b) with Kn = 10.
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3.9.3. HMC-LAIS vs HMC algorithms

For the next experiment, we consider π̄(x) which consists of an equally-weighted mixture
of two Gaussian pdfs. The Gaussians pdfs are located at [0, 0]⊤ and [−4, 4]⊤, respectively.
The covariance matrix of both is Σ = [4, 3; 3, 4]. Here, it is straightforward to calculate
the true values for the quantities of interest: the expected value is [−2, 2]⊤, the variances
are [8, 8] and the covariance is −1. We test the performances of HMC-LAIS algorithms
in estimating these quantities, i.e., expected value of π̄(x) (2 quantities), and covariance
matrix of π̄(x) (3 quantities). The goal is to compare their performances against only us-
ing HMC algorithms. The error measure we employ is the averaged Mean Squared Error
(MSE).

The computational budget is fixed to E = 2400 target evaluations. We consider HMC al-
gorithms with kinetic energy using a Gaussian distribution with covariance matrix equal to
2I, and test the following values for step length and path length {(0.25,1),(0.5,1),(1,3),(1,5)}.
In the lower layer, we also consider Gaussian proposals with covariance matrix equal to
Cn =2I. Here, we compare the performance of three deterministic-mixture weighting
schemes: spatial, temporal and complete.
For setting the number of chains, N, and the number of iterations, T , we follow the same
rules as for the previous experiment. We kept constant the product NT = E

2 = 1200 and
vary N within {2,3,4,6,8,10,12,16,20,25,30,40,50,60,100}. For a fair comparison, when
we only consider HMC algorithms, the N chains were run for 2T iterations each (i.e.
twice number of iterations than the HMC algorithms in the upper layer of the HMC-LAIS
algorithms), so that the final number of target evaluations is 2NT = E = 2400. The initial
mean vectors were chosen uniformly within the square [−10, 10]2. The results were aver-
aged over 500 independent simulations.
In Figure 3.4, we show the MSE of the HMC and HMC-LAIS algorithms, with three
weighting schemes, as a function of N. Recall that, for every N, the HMC algorithms
were run for twice number of iterations, i.e., they were run for 2T iterations, in order to
have the same number of target evaluations. Each figure corresponds to a different choice
of step and path lengths in the HMC algorithms.
First main observation. We can observe that the LAIS schemes (except some few spe-
cific cases) always outperform the HMC algorithms.
Second main observation. It is important to remark the excellent and robust performance
provided by HMC-LAIS with the complete denominator, regardless the parameters of
HMC chains (in the upper layer) used and the number of chains N. In fact, HMC-LAIS
algorithm with complete denominator clearly outperforms the rest of techniques, provid-
ing the smallest error and remaining constant for all N and all HMC parameters.
Other considerations. The error of HMC is smallest when N is close to the minimum
(i.e. when the chains are longer), and gets worse as N increases since, consequently, the
chains become shorter and cannot explore properly the two modes. Interestingly, even in
the best scenario, the results show that the error of HMC is always greater than the one
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provided by HMC-LAIS algorithms with temporal and complete denominators. Namely,
even when HMC works best, it is better to run it for half number of iterations and then
use it within the LAIS framework with a temporal or complete denominator.
Spatial vs Temporal. The performance of the temporal and spatial denominators behave
in an opposite manner. As expected, the error corresponding to the spatial denominator
is worse when N is small. In fact, the greatest error is achieved always when N is min-
imum. As N increases, the performance greatly improves. It rapidly beats HMC and its
performance matches that of the complete weighting scheme for large N. Conversely,
in the temporal denominator, the best results are always achieved when N is minimum,
since in this case, the chain length T is maximum. As N increases, the performance of
the temporal denominator worsens, but in a slower fashion than the corresponding error
of the HMC algorithms.
In this experiment, the spatial denominator seems to outperform the temporal denomina-
tor for more values of N. This means that the mixture of spatial proposals is usually better
than the mixture of temporal proposals. For some value N∗, both weighting schemes pro-
vide the same results. Only for values N ≤ N∗, the temporal denominator is better than
the spatial denominator. Namely, if T is not sufficiently big (T ≤ E

2N∗
), the temporal de-

nominator does not pay off, as compared to the spatial denominator. In fact, for N > 50,
the spatial denominator can be considered as a compressed version of the complete de-
nominator, i.e., it provides almost the same performance but with a smaller number of
components (recall that the complete denominator has E

2 = 1200 mixture components).
Compressed schemes. We have also tested the performance of compressed LAIS (CLAIS),
where a compression technique is applied to the NT proposals from the upper layer (see
Sect. 3.6). Here, we have run a clustering algorithm with B ∈ {3, 21, 50, 200} clusters to
obtain the compressed denominators. In Figure 3.5, we show the error of these schemes
against the three previous weighting schemes and HMC. With the proposed compression
scheme, we see that the performance is very close to that of the complete denominator
and it is insensitive to the choice of number of clusters and N. For moderately low N,
CLAIS outperforms LAIS with spatial denominator. However, as N increases, the spatial
denominator matches the performance of CLAIS, i.e., the spatial denominator is also a
very efficient way of compressing the NT proposals as discussed above. Finally, in Fig-
ure 3.6 we display the computation time of CLAIS versus the compression level η, which
is η = 0 when there is no compression at all (B = NT , i.e. the maximum number of
clusters), and η = 1 − 1

NT when we have B = 1 clusters.
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(a) HMC parameters (0.25,1) (b) HMC parameters (0.5,1)

(c) HMC parameters (1,3) (d) HMC parameters (1,5)

Figure 3.4: Results corresponding to the experiment in Section 3.9.3. MSE in estimation
obtained by HMC-LAIS and HMC versus N, with the same number of evaluations of the
posterior E = 2400 (hence, the HMC chains have twice the length of the HMC chains
used in the upper layer of HMC-LAIS). Each figure corresponds to a different choice of
step and path lengths in the HMC algorithms.
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(a) N = 4 (b) N = 10

(c) N = 50 (d) N = 100

Figure 3.5: Results corresponding to the experiment in Section 3.9.3. MSE of CLAIS with
different values of B ∈ {3, 21, 50, 200}, compared with LAIS with different denominators
and parallel HMC chains (with twice lengths with respect to the LAIS schemes, in order
to have the same number of posterior evaluations, E = 2400, for all methods).
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Figure 3.6: Results corresponding to the experiment in Section 3.9.3. Normalized com-
putational time versus compression level η, where η = 1 − B

NT , and B is the number of
clusters.
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3.9.4. High-dimensional experiment

In order to be able to compare different schemes in a high-dimensional sampling problem,
we need to know the groundtruth. For this reason, we assume a mixture of Gaussians as
target pdf, i.e.,

π̄(x) =
1
3

3∑︂
k=1

N(x; νk, χ
2
kIDX ), x ∈ RDX , (3.15)

where νk = [νk,1, . . . , νk,DX ]⊤, for k ∈ {1, 2, 3}, with IDX being the DX × DX identity matrix
and DX is the dimension of the space. In this section, we vary the dimension of the state
space in Eq. (3.15) considering 2 ≤ DX ≤ 50. Moreover, we set ν1, j = −5, ν2, j = 6,
ν3, j = 3 for all j = 1, ...,DX, and χk = 8 for all k ∈ {1, 2, 3}. Note that the expected value
of X ∼ π̄(x) is E[X j] = 4

3 for j = 1, . . . ,DX. In order to study the performance of different
Monte Carlo methods, we consider the problem of approximating this expected value.
We apply HMC-LAIS considering N = 100 parallel chains of HMC in the upper layer,
each chain with different parameters. The HMC chains require the selection of following
parameters: a positive integer number of “leap-frog steps” Q, a positive number for the
step size ζ and the covariance matrix of the Gaussian kinetic energy λ2IDX (where we set
λ = 10). We select the two first parameters both randomly, for each chain and at each run:
we select Q uniformly between 1 and 7 (it must be an integer), and ζ ∈ U([0.01, 0.7]).
The proposal pdfs used in the lower layer, qn,t(x|µn,t,Cn), are Gaussian pdfs with covari-
ance matrices Cn = σ2IDX again with σ = 10. We also draw M > 1 (more than one
samples) from each proposal in the upper layer. More precisely, we set M = 19 and the
length of the chains T = 100 because, since N = 100, we have a total number of target
evaluations of E = (M + 1)NT = 2 · 105.
We compare HMC-LAIS with different benchmark schemes: (a) the standard PMC scheme
[4], (b) N parallel independent MH chains (Par-MH), (c) and a Sequential Monte Carlo
(SMC) scheme [24]. For a fair comparison, all the mentioned algorithms have been im-
plemented in such a way that the number of total evaluations of the target is E = 2 · 105

as in HMC-LAIS. Moreover, all the proposal pdfs involved in the experiments are Gaus-
sians, with the same covariance matrices for all the techniques. The initial mean vectors
in all techniques are selected randomly and independently as µn,0 ∼ U([−6, 6]DX ) for
n = 1, . . . ,N.
The results are averaged over 103 independent runs. Figure 3.7 shows (in log-scale) the
MSE in the estimation of E[X] as a function of the dimension DX of the support space.
We remark that we have kept fixed the number of total evaluations of the target E = 2 ·105

for all the techniques. As expected, the performance of all the methods deteriorates as the
dimension of the problem, DX increases, since we maintain fixed the computational cost
E = 2 · 105. HMC-LAIS always provides the best results, i.e., obtaining the lower MSE
values.
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Figure 3.7: Results corresponding to the experiment in Section 3.9.4. MSE (in log-scale)
versus the dimension of the space DX, obtained by the different samplers, with the same
total number of target evaluations E = 2 · 105. Namely, we keep fixed the computational
cost, that in HMC-LAIS means keeping fixed the parameters N = 100, M = 19 and
T = 100 (for all DX).

3.9.5. Parameter estimation in a chaotic system

In this section, we show that the use of Gibbs-LAIS can be useful in complex inference
scenarios where sophisticated MCMC techniques seem to fail (see, for instance, [27] or
[28]). We consider the problem of estimating parameters in a chaotic system, which is
considered a very challenging framework in the literature (see, e.g., [14] or [27]). This
is due to the very tight and sharp posteriors induced by this model. As an example, see
the conditional posterior densities in Figure 3.8. The density in Figure 3.8(c) is extremely
tight (resembling a delta function), so even sophisticated adaptive Monte Carlo techniques
fail. This type of systems are often utilized for modeling the evolution of population sizes,
for instance in ecology [28]. Specifically let us consider a logistic map [3] perturbed by
multiplicative noise,

yk+1 = R
[︃

yk

(︃
1 −

yk

Ω

)︃]︃
exp(ϵk), ϵk ∼ N(0, λ2), k = 1, ...,K, (3.16)

starting with y1 ∼ U([0, 1]). The parameters R > 0 and Ω > 0 are unknown and object
of the inference. Hence, using the notation in this work, we have x = [R,Ω]. Let us
assume that a sequence y = y1:K = [y1, . . . , yK] is observed and, for the sake of simplicity,
let us consider that the standard deviation λ of the noise is known. The corresponding
likelihood function is given by

L(y|x) = p(y1:K |R,Ω) =
K−1∏︂
k=1

p(yk+1|yk,R,Ω),
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where, denoting b(yk,R,Ω) = R
[︂

yk

(︂
1 − yk

Ω

)︂]︂
, we have

p(yk+1|yk,R,Ω) ∝
⃓⃓⃓⃓⃓
g(yk,R,Ω)

yk+1

⃓⃓⃓⃓⃓
exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝− log
(︂

yk+1
g(yk ,R,Ω)

)︂2

2λ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , if b(yk,R,Ω) > 0,

and p(yk+1|yk,R,Ω) = 0, if b(yk,R,Ω) ≤ 0. We set uniform priors, R ∼ U([0, 104])
and Ω ∼ U([0, 104]), our goal is computing the mean of the bivariate posterior pdf,
π̄(x|y) = p(R,Ω|y1:K) ∝ p(y1:K |R,Ω), which represents the minimum mean square error
estimator of the vector parameter x = [R,Ω] (computing the MSE obtained by the differ-
ent techniques).
We have generated artificial data y = y1:K , setting R = 3.7, Ω = 0.4 and K = 20
(i.e., a trajectory of 20 values). We employ different values of standard deviation λ =

{0.001, 0.005, 0.01, 0.05, 0.08, 0.1} of the noise in the system (3.16) of the same order of
magnitude considered in [27]. We apply a Gibbs-LAIS scheme where, for drawing from
the full-conditional pdfs, we apply (within the Gibbs sampler) the so-called FUSS tech-
nique proposed in [22]. For simplicity, we consider a unique Gibbs chain (N = 1) in the
upper layer with length T = 25 iterations, i.e., µ1, ...,µT . In the lower layer of Gibbs-LAIS
scheme, we consider two-dimensional Gaussian proposals q(x|µt) = N(x|µt, σ

2
pI2) with

σp = 1 and I2 is the 2×2 identity matrix. We draw one sample from each proposal q(x|µt),
hence we have S = 25 samples in the lower layer. Therefore, the total number of posterior
evaluations of the Gibbs-LAIS scheme is E = 25+25 = 50. Since we have only one chain
(N = 1), we use a temporal weighting scheme. We also apply the corresponding Gibbs-
RLAIS with the same parameters (then E = 25), and also we perform a Gibbs-RLAIS
but increasing the length of the Gibbs sampler to T = 50 (so that again E = 50). Finally,
we compare the results with an MH-within-Gibbs approach with a Gaussian random walk
proposal (σp = 1 again) for drawing from the full-conditionals, i.e., with T = 50 steps
for the Gibbs samplers, in order to have E = 50 for a fair comparison. For the employed
MCMC techniques, the initial states of the chains are chosen randomly fromU([1, 5]) for
R andU([0.38, 1.5]) for Ω.
The MSE in estimation obtained by the different techniques (averaged over 1000 inde-
pendent runs) is given in Table 3.8. The Gibbs-LAIS schemes outperform clearly the
MH-within-Gibbs approach. Moreover, Gibbs-RLAIS with E = 25 obtains very close
results to Gibbs-LAIS, and Gibbs-RLAIS with E = 50 even outperforms Gibbs-LAIS
when λ grows. Another remarkable advantage of employing the Gibbs-LAIS schemes is
that one could easily approximating the marginal likelihood Z = p(y) = p(y1:K) in this
problem, by computing the estimator ˆ︁Z in (3.5). In this way, we could perform a model
selection study. On the other hand, approximating Z by MH-within-Gibbs method is not
a straightforward task [17].
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Table 3.8: MSE in estimation of R and Ω, obtained by the different compared techniques.

λ

E Parameter 0.001 0.005 0.01 0.05 0.08 0.10

Gibbs-LAIS 50
R 0.0065 0.0067 0.0085 0.0125 0.0142 0.0681
Ω 4.97 10−5 6.16 10−5 4.18 10−5 5.26 10−5 6.33 10−5 1.70 10−4

Gibbs-RLAIS 25
R 0.0082 0.0090 0.0089 0.0138 0.0160 0.0752
Ω 5.21 10−5 6.22 10−5 6.13 10−5 4.22 10−5 5.89 10−5 1.82 10−4

Gibbs-RLAIS 50
R 0.0070 0.0069 0.0078 0.0126 0.0130 0.0547
Ω 5.01 10−5 6.20 10−5 5.75 10−5 5.19 10−5 6.08 10−5 1.56 10−4

MH-within-Gibbs 50
R 0.6830 0.7264 0.7067 1.1631 1.3298 1.3293
Ω 0.0373 0.0402 0.0423 0.0399 0.0471 0.0440

(a) Fixing Ω = 4 (log-domain). (b) Fixing R = 0.7 (log-domain). (c) Natural domain.

Figure 3.8: Results corresponding to the experiment in Section 3.9.5. (a)-(b) Examples of
conditional densities in log-domain with λ = 0.1, and considering K = 20 observations.
(a) Fixing Ω = 4. (b) Fixing R = 0.7. (c) The conditional pdf corresponding to the plot
(b). Even advanced and adaptive MCMC techniques often fail in drawing samples from
this kind of sharp/tight densities.

3.9.6. Experiment with COVID-19 data

This section is devoted to a model selection application. We consider the number of daily
deaths caused by SAR-CoV-2 in Italy from 18 February 2020 to 6 July 2020 as the dataset.
We denote the values of daily deaths as y = [y1, . . . , yDY ]⊤. Let ti denote the i-th day, we
model each observation as

yi = f (ti) + ei, i = 1, . . . ,DY = 140,

where f is the function that we aim to approximate and ei’s are independent Gaussian
realizations with zero means and variance σ2

e . We consider the approximation of f at t as
a weighted sum of M localized basis functions,

f (t) =
M∑︂

m=1

ρmψ(t|µm, h, ν),

where ψ(t|µm, h) is m-th basis located at µm with bandwidth h. Let also be ν an index de-
noting the type of basis. We consider M ∈ {1, ....,DY}, then 1 ≤ M ≤ DY . When M = DY ,
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the model becomes a Relevance Vector Machine (RVM), and the interpolation of all data
points (maximum overfitting, with zero fitting error) is possible [2, 29]. We study 2 pos-
sible kinds of basis (i.e., ν = 1, 2): Gaussian (ν = 1), and Laplacian (ν = 2). After fixing
ν and M, we select the locations {µm}

M
m=1 as a uniform grid in the interval [1,DY] (recall

that DY = 140). Hence, by knowing ν and M, the locations {µm}
M
m=1 are given.

We define the vector of coefficients ρ = [ρ1, . . . , ρM]⊤. Let also Ψ be a DY × M ma-
trix with elements [Ψ]i,m = ψ(ti|µm, h) for i = 1, . . . ,DY and m = 1, . . . ,M. Then, the
observation equation in vector form is

y = Ψρ + e,

where e ∼ N(0, σ2
eIDY ) is a DY × 1 vector of noise, where IDY is the DY × DY identity

matrix. Therefore, the likelihood function will be

ℓ(y|ρ, h, σe, ν,M) = N(y|Ψρ, σ2
eIDY ).

We assume a Gaussian prior density over the vector of coefficients ρ, i.e., g(ρ|λ) =
N(ρ|0,Σρ), where Σρ = λIM and λ > 0. Therefore, the complete set of parameters to
infer is {ρ, ν,M, h, λ, σe}. The conditional posterior of ρ given the rest of parameters is
also Gaussian,

π̄(ρ|y, λ, h, σe, ν,M) =
ℓ(y|ρ, h, σe, ν,M)g(ρ|λ)

p(y|λ, h, σe, ν,M)
= N(ρ|µρ|y,Σρ|y),

and a likelihood marginalized w.r.t. ρ is available in closed-form,

p(y|λ, h, σe, ν,M) = N(y|0,ΨΣρΨ⊤ + σ2
eIDY ). (3.17)

For further details see [2, 29]. Now, we assume gλ(λ), gh(h), gσ(σe) are folded-Gaussian
priors over h, λ, σe, defined on R+ = (0,∞) with location and scale parameters {0, 100},
{0, 400} and {1.5, 9}, respectively. Then, we study the following posterior marginalized
w.r.t. ρ and conditioned to µ,M,

π̄(λ, h, σe|y, ν,M) =
1

p(y|ν,M)
p(y|λ, h, σe, ν,M)gλ(λ)gh(h)gσ(σe),

Finally, we want to compute the marginal likelihood, i.e.,

p(y|ν,M) =
∫︂
R3
+

p(y|λ, h, σe, ν,M)gλ(λ)gh(h)gσ(σe)dλdhdσe. (3.18)

Furthermore, assuming a uniform probability mass p(M = i) = 1
DY

as prior over M, we
have p(M|y, ν) = p(y|ν,M)p(M)

p(y|ν) ∝ 1
DY

p(y|ν,M). We can marginalize out M obtaining

p(y|ν) =
1

DY

DY∑︂
M=1

p(y|ν,M), for ν = 1, 2. (3.19)
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Considering also a uniform prior over ν, we can obtain the marginal posterior p(ν|y) ∝
1
2 p(y|ν).
Goal. Our purpose is: (a) to make inference regarding the parameters of the model
{λ, h, σe}, (b) approximate Z = p(y|ν,M), (c) study the posterior p(M|y, ν). We also
study the marginal posterior p(ν|y) for ν = 1, 2.
Methods. For approximating p(y|ν,M), for M = 1, . . . ,DY , and p(ν|y), we first apply a
Naive Monte Carlo (NMC) method with 104 samples [17]. We apply also a Gibbs-LAIS
scheme with a MH-within-Gibbs sampler in the upper layer. More specifically, we em-
ploy an interpolative piecewise constant function as proposal in the MH scheme to draw
from the full-conditionals (considering 2 internal steps) [22]. Hence, in the upper layer,
we obtain a unique Markov chain (N = 1) of µt = [λt, ht, σe,t] for t = 1, . . . ,T . We set
T = 5000, hence also 5000 samples drawn in the lower layer and used in estimators. The
total number of evaluations of the posterior is 2T = 104 for both, NMC and Gibbs-LAIS
schemes.
Results. With both methods, We obtain that the MAP estimator of M is M∗ = 8. In
Figure 3.9, we show the fitting obtained with M = 8 bases and the parameter estimations
provided by the Gibbs-LAIS scheme. Thus, a first conclusion is that the results obtained
with models such as RVMs and Gaussian Processes (GPs) (both having M = 140 [2, 29])
can be approximated in a very good way with a much more scalable model, as our model
here with only M = 8 [2, 29]. Regarding the marginal posterior p(ν|y), we can observe the
results in Table 3.9. With the results provided by both schemes, we should prefer slightly
the Laplacian basis. These considerations are reasonable after having a look at Figure 3.9.

Table 3.9: The approximate marginal posterior p(ν|y) with different techniques.

Method p(ν = 1|y) p(ν = 2|y)
NMC 0.4831 0.5169

Gibbs-LAIS 0.4930 0.5070
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Figure 3.9: Results corresponding to the experiment in Section 3.9.6. Best fit with 8
bases with different types of basis, ν = 1, 2. The circles represent the analyzed data and
the squares show the positions of the bases.
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3.10. Conclusions

We show the LAIS scheme is a flexible framework for designing efficient and robust AIS
algorithms. Furthermore, we have introduced several enhancements in the LAIS frame-
work in order to improve the performance and reduce the overall computational cost.
Specifically, we have proposed that the MCMC algorithms in the upper layer address dif-
ferent partial posteriors (i.e., posteriors of subsets of data) to improve the mixing of the
chains due to the data-tempering effect, and at the same time, reducing the costs of the
upper layer. We have also studied the use of sophisticated MCMC algorithms, such as
HMC and advanced Gibbs techniques, in the upper layer. These improvements allow the
inference in very complex inference problems where other sophisticated techniques fail
[27], as we have shown in Section 3.9.5. The proposed schemes are particularly useful
to make inference with extremely concentrated posteriors, as shown in Figure 3.8(c), and
where the computation of the marginal likelihood is also required. Moreover, the pro-
posed methods provide also a clear improvement in high-dimensional inference spaces,
as shown in Figure 3.7, obtaining at least a reduction of 25% in the estimation error.
Furthermore, we have designed a compression scheme for reduce the cost of the lower
layer. Specifically, with the compression scheme, we can save more of the 70% of evalu-
ations in the denominator of the IS weights (see Section 3.9.3). Numerous numerical ex-
periments show that the proposed schemes outperform standard applications of the LAIS
scheme and other benchmark algorithms. Interesting related theoretical considerations
have been provided in the Appendices.
As future research lines, we consider that the automatic choice and the possible adaptation
of the covariance matrices of the proposal densities in the lower layer are still open prob-
lems. Furthermore, the possible use of the MCMC samples also in the final estimators
deserves additional studies.

3.11. Appendix

3.11.1. On the choice of the upper layer densities

Theoretical considerations: optimal invariant distribution in upper layer

Let us consider a hierarchical procedure which mimics the LAIS sample generation ap-
proach. For this purpose, we consider a single proposal pdf q in the lower layer defined
by the mean µ ∈ RDX and scale matrix C ∈ RDX×DX , so that the proposal can be denoted
as q(x|µ,C), and it fulfills q(x|µ,C) = q(x − µ|0,C). This property is satisfied by relevant
distributions such as Gaussian, Student’s t and Laplace pdfs, for instance. The assumption
is that the location parameter µ is drawn exactly from the density p(µ). This is clearly
a simplification since, with MCMC chains, we obtain correlated samples. Hence, the
simplified LAIS generation procedure is given below:
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1. Draw a possible location parameter µ′ ∼ p(µ).

2. Draw x ∼ q (x|µ′,C).

Note that p(µ) plays the role of a prior pdf over the location parameter of the proposal
density q (x|µ,C). The sample x is distributed according to the following equivalent den-
sity,

˜︁q(x|C) =
∫︂
X

q(x|µ,C)p(µ)dµ =
∫︂
X

q(x − µ|0,C)p(µ)dµ, (3.20)

i.e., x ∼ ˜︁q(x|C). From Eq. (3.20) we can deduce the following considerations. The
last expression in (3.20) is a convolution integral. Hence, considering the sum of two
independent random variables

X = Z +M, (3.21)

where Z ∼ q(x|0,C) (with µ = 0) and M ∼ p(µ), then X is distributed as ˜︁q(x|C) [30].
Now, let us consider the problem of finding the optimal density p∗(µ|C) over the location
parameter µ. In the LAIS scheme, the samples obtained by this procedure are then used
in a self-normalized importance estimator. The variance of the IS weights is minimized
when the proposal is exactly π̄(x|ytot) [1, 30]. Therefore, the desirable scenario is to have˜︁q(x|C) = π̄(x|ytot). The optimal pdf depends on the chosen scale parameter C and since
q(x|µ,C) = q(x − µ|0,C), as µ is a location parameter, we can write

π̄(x|ytot) =
∫︂
X

q(x − µ|0,C)p∗(µ|C)dµ. (3.22)

Equation (3.22) above can be rewritten in terms of the characteristic functions: Q(ν|C) =∫︁
q(x|0,C)eiν⊤xdx, P∗(ν|C) =

∫︁
p∗(x|C)eiν⊤xdx, and Π̄(ν) =

∫︁
π̄(x|ytot)eiν⊤xdx, where ν ∈

RDX . The characteristic function of X is the product of characteristic functions of Z and
M. Hence, in some cases, the optimal invariant pdf in the upper layer has the following
characteristic function,

P∗(ν|C) =
Π̄(ν)

Q(ν|C)
. (3.23)

In a general case, it is not possible to determine analytically the expression of the optimal
pdf p∗(µ|C), and thus, other practical choices must be considered, as discussed below.

Practical choices of the invariant distribution in the upper layer

Here, we discuss some practical selection of p(µ). First of all, from Eq. (3.21), we can
obtain the following relevant considerations for this purpose:

1. E[X] = E[Z]+E[M] = 0+E[M], i.e., the expected value of the equivalent proposal˜︁q is equal to the expected value of the density p(µ) in the upper layer.
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2. Var[X] = Var[Z] + Var[M] ≥ Var[M], where Var[·] returns the elements in the
diagonal of the covariance matrix and, the inequality ≥ is applied to each element in
the diagonal. Namely, the variances of each component of the equivalent proposal˜︁q are greater or equal to the variances of each component of the density p(µ) in the
upper layer.

Thus, the equivalent density ˜︁q(x|C) has the same expected value and a bigger variance
with respect to the density p(µ).

Consideration about the optimal pdf p∗(µ). Given Eq. (3.22) and the observations
above, we can deduce that the optimal pdf p∗(µ) will have the same mean as the posterior,
and it will have lighter tails than the posterior π̄ (i.e., p∗ is more “concentrated” than π̄).

A possible choice of p(µ) in the upper layer. In practice, we cannot employ the optimal
density p∗(µ). However, the choice p(µ) = π̄(µ|ytot) provides an equivalent proposal with
the same mean as the posterior, but with heavier tails. This is a relevant property: indeed,
it avoids infinite variance estimators (see example 1 in [17]) and, as a consequence, this is
the reason why this choice provides good performance in practice [20]. It can be shown
that, in this case, the equivalent proposal is the kernel density estimator of the posterior
(for a fixed optimal choice of C). However, with a large amounts of data, evaluating the
posterior can be very costly, so that the upper layer can require too much computational
time. Furthermore, it is common that π(x|ytot) is highly concentrated in some regions, so
the MCMC algorithms in the upper layer can suffer from bad mixing. For these reasons,
we provide the enhancements described in this work.

Standard tempering and anti-tempering

One idea for solving the second issue above, i.e., the bad mixing of the MCMC chains
when π(x|ytot) is highly concentrated, is the so-called tempering. Roughly speaking, tem-
pering is a technique used to artificially change the scale of the target density. It is com-
monly used in order to improve the exploration of the posterior support in optimization,
MCMC and IS [7, 26]. For instance, taking p(µ) ∝ π(µ|ytot)β with 0 < β < 1 as the target
density can be useful if π̄ concentrates in a small region that is not easy to discover. The
β is usually referred to as the (inverse) temperature parameter. More generally, a temper-
ature schedule is a sequence of tempered posteriors ending with π̄. A common choice
is the geometric path between prior and posterior π̄βn(x|ytot) ∝ π(x|ytot)βng(x)1−βn =

L(ytot|x)βng(x), for a sequence 0 = β0 < β1 < · · · < βN = 1, such π̄β0(x|ytot) = g(x)
(i.e., the prior pdf over x) and π̄βN (x|ytot) = π̄(x|ytot). Note that the tempered posterior
has a powered, less informative (i.e., wider) likelihood.
Therefore, in order to improve the exploration of the posterior support, one possibility
consists in taking pn(µ) = π̄βn(x|ytot) in the upper layer.
Anti-tempering. An important point is that, in LAIS, one could set β ≤ 1 in order to
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foster the mixing of the chains, but also we can choose some β > 1 since, theoretically,
the optimal pdf p∗(µ) is more “concentrated” than the posterior π̄ (as described above).
In any case, with a standard tempering strategy (using an auxiliary parameter β), we only
solve one of the two issues pointed out in the rest of the work: improving the exploration
of the posterior support. The cost of evaluating a tempered posterior π̄βn(x) is the same as
the cost of evaluating the non-tempered posterior π̄. An alternative to the standard tem-
pering procedure is the so-called data tempering, which reduces also the evaluation cost
by the use of the partial posteriors.

Hierarchical interpretation of the random walk Metropolis-Hastings (MH) algo-
rithm

Consider a target density π(x) ∝ π̄(x) and a random-walk proposal pdf q (x|xt−1,C) =
q (x − xt−1|0,C), where xt−1 the current state of the chain and C is a covariance matrix.
One transition of the MH algorithm is summarized by 1. Draw x′ from a proposal pdf
q (x|xt−1,C). 2. Set xt = x′ with probability

α = min
[︄
1,

π (x′) q (xt−1|x′,C)
π (xt−1) q (x′|xt−1,C)

]︄
otherwise set xt = xt−1 (with probability 1−α ). There are two well-known general classes
of proposal pdf: independent proposal q (independent from the current state), and random
walk proposal, q (x|xt−1,C), as previously considered. The use of a random walk proposal
q (x − xt−1|0,C) is often preferred due to its explorative behavior, since it relocates the
proposal at the current state of the chain at each iteration. See Figure 3.10(a)-(b), for an
example. As a consequence, this approach is more robust with respect to the choice of the
tuning parameters. Below, we provide some further arguments explaining the success of
the random walk approach.

We provide a hierarchical interpretation in the same fashion on LAIS. Let us assume a
"burn-in" length Tb−1. Hence, considering an iteration t ≥ Tb, we can assert xt ∼ π̄(x). It
implies that the random walk generating process is equivalent, for t ≥ Tb, to the following
hierarchical procedure: (a) draw a location parameter µ′ from π̄(µ), (b) draw x′ from
q (x|µ′,C). Therefore, for t ≥ Tb, the probability of proposing a new sample (i.e., the
equivalent proposal) can be written as

˜︁qMH(x|C) =
∫︂
X

q (x|xt−1,C) π̄ (xt−1) dxt−1,

=

∫︂
X

q (x − xt−1|0,C) π̄ (xt−1) dxt−1, for t ≥ Tb, (3.24)

since xt−1 ∼ π̄ (xt−1) after a burn-in period, t ≥ Tb, and xt−1 represents the location param-
eter of q. The function ˜︁qMH(x|C) is an equivalent independent proposal pdf corresponding
to a random walk generating process within an MCMC method (after the "burn-in" pe-
riod). See Figure 3.10(c) for an example of ˜︁qMH.
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(a) (b) (c)

Figure 3.10: Graphical representation of the equivalent proposal of a random-walk pro-
posal in a MH method. A bimodal target pdf π(x) is shown in solid line. The proposal
densities are depicted in dashed lines. (a) A proposal pdf q(x|xt−1,C) = q(x − xt−1|0,C)
at the iteration t − 1, and the next state of the chain xt. (b) The proposal pdf q(x|xt,C) =
q(x − xt|0,C) at the t-th iteration. (c) The equivalent independent proposal pdf ˜︁qMH(x|C)
is represented in dashed line.

Clearly, this interpretation has no direct implications for practical purposes, since we are
not able to draw directly form the target π̄. However, it is useful for clarifying the main
advantage of the random walk approach, i.e., that the equivalent proposal ˜︁qMH is a better
choice than an independent proposal roughly tuned by the user with non-optimal param-
eters. In fact, as an example, Eq. (3.24) ensures that the equivalent proposal ˜︁qMH(x|C)
has a fatter tails than the target π̄. Indeed, the random walk generating procedure includes
indirectly certain information about the target: denoting X ∼ q̃MH(x|C), Z ∼ q (x|0,C)
and M ∼ π̄(x), we have

E[X] = E[M], ΣX = C + ΣM,

where E[M] and ΣM are the mean and covariance matrix of the target pdf π̄(x).
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Abstract

We propose novel adaptive quadrature schemes based on an active learning procedure. We con-

sider an interpolative approach for building a surrogate posterior density, combining it with Monte

Carlo sampling methods and other quadrature rules. The nodes of the quadrature are sequentially

chosen by maximizing a suitable acquisition function, which takes into account the current ap-

proximation of the posterior and the positions of the nodes. This maximization does not require

additional evaluations of the true posterior. We introduce two specific schemes based on Gaussian

and Nearest Neighbors bases. For the Gaussian case, we also provide a novel procedure for fitting

the bandwidth parameter, in order to build a suitable emulator of a density function. With both

techniques, we always obtain a positive estimation of the marginal likelihood (a.k.a., Bayesian

evidence). An equivalent importance sampling interpretation is also described, which allows the

design of extended schemes. Several theoretical results are provided and discussed. Numerical

results show the advantage of the proposed approach, including a challenging inference problem

in an astronomic dynamical model, with the goal of revealing the number of planets orbiting a star.

Keywords: Numerical integration; emulation; Monte Carlo methods; Bayesian quadra-
ture; experimental design; active learning.

4.1. Introduction and brief overview

In this work, we consider the approximation of intractable integrals of type

I =
∫︂
X

f (x)π̄(x)dx,

where f (x) is a generic integrable function and π̄(x) is a probability density function
(pdf). These integrals usually appear in Bayesian inference problems where π̄(x) repre-
sents the posterior distribution of the variable of interest given the observed data. In the
next subsections, we briefly review several approaches presented in the literature, which
are related to the methodology presented this work.
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4.1.1. Main families of quadrature methods

With the term numerical integration, we refer to a broad family of algorithms for calcu-
lating definite integrals, and by extension, the term is also used to describe the numer-
ical solution of differential equations. Although exact analytical solutions to integrals
are always desirable, such “unicorns” are rarely available, specially in real-world sys-
tems. Indeed, many applications in signal processing, statistics, and machine learning
inevitably require the approximation of intractable integrals [9, 65, 52]. In particular,
Bayesian methods need the computation of posterior expectations which, generally, are
analytically intractable [65, 46]. The term numerical quadrature (or simply quadrature) is
employed as a synonym for numerical integration [9]. More specifically, a quadrature for-
mula is often stated as a weighted sum of integrand evaluations at specified points (a.k.a.,
nodes or knots) within the domain of integration.
Deterministic quadratures. A first family of numerical integration methods are the de-
terministic quadrature rules. A subclass within this family is the Newton-Cotes quadrature
rules [9]. The Newton-Cotes formulas are based on evaluating the integrand at equally
spaced nodes and are obtained by substituting the integrand function with a corresponding
polynomial interpolation. Smaller approximation errors can often be obtained by using
the Gaussian quadratures, where the nodes are optimally placed [9, 38, 29]. However,
their applicability is restricted to certain particular cases.
Monte Carlo (MC) methods. A second family is formed by stochastic quadrature rules
based on MC sampling methods [65, 46], such as Markov chain Monte Carlo (MCMC)
and importance sampling algorithms. In this framework, the nodes of the quadrature rules
are randomly chosen. However, the resulting estimators often have a high variance, spe-
cially when the dimension of the problem grows.
Variance Reduction. A third family, formed by the variance reduction techniques [56,
65], combines elements of the first two classes. In order to reduce the variance of the
corresponding Monte Carlo estimators, deterministic procedures are included within the
sampling algorithms, e.g., conditioning, stratification, antithetic sampling, and control
variates [56]. Other interesting examples are the Riemann-based approximations which
are combinations of a Riemann quadrature and random sampling [65, Chapter 4.3]. The
Quasi-Monte Carlo (QMC) algorithms can be also included in this family. In QMC, de-
terministic sequences of points are generated (based on the concept of low-discrepancy)
and then used as nodes of the corresponding quadrature [52]. Several other combinations
of the previous classes above, mixing determinism with random sampling schemes, can
be found in the literature [18, 2, 39].
Bayesian quadrature (BQ). The BQ framework represents a fourth approach which em-
ploys Gaussian Process (GP) regression algorithms for approximating the integrand func-
tion (and, as a consequence, the resulting integral as well) [54, 36, 63]. In the last years,
this approach has raised the interest of several authors. One problem with this approach
is that, in some cases, a negative estimation of the marginal likelihood can be obtained.
Some possible solutions have been proposed, although they are quite complex based on
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successive approximations [55, 26]. In this work, we provide two novel and much sim-
pler alternatives for solving this issue. Moreover, unlike this work, most contributions in
BQ literature focus on the GP approximation of the function f (x) [55, 26, 7], although
other papers on BQ describe quite general frameworks where f (x) can contain the like-
lihood or π(x) [54, 36, 63]. A connection between classical quadratures and BQ can be
found in [34]. Finally, theoretical guarantees for adaptive BQ schemes can be found in
the insightful work of [31].

4.1.2. Emulation of complex models

Many Bayesian inference problems involve the evaluation of computationally intensive
models, because of (i) the use of particularly complex systems or (ii) a large number of
available data (or both). To overcome this issue, one possible strategy consists in replacing
the true model by a surrogate model (a.k.a. an emulator), that could be also adaptively im-
proved [10, 57, 72]. Then, Bayesian inference is carried out on this approximate, cheaper
model.
Use of the emulator. The emulator can be applied mainly in three different ways. (a)
One possibility is to apply MC sampling methods considering the surrogate model as the
target pdf [77, 62]. This is used to speed up the MC algorithms. (b) In order to improve
the efficiency of MC estimators, a second option is to use the emulator as a proposal
density within an MC technique, as we discuss in Section 4.1.3 [22, 21, 43]. (c) A third
possibility is to replace the true posterior with the emulator in the integrals of interest, and
computing them [54, 36, 63]. Here, we mainly focus on the last approach, also combining
it with MC methods (and other quadrature rules).
Construction of the emulator. In the literature, the surrogate model is often built by
using a regression algorithm, like a GP model or similar techniques [11, 75]. This prob-
abilistic approach provides also uncertainty quantification that is used for estimating the
approximation error and adapting the emulator [71]. Sometimes, the approximation re-
gards only some part of the model or is applied in a different domain (as the log-domain)
[6, 15, 32, 30]. Other authors employ density estimation techniques for building the sur-
rogate model, and then using it as a proposal density within MC algorithms [13, 27, 45]
or for replacing the true posterior (again within MC methods) [16].

4.1.3. Interpolative proposal densities within Monte Carlo schemes

The first use of an interpolative procedure for building a proposal density is ascribable
to the adaptive rejection sampling schemes [22, 28, 24, 47]. The proposal is formed
by polynomial pieces (constant, linear, etc.). Several works have proposed the use of
interpolative proposal densities within MCMC algorithms [21, 50, 48, 49]. For more
details, see also [46, Chapters 4 and 7]. Their use within an importance sampling scheme
is considered in [20]. The adaptation is carried out considering different statistical tests,
by measuring the discrepancy between the emulator and the posterior [43].
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The conditions needed for applying an emulator as an proposal density are discussed in
[43]. For this purpose, we need to be able to: (a) update the construction of the emulator,
(b) evaluate the emulator, (c) normalize the function defined by the emulator, and (d) draw
samples from the emulator. It is not straightforward to find an interpolative construction
which satisfies all those conditions jointly, for an arbitrary dimension of the problem.
However, the resulting algorithms (when they can be applied) provide good performance,
confirming that the interpolative approach deserves more attention.

4.1.4. Contributions

In this work, we leverage the advances in different fields of numerical integration and
emulation, in order to design algorithms which build (a) better emulators and (b) more
efficient quadrature rules. The novel algorithms are adaptive schemes which automati-
cally select the nodes of the quadrature and of the resulting emulator. Namely, the set of
nodes used by the emulator is sequentially updated by maximizing a suitable acquisition
function. Below, we list the main contributions of the work.
• We propose a novel design of a suitable acquisition function defined as product of the
posterior and a diversity term, taking into account the current positions of the nodes. Note
that, unlike several works in the literature, e.g., [10, 4, 59, 57], we consider jointly both:
the information regarding the posterior and the distances among the current nodes. For
the selection of the nodes, some authors also consider the use of MCMC runs [77] or more
sophisticated procedures combining sampling and deterministic quadrature schemes for
selecting the nodes [74]. Unlike [77, 74], our adaptive approach is based on an active
learning procedure. We also provide cheap versions of the acquisition function. The
cheap acquisition functions do not require the evaluation of the posterior but only the
evaluation of the emulator. The overall schemes are then parsimonious techniques which
require the evaluation of the posterior density only at the nodes, sequentially selected by
optimizing a cheap acquisition function. The proposed active learning strategy is also
connected to the idea of obtaining a finite set of weighted representative points which can
summarize, in some sense, a distribution. This topic has gained attention in the last years
[14, 37, 42, 44].
•We consider an interpolative approximation of the posterior density π̄(x), where the in-
terpolant is expressed as a linear combination of generic kernel-basis functions. Unlike
several BQ techniques in [55, 26, 7], we approximate π̄(x) instead of the function f (x)
in the integral I. For this purpose, we also propose the combination of the interpolant
approach with MC and other quadrature schemes.
•With respect to other schemes in the literature [36, 63], our assumptions regarding the
kernel-basis functions are less restrictive, e.g., they do not need to be symmetric. We
could also employ different type of bases jointly, e.g., one different basis for each node.
For instance, our framework allows the use of nearest neighbors (NN) basis functions,
which presents several advantages: it does not require any matrix inversion and the coeffi-
cients of the linear combination (which defines the interpolator) are always positive [33],
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obtaining always a positive estimation of the marginal likelihood. These benefits are very
appealing as shown in [55, 26, 35, 33].
• Section 4.5 presents an importance sampling (IS) interpretation of the proposed schemes,
where the weights involve the interpolant instead of the true posterior density. This again
shows that we can improve the Monte Carlo approximations without requiring additional
evaluations of π̄(x). Moreover, the alternative IS interpretation allows to design different
techniques. One possible example is given in the final part of Section 4.5.
•We also introduce a novel procedure for fitting the bandwidth parameter of the Gaussian
kernel in order to build an emulator of a density function. In this scenario, the proposed
strategy performs better than the standard maximization of the marginal likelihood of
the corresponding GP. Using this tuning procedure, we always obtain positive estimation
of the marginal likelihood, even with Gaussian kernels (this is an important point; see
[55, 26]).
We provide the theoretical support for the proposed methods in Section 4.7. Most of
the convergence results are mainly known in the scattered data approximation literature
[68, 76, 60]. The efficiency of the proposed schemes is also confirmed by several numeri-
cal experiments (in Section 4.8) with different target pdfs and dimensions of the problem.
One of them is also a challenging astronomical application, where the goal is to detect the
number of exoplanets orbiting a star, and infer their orbital parameters.

4.2. Interpolative quadratures for Bayesian inference

In many signal processing applications, the goal is to infer a variable of interest given a set
of observations or measurements. Let us denote the variable of interest by x ∈ X ⊆ Rdx ,
and let y ∈ Rdy be the observed data. The posterior pdf is then

π̄(x) = p(x|y) =
ℓ(y|x)g(x)

Z(y)
,

where ℓ(y|x) is the likelihood function, g(x) is the prior pdf, and Z(y) is the model evidence
(a.k.a. marginal likelihood). Generally, Z(y) is unknown, so we are able to evaluate the
unnormalized target function,

π(x) = ℓ(y|x)g(x).

Usually, the analytical computation of the posterior density π̄(x) ∝ π(x) is unfeasible,
hence numerical approximations are required. Our goal is to approximate integrals of the
form

I =
∫︂
X

f (x)π̄(x)dx =
1
Z

∫︂
X

f (x)π(x)dx, (4.1)

where f (x) is some integrable function, and

Z =
∫︂
X

π(x)dx. (4.2)
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In the literature, random sampling or deterministic quadratures are often used [46, 12, 65].
In this work, we consider alternative quadrature rules based on an adaptive interpolative
procedure. The adaptation is obtained by applying an active learning scheme.

4.2.1. Interpolative approach

Let us consider a set of distinct nodes x1, . . . , xN ∈ X and some non-negative kernel or
basis function, k(x, x′) : X × X → R+ ∪ {0} (i.e., k(x, x′) ≥ 0). From now on, we use the
terms basis or kernel as synonyms. The interpolant of π(x) is as follows

ˆ︁π(x) =
N∑︂

i=1

βik(x, xi), (4.3)

where the coefficients βi must be such that ˆ︁π(x) interpolates the points π(x1), . . . , π(xN),
that is, ˆ︁π(xi) = π(xi) for i = 1, . . . ,N. Hence, the βi are the solutions to the following
linear system ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1k(x1, x1) + .... + βNk(x1, xN) = π(x1),

β1k(x2, x1) + .... + βNk(x2, xN) = π(x2),
...

β1k(xN , x1) + .... + βNk(xN , xN) = π(xN).

(4.4)

Denoting (K)i, j = k(xi, x j) (1 ≤ i, j ≤ N), β = [β1, . . . , βN]⊤ and d = [π(x1), . . . , π(xN)]⊤,
Eq. (4.4) can be written in matrix form as Kβ = d. Thus, the coefficients are given by

β = K−1d. (4.5)

Note that, depending on the choice of kernel and its parameters, these coefficients can be
negative.

Remark 1. The only requirement regarding the functions k(x, x′) is that the interpolation
matrix K must be non-singular (i.e., invertible) for any set of distinct nodes. The symmetry
of k(x, x′) is not required. Different type of bases can be employed, for instance, one for
each node xi, i.e., ki(x, xi).

Remark 2. For simplicity, in this first part of the paper, we consider a fixed number of
nodes N. However, a key point of the work is the adaptation procedure in Section 4.6,
where new nodes are sequentially added.

A detailed theoretical analysis is provided in Section 4.7.

4.2.2. Interpolative quadrature schemes

We can approximate both Z and I by substituting the true π(x) with its interpolant ˆ︁π(x).
Approximation of Z. Let

∫︁
X

k(x, xi)dx = Ci > 0 be the measure of the i-th kernel. An
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approximation of Z can be obtained, by substituting Eq. (4.3) in (4.2),

ˆ︁Z = ∫︂
X

ˆ︁π(x)dx =
N∑︂

i=1

βi

∫︂
X

k(x, xi)dx =
N∑︂

i=1

βiCi. (4.6)

If the kernels are normalized, i.e., Ci = 1, note that ˆ︁Z = ∑︁N
i=1 βi.

Remark 3. Although Z > 0, ˆ︁Z can take negative values, since the coefficients βi can be
negative. However, in this work, we suggest two schemes (with Gaussian bases and a
suitable tuning procedure, and with NN bases) which ensure a positive estimation of Z.

Approximation of I. By substituting (4.3) and (4.6) in (4.1), we obtain an approximation
of I as

I ≈ ˆ︁I = 1ˆ︁Z
∫︂
X

f (x)ˆ︁π(x)dx. (4.7)

Note that, givenˆ︁π(x) =
∑︁N

i=1 βik(x, xi), the approximation of I in (4.7) can be expressed as

ˆ︁I = 1ˆ︁Z
N∑︂

i=1

βi

∫︂
X

f (x)k(x, xi)dx =
1ˆ︁Z

N∑︂
i=1

βiJi, (4.8)

=
1ˆ︁Z

N∑︂
i=1

νiπ(xi),

where Ji =
∫︁
X

f (x)k(x, xi)dx, ν = [ν1, ..., νN]⊤ = K−1ζ with ζ = [J1, . . . , JN]⊤ being the
vector of integrals. Clearly, the performance of ˆ︁I depends on the discrepancy betweenˆ︁π(x) and π(x), as shown by Theorem 1. This discrepancy is reduced by properly adding
new nodes, as suggested in Section 4.6.

4.2.3. Monte-Carlo based interpolative quadrature schemes

In this work, we assume that the evaluation of the target function π(x) is the main com-
putational bottleneck [10, 72]. We consider that other operations, such as sampling and
evaluating different proposal densities, are negligible with respect to the target evaluation.
The techniques, presented in this section, do not require additional target evaluations with
respect to Eq. (4.8). In some specific cases, we can compute the integrals Ji and Ci analyt-
ically (e.g., see next section). Otherwise, we need to approximate Ji, and in some cases,
also Ci. Some general ideas are described below.
Normalized kernels (Ci = 1). If the values Ci = 1 are known,3 we can computeˆ︁Z = 1

N

∑︁N
n=1 βi. Moreover, if we are able to draw samples from each k(x, xi), we have

Ji =

∫︂
X

f (x)k(x, xi)dx ≈ ˆ︁Ji =
1
M

M∑︂
m=1

f (zi,m), (4.9)

3For the sake of simplicity and without loss of generality, we assume Ci = 1.
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with zi,m ∼ k(x, xi), hence

ˆ︁I ≈ 1ˆ︁ZM

N∑︂
i=1

βi

M∑︂
m=1

f (zi,m). (4.10)

If we know Ci, another possible scenario is when we are not able to draw from k(x, xi).
In this case, we can employ the importance sampling (IS) procedure described below to
approximate the integrals Ji.
Kernels with unknown Ci. In this case, we also have to approximate

∫︁
X

k(x, xi)dx =
Ci. For this purpose, we can employ IS with proposal densities qi(x), with i = 1, ...,N,
obtaining

Ci ≈ ˆ︁Ci =
1
M

M∑︂
m=1

wi,m, (4.11)

where the weights are wi,m =
k(zi,m,xi)
qi(zi,m) and zi,m ∼ qi(x). Moreover, we also obtain

Ji ≈ ˆ︁Ji =
1
M

M∑︂
m=1

wi,m f (zi,m). (4.12)

Replacing (4.11)-(4.12) into (4.8), the final estimator is given by

ˆ︁I ≈ 1∑︁N
i=1 βi

∑︁M
m=1 wi,m

N∑︂
i=1

βi

M∑︂
m=1

wi,m f (zi,m), (4.13)

=

M∑︂
m=1

N∑︂
i=1

ρ̄i,m f (zi,m), (4.14)

where ρ̄i,m =
βiwi,m∑︁N

j=1
∑︁M

k=1 β jw j,k
.

Remark 4. Note that, in any of the scenarios above, we do not need to evaluate the target
π(x) at the samples zi,m. Namely, we do not require additional target evaluations with
respect to Section 4.2.2. Moreover, as M → ∞, the estimators in Eqs. (4.10)-(4.14)
converge to the expression (4.8), under standard MC arguments [65].

For further details, see the theoretical results in Section 4.7.2 and Theorems 6 and 7. So
far we have considered Monte Carlo approaches to estimate Ji and Ci. Other particular
and more efficient approaches (such as deterministic quadratures) are possible if we con-
sider specific kernel functions. In the next sections, we analyze two specific cases (with
Gaussian and NN kernels).

4.3. Interpolation with Gaussian kernels

Let us consider the case of Gaussian kernels (with an unbounded support X = Rdx),

kG(x, xi) =

1

(2π)
dx
2 |Σ|

1
2

exp
(︄
−

1
2

(x − xi)⊤Σ−1(x − xi)
)︄
, (4.15)
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where Σ is a positive definite matrix. We take Σ = h2I where h > 0 is the bandwidth
hyperparameter that needs to be tuned (see Section 4.3.1). Alternatively, note that we
can also use unnormalized Gaussian kernels kG(x, xi) = A exp

(︂
− 1

2 (x − xi)⊤Σ−1(x − xi)
)︂
,

where A is another parameter to possibly tune, and then consider Ci = A(2π)
dx
2 |Σ|

1
2 .

Polynomial functions f (x). The use of Gaussian kernel functions kG(x, xi) with f (x)
being polynomial, ensures that the integrals in (4.8) are available in closed-form. Let
f(x) = xr = [xr

1, . . . , x
r
dx

]⊤ be componentwise powers of x ∈ Rdx (r = 1, 2, . . . ). Then,

Ji =

∫︂
Rdx

f(x)kG(x, xi)dx =
∫︂
Rdx

xrkG(x, xi)dx,

corresponds to the r-th marginal moments of a multivariate Gaussian centered at xi. Note
that the marginal moments of a Gaussian density are well-known. Some instances are∫︂

Rdx

xkG(x, xi)dx = xi (r = 1),∫︂
Rdx

x2kG(x, xi)dx = x2
i + diag(Σ), (r = 2),

where the power x2
i is considered a componentwise operation. Then, in this case, we can

directly replace the values of Ji in Eq. (4.8).
Generic functions f (x). Each of the N integrals on the right hand of (4.8) may be also
approximated efficiently with a Gauss-Hermite quadrature (GH) [38, 29], i.e.,∫︂

Rdx

f (x)kG(x, xi)dx ≈ ˆ︁Ji =

M∑︂
m=1

w̄GH
m f (zi,m),

where w̄GH
m and zi,m are the weights and nodes of the GH quadrature used for i-th integral.

Note the quadrature weights are independent of i and are normalized, i.e.,
∑︁M

m=1 w̄GH
m = 1.

Moreover, we have zi,m = ˜︁zm + xi, that is, the only difference is a translation of a single
set of GH nodes ˜︁zm [29] (see also the Suppl. Material). Again, we do not need
extra evaluations of the target π(x). Note that, with enough number of points zi,m, Gauss-
Hermite quadrature is also exact when f (x) are polynomial functions [19]. Theoretical
results, valid for positive definite radial basis functions, can be found in Section 4.7.2.

4.3.1. Probabilistic interpretation

If k(x, x′) = k(x′, x) (i.e., it is symmetric) and k(x, x′) is semi positive definite, as in the
Gaussian case, we can interpret the construction of the interpolant ˆ︁π(x) as a Gaussian
process (GP) [64]. In our setting, d = [π(x1), . . . , π(xN)]⊤ represents the observed vector.
The process starts by placing a GP prior on π(x), π(x) ∼ GP(0, k(x, x′)), where the GP
mean is 0 and k(x, x′) is the covariance function. Conditioning on d, it can be shown that
the posterior of π(x) is given by

π(x)|d ∼ GP(ˆ︁π(x),C(x, x′)),
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where the mean function is the interpolantˆ︁π(x) given in (4.3), and the posterior covariance
function is C(x, x′) = k(x, x′) − k(x)⊤K−1k(x′), with

k(x) = [k(x, x1), . . . , k(x, xN)]⊤,

and (K)i, j = k(xi, x j). The variance at x is

V(x) = C(x, x) = k(x, x) − k(x)⊤K−1k(x). (4.16)

Observe that V(xi) = 0 for all i = 1, . . . ,N. If we assume that the vector of evaluations
d is noisy, we can relax the exact fit requirement by introducing a regularization term,
replacing K with the matrix K + σ2I, where I is an N × N identity matrix. The noise
term σ2 also provides numerical stability. The probabilistic interpretation of the integrals
involving π is given in Appendix 4.10.2.

4.3.2. Tuning of hyperparameters

Let us denote as θ the vector as hyperparameters of the kernel functions k(x, x′). A stan-
dard way of fitting the hyperparameters θ is to maximize the marginal likelihood of the
GP [64]. In this case, the evaluations of π(x) play the role of data. Given the evaluations
d = [π(x1), . . . , π(xN)]⊤, the marginal likelihood is given by p(d|θ) = N(d|0,K), and its
log-version is

log p(d|θ) = −
1
2

d⊤K−1d −
1
2

log |K| + c,

where c is a constant. Note that K depends on θ. However, for fitting the bandwidth
parameter h of the Gaussian kernels, we propose an alternative procedure described in
Appendix 4.10.1, specifically designed for building an emulator of a density function. In
this context, the proposed procedure performs better then the maximization of p(d|θ).

Remark 5. Using the novel tuning procedure in Appendix 4.10.1, the corresponding es-
timator ˆ︁Z takes always positive values.

4.4. Constant kernels based on Nearest Neighbors

Given the set of nodes {xi}
N
i=1 in a bounded domain X, consider now the use of constant

kernels with finite support

k(x, xi) = IRi(x), (4.17)

where IRi(x) is the indicator function inRi, i.e., IRi(x) = 1 for all x ∈ Ri and zero otherwise.
Each Ri consists of the points x ∈ X that are closest to xi, i.e.,

Ri = {x ∈ X : ∥x − xi∥p ≤ min
j≠i

⃦⃦⃦
x − x j

⃦⃦⃦
p
},
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where ∥·∥p denotes the p-norm. That is, X = ∪N
i=1Ri is the Voronoi partition of X using

{xi}
N
i=1 as support points. In this case, solving (4.5) for the coefficients β is straightforward

since the matrix K is the identity matrix, and thus

βi = π(xi) for i = 1, . . . ,N.

Note that all βi ≥ 0 with this kernel. Hence the interpolant is given by

ˆ︁π(x) =
N∑︂

i=1

π(xi)IRi(x). (4.18)

Note that to evaluate ˆ︁π(x) at any x we need to find just the closest node. We do not need
to know the borders of regions {Ri}

N
i=1 for this purpose. This choice of kernels has three

clear advantages:

(i) no need to solve the linear system in (4.5) since K = I and hence β = d,

(ii) the coefficients β = d are always non-negative (this ensures that ˆ︁Z ≥ 0),

(iii) no need of tuning the bandwidth hyperparameter.

The difficulty, however, is determining the Voronoi partition, as well as the measures
Ci =

∫︁
X

k(x, xi)dx. We show how to address these issues in Section 4.4.1. In this case,

Ci =

∫︂
X

IRi(x)dx = |Ri|,

where |Ri| denotes the measure of the i-th Voronoi region. The approximation of Z is
given by

ˆ︁Z = N∑︂
i=1

π(xi)Ci, (4.19)

and Eq. (4.8) is expressed as

ˆ︁I = 1ˆ︁Z
N∑︂

i=1

π(xi)
∫︂
Ri

f (x)dx,

=
1∑︁N

k=1 π(xk)Ck

N∑︂
i=1

π(xi)
∫︂
Ri

f (x)dx. (4.20)

The convergence of this scheme is guaranteed as N grows, as shown by Theorems 8 and 9.
Further theoretical analysis are provided in Section 4.7.3. Note that we need to estimate
the measures Ci, as well as the integrals

∫︁
Ri

f (x)dx to compute ˆ︁Z and ˆ︁I. The next section
is devoted to this purpose.
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4.4.1. Approximating Voronoi regions and resulting estimators

In order to approximate Ci, we can generate M uniform vectors {zm}
M
m=1 in X via Monte

Carlo sampling or Quasi-Monte Carlo sequences (e.g. a Sobol sequence) [12]. Define the
setUi as

Ui = {zm : ∥zm − xi∥p ≤ min
j≠i

⃦⃦⃦
zm − x j

⃦⃦⃦
p
}

= {zℓi}
|Ui |

ℓi=1,

i.e., the |Ui| vectors closest to xi in p-norm, which form a discrete approximation of Ri.
Note that

∑︁N
i=1 |Ui| = M. Hence, the measure Ci can be approximated by noting that

Ci
|X|
≈
|Ui |

M , hence

Ci ≈
|Ui|

M
|X|, (4.21)

where |X| is the measure of X. Thus, the estimator in Eq. (4.19) can be rewritten as

ˆ︁Z ≈ |X|
M

N∑︂
i=1

π(xi)|Ui|. (4.22)

We can also obtain an approximation of the integral Ji =
∫︁
Ri

f (x)dx by leveraging a QMC
or MC approximation of the Voronoi regions. Specifically, the uniform vectors zℓi in Ui

can be used to approximate the integral in (4.20) as follows

Ji =

∫︂
Ri

f (x)dx ≈
Ci

|Ui|

|Ui |∑︂
ℓi=1

f (zℓi) ≈
|X|

M

|Ui |∑︂
ℓi=1

f (zℓi), (4.23)

where we used (4.21) again in (4.23). The procedure above can be seen as an accept-
reject method, and the estimators are also unbiased [46, Chapter 3 and Section 6.6]. Note
that a simpler possible approximation with one point is Ji =

∫︁
Ri

f (x)dx ≈ f (xi)Ci. Thus,
replacing the expressions (4.22)-(4.23) in (4.20), the final estimator becomes

ˆ︁I ≈ 1∑︁N
k=1 π(xk)|Uk|

N∑︂
i=1

π(xi)
|Ui |∑︂
ℓi=1

f (zℓi). (4.24)

Connection with Section 4.2.3. The estimators above can be interpreted as the appli-
cation of an importance sampling (IS) scheme as described in Section 4.2.3, for kernel
functions with unknown Ci. However, unlike in Section 4.2.3, here we consider a unique
and uniform proposal density

qi(x) = q(x) =
1
|X|
IX(x), ∀i = 1, ...,N.

Then, we can also remove the subindex i in the sample zi,m ∼ q(x), i.e., we have only M
samples zm ∼ q(x). Hence, following Eqs. (4.11)-(4.12), we have

Ci ≈
1
M

M∑︂
m=1

wi,m, (4.25)

Ji =

∫︂
Ri

f (x)dx ≈
1
M

M∑︂
m=1

wi,m f (zm), (4.26)
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where zm ∼ q(x) = 1
|X|
IX(x), and the weights are

wi,m =
k(zm, xi)

q(zm)
=

⎧⎪⎪⎨⎪⎪⎩|X| if zm ∈ Ri,

0 if zm ∉ Ri.
(4.27)

Replacing the expression of the weights wi,m into the formulas above, we recover the
estimators in (4.22) and (4.24).

4.5. An alternative IS interpretation

In this section, we discuss a special case of the IS scheme given in Section 4.2.3, when
a unique proposal qi(x) = q(x) is employed and only M samples zm ∼ q(x) are drawn
(as already considered in the previous section). In this scenario, the IS procedure in
Section 4.2.3 has another relevant interpretation, which allows us to design other different
schemes. Considering a generic kernel k(x, xi) and Eq. (4.25), we can rearrange ˆ︁Z as

ˆ︁Z = N∑︂
i=1

βiCi ≈

N∑︂
i=1

βi
1
M

M∑︂
m=1

wi,m

=

N∑︂
i=1

βi
1
M

M∑︂
m=1

k(zm, xi)
q(zm)

=
1
M

M∑︂
m=1

∑︁N
i=1 βik(zm, xi)

q(zm)
.

Then, recalling that ˆ︁π(x) =
∑︁N

i=1 βik(x, xi) and replacing this expression above, we finally
obtain

ˆ︁Z ≈ 1
M

M∑︂
m=1

ˆ︁π(zm)
q(zm)

=
1
M

M∑︂
m=1

γm, (4.28)

where γm = γ(zm) = ˆ︁π(zm)
q(zm) for m = 1, ...,M. Moreover, with similar steps, we can obtain

ˆ︁I ≈ 1

Mˆ︁Z
M∑︂

m=1

γm f (zm), (4.29)

Remark 6. The weights γm have the form of the standard IS weights with the target
function ˆ︁π in the numerator, and the proposal density q in the denominator. Hence, the
entire sampling procedure can be interpreted as a standard IS scheme where the target
function is ˆ︁π instead of π. This shows again that we do not need extra target evaluations
and, hence, we can employ an arbitrary large value of M.

Remark 7. Note that this result is valid for any kernel k(x, xi), and we use a unique
proposal q(x) in the procedure described in Section 4.2.3.
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Below, we consider the NN case with a uniform proposal q(x), deriving the same formulas
in Section 4.4.1.
Uniform proposal density and NN interpolator. Let us consider q(x) = 1

|X|
IX(x), i.e., a

uniform density in X, and the NN kernel function. For each sample zm, the corresponding
weight γm is

γm = γ(zm) =
ˆ︁π(zm)

1
|X|

=
π(xkm)

1
|X|

= |X|π(xkm),

where xkm is the closest node to sample zm, i.e., xkm = arg min j

⃦⃦⃦
zm − x j

⃦⃦⃦
p
. Then, the IS

approximation of ˆ︁Z is

ˆ︁Z ≈ 1
M

M∑︂
m=1

γm =
|X|

M

M∑︂
m=1

π(xkm) =
|X|

M

N∑︂
k=1

π(xk)|Uk|,

where |Uk| counts the number of zm whose closest node is xk (k = 1, . . . ,N). Note that
this expression is the same as in (4.22). Similarly, the IS estimate of ˆ︁I is given by

ˆ︁I ≈ 1

Mˆ︁Z
M∑︂

m=1

γm f (zm) =
|X|

Mˆ︁Z
M∑︂

m=1

π(xkm) f (zm)

=
|X|

Mˆ︁Z
N∑︂

k=1

π(xk)
|Uk |∑︂
ℓk=1

f (zℓk),

which is the same expression as in (4.24). However, this alternative IS interpretation
allows us to design different schemes using a different proposal density, as shown below.
Gaussian mixture proposal. We consider now an alternative to the uniform proposal in
X. More specifically, we propose drawing {zℓ}Mm=1 from a Gaussian mixture proposal pdf
built considering the set of nodes {xi}

N
i=1, i.e.,

zm ∼ q(x) =
N∑︂

i=1

ξiN(x|xi,Ci),

where the mixture weights ξi are

ξi =
π(xi)∑︁N

n=1 π(xn)
, i = 1, ...,N,

and the covariances Ci can be determined by the minimum distance of xi to its closest
node. In this case, the IS weights are given by

γ(zm) =
ˆ︁π(zm)∑︁N

i=1 ξiN(zm|xi,Ci)
=

π(xkm)∑︁N
i=1 ξiN(zm|xi,Ci)

,

where xkm is the closest node to zm, with m = 1, . . . ,M.
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(a) True target pdf (b) E = 50 (c) E = 250 (d) E = 103

Figure 4.1: Example of application of NN-AQ. The cross-marks represent the starting nodes, while the
points added adaptively by NN-AQ are shown with dots. (a) The banana-shaped target and the starting
nodes. (b)-(c)-(d) The NN-AQ emulator with E = 50, 250, 103 number of target evaluations.

4.6. Adaptive procedure

In this section, we present an adaptive mechanism to add new nodes to the interpolant.
Our algorithm adds nodes sequentially with the aim to discover high-valued regions of
π(x) while fostering the exploration of the state space. We employ an active learning
procedure where a new point is obtained by maximizing a suitable acquisition function.
The resulting adaptive algorithm is shown in Table 4.1. Note that the final number of
nodes is NT = T + N0. The adaptive quadrature scheme based on the Gaussian kernels
is denoted as GK-AQ, whereas the other scheme based on the Nearest Neighbors (NN)
kernels is denoted as NN-AQ. Figure 4.1 depicts an example of application of the NN-AQ.

4.6.1. Building suitable acquisition functions

Let us denote as t ∈ N the tth iteration of the algorithm. In the update stage, we decide
to add a new node where the acquisition function, At : X → {0} ∪ R+, is maximum. The
acquisition function takes into account the shape of π(x) and the spatial distribution of the
current nodes. More specifically, it must fulfill

At(xi) = 0 for all t and i = 1, . . . ,Nt,

and grow as we move apart from the nodes. We consider acquisition functions At(x) of
the form

At(x) = π(x)Dt(x), (4.30)

where Dt(x) is a diversity term that penalizes the proximity to the current nodes. Note
that the information of f (x) could be also included as At(x) = f (x)π(x)Dt(x). In some
settings, the function At(x) above could be directly used after choosing a diversity term
Dt(x). However, in this work, we consider that evaluating π(x) is costly, so we propose
cheaper versions of (4.30).
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Table 4.1: Adaptive Quadrature algorithm.

Initialization: Set N0 initial nodes and set X0 = {x1, . . . , xN0}, d0 =

[π(x1), . . . , π(xN0)]
⊤.

For t = 0, . . . ,T :

1. Build the interpolator. Use the set Xt = {x1, . . . , xNt} and corresponding eval-
uations dt = [π(x1), . . . , π(xNt)]

⊤ to build ˆ︁πt(x) using Gaussian kernels (see
Section 4.3) or constant kernels (see Section 4.4).

2. Build the acquisition function. Use ˆ︁πt(x) and the set of current nodes Xt to
build the acquisition function At(x), e.g., Eqs. (4.33)-(4.34).

3. Update stage. Obtain new node xNt+1 by

xNt+1 = arg max
x∈X

At(x), (4.31)

append Xt+1 = {Xt, xNt+1} and dt+1 = [dt, π(xNt+1)]⊤.

Outputs: Build the final interpolant ˆ︁πT (x) and obtain the approximations ˆ︁I and ˆ︁Z.

(a) Initial state (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

Figure 4.2: 1D example of application of At(x) = π(x)Dt(x) with the diversity term Dt(x) = min
i=1,...,Nt

|x− xi|.

At each iteration, the new node, shown with a green square, is added where At(x) is maximum.

4.6.2. Cheap acquisition functions

We recall that the most costly step is the evaluation of the target function π(x). This is
often due to the use of complex models and/or large amounts of data. For that reason, we
propose a cheap type of At(x),

At(x) =ˆ︁πt(x)Dt(x), (4.32)

so that no evaluations of the true π(x) are required. In this case, in terms of posterior
evaluations E, the cost of the overall algorithm in Table 4.1, is E = N0 + T .

Remark 8. The particular case At(x) = Dt(x) corresponds to the space-filling experi-
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mental designs (e.g., see [59, 60, 51] and Theorem 4). In the other particular case with
At(x) = ˆ︁πt(x), the resulting schemes are similar to other approaches in literature which
combine sampling and optimization (e.g., see [2]).

In the Gaussian kernel scenario, we may use the variance in (4.16) as diversity term

At(x) =ˆ︁πt(x)Vt(x), (4.33)

where we have set Dt(x) = Vt(x), that fulfills Vt(xi) = 0 for i = 1, . . . ,Nt. This choice
is motivated by the fact that the approximation error is bounded by the maximum value
of Vt(x) (e.g., see Theorem 3). Since the function Vt(x) is unfeasible with constant NN
kernels, we suggest a diversity term of the form

At(x) =ˆ︁πt(x) min
i=1,...,Nt

∥x − xi∥p . (4.34)

Note that the term Dt(x) = min
i=1,...,Nt

∥x − xi∥p is zero when evaluated at any current node:

for each x j ∈ Xt the minimum distance is w.r.t. itself, which is zero. This choice is mo-
tivated by Theorem 4, since the approximation error is also bounded by the maximum
value of Dt(x). Figure 4.2 depicts an example with this choice of Dt(x). Note that the
choice Dt(x) = min

i=1,...,Nt
∥x − xi∥p can be also employed in the Gaussian kernel scenario.

Another alternative is to consider tempering versions of the acquisition function,

At(x) =
[︁ˆ︁πt(x)

]︁α [Dt(x)]β , (4.35)

where α ≥ 0 can be used to prioritize moving towards high-valued zones of ˆ︁πt(x), while
β ≥ 0 to encourage exploration. The values α and β can also vary with the iteration t. The
maximization of At(x) can be performed by simulated annealing or other optimization
techniques. The performance of different acquisition functions have been compared in
Figure 4.4 (see Section 4.8.1). One can observe that maximizing the proposed acquisition
functions provides much better results than adding uniformly random nodes.
Observations. For the GK-AQ algorithm, the most costly step corresponds to the inver-
sion of the Nt × Nt matrix Kt, needed to be done in order to build the acquisition function
in Eq. (4.33). Note that the inverse K−1

t is used for both evaluating the interpolant ˆ︁πt(x)
and computing the variance Vt(x). We can alleviate the cost of this step by building K−1

t

iteratively from K−1
t−1. The recursion formula is given in Appendix 4.10.3. In the case of

NN-AQ, evaluating the acquisition function in (4.34) requires only to calculate the dis-
tances with respect to each node. This computation can be used for both evaluating the
interpolant and the diversity term Dt(x) = min ∥x − xi∥p. Note that the cost of searching
for the nearest neighbor has only a weak dependence on the dimension of the space.

4.7. Theoretical support

In this section, we provide some theoretical results supporting the proposed schemes. We
consider π̄(x) = 1

Zπ(x) a bounded target pdf and a bounded domain X ⊂ Rdx . Let also
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f (x) : X → R be an integrable function. In this section, we consider J =
∫︁
X

f (x)π(x)dx as
the integral of interest. For a generic f (x), J corresponds to the numerator of the integral
I in Eq. (4.1). For f (x) = 1, J becomes the normalizing constant of π(x), i.e., J = Z,
which is the denominator of I. Thus, working with J is equivalent to working with I. Let
also ˜︁J = ∫︁

X
f (x)ˆ︁π(x)dx, be the approximation of J given by substituting the interpolantˆ︁π(x). A first general result valid for any interpolation procedure is given below.

Theorem 1. The error incurred by substituting π(x) with ˆ︁π(x) in J is bounded,

|J − ˜︁J| ≤ ⃦⃦⃦
f (π −ˆ︁π)

⃦⃦⃦
1

≤ ∥ f ∥2
⃦⃦⃦
π −ˆ︁π⃦⃦⃦

2

≤ |X| ∥ f ∥∞
⃦⃦⃦
π −ˆ︁π⃦⃦⃦

∞
,

where ∥·∥1, ∥·∥2 and ∥·∥∞ denote the L1, L2 and L∞ norms respectively.

Proof. See Appendix 4.10.4. □

Therefore, if are able to build an interpolant ˆ︁π in a way such
⃦⃦⃦
π −ˆ︁π⃦⃦⃦

∞
vanishes to zero,

then the approximation ˜︁J will converge to J. Note that, in this section, we ensure the
convergence of numerator J and denominator Z of I = J

Z , independently. A complete
treatment (yet more complicated) should consider the convergence of the two quantities at
the same time. For the rest of results, we need to distinguish between the case of Gaussian
kernel and constant kernel interpolators. To establish convergence of both schemes we
need to make some preliminary definitions and considerations.

4.7.1. Space-filling measures and related results

We introduce two well-known measures of dispersion widely employed in the function
approximation literature. In this section, we always consider a bounded support X.
Fill distance. Given the set of nodes {xi}

N
i=1 ⊂ X, let us define the following quantity

r = max
x∈X

min
1≤i≤N

∥x − xi∥2 , (4.36)

which is the fill distance.
Separation distance. The separation distance is defined as

s = min
i≠ j

⃦⃦⃦
xi − x j

⃦⃦⃦
2
, (4.37)

i.e., the minimal distance between two nodes. Note that s ≤ 2r. Having a small s in-
creases the numerical instability and can have a detrimental effect in the error bounds.
The adaptive procedure described in Sect. 4.6 produces a sequence of nodes that sequen-
tially minimizes r.

Proposition 1. Consider the acquisition function given in Eq. (4.35) with α = 0 and
β = 1, and the choice At(x) = min

i=1,...,Nt
∥x − xi∥2, where {xi}

Nt
i=1 are the current nodes of the
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interpolator. The maximum of this function is the fill distance rt in Eq. (4.36), at iteration
t. Adding the point xNt+1 corresponding to rt to the set of current nodes ensures that

rt+1 = max min
i=1,...,Nt+1

∥x − xi∥2 ≤ rt,

and that rt → 0 when t → ∞.

Proof. See Sect. 4.1 in [60] and [4]. This procedure is related to the “coffee house design”
in [51]. □

Proposition 2. For isotropic kernels, the variance function V(x) given in Eq. (4.16)
satisfies that max

x∈X
[V(x)]

1
2 ≤ Φ(r), where Φ(r) is an increasing function of r, depending on

the kernel function. In the case of Gaussian kernels, Φ(r) is an exponential function.

Proof. See Sect. 2.1 in [60] and Sect. 2 in [4]. □

Proposition 3. Consider the acquisition function given in Eq. (4.35) with α = 0 and
β = 1, i.e., and the choice At(x) = Vt(x). Let us set also φt = max

x∈X
Vt(x). By adding new

nodes according to the rule
xNt+1 = arg max At(x),

we are minimizing φt over the iterations t, i.e., φt is a non-increasing function of t and
φt → 0 as t → ∞.

Proof. This algorithm is known as p-greedy algorithm in [66]. See the behavior of the
variance of a GP interpolant [64]. This acquisition function is commonly used in the
kriging literature. For instance, see [41] and [59]. □

Proposition 4. Consider the acquisition function given in Eq. (4.34) with α = 0 and
β = 1, and the choice At(x) = min

i=1,...,Nt
∥x − xi∥2, where {xi}

Nt
i=1 are the current nodes of the

interpolator. The sequence of nodes obtained as xNt+1 = arg max At(x), for t ∈ N+, is a
uniform low-discrepancy sequence in a bounded X [53].

Proof. This procedure can be interpreted as deterministic and sequential version of the
well-known latin hypercube sampling (LHS) [53]. □

Remark 9. Note that the proposed schemes do not need that the space is covered uni-
formly. The only requirement, for decreasing the fill distance r, is to be able to reach any
subset of the domain X with a non-null probability (strictly positive).

4.7.2. Results for interpolators based on radial basis functions (RBFs)

In this section, we consider that k(x, x′) is the Gaussian kernel considered in Sect. 4.3.
More generally, the results from this section are valid for any k(x, x′) that is a (positive
definite) radial basis function (RBF).
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Exact computation of Ji

Recall ˆ︁π(x) =
∑︁N

i=1 βik(x, xi), where the weights are β = [β1, . . . , βN] = K−1d using the
interpolation matrix K and the vector of target evaluations d. The approximation ˜︁J can be
written as

˜︁J = ∫︂
X

f (x)ˆ︁π(x)dx =
N∑︂

i=1

βiJi =

N∑︂
i=1

νiπ(xi),

where Ji =
∫︁
X

f (x)k(x, xi)dx, and the weights ν = [ν1, . . . , νN]⊤ are given by ν = K−1ζ

with ζ being the vector of Ji’s. In this form, ˜︁J is expressed as a combination of evaluations
of π(x), i.e., a quadrature. The following theorem establishes that the weights ν = K−1ζ

are optimal for a quadrature of this kind. Note that the Gaussian kernels are symmetric
positive definite functions, and are special cases of radial basis functions (RBF).

Theorem 2. Let us consider a symmetric kernel function k(xi, x j) = k(x j, xi) which always
defines a positive definite matrix K. The native space related to k(x, x′) is a reproducing
kernel Hilbert space (RKHS) [3, 69]. Given the points {xi}

N
i=1 and ν = K−1ζ, the quadra-

ture ˜︁J = ∑︁N
i=1 νiπ(xi) is optimal in the sense of Golomb-Weinberg [23], i.e., the weights νi

minimizes the norm of the integration error functional in the dual space [3, 69].

Proof. A sketch of the proof is in App. 4.10.4. See also [70] and [7] and references
therein. □

Theorem 3. Suppose that π(x) belongs to the RKHS generated by the kernel function
k(x, x′). The interpolant ˆ︁π(x) =

∑︁N
i=1 βik(x, xi) satisfies |π(x) −ˆ︁π(x)| ≤ ∥π∥H [V(x)]

1
2 for

all x ∈ X and hence
⃦⃦⃦
π −ˆ︁π⃦⃦⃦

∞
≤ ∥π∥H maxx∈X[V(x)]

1
2 , where ∥·∥H denotes the norm in the

RKHS, and V(x) is the variance function given in Eq. (4.16). Hence, from Theorem 1, we
have

|J − ˜︁J| ≤ |X| ∥ f ∥∞ ∥π∥H max
x∈X

[V(x)]
1
2 .

Proof. See Sect. 2.1 in [60] and Sect. 2 in [4]. □

The theorem above, jointly with Proposition 3, justify the choice of the diversity term
Dt(x) = Vt(x) in Section 4.6.2. The next theorem, based on results from the literature
on approximating functions with RBFs, establishes that the approximation error tends to
zero when r → 0, and that the rate of convergence can be exponentially fast in the case of
infinitely smooth RBFs, such as the Gaussian kernels.

Theorem 4. The error of the quadrature ˜︁J is

|J − ˜︁J| ≤ |X| ∥ f ∥∞ ⃦⃦⃦
π −ˆ︁π⃦⃦⃦

∞
= O(λ(r)),
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where λ(r) → 0 as r → 0, with r being the fill distance given in Eq. (4.36). The conver-
gence rate depends on the regularity degree of π(x). For π(x) sufficiently regular (techni-
cally, belonging to the RKHS induced by the RBF kernel), and Gaussian RBF the bound
λ(r) decreases exponentially

λ(r) = e−ch | log r|/r,

with a certain constant ch > 0, which generally depends on the bandwidth h.

Proof. See Sect. 11.3 and table in page 188 of [76]. □

Recall that the diversity term in (4.34) produces a monotonically decreasing sequence of
fill distances that converges to zero in the limit of t → ∞, as stated in Proposition 1. The
next theorem states that the approximation error tends to zero as N → ∞, and provides a
quite pessimistic upper bound.

Theorem 5. Given a sequence of nodes {xi}
N
i=1 generated as in Proposition 4, it can be

shown that r ≤ Cdx,XN−1/dx log N, where Cdx,X is a constant that probably depends on the
dimension dx and the measure of X. Then, the following (pessimistic) upper bound can
be provided

|J − ˜︁J| = O ⎛⎜⎜⎜⎜⎜⎝e−c1
1

N−1/dx log N
−c2
|log(N−1/dx log N)|

N−1/dx log N

⎞⎟⎟⎟⎟⎟⎠ ,
where c1 > 0 and c2 > 0 are constants depending on h, dx and the measure of X.

Proof. See Sect. 2.5.1 in [60] and [53]. □

Noisy computation of Ji

Theorem 4 above states that the convergence of ˜︁J is achieved when the fill distance r
goes to zero. Recall that in ˜︁J = ∑︁N

i=1 βiJi we consider the exact computation of Ji =∫︁
X

f (x)k(x, xi)dx. In this section, we consider of approximating Ji by the estimator ˆ︁Ji, so
that we finally have a noisy version of ˜︁J, i.e., ˆ︁J = ∑︁N

i=1 βi ˆ︁Ji. Below, we show some results
related to ˆ︁J, but we need some previous definitions.
Stability. The numerical stability of the solution depends on the inversion of the inter-
polation matrix K and it is connected to the separation distance s. Clearly, if two nodes
are very close, then the corresponding two rows of the interpolation matrix are almost
identical and the matrix becomes ill-conditioned [67, 76].
Reproduction quality. Roughly speaking, an interpolant built with more nodes (i.e., N
grows) filling the space, generally yields a better approximation. This concept is con-
nected to the fill distance r in Eq. (4.36). Recall that the fill distance is a measure of how
well the data fills the space [76].
Uncertainty principle. A typical problem when reconstructing functions is the trade-off
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between reproduction quality and numerical stability. Let us consider RBF kernels with a
fixed bandwidth, as N grows. Generally, when one aims at a very good approximation of
the function of interest, the numerical stability gets compromised, and conversely, if one
aims to have good numerical stability, the approximation will be poor. This is known in
the literature as uncertainty principle [67].

Let us denote as h the parameter which controls the bandwidth of the RBFs, as Σ = h2I
in the Gaussian kernel. The next theorem illustrates the case where the numerical in-
stability combined with the error in computing the vector of integrals ζ = [J1, . . . , JN]⊤

deteriorates the error bound of Theorem 4 (for a fixed h). Let us denote the vector of ap-
proximated integrals by ˆ︁ζ = [ˆ︁J1, . . . , ˆ︁JN]⊤ and recall d = [π(x1), . . . , π(xN)]⊤ is the vector
of evaluations of π.

Theorem 6. (for a fixed bandwidth h) Let us consider a bounded support X. If we take
into account the error in the evaluation of the integrals ζ = [J1, . . . , JN]⊤, denoted byˆ︁ζ = [ˆ︁J1, . . . , ˆ︁JN]⊤, the corresponding approximation ˆ︁J = ∑︁N

i=1 βi ˆ︁Ji has an error of

|J − ˆ︁J| ≤ |X| ∥ f ∥∞ ⃦⃦⃦
π −ˆ︁π⃦⃦⃦

∞
+ ||K−1||2||d||2||ζ −ˆ︁ζ ||2

= O(λ(r)) + O(υ(s, h))||ζ −ˆ︁ζ ||2,
where λ(r) → 0 as r → 0, υ(s, h) → ∞ as s → 0, with r and s being, respectively, the fill
distance and separation distance given in Eqs. (4.36) and (4.37). The parameter h, which
determines the bandwidth of the radial kernel, is considered fixed. The function υ(s, h) is
an upper bound for

⃦⃦⃦
K−1

⃦⃦⃦
2
, which is a measure of stability (note that ||K−1||2 corresponds

to the inverse of the lowest eigenvalue of K).

Proof. See Appendix 4.10.4. For the bound υ(s, h) see Corollary 12.4 in [76]. □

The bound in Theorem 6 expresses the uncertainty relation. Indeed, we see that making
s → 0 poses a problem if we use a fixed bandwidth h. Indeed, the interpolation matrix
K becomes ill-conditioned as two nodes are too close, and the error ||ζ −ˆ︁ζ ||2 is amplified.
The growing rate of υ(s, h), as λ(r), depends on the smoothness of the RBF. For Gaussian
kernels, the rates of υ(s, h) and λ(r) are both exponential. However, with a Monte Carlo
approximation, we can always improve the approximation ˆ︁ζ by increasing the number of
samples M, so that ||ζ −ˆ︁ζ ||2 → 0. Recall that the increase of the number of Monte Carlo
samples M does not require additional evaluations of the target π in the proposed schemes.
Furthermore, even with a fixed M, we can control the value ||K−1||2 by decreasing the
bandwidth h of the kernel function. The following results consider these two cases.

Theorem 7. (for a fixed bandwidth h and M → ∞) Given a bounded support X, con-
sider the application of a Monte Carlo method to approximate ζ, then ||ζ −ˆ︁ζ ||2 → 0 as
M → ∞, where M is the number of samples. Hence, the approximation ˆ︁J = ∑︁N

i=1 βi ˆ︁Ji has
an error

|J − ˆ︁J| = O(λ(r)),
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where λ(r)→ 0 as the fill distance r → 0 and M → ∞.

Proof. The term ||ζ −˜︁ζ ||2 → 0 as the number of Monte Carlo samples M → ∞ [65]. □

Conjecture 1. (for a decreasing bandwidth h and fixed M) Given a bounded support
X, consider a noisy approximation ˆ︁ζ of ζ. Assume that we decrease h as the number of
nodes N grows (in order to control the instability term, i.e., the magnitude of

⃦⃦⃦
K−1

⃦⃦⃦
2
).

Hence, the approximation ˆ︁J = ∑︁N
i=1 βi ˆ︁Ji has an error

|J − ˆ︁J| = O(λ(r)) + b,

where b is some constant bias, λ(r)→ 0 as r → 0, and making h→ 0 when N → ∞.

Note that, as h approaches 0, the interpolation matrix K becomes a diagonal matrix, with
the maximum values of the kernels in the diagonal. Thus, controlling the maximum val-
ues of the kernel functions, we can control the minimum value of the eigenvalues, such
that the interpolation matrix K be well-conditioned. Moreover, recall that we are using an
interpolative approach and the probabilistic interpretation in Section 4.3.1 is not strictly
required. Therefore, we have more flexibility in the choice and/or tuning of the kernel
functions. Indeed, one could consider different bandwidths (one for each kernel func-
tion), bigger in regions with lower density of points, while smaller bandwidths in regions
with a higher density of nodes. This would improve the numerical stability.

Remark 10. The interplant based on NN kernels does not suffer the uncertainty problem,
since they have compact non-overlapping supports. Namely, we can interpret that the
bandwidths are automatically tuned.

4.7.3. Results for local interpolators

In a local interpolation method, the addition and/or a change of one node, only affects the
solution in a subset of the support domain. This scenario corresponds to the use of the
constant NN kernels. Recall that the interpolant based on constant kernels,

ˆ︁π(x) =
N∑︂

i=1

π(xi)IRi(x),

where Ri denotes the Voronoi region associated with node xi. Let us first state a result
for sufficiently smooth π(x). If π(x) is Lipschitz continuous, i.e., for all x, z ∈ X we have
|π(z) − π(x)| ≤ L0||z − x|| for some constant L0, then we have the following result.

Theorem 8. Given the NN interpolant ˆ︁π(x), if π(x) is Lipschitz continuous we have that⃦⃦⃦
π −ˆ︁π⃦⃦⃦

∞
≤ L0r, where L0 is the Lipschitz constant and r is the fill distance introduced in

Eq. (4.36). Then, from Theorem 1, we have

|J − ˜︁J| ≤ |X| ∥ f ∥∞ L0r.
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Moreover, given a sequence of nodes {xi}
N
i=1 generated as in Proposition 4, and since

r ≤ Cdx,XN−1/dx log N, we have the following (pessimistic) bound

|J − ˜︁J| = O (︂
N1/dx log N

)︂
.

Proof. See Appendix 4.10.4. □

Now, recall the approximation of ˜︁J given by

˜︁J = ∫︂
X

f (x)ˆ︁π(x)dx ≈ S N =

N∑︂
i=1

π(xi) f (xi)Ci,

where S N is the Riemann approximation, which has been also discussed in Sect. 4.4.1, and
Ci =

∫︁
Ri

dx, i.e., the measure of Ri. Here, we used the approximation
∫︁
Ri

f (x)dx ≈ f (xi)Ci.
We will show that S N converges to J =

∫︁
X

f (x)π(x)dx as we add more nodes according to
one of the proposed acquisition functions, that is, as t → ∞. As with Gaussian kernels,
the convergence is related with how well the nodes fill space. Here, the role of fill distance
is played by the maximum of the measures Ci. The theorem below states that, as we fill
the space, the measures Ci converges to zero. Recall that the Voronoi partition {Ri}

N
i=1

generated from the set of nodes {xi}
N
i=1 corresponds to the subdivision of X in N non-

overlapping pieces.

Proposition 5. Consider a sequence of points x1, . . . , xN covering the space X, then for
the associated Voronoi regions Ri, we have that maxi Ci → 0 as N → ∞.

Proof. See the proofs of Theorems 1 and 4 in [17]. □

Theorem 9. Let π(x) be a continuous and bounded target pdf (up to a normalizing con-
stant) defined on a bounded support X ⊂ Rdx . Let f (x) : X → R bounded on X. Consider
the integral J =

∫︁
X

f (x)π(x)dx. Let us consider a Voronoi partition of X, generated by
the nodes {xi}

N
i=1, defined as R1, . . . ,RN (recall that Ci = |Ri|). Given the Riemann sum

S N =
∑︁N

i=1 f (xi)π(xi)Ci, the convergence of S N → J is guaranteed as maxi Ci → 0 when
N → ∞.

Proof. See Sect 8.3 in [61]. □

Above, we have assumed that Ci are known. However, we can have very accurate Monte
Carlo estimates without requiring additional evaluations of the target π(x) (but just of the
interpolant ˆ︁π(x)), i.e., only with a slight increase in the overall computation cost.

4.8. Numerical experiments

In this section, we provide several numerical tests in order to show the performance of
the proposed adaptive quadrature schemes and compare them with benchmark approaches
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(a) (b) (c)

Figure 4.3: (a) Rel-MSE in log-scale for Z as function of number of target evaluations E. (b) Rel-MSE
in log-scale for µ as function of number of target evaluations E. (c) Rel-MSE in log-scale for estimating
[σ2

1, σ
2
2] as function of number of target evaluations E.

in the literature. The first example corresponds to a nonlinear banana-shaped density in
dimension dx =2, 3, 4 and 5. The second test is a multimodal scenario with dimension
dx=10. Finally, we test our schemes in a challenging astronomic inference problem of
detecting the number of exoplanets orbiting a star.

4.8.1. Banana target

As a first example, we consider a banana-shaped target pdf,

π̄(x) ∝ exp

⎧⎪⎪⎨⎪⎪⎩− (η1 − Bx1 − x2
2)2

2η2
0

−

dx∑︂
i=1

x2
i

2η2
i

⎫⎪⎪⎬⎪⎪⎭ , (4.38)

with x ∈ X = [−10, 10]dx , B = 4, η0 = 4 and ηi = 3.5 for i = 1, ..., dx . We consider
dx = {2, 3, 4, 5} (i.e., different dimensions) and compute in advance the true moments of
the target (i.e., the groundtruth) by using a costly grid, in order to check the performance
of the different techniques.

Experiment 1

We set dx = 2 and test the different algorithms in order to compute the vector mean
µ = [−0.4, 0] and the diagonal of the covariance matrix [σ2

1, σ
2
2] = [1.3813, 8.9081].

Moreover, our schemes are also able to estimate Z, whose ground-truth is Z = 7.9979,
thus we also measure the error in this estimation. We compare the performance in terms
of Relative Mean Square Error (Rel-MSE), averaged over 500 independent runs, using
different methodologies: (a) NN-AQ starting with N0 = 10 nodes randomly chosen in
[−10, 10]×[−10, 10] and M = 105; (b) an independent MH algorithm (I-MH) with random
initialization in [−10, 10] × [−10, 10]; (c) random-walk MH algorithms (RW-MH) with
different proposal variance, and random initialization in [−10, 10]×[−10, 10]; (d) an IS al-
gorithm. The proposal density for both I-MH and IS is a uniform in [−10, 10]× [−10, 10],
whereas for the RW-MHs is a Gaussian density centered at the current state of the chain
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(a) (b) (c)

Figure 4.4: (a) Rel-MSE in log-scale for Z as function of number of target evaluations E. (b) Rel-MSE
in log-scale for µ as function of number of target evaluations E. (c) Rel-MSE in log-scale for estimating
[σ2

1, σ
2
2] as function of number of target evaluations E.

with covariance matrix v2I where v ∈ {1, 2, 5} (so we consider 3 different RW-MHs).
For a fair comparison, we need that all methods have the same number E of target evalua-
tions (fixing E = 70). Since NN-AQ, I-MH and RW-MH require one new target evaluation
per iteration, we run T = 70 iterations for I-MH and RW-MH (E = T ), and T − N0 = 60
iterations for NN-AQ. In this regard, the IS algorithm use 70 samples drawn from the
uniform proposal. Hence, all methods need T = 70 target evaluations. The results are
given in Figures 4.3(a)-(b). Note that the estimation of Z via MCMC techniques is not
straightforward (e.g., see [40]).
Discussion 1. We can observe that NN-AQ outperforms the other methods in terms of
Rel-MSE in estimation. Moreover, in Fig. 4.3(a)-(b) we can see that the decrease is much
greater, as E grows, than the other methods. Namely, NN-AQ has more benefits with new
evaluations of π(x).

Experiment 2

In this case, we fix the number of target evaluations E, and vary dx = {2, 3, 4, 5}. The
Rel-MSE in the estimation of Z is given in Table 4.2 (with E ∈ {100, 1000}).
Discussion 2. In this experiment, E is fixed along different dimensions. The results given
in Table 4.2, with fixed E, does not show all the potential of NN-AQ. However, NN-AQ
outperforms IS in all the dimensions dx considered when E = 1000.

Table 4.2: Relative MSE of Z with E ∈ {100, 1000} for different dx

methods E dx = 2 dx = 3 dx = 4 dx = 5

NN-AQ
100 0.0027 0.1127 0.3798 1.9730

1000 4·10−4 0.0023 0.0140 0.0374

IS
100 0.2645 0.4427 0.7627 1.1115

1000 0.0226 0.0378 0.0641 0.1094
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(a) (b) (c) (d)

Figure 4.5: (a) Example of application of GK-AQ with 10 starting points (red cross-marks) and T=60
iterations (red dots), i.e., E = 70 target evaluations. (b) Rel-MSE in log-scale for Z as function of number
of target evaluations E. (c) Rel-MSE in log-scale for µ as function of number of target evaluations E. (d)
Rel-MSE in log-scale for estimating [σ2

1, σ
2
2] as function of number of target evaluations E.

Experiment 3

For dx = 2, we compare now IS, NN-AQ, and three variants of NN-AQ: (i) NN-U, where
the optimization step in (4.31) is substituted with sampling uniformly the new node in
[−10, 10]× [−10, 10] (i.e., without using an acquisition function), (ii) NN-AQ only diver-
sity, which uses the acquisition in (4.35) with α = 0, β = 1, i.e., with only the diversity
term Dt(x), and (iii) NN-AQ tempered, which uses the acquisition in (4.35) with α = 0,
βt =

200
t , i.e., At(x) = [Dt(x)]βt . Note that the adaptation in NN-AQ only diversity can be

viewed as filling the space in a deterministic way. Note also that the adaptation in NN-AQ
tempered will encourage more exploration than NN-AQ in the early iterations. Again, we
compare the error in estimating Z, µ and [σ2

1, σ
2
2] as a function of target evaluations E (up

to E = 70). The results are given in Figures 4.4(a)-(b).
Discussion 3. We can observe that NN-AQ and NN-AQ tempered outperform the others
in terms of Rel-MSE in estimation. Moreover, in Fig. 4.4(a)-(b) we can see that for NN-
AQ and NN-AQ tempered, the RMSE decreases at a faster rate as E grows, than the NN-U
and NN-AQ only diversity, highlighting the importance of taking into account the current
interpolant to locate the new nodes. It can be seen that NN-AQ only diversity works much
better than NN-U in the early iterations. We explain these results by the fact that NN-AQ
only diversity tends to cover the space more efficiently in these early iterations since it
avoids placing new nodes near the existing ones. However, as E grows, the performance
of NN-U and NN-AQ only diversity is similar since both end up filling uniformly the
space. Interestingly, NN-U performs better than IS as E increases, which demonstrate the
power of the interpolative approach even when the new nodes are randomly chosen.

Experiment 4

For dx = 2, we investigate the performance of GK-AQ in the estimation of Z, µ and
[σ2

1, σ
2
2] as function of E. NN-GK employs the acquisition in (4.33). The kernel band-

width h is fitted using the procedure in Appendix 4.10.1. As commented in Sect. 4.3.2,
we consider a small noise of σ = 10−2 for numerical stability. We will compare the
performance against NN-AQ. The results are given in Figures 4.5(a)-(d), along with an
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example of GK-AQ interpolant , with E = 70, obtained in a specific run.

Discussion 4. The results are shown in Figures 4.5(b)-(d). GK-AQ outperforms NN-AQ
in this particular experiment. However, it is important to remark that the results of GK-
AQ may worsen considerably if h is not selected adequately (we have used the procedure
in App. 4.10.1), in contrast to NN-AQ which is free of hyperparameter tuning and hence
more robust.

4.8.2. Multimodal target

In this experiment, we consider a multimodal Gaussian target in dx = 10,

π̄(x) =
1
3
N(x|µ1,Σ1) +

1
3
N(x|µ2,Σ2) +

1
3
N(x|µ3,Σ3),

with µ1 = [5, 0, . . . , 0], µ2 = [−7, 0, . . . , 0], µ3 = [1, . . . , 1] and Σ1 = Σ2 = Σ3 = 42I10. We
want to test the performance of the different methods in estimating the normalizing con-
stant Z = 1. We consider an application of GK-AQ with N0 = 500 initial nodes, random
in [−15, 15]10, and T = 1000 − N0, hence fixing the number of evaluations to E = 1000.
We compare it against three sophisticated AIS schemes, namely PMC, LAIS and AMIS
[8]. For PMC, we choose Gaussian proposal pdfs and test different number of propos-
als L ∈ {10, 100, 200, 500}, whose means are also initialized at random in [−15, 15]10.
At each iteration one sample is drawn from each proposal, hence the algorithm is run
for TPMC =

1000
L iterations for a fair comparison. As a second alternative, we consider

the deterministic mixture weighting approach for PMC, which is shown to have better
overall performance, denoted DM-PMC. For LAIS, we also consider different number of
proposals L ∈ {10, 100, 200, 500}. More specifically, we consider two versions of LAIS:
the one-chain version and an ideal version. In ideal LAIS, the means of the L Gaussian
proposals are drawn exactly from π̄(x). The one-chain application of LAIS (OC-LAIS)
requires to run a MCMC algorithm targeting π̄(x) to obtain the L proposal means, hence
it requires L evaluations of the target. At each iteration one sample is drawn from the
mixture of the L Gaussian proposals, hence we run the algorithm for TLAIS = 1000 − L it-
erations for a fair comparison. We used a Gaussian random walk Metropolis to obtain the
L means in the one-chain scenario. Finally, we consider AMIS with several combinations
of number of iterations TAMIS and number of samples per iteration R. At each iteration, R
samples are drawn from a single Gaussian proposal, hence the total number of evaluations
is E = RTAMIS. In this case, we test E ∈ {1000, 2000, 3000, 5000}, so the comparison is
not fair except for E = 1000. For PMC, LAIS and AMIS, as well as for the random walk
proposal within the Metropolis algorithm, the covariance of the Gaussian proposals was
fixed to h2I10 (for h = 1, ..., 6), where h is the initial bandwidth parameter used in GK-
AQ.4 All the methods are compared through the mean absolute error (MAE) in estimating
Z, and the results are averaged over 500 independent simulations. The results are shown
in Table 4.3 and Table 4.4. For each method, the best and worst MAE are boldfaced.

4Recall that, for GK-AQ, the final bandwidth is tuned as described in App. 4.10.1.
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Discussion. We can observe that GK-AQ obtains the best range of MAE values [0.078, 0.4782]
and the best results for h = 1. For h > 1, we can see in Tables 4.3-4.4 that the lowest MAE
values are obtained by ideal LAIS with L = 500 and h = 3. We stress that ideal LAIS is
not available in practice, since we usually cannot sample directly from π̄(x). Regardless
of the ideal LAIS scheme (not applicable in practice), GK-AQ provides the best results.
Moreover, we see that GK-AQ with h = 3 is the best performing method in this experi-
ment, since it achieves a lower MAE than PMC, DM-PMC and OC-LAIS for every combi-
nation of L and h. Table 4.4 shows that AMIS performs worse than GK-AQ for E = 1000
(fair comparison), but even with much more AMIS evaluations E ∈ {2000, 3000} (unfair
comparison in favor of AMIS). AMIS needs to reach a big enough value of E (E = 5000),
to beat GK-AQ in terms of MAE.

Table 4.3: MAE of Z with E = 1000 (best and worst MAE of each method are boldfaced)

Methods h = 1 h = 2 h = 3 h = 4 h = 5 h = 6
GK-AQ 0.4782 0.1741 0.0780 0.1362 0.1497 0.2322

PMC

N = 10 0.9993 0.9526 0.8603 0.6743 0.6024 0.6155
N = 100 0.9998 0.9896 0.8853 0.6761 0.5192 0.4544
N = 200 1.0002 0.9893 0.8816 0.7099 0.6389 0.5384
N = 500 0.9995 0.9916 0.9741 0.8700 0.7421 0.6544

DM-PMC

N = 10 0.9991 0.9478 0.8505 0.6009 0.5352 0.5814
N = 100 0.9997 0.8719 0.4490 0.2425 0.1901 0.2193
N = 200 0.9999 0.9321 0.5708 0.3257 0.2374 0.2524
N = 500 1.0000 0.9888 0.7969 0.5009 0.3684 0.3800

Ideal LAIS

N = 10 0.9992 0.8114 0.2579 0.0863 0.0819 0.1091
N = 100 0.9918 0.3638 0.0547 0.0407 0.0598 0.1053
N = 200 0.9846 0.2486 0.0352 0.0411 0.0680 0.1093
N = 500 0.9687 0.1852 0.0335 0.0473 0.0891 0.1353

OC-LAIS

N = 10 1.0000 1.0000 0.9992 0.9883 0.9468 0.9079
N = 100 0.9999 0.8731 0.4434 0.2785 0.2392 0.2870
N = 200 0.9982 0.7028 0.2418 0.1243 0.1406 0.2070
N = 500 0.9937 0.4949 0.1221 0.0857 0.1195 0.1786

4.8.3. Applications to exoplanet detection

In recent years, the problem of revealing objects orbiting other stars has acquired large
attention. Different techniques have been proposed to discover exo-objects but, nowadays,
the radial velocity technique is still the most used [25, 5, 1, 73]. The problem consists in
fitting a dynamical model to data acquired at different moments spanning during long time
periods (up to years). The model is highly non-linear and, for certain sets of parameters,
its evaluation is quite costly in terms of computation time. This is due to the fact that its
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Table 4.4: MAE of Z of AMIS with E ∈ {1000, 2000, 3000, 5000}

Methods h = 1 h = 2 h = 3 h = 4 h = 5 h = 6
GK-AQ (E=1000) 0.4782 0.1741 0.0780 0.1362 0.1497 0.2322

AMIS
M = 10 0.9998 0.9997 0.9997 0.9996 0.9996 0.9995

E = 1000
M = 100 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990
M = 200 1.0000 1.0000 1.0000 1.0000 0.9998 0.9994
M = 500 1.0000 1.0000 1.0000 1.0000 0.9998 0.9989

AMIS
M = 10 0.9155 0.9117 0.8981 0.8987 0.8891 0.8878

E = 2000
M = 100 0.9998 0.9986 0.9934 0.9784 0.9559 0.9072
M = 200 1.0000 1.0000 0.9998 0.9981 0.9888 0.9712
M = 500 1.0000 1.0000 1.0000 0.9998 0.9984 0.9953

AMIS
M = 10 0.3293 0.3402 0.3051 0.3381 0.3540 0.3443

E = 3000
M = 100 0.9725 0.9040 0.7963 0.6384 0.4964 0.3816
M = 200 0.9998 0.9977 0.9884 0.9527 0.8308 0.7119
M = 500 1.0000 1.0000 0.9998 0.9988 0.9859 0.9566

AMIS
M = 10 0.0766 0.0768 0.0695 0.0722 0.0699 0.0725

E = 5000
M = 100 0.1626 0.1176 0.0957 0.0810 0.0737 0.0656
M = 200 0.8771 0.6040 0.2824 0.1473 0.1163 0.0899
M = 500 1.0000 0.9982 0.9904 0.9449 0.7944 0.4532

evaluation involves numerically integrating a differential equation, or using an iterative
procedure for solving a non-linear equation (until a certain condition is satisfied). This
loop can be very long for some sets of parameters.

Likelihood function

When analyzing radial velocity data of an exoplanetary system, it is commonly accepted
that the wobbling of the star around the center of mass is caused by the sum of the grav-
itational force of each planet independently and that they do not interact with each other.
Each planet follows a Keplerian orbit and the radial velocity of the host star is given by

yt = V0 +

S∑︂
i=1

Ki
[︁
cos

(︁
ui,t + ωi

)︁
+ ei cos (ωi)

]︁
+ ξt, (4.39)

with t = 1, . . . ,T .5 The number of objects in the system is S . Both yt, ui,t depend on time
t, and ξt is a Gaussian noise perturbation with variance σ2

e . We consider the noise variance
σ2

e an unknown parameter as well. The meaning of each parameter in Eq. (4.39) is given
in Table 4.5. The likelihood function is jointly defined by (4.39) and some indicator
variables described below. The angle ui,t is the true anomaly of the planet i and it can be

5More generally, we can have yt j with j = 1, ...,T .
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Table 4.5: Description of parameters in Eq. (4.39).

Parameter Description Units
For each planet
Ki amplitude of the curve m s−1

ui,t true anomaly rad
ωi longitude of periastron rad
ei orbit’s eccentricity . . .
Pi orbital period s
τi time of periastron passage s
Below: not depending on the number of objects/satellite

V0 mean radial velocity m s−1

determined from
dui,t

dt
=

2π
Pi

(︁
1 + ei cos ui,t

)︁2

(1 − ei)
3
2

This equation has an analytical solution. As a result, the true anomaly ui,t can be deter-
mined from the mean anomaly Mi,t. However, the analytical solution contains a non-linear
term that needs to be determined by iterating. First, we define the mean anomaly Mi,t as

Mi,t =
2π
Pi

(t − τi) ,

where τi is the time of periastron passage of the planet i and Pi is the period of its orbit
(see Table 4.5). Then, through the Kepler’s equation,

Mi,t = Ei,t − ei sin Ei,t, (4.40)

where Ei,t is the eccentric anomaly. Equation (4.40) has no analytic solution and it must
be solved by an iterative procedure. A Newton-Raphson method is typically used to find
the roots of this equation [58]. For certain sets of parameters, this iterative procedure can
be particularly slow and the computation of the likelihood becomes quite costly. We also
have

tan
ui,t

2
=

√︃
1 + ei

1 − ei
tan

Ei,t

2
, (4.41)

Therefore, the variable of interest x is the vector of dimension dX = 1 + 5S (where S is
the number of planets),

x = [V0,K1, ω1, e1, P1, τ1, . . . ,KS , ωS , eS , PS , τS ],

For a single object (e.g., a planet or a natural satellite), the dimension of x is dX = 5+1 = 6,
with two objects the dimension of x is dX = 11, etc. All the Eqs. from (4.39) to (4.41)
induce a likelihood function ℓ(y|x, σe) =

∏︁T
t=1 ℓ(yt|x, σe), where y = {y1, . . . , yT }.
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Prior and posterior densities

The prior g(x) is defined as multiplication of indicator variables V0 ∈ [−20, 20], Ki ∈

[0,max yi,t −min yi,t], ei ∈ [0, 1], Pi ∈ [0, 365], ωi,t ∈ [0, 2π], τi ∈ [0, 30], (i.e., the prior is
zero outside these intervals), for all i = 1, . . . , S . This means that the prior density is zero
when the particles fall out of these intervals. Note that the interval of τi is conditioned to
the value Pi. This parameter is the time of periastron passage, i.e. the time passed since
the object crossed the closest point in its orbit. It has the same units of Pi and can take
values from 0 to Pi. The complete posterior is

p(x|y, σe) =
1

p(y|σe)
ℓ(y|x, σe)g(x).

We are interested in inferring the parameters x and, more specifically, computing the
marginal likelihood

Z = p(y|σe) =
∫︂
X

ℓ(y|x, σe)g(x)dx,

obtained integrating out x, in order to infer the number of planets. The noise variance σ2
e

is also inferred after the sampling, by maximizing Z = p(y|σe), i.e., ˆ︁σ2
e = arg max

σe
p(y|σe).

Experiments

Given a set of data y generated according to the model (see the initial parameter values
below), our goal is to infer the number S of planets in the system. For this purpose, we
have to approximate the model evidence Z = p(y|σe) of each model. In all experiments,
we consider 60 total number of observations. We consider three different experiments:
(E1) S = 0, i.e., no object, (E2) S = 1 (one object) and (E2) the case of two objects
S = 2. We set V = 2, in all cases. For the first object in E1 and E2, we set K1 = 25,
ω1 = 0.61, e1 = 0.1, P1 = 15, τ1 = 3. For E2, we also consider a second object with
K2 = 5, ω2 = 0.17, e2 = 0.3, P2 = 115, τ2 = 25 (in that case S = 2). All the data are
generated with σ2

e = 2. The rest of trajectories are generated according to the transition
model (and the corresponding measurements yt according to the observation model).

Methods

For each experiment, three models (i.e. three different target pdfs) are considered: a model
with S = 0 (Zero-Planets), a model with S = 1 (One-Planet) and a model with S = 2
(Two-Planets). The goal is to estimate the marginal likelihood of these models and then
correctly detect the number of planets, i.e., S = 0 for (E1), S = 1 for (E2) and S = 2 for
(E3). The marginal likelihoods corresponding to the Zero-planets models are available in
closed form and need not be estimated (the model is simply Gaussian in that case). For
this purpose, we apply NN-AQ (with M = 107) and and an IS procedure. We allocate
a budget of 4 · 106 evaluations of the target. In IS, this budget is used to draw 4 · 106
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(a) Zero planets (b) One planet (c) Two planets

Figure 4.6: Plot of marginal likelihood estimates of Model 1 (one-planet) and Model 2 (two-planets)
versus σ for the three data sets. The straight lines represent the known marginal likelihoods of Model 0
(zero planets) for each data set. (a) data set with zero planets, (b) data set with one planet, (c) data set with
two planets.

samples from the priors. While NN-AQ uses first 4 · 106 − 5000 of these samples to look
for a good initialization, more specifically, the sample with the highest target evaluation is
kept, along with 9 more samples taken at random, to use them as initial nodes. Then, NN-
AQ is run for 5000 iterations. Both One-Planet and Two-Planets models are estimated for
different values of σe = 1, 2, . . . , 15. Note that we do not need to evaluate the target again
when considering different σe, i.e., a single target evaluation can be reused for all values
of σe. The results are shown in Figure 4.6.

Results

For each experiment (E1)-(E3), Figure 4.6(a)-(c) depicts the estimations of Z of the dif-
ferent models provided by NN-AQ and IS, versus σe. The horizontal lines correspond to
the known marginal likelihoods of Zero-Planets models. Overall, NN-AQ outperforms IS
and predicts correctly the number of planets as well as the true value of σe (indeed, the
curves corresponding to NN-AQ reach a maximum at σe = 2). Figure 4.6(a) shows that
the estimations provided by NN-AQ and IS correctly rank the Zero-planets model (S = 0)
as the most probable one. Figure 4.6(b) shows both NN-AQ and IS predict correctly the
One-Planet model (S = 1) to be the correct one. However, for σe = 2, IS barely differen-
tiates between the Zero-Planet and One-Planets models. Further, for σe = 1, it wrongly
predicts Zero-Planets as the best one. Conversely, NN-AQ is able to predict the correct
model for every value of σe, and besides, also predicts the true value σe = 2. In Figure
4.6(c), the difference in performance of NN-AQ and IS is more acute. While NN-AQ is
able to correctly predict the Two-Planets model (S = 2) as the most probable for all values
of σe, IS is unable to detect that second planet and, therefore, considers the One-Planet
model more probable. As in the previous case, IS fails at detecting any planet for small
values of σe. Again, NN-AQ predict the correct value of σe.
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4.9. Conclusions

In this work, we have described a general framework for adaptive interpolative quadra-
ture schemes, leveraging an in-depth study of different fields and related techniques in the
literature, such as Bayesian quadrature algorithms, scattered data approximations, emu-
lation, experimental design and active learning schemes. The nodes of the quadrature are
adaptively chosen by maximizing a suitable acquisition function, which depends on the
current interpolant and the positions of the nodes. This maximization does not require ex-
tra evaluations of the true posterior. The proposed methods supply also a surrogate model
(emulator) which approximates the true posterior density, that can be also employed in
further statistical analyses. Two specific schemes, based on Gaussian and NN bases, have
been described. In both cases, a non-negative estimation ˆ︁Z of the marginal likelihood Z is
ensured.
In the proposed framework, we also relax the assumptions regarding the kernel-basis
functions with respect to other approaches in the literature, e.g., the bases could be non-
symmetric. For instance, the NN bases are non-symmetric functions and their use has
different important benefits: (a) they ensure obtaining non-negative interpolation coef-
ficients and estimators ˆ︁Z, (b) the linear system is directly solved without the need of
inverting any matrix (the interpolation matrix is always diagonal), and (c) the bandwidth
of the bases are automatically selected. Our scheme also allows selecting different kernel
functions for each node point. Therefore, the quadrature rules in Bayesian quadrature are
a special case of our proposed scheme. Indeed, Bayesian quadrature considers a single
symmetric and semi positive definite kernel function. An importance sampling interpre-
tation has been also provided. It is important to remark that the true posterior is only
evaluated at the nodes selected sequentially by the algorithm, and the rest of other com-
putations does not query the true model. The convergence of the proposed quadrature
rules has been discussed, jointly with other theoretical results. The new algorithms are
powerful techniques as also shown by several numerical experiments.

4.10. Appendix

4.10.1. Procedure for tuning the Gaussian kernel bandwidth

In this Appendix, we propose a procedure for fitting the bandwidth parameter h of the
Gaussian kernel (GK),

kG(x, xi) =
1

(2π)
dx
2 hdx

exp
(︄
−

1
2h2 (x − xi)⊤(x − xi)

)︄
, (4.42)

when building the GK based interpolant of Sect. 4.3 for a given number of nodes. Assume
we have run the GK-AQ algorithm (with some fixed h0), so we have a total of NT nodes.
Now, for any h, we may solve the linear system (Eq. (4.5)), obtain the coefficients {βi}

NT
i=1
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(a) (b) (c)

Figure 4.7: (a) GK based interpolant with NT = 70 nodes and h = 2.7, fitted by maximizing the marginal
likelihood. (b) Plot of ˆ︁Z as function of h. The value of h at which ˆ︁Z attains the local maximum is used to
build the interpolant in our procedure. (d) GK based interpolant with NT = 70 nodes and h = 0.51 fitted
with the heuristic.

and calculate

ˆ︁Z = NT∑︂
i=1

βi. (4.43)

Note that, although not explicit, the βi’s, and hence ˆ︁Z, depend on h. The proposed pro-
cedure consists of taking h as the value where ˆ︁Z attains its first local maximum. Starting
from a small value h close to zero and increasing it, the estimation ˆ︁Z is growing reaching
a maximum. Then, h is starting to become “too big”, producing too much overlapping
among the kernel areas. The values of the elements out the diagonal of K grow, and some
of the coefficients βi are negative, and the estimation ˆ︁Z decreases. As h becomes greater
and greater, the matrix K tends to become ill-conditioned, and the absolute values of βi’s
grows. Figure 4.7 compares the GK based interpolant of the target from Sect 4.8.1 with
two different choices of h and NT = 70 nodes. Figure 4.7(a) plots the interpolant tak-
ing h as the value which minimizes the marginal likelihood (see Sect. 4.3.2). Note that
this value of h is too big given the dispersion of the nodes. While Figure 4.7(c) plots
the interpolant taking h as the value where the curve of ˆ︁Z (Figure 4.7(b)) attains its local
maximum. This choice of h seems to fit better the existing nodes. Note also that, for some
values of h, ˆ︁Z may be negative.

4.10.2. Probabilistic interpretation of J

Let us consider J =
∫︁
X

f (x)π(x)dx, which is the numerator of (4.1), our integral of in-
terest I. In section 4.3.1, we have seen that, when k(x, xi) = k(xi, x) (i.e., a symmetric
basis function), the interpolant ˆ︁π(x) =

∑︁N
i=1 βik(x, xi) has the probabilistic interpretation

of being the mean of the posterior distribution of (the “unknown”) π(x) after observing
d = [π(x1), . . . , π(xN)]⊤, i.e., E[π(x)|d] = ˆ︁π(x). The distribution on π(x) induces a poste-
rior distribution on J, which is a Gaussian with mean

E[J|d] = ˜︁J = ∫︂
X

f (x)ˆ︁π(x)dx, (4.44)
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and variance given by

var[J|d] =
∫︂ ∫︂

k(x, x′) f (x) f (x′)dxdx′ − ζ⊤K−1ζ, (4.45)

where ζ = [J1, . . . , JN] and Ji =
∫︁
X

f (x)k(x, xi)dx. This interpretation corresponds to the
so-called Bayesian quadrature, which uses Eq. (4.44) as approximation of J. Note that
Eq. (4.44) is the quadrature obtained by substituting the true π(x) with its interpolantˆ︁π(x),
which coincides with the numerator of ˆ︁I in Eq. (4.7).

4.10.3. Recursive inversion of a bordered matrix

The most costly step when calculating β in (4.5) consists in inverting the N × N matrix
(K)i, j = k(xi, x j) (i, j ∈ {1, . . . ,N}). Moreover, every time a new node is added, the βi must
be recomputed, so the step of computing the inverse has to be done again. This time the
matrix is bigger due to adding a new node, that is, it has an additional row and column.
We show that knowing K−1 help us to compute the inverse of augmented matrices (called
“bordered matrix”, i.e., adding a “border” of new row and column to an existing matrix).
Let us denote with KN the matrix built using N nodes, and let KN+1 be the matrix with
N + 1 nodes. Of course we have

KN+1 =

⎛⎜⎜⎜⎜⎝KN kN

kT
N k

⎞⎟⎟⎟⎟⎠ (4.46)

where kN = (k(x1, xN+1), k(x2, xN+1), . . . , k(xN , xN+1))T and k = k(xN+1, xN+1). The (N +
1) × (N + 1) inverse of KN+1 can be expressed in terms of K−1

N as follows

K−1
N+1 =

⎛⎜⎜⎜⎜⎝A b
c s

⎞⎟⎟⎟⎟⎠ , (4.47)

where

A = K−1
N +K−1

N kN

(︂
k − kT

NK−1
N kN

)︂−1
kT

NK−1
N ∈ R

N×N ,

b = −K−1
N kN

(︂
k − kT

NK−1
N kN

)︂−1
∈ RN×1,

c = −
(︂
k − kT

NK−1
N kN

)︂−1
kT

NK−1
N ∈ R

1×N ,

s =
(︂
k − kT

NK−1
N kN

)︂−1
∈ R.

Note that computing s =
(︂
k − kT

NK−1
N kN

)︂−1
is not costly since it is an scalar value.
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4.10.4. Proofs

Proof to theorem 1

We have that

|J − ˆ︁J| = ⃓⃓⃓⃓⃓∫︂
X

f (x)π(x)dx −
∫︂
X

f (x)ˆ︁π(x)dx
⃓⃓⃓⃓⃓

=

⃓⃓⃓⃓⃓∫︂
X

f (x)
(︁
π(x) −ˆ︁π(x)

)︁
dx

⃓⃓⃓⃓⃓
.

It is easy to see that, for any g(x) we have −|g(x)| ≤ g(x) ≤ |g(x)| for all x, and that
−

∫︁
|g(x)|dx ≤

∫︁
g(x)dx ≤

∫︁
|g(x)|dx, so we have

⃓⃓⃓∫︁
g(x)dx

⃓⃓⃓
≤

∫︁
|g(x)|dx. Using this

result we can state the first inequality

|J − ˆ︁J| = ⃓⃓⃓⃓⃓∫︂
X

f (x)
(︁
π(x) −ˆ︁π(x)

)︁
dx

⃓⃓⃓⃓⃓
≤

∫︂
X

| f (x)|
⃓⃓⃓
π(x) −ˆ︁π(x)

⃓⃓⃓
dx

=
⃦⃦⃦

f (π −ˆ︁π)
⃦⃦⃦

1
.

The second inequality of the theorem follows from Holder’s inequality⃦⃦⃦
f (π −ˆ︁π)

⃦⃦⃦
1
≤ ∥ f ∥2

⃦⃦⃦
π −ˆ︁π⃦⃦⃦

2
.

Finally, the last inequality of the theorem is obtained after manipulating the ∥ f ∥2 and⃦⃦⃦
π −ˆ︁π⃦⃦⃦

2
,

∥ f ∥2
⃦⃦⃦
π −ˆ︁π⃦⃦⃦2 =

(︄∫︂
X

| f (x)|2dx
)︄ 1

2
(︄∫︂
X

|π(x) −ˆ︁π(x)|2dx
)︄ 1

2

≤
(︂
|X|max | f (x)|2

)︂ 1
2
(︂
|X|max |π(x) −ˆ︁π(x)|2

)︂ 1
2

= |X|max | f (x)|max |π(x) −ˆ︁π(x)|

= |X| ∥ f ∥∞
⃦⃦⃦
π −ˆ︁π⃦⃦⃦

∞
.

Proof to theorem 2

We provide the main concepts and elements of the proof. For more details, see [70, 7].
Let J =

∫︁
X

f (x)π(x)dx and ˜︁J = ∑︁N
i=1 νiπ(xi) be the integral of interest and the quadrature

using points {xi}
N
i=1, respectively. Recall that we also denote ν = [ν1, . . . , νN]⊤.

Consider that π is a function belonging to the reproducing kernel Hilbert space of func-
tions H originated from the symmetric and positive definite kernel function k(x, x′).
Hence, J and ˜︁J are functionals over that RKHS

J[π] =
∫︂
X

f (x)π(x)dx,

˜︁J[π] =
N∑︂

i=1

νiπ(xi), π ∈ H .
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where we write explicitly J[·] is the functional that integrates w.r.t. f (x), while ˜︁J[·] is the
functional that integrates w.r.t. the weighted sum

∑︁N
i=1 νiδxi , where δxi denotes the point

evaluation in xi. The integration error associated with ˜︁J is characterized by the norm, in
the dual spaceH∗, of the error functional⃦⃦⃦

J − ˜︁J ⃦⃦⃦
H∗
= sup
∥π∥H≤1

⃓⃓⃓ ˜︁J[π] − J[π]
⃓⃓⃓
, (4.48)

where ∥·∥H and ∥·∥H∗ denote the norm inH andH∗ respectively. Eq. (4.48) is also called
worst-case error (WCE). Define the functions

k f (x) =
∫︂
X

f (x′)k(x, x′)dx′, (4.49)

and

k˜︁f (x) =
N∑︂

i=1

νik(x, xi), (4.50)

where k f , k˜︁f ∈ H . These functions exist as consequence of
∫︁
X

k(x, x) f (x)dx < ∞. It can
be shown that

⃦⃦⃦
J − ˜︁J ⃦⃦⃦

H∗
=

⃦⃦⃦
k f − k˜︁f ⃦⃦⃦H , and

⃦⃦⃦
J − ˜︁J ⃦⃦⃦2

H∗
= ν⊤Kν − 2ν⊤ζ +

∫︂
X

∫︂
X

f (x) f (x′)k(x, x′)dxdx′, (4.51)

for a vector of weights ν ∈ RN , the matrix (K)1≤i, j≤N = k(xi, x j), and the vector of
integrals ζ = [k f (x1), . . . , k f (xN)]⊤. Conditional on the fixed states {xi}

N
i=1, the weights ν

that minimizes the above expression are given by ν = K−1ζ. These are the weights that
arises if we build the interpolantˆ︁π of π at points {xi}

N
i=1, using k(x, x′) as the basis function,

and substitute it in J to obtain the quadrature.

Proof to theorem 6

Let J be the integral of interest, and let J̃ =
∑︁N

i=1 βiJi and ˆ︁J = ∑︁N
i=1 βi ˆ︁Ji be the approxima-

tions using, respectively, the exact Ji and the noisy estimation ˆ︁Ji . Recall that the coeffi-
cients βi are written in matrix form as β = K−1d where K is the interpolation matrix and
d is the vector of evaluations of π. Let us denote ζ = [J1, . . . , JN]⊤ and ˆ︁ζ = [ˆ︁J1, . . . , ˆ︁JN]⊤.
Denoting the dot product in RN as ⟨·, ·⟩, we can express ˜︁J = ⟨ζ,β⟩ and ˆ︁J = ⟨ˆ︁ζ,β⟩. Thus

|J − ˆ︁J| = |J − ⟨ˆ︁ζ,β⟩|
= |J − ⟨ζ − ζ +ˆ︁ζ,β⟩|
= |J − ⟨ζ,β⟩ + ⟨ζ,β⟩ − ⟨ˆ︁ζ,β⟩|
≤ |J − ˜︁J| + |⟨ζ −ˆ︁ζ,β⟩|
= |J − ˜︁J| + |⟨K−1(ζ −ˆ︁ζ), d⟩|
≤ || f (π −ˆ︁π)||1 + ||K−1(ζ −˜︁ζ)||2 ∥d∥2
≤ |X| || f ||∞ ||π −ˆ︁π||∞ + ||K−1||2||ζ −ˆ︁ζ ||2 ||d||2
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where the norm ||K−1||2 represents the largest singular value of K−1. The bounds
⃦⃦⃦
π −ˆ︁π⃦⃦⃦

∞
=

λ(r) and ||K−1||2 = O(υ(s, h)) for different RBF can be found respectively in Chapters 11.3
and 12.2 of [76]. For further details, see Proposition 1 in [70].

Proof to theorem 8

Let us consider the target π(x) and the interpolant ˆ︁π(x) based on NN constant kernels.
Note that for all x ∈ X we have ˆ︁π(x) = π(x∗), where x∗ = arg mini ∥x − xi∥, i.e., the node
that is closest to x. Lipschitz continuity implies that |π(z) − π(x)| ≤ L0 ∥z − x∥ for all
z, x ∈ X. Hence, ⃦⃦⃦

π −ˆ︁π⃦⃦⃦
∞
= max

x∈X
|π(x) −ˆ︁π(x)|

= max
x∈X
|π(x) − π(x∗)|

≤ L0 max
x∈X
∥x − x∗∥

= L0 max
x∈X

min
i
∥x − xi∥

= L0r,

where we used the definition of fill distance r, i.e.,

r = max
x∈X

min
i
∥x − xi∥ .

For further details, see [11, 60].
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Abstract

Understanding systems by forward and inverse modeling is a recurrent topic of research in many

domains of science and engineering. In this context, Monte Carlo methods have been widely

used as powerful tools for numerical inference and optimization. They require the choice of a

suitable proposal density that is crucial for their performance. For this reason, several adaptive

importance sampling (AIS) schemes have been proposed in the literature. We here present an AIS

framework called Regression-based Adaptive Deep Importance Sampling (RADIS). In RADIS,

the key idea is the adaptive construction via regression of a non-parametric proposal density (i.e.,

an emulator), which mimics the posterior distribution and hence minimizes the mismatch between

proposal and target densities. RADIS is based on a deep architecture of two (or more) nested IS

schemes, in order to draw samples from the constructed emulator. The algorithm is highly efficient

since employs the posterior approximation as proposal density, which can be improved adding

more support points. As a consequence, RADIS asymptotically converges to an exact sampler

under mild conditions. Additionally, the emulator produced by RADIS can be in turn used as

a cheap surrogate model for further studies. We introduce two specific RADIS implementations

that use Gaussian Processes (GPs) and Nearest Neighbors (NN) for constructing the emulator.

Several numerical experiments and comparisons show the benefits of the proposed schemes. A

real-world application in remote sensing model inversion and emulation confirms the validity of

the approach.

Keywords: Model Inversion; Bayesian Inference; Emulation; Adaptive Regression; Im-
portance Sampling; Sequential Inversion; Remote Sensing.

5.1. Introduction

Modeling and understanding systems is of paramount relevance in many domains of sci-
ence and engineering. The problems involve both forward and inverse modeling, and
very often one resorts to domain knowledge (either in the form of mechanistic models,
hypotheses, constraints or just data) and observational data to learn parametrizations and
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do inferences. Among the many approaches possible, Bayesian methods have become
very popular during the last decades. Bayesian inference is very active in the communi-
ties of machine learning, statistics and signal processing [59, 49, 71]. With them, there
has been a surge of interest in the Monte Carlo (MC) techniques that are often necessary
for the implementation of the Bayesian analysis. Several families of MC schemes have
been proposed that excel in numerous applications, including the popular Markov Chain
Monte Carlo (MCMC) algorithms, particle filtering techniques and adaptive importance
sampling (AIS) methods [71, 4].

Adaptive Importance Sampling (AIS). The performance of the MC algorithms depends
strongly on the proper choice of a proposal probability density function (pdf). In adaptive
schemes, the proposal pdf is updated considering the previous generated samples. In
recent years, a plethora of AIS algorithms have been proposed in the literature [4]. In most
of these algorithms, the complete proposal can be expressed as a finite parametric mixture
of densities [10, 9, 20, 18, 47]. Unlike these schemes, we consider a non-parametric
proposal based on an interpolating construction.

Emulators in Bayesian Inference. Furthermore, many Bayesian inference problems
involve the evaluation of computationally intensive models, due to the use of particularly
complex systems, consisting of many coupled ordinary or partial differential equations in
high-dimensional spaces, or a large amount of available data. To overcome this issue, a
successful approach consists in replacing the true model by a surrogate model (a.k.a. an
emulator) [61, 5, 74, 70, 78].

The resulting emulator can be employed in different ways inside a Bayesian analysis.
A first possibility is to apply MC sampling methods considering the surrogate model as
an approximate posterior pdf within the MC schemes [11, 82, 13][38, Chapter 9.4.3] or
within different quadrature rules [34, 67, 40], instead of the evaluation of a costly true
posterior. For instance, this is also the case of the strategy known as calibrate, emulate,
sample, currently in vogue [12]. In order to improve the efficiency of MC algorithms, a
second option is to use the emulator as a proposal density within an MC technique. Here,
we focus on the last approach.
Contribution. In this work, we design a deep AIS framework where a non-parametric
interpolating proposal density is adapted online. The new approach is called Regression-
based Adaptive Deep Importance Sampling (RADIS). In RADIS, the key idea is the adap-
tive construction of a non-parametric proposal pdf (i.e., an emulator), which mimics the
posterior distribution in order to minimize the mismatch between proposal and target pdfs.
Differently from other adaptive schemes, the adaptation in RADIS not only uses the in-
formation of the previous samples, but also all the evaluations of the posterior for directly
constructing the emulator. Thus, unlike in a parametric approach, in our setting this dis-
crepancy can be arbitrarily decreased to zero by adding more nodes. Hence, RADIS is
asymptotically an exact sampler. The proposed methodology is based on a deep archi-
tecture: two nested IS schemes are employed, with an inner and an outer IS layers. The
inner IS stage is used to generate samples from the emulator. The outer IS layer provides
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the final posterior approximation by a cloud of weighted samples. Thus, RADIS finally
provides two approximations of the posterior, one in form of a weighted particle measure,
and also the emulator adapted online.6 Parsimonious constructions of the emulator have
been also discussed.

We discuss two specific implementation of RADIS. These specific implementations
differ on the choice of the emulator construction. In the first one, a Gaussian Process (GP)
model is applied to the log-posterior function obtaining the novel scheme denoted as GP-
AIS. In the second one, a piece-wise constant approximation based on Nearest Neighbors
(NNs) is applied, providing the novel algorithm denoted as NN-AIS. In both cases, the
resulting proposal pdf can be seen as an incremental mixture of densities. A deep struc-
ture with more than two layers is described, where a chain of emulators is adapted and
then employed as proposal pdfs within different nested IS stages. Robust and sequential
implementations are also discussed. Several numerical comparisons show the advantages
of RADIS with respect to benchmark algorithms. A real-word application illustrates the
capabilities for sequential parameter retrieval and emulation of a well-known radiative
transfer model (RTM) used in remote sensing. In the next section, a brief overview of the
related approaches is provided.

5.2. Other related works

The non-parametric interpolating construction of the proposal and related strategies are
appealing from different points of views. This is proved by attention devoted by the pre-
vious attempts in the literature shown above, and by other related approaches that we
describe next.
Interpolating proposal. The idea of using interpolating densities is particularly attrac-
tive since we can arbitrarily decrease the mismatch between proposal and posterior by
adding more support points. For this reason, the resulting algorithms provide very good
performance [26, 55, 53, 54, 44]. The first use of an interpolating procedure for building a
proposal density can be ascribed to the rejection sampling and adaptive rejection sampling
schemes [27, 32, 29]. The well-know Zigurrat algorithm and table methods are other ex-
amples of fast rejection samplers employing interpolating proposals [42, 50]. They are
state-of-the-art methods as random sample generators of specific univariate distributions
in terms of speed of generation. In some rejection samplers and MCMC algorithms, the
proposal is formed by polynomial pieces (constant, linear, etc.) [26, 55, 53, 54], [50,
Chapters 4 and 7]. The use of interpolating proposal pdfs within an IS scheme is also
considered in [22]. The conditions needed for applying an emulator as a proposal density
are discussed in [44]. More specifically, we need to be able to: (a) update the construc-
tion of the emulator, (b) evaluate the emulator, (c) normalize the function defined by the
emulator, and (d) draw samples from the emulator. It is not straightforward to find an
interpolating (or regression) construction which satisfies all those conditions jointly, and

6The emulation can be applied to the entire posterior or part of it, like a physical model.
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especially for an arbitrary dimensionality of the problem. This is the reason why the pre-
vious attempts of using an interpolating proposal pdfs are restricted to the univariate case.
Our deep architecture solves these issues.
Partitioning and stratification. Note also that the use of a proposal pdf formed by com-
ponents restricted to disjoint regions of the domain (like in the piecewise constant pro-
posal based on NN) is related to the stratification idea. Indeed, different schemes based
on partitioning and/or stratification divide the entire domain in disjoint sub-regions and
consider different partial proposals in each of them [71, Chapter 4.6.3], [36, 24, 65, 41].
The complete proposal pdf is then a mixture of the partial proposals. Moreover, this
process can be iterated so that the partition is refined over the iterations increasing the
number of partial proposals. In this case, the complete proposal is an incremental mixture
as RADIS (see also below) [36, 41]. Recent works propose using trees in order to par-
tition the space and subsequently build the proposal [22, 23]. In the context of MCMC,
[31] builds an approximation of the target using Polya trees.
Incremental mixtures. The use of non-parametric but non-interpolating proposals have
been suggested in other works. A non-parametric IS approach is considered in [83], where
the proposal is built by a kernel density estimation. In [76], a proposal pdf defined as a
mixture with increasing number of components is also suggested. When a weighting strat-
egy based on the so-called temporal deterministic mixture is applied [48, 21], incremental
mixture proposals appear also in other IS schemes ( e.g., [48, 14]).
Other approaches. Surrogate GP models has been also employed within IS schemes
in the context of rare event estimation [2, 17]. Finally, other IS schemes can be encom-
passed in a similar “deep” approach [57, 19]. In the first one, MCMC steps are used to
jump from different tempered versions of the posterior, and a global IS weighting as prod-
uct of intermediate weights [57]. In the second scheme a two-stages weighting procedure
is used, where the first layer considers a Gauss-Hermite quadrature and the second layer
is a standard IS method [19].

5.3. Preliminaries and motivation

5.3.1. Problem statement

Bayesian inference. In many real world applications, the goal is to infer a variable of
interest given a set of data [60]. Let us denote the parameter of interest (static or dynamic)
by x ∈ X ⊆ Rdx , and let y ∈ Rdy be the observed data. In a Bayesian analysis, all the
statistical information is contained in the posterior distribution, which is given by

π̄(x) = p(x|y) =
ℓ(y|x)g(x)

Z(y)
, (5.1)

where ℓ(y|x) is the likelihood function, g(x) is the prior pdf, and Z(y) is the Bayesian
model evidence (a.k.a. marginal likelihood). The marginal likelihood Z(y) is important
for model selection purposes [39, 52]. Generally, Z(y) is unknown, so we are able to
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evaluate the unnormalized target function, π(x) = ℓ(y|x)g(x). The analytical computation
of the posterior density π̄(x) ∝ π(x) is often unfeasible, hence numerical approximations
are needed. Our goal is to approximate integrals of the form

I =
∫︂
X

f (x)π̄(x)dx =
1
Z

∫︂
X

f (x)π(x)dx, (5.2)

where f (x) is some integrable function, and

Z =
∫︂
X

π(x)dx. (5.3)

In the literature, random sampling or deterministic quadratures are often used [71, 50, 58].
In this work, we focus on the so-called IS approach.
Emulation. There exist many situations where the evaluation of π is expensive (e.g.,
as in big data framework or when the observation model is costly). Hence, we are also
interested in obtaining an emulator of π(x) (or just a part of the posterior), denoted ˆ︁πt(x),
such that (i)ˆ︁πt(x) is cheap to evaluate, and (ii)ˆ︁πt(x)→ π(x) (in some sense, e.g., L2 norm)
as t → ∞.

5.3.2. Importance sampling (IS) and aim of the work

Let us consider a normalized proposal density q̄(x).7 The importance sampling (IS)
method consists of drawing N independent samples, x1, . . . , xN , from q̄(x) (also called
particles), and then assign to each sample the following unnormalized weights

wn = w(xn) =
π(xn)
q̄(xn)

, n = 1, . . . ,N. (5.4)

An unbiased estimator of the marginal likelihood Z is given by the arithmetic mean of
these unnormalized weights [37, 71], i.e.,

ˆ︁Z = 1
N

N∑︂
n=1

wn.

Defining also the normalized weights w̄n =
wn∑︁N
i=1 wi

, with n = 1, . . . ,N, the self-normalized
IS estimator of I in Eq. (5.2) is given by

ˆ︁I = N∑︂
n=1

w̄n f (xn).

More generally, regardless of the specific function f (x), we obtain a particle approxima-
tion of π̄, i.e., ˜︁π(x) =

∑︁N
n=1 w̄nδ(x − xn), where δ(x) is a delta function. It is important

to remark that with this particle approximation, we can approximate several quantities
related to the posterior π̄(x), such as any moments and/or credible intervals (not just a
specific integral). The quality of this particle approximation is related to the discrepancy

7We assume that q̄(x) > 0 for all x where π̄(x) > 0, and q̄(x) has heavier tails than π̄(x).
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between the proposal q̄(x) and the posterior π̄(x). Indeed, in an ideal MC scenario, we
can draw from the posterior, i.e., q̄(x) = π̄(x), so that w̄n =

1
N , which corresponds with the

maximum effective sample size (ESS) [37, 46]. With a generic proposal q̄(x) ∝ q̄(x), we
can obtain a very small ESS and a bad particle approximation˜︁π(x) (i.e., poor performance
of the algorithm).

Remark 1. The variance of the marginal likelihood estimator ˆ︁Z = 1
N

∑︁N
n=1 w(xn) is given

by

var[ˆ︁Z] =
1
N
var[w(x)], (5.5)

where w(x) = π(x)
q̄(x) and x ∼ q̄(x). Since ˆ︁Z is also unbiased, then we also have

E[|Z − ˆ︁Z|2] =
1
N
var[w(x)]. (5.6)

For more details, see [71].

Remark 2. The variance of the IS weight function w(x) is proportional to the Pearson
divergence between q̄(x) and π̄(x), denoted as χ2(π̄∥q̄) (also called χ2 distance), i.e.,

var[w(x)] ∝ χ2(π̄∥q̄) =
∫︂
X

(π̄(x) − q̄(x))2

q̄(x)
dx. (5.7)

See [46, 1] and 5.10.1 for further details. Regarding the mean squared error of the esti-
mator ˆ︁I, we have

E[|I −ˆ︁I|2] ≤
C f

N
(χ2(π̄∥q̄) + 1). (5.8)

The relationships with the L2 and L∞ distances is also given in 5.10.1.

To reduce the discrepancy between the proposal q̄(x) and the posterior π̄(x), we consider
a non-parametric adaptive construction of the proposal q̄t(x) where t denotes a discrete
iteration index. In order to make that the discrepancy becomes smaller and smaller, an
interpolating procedure q̄t(x) based on a set of support points St−1 is employed. Namely,
we generate a sequence of proposal pdfs q̄t(x), q̄t+1(x), q̄t+2(x),... which become closer and
closer to π̄(x), as the number of support points grows. Throughout the paper, we denote
q̄t(x) ∝ ˆ︁πt(x) the non-parametric regression function which approximates the unnormal-
ized posterior π(x) at iteration t. The normalized proposal is denoted as q̄t(x) = 1

ct
ˆ︁πt(x),

where ct =
∫︁
X
ˆ︁πt(x)dx. Although the approximation ˆ︁πt depends on the set of nodes St−1,

for simplicity we use the simpler notation ˆ︁πt(x) =ˆ︁πt(x;St−1).

Remark 3. If the sequence of proposals is such
⃦⃦⃦
π̄ − q̄t

⃦⃦⃦
2
→ 0 as t → ∞, then χ2(π̄∥q̄t)→

0. See 5.10.1 for more details.
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Figure 5.1: Approximate sampling from 1
ct
ˆ︁πt(x) ∝ˆ︁πt(x) and final weighting scheme.

Figure 5.2: Graphical representation of the adaptation scheme. More parsimonious alter-
natives are introduced in Section 5.6.

5.4. Regression-based Adaptive Deep Importance Sampling

In this section, we introduce the proposed scheme, called Regression-based Adaptive
Deep Importance Sampling (RADIS). The resulting algorithm is an adaptive importance
sampler with a non-parametric interpolating proposal pdf. We show how to implement
the sampling and construction of the proposal density in Sect. 5.4.1 and Sect. 5.4.2
respectively. The novel scheme is summarized in Table 5.1. The proposal is adaptively
built using a regression approach that considers the set of all previous nodes xi’s where π
is evaluated. In Section 5.4.2, we present two construction methodologies considered in
this work. Samples from this proposal are drawn via an approximate procedure that can
be interpreted as an additional “inner” IS. All the samples generated in the inner IS are
then used in the “outer” IS. Figure 5.1 outlines this procedure. The adaptation consists in
sequentially adding the samples to the set of current nodes (see Figure 5.2). In the outer
IS, we consider a temporal deterministic mixture approach to compute the weights. Note
that the weighting step needs to be done only once at the end of the algorithm.
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5.4.1. RADIS: a two-layer Deep IS

RADIS is an adaptive IS scheme based on two IS stages. In the following, we describe
the inner and outer stages as well as the possible construction and adaptation of the non-
parametric proposal density. The extension with more than two nested layers is also
discussed.

Inner IS scheme

The inner IS stage is repeated at every iteration. It generates samples approximately
distributed from the current non-parametric proposal, denoted as ˆ︁πt (the unnormalized
version). Furthermore, these samples are used to normalize ˆ︁πt, i.e., in order to estimate
ct =

∫︁
X
ˆ︁πt(x)dx.

Approximate sampling from the emulator. It is not straightforward to sample from
an interpolating proposal [26, 44]. We propose using an approximate procedure based
on IS. Specifically, at each iteration, in order to sample from 1

ct
ˆ︁πt(x), we use sampling

importance resampling (SIR) with an auxiliary proposal q̄aux [73]. First, a set of {zt,ℓ}
L
ℓ=1

(with large L) are drawn from q̄aux(x). These auxiliary samples are weighted according toˆ︁πt(x)

γt,ℓ =
ˆ︁πt(zt,ℓ)

q̄aux(zt,ℓ)
ℓ = 1, . . . , L.

Finally, in other to obtain {xt,n}
N
n=1, we resample N times within {zt,ℓ}

L
ℓ=1 with probabilities

{γ̄t,ℓ}
L
ℓ=1 where γ̄t,ℓ =

γt,ℓ∑︁L
i=1 γt,i

for ℓ = 1, ..., L, i.e.,

xt,n ∼

L∑︂
ℓ=1

γ̄t,ℓδ(x − zt,ℓ), for all n. (5.9)

In this way, we obtain a set of samples {xt,n}
N
n=1 approximately distributed fromˆ︁πt [73, 75].

Remark 4. Under some mild conditions, as L→ ∞, the SIR procedure is asymptotically
exact. Namely, as L → ∞ the density of the resampled particles becomes closer and
closer to qt(x) ∝ ˆ︁πt(x). See, for instance, the following references [73], [28, Sect. 6.2.4],
[75, Sect. 3.2]. For further details, see [72, page 6 ], [45, App. A] and also 5.10.1.

Remark 5. Note that the computation of the inner IS weights γt,ℓ’s does not involve the
evaluation of the posterior π(x), but only the evaluation of the emulator ˆ︁πt(x). Hence,
assuming that the evaluation of the posterior is the main computational bottleneck, in this
setting we can make L arbitrarily large.

Since we resample from a finite set, we can obtain duplicated samples, but it rarely hap-
pens when L >> N. An alternative to avoid these repetitions is to use a regularized
resampling, i.e.,

xt,n ∼

L∑︂
ℓ=1

γ̄t,ℓK(x − zt,ℓ), for all n, (5.10)
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where the deltas have been replaced by a kernel function K(x) [56]. The bandwidth of
K(x) can tuned according to some kernel density estimation (KDE) criterion. For the
computation of the outer IS weights (see below), we need to approximate ct =

∫︁
X
ˆ︁πt(x)dx

for t = 1, . . . ,T . They are estimated during the inner IS by the corresponding estimator,ˆ︁ct =
1
L

∑︁L
ℓ=1 γt,ℓ, for t = 1, . . . ,T . We haveˆ︁ct → ct when L→ ∞, by standard IS arguments

[71].

Adaptation

At each iteration, at the end of the inner IS stage, the algorithm performs the adaptation
producing ˆ︁πt+1. Specifically, the emulator ˆ︁πt(x) is improved by incorporating the gener-
ated samples at each iteration as additional nodes (see Fig. 5.2). Namely, the additional
support points {xt,n}

N
n=1 to St are obtained by resampling N times within {zt,ℓ}

L
ℓ=1 according

to the probabilities γ̄t,ℓ =
γt,ℓ∑︁L
i=1 γt,i

for ℓ = 1, ..., L. Note that the probability mass γ̄t,ℓ is
directly proportional to ˆ︁πt(zt,ℓ). Therefore, the algorithm tends to add points where ˆ︁πt is
higher. Indeed, as L → ∞, the resampled particles are distributed as ˆ︁πt [73, 75, 28]. If
L is not great enough, some xt,n can be repeated. We do not include these repetitions as
support points. Increasing L or using a regularized resampling as in Eq. (5.10) avoids this
issue [56]. Note that the number of support points Jt = |St| increases as t grows.
All the evaluations of the unnormalized posterior π(x) in the additional nodes are stored
in the vector denoted as πt, in order to be used in the outer IS stage. Note also that all
evaluations of π are used to build the emulator.

Outer IS scheme

At the end of the iterative part, we compute the final IS weights wt,n, using all the posterior
evaluations πt,n = π(xt,n), which are stored in the inner layer. More specifically, we assign
to each sample (drawn also in the inner stage) the weight

wt,n =
πt,n

1
T

∑︁T
τ=1

1ˆ︁cτˆ︁πτ(xt,n)
, for all t = 1, ...,T, n = 1, ...,N, (5.11)

where we have employed a deterministic mixture weighting scheme [81, 21], i.e., the
denominator consists of a temporal mixture (e.g., as also suggested in [14]). Note that
the weights wt,n are not required in the iterative inner layer described above. Hence, they
can be computed after the adaptation and sampling steps are finalized. The output of the
algorithm is then formed by all the sets of weighted particles {xt,n,wt,n}

N
n=1 for t = 1, ...,T ,

and the final emulator ˆ︁πT+1(x) =ˆ︁πT+1(x;ST ).

Remark 6. As t → ∞ and L → ∞, then ˆ︁ct → ct → Z, i.e., is an approximation of the
marginal likelihood. Another estimator of the marginal likelihood Z provided by RADIS
is the arithmetic mean of all the outer weights, i.e., ˆ︁Z = 1

NT

∑︁T
t=1

∑︁N
n=1 wt,n.

Remark 7. Additional layers can be included in the proposed deep architecture would
consists in adapting a chain of several emulators. This is graphically represented in
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Table 5.1: Regression-based Adaptive Deep Importance Sampling (RADIS)

- Initialization: Choose the initial set S0 of nodes, and the values T , L, N (with
L >> N). Obtain the vector of initial evaluations π0.
- For t = 1, . . . ,T :

1. Emulator construction: Given the set St−1 and the corresponding vector of
posterior evaluations πt−1, build the proposal function ˆ︁πt(x) =ˆ︁πt(x|St−1) with a
non-parametric regression procedure (see Sect. 5.4.2).

2. Inner IS:

(a) IS. Sample {zt,ℓ}
L
ℓ=1 ∼ qaux(x) and compute the following weights

γt,ℓ =
ˆ︁πt(zt,ℓ)

qaux(zt,ℓ)
, (5.12)

for ℓ = 1, . . . , L.

(b) Resampling. Resample {xt,n}
N
n=1 from {zt,ℓ}

L
ℓ=1 with probabilities {γ̄t,ℓ}

L
ℓ=1

where γ̄t,ℓ =
γt,ℓ∑︁L
i=1 γt,i

for ℓ = 1, ..., L.

(c) Normalizing constant. Compute

ˆ︁ct =
1
L

L∑︂
ℓ=1

γt,ℓ. (5.13)

3. Update: Evaluate πt,n = π(xt,n), for all n = 1, ...,N, and update the set of nodes
appending St = St−1 ∪ {xt,1, ..., xt,N} and πt = [πt−1, πt,1, ..., πt,N]⊤.

- Outer IS: Assign to each sample the weight

wt,n =
πt,n

1
T

∑︁T
τ=1

1ˆ︁cτˆ︁πτ(xt,n)
, for all t = 1, ...,T, n = 1, ...,N.

- Outputs: Final emulator ˆ︁πT+1(x) = ˆ︁πT+1(x|ST ), and the set of weighted particles
{xt,n,wt,n}

N
n=1 for t = 1, ...,T .

Figure 5.3. One of the advantages of this deep approach with D + 1 > 2 layers (where
D is the number of inner nested stages), is that different emulator constructions can be
jointly applied. Each emulator serves as proposal of the next IS stage. In the additional
layers, the evaluation of the posterior (true model) is not required. In this scenario,
RADIS also provides D different emulators.
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Figure 5.3: RADIS with D+1 layers in the deep architecture. Different emulator construc-
tion can be applied at each stage. In each d-th layer, the resampling is applied Ld+1 times
for generating the next cloud of resampled particles {z(d+1)

t,ℓ }
Ld+1
ℓ=1 (with d = 1, ...,D + 1).

These samples are used for the adaptation of ˆ︁π(d)
t and then are weighted again in the next

stage. Note that LD+1 = N and Ld > Ld+1.

5.4.2. Construction of ˆ︁π by regression

We consider two different procedures to build the non-parametric proposal: a Gaussian
process (GP) model and nearest neighbors (NN) scheme. In 5.10.1, we show that these
constructions converges to the true underlying function as the number of nodes (Jt = |St|)
grows.

GP construction. Let us consider building the surrogateˆ︁πwith Gaussian process (GP) re-
gression in the log domain, i.e., over the log π(x) [68, 26]. GP regression provides with an
approximation of a function from a set x1, . . . , xJt ∈ X ⊆ R

dx (whereX can be unbounded)
and their corresponding function evaluation [69, 51]. To ensure the non-negativity of the
approximation, we fit the GP to log π rather than directly on π [62]. Let ϕ(x) ≡ log π(x)
and ϕ = [ϕ1, . . . , ϕJt]

⊤ where ϕi = log π(xi) for i = 1, . . . , Jt. Given a symmetric and
positive definite kernel k(x, x′) and some noise level σ, under the assumption that ϕ(x) is
a zero-mean GP with kernel k, the GP regression of ϕ(x) is of the form

ˆ︁ϕt(x) =
Jt∑︂

i=1

βik(x, xi), (5.14)

where the coefficients β = [β1, . . . , βJt]
⊤ are given by

β = (K + ζI)−1 ϕ (5.15)

with (K)i, j = k(xi, x j) for 1 ≤ i, j ≤ Jt and I is the Jt × Jt identity matrix. Note that,
for ζ = 0, ˆ︁ϕ corresponds to an interpolator of ϕ. Note also that the cost of obtaining ˆ︁ϕ
is O(Jt

3) since it requires inverting a Jt × Jt matrix. As an example, a possible choice of
kernel is the Gaussian k(x, x′) = exp{− 1

2ϵ2 ∥x − x′∥22}, where the hyperparameter ϵ can be
estimated, e.g., by maximizing the marginal likelihood [68]. Finally, the approximation
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of π is given by

ˆ︁πt(x) = exp{ˆ︁ϕt(x)}. (5.16)

Instead of building on the emulator in the log-domain, a simpler alternative (to ensure
non-negativity) consists in setting ϕ(x) ≡ π(x), ϕ = [ϕ1, . . . , ϕJt]

⊤ where ϕi = π(xi) for
i = 1, . . . , Jt Then, we set again β = [β1, ..., βJt] = (K + ζI)−1 ϕ and ˆ︁ϕt(x) =

∑︁Jt
i=1 βik(x, xi).

The emulator is finally obtained as

ˆ︁πt(x) = max[ˆ︁ϕt(x), 0]. (5.17)

Note that these approximations can be directly applied for unbounded support X. We
call the scheme based on these constructions as Gaussian Process Adaptive Importance
Sampling (GP-AIS).

NN construction. Given x1, . . . , xJt ∈ X ⊂ R
dx (where X is bounded) and evaluations

π(x1), . . . , π(xJt), the nearest neighbor (NN) interpolator at x consists of assigning the
value of its nearest node. This is equivalent to consider the Voronoi partition X = ∪Jt

i=1Ri,
where

Ri = {x ∈ X : ∥x − xi∥ <
⃦⃦⃦
x − x j

⃦⃦⃦
for j ≠ i}, (5.18)

is the i-th Voronoi cell. The NN interpolator of π is then given by

ˆ︁πt(x) =
Jt∑︂

i=1

π(xi)IRi(x), x ∈ X. (5.19)

where IRi(x) is the indicator function in Ri. Note that ˆ︁π above is an interpolating approx-
imation of π. The NN search has a cost of O(Jt). We denote the scheme based on this
construction as Nearest Neighbor Adaptive Importance Sampling (NN-AIS). The regres-
sion case consists in considering the k nearest neighbours to x, and taking the arithmetic
mean of the values π in those k nearest nodes.

Remark 8. Note that RADIS employs an incremental mixture proposal density. Indeed,
the emulator ˆ︁πt(x) in Eqs. (5.14)-(5.16) and (5.19) can be expressed as a mixture of pdfs
where the number of components, Jt, increases as t grows. For more details of the NN
case, see 5.10.2.

Remark 9. Under mild conditions, the emulator ˆ︁πt → π and ˆ︁ct → Z as t → ∞ (and
L → ∞), hence 1ˆ︁ct

ˆ︁πt → π̄ (see 5.10.1). Moreover, the SIR scheme to draw from 1ˆ︁ct
ˆ︁πt is

asymptotically exact when L → ∞ (see 5.10.1). Hence, RADIS is drawing samples from
π̄, i.e., it is asymptotically an exact sampler.

The GP construction provides smoother solutions that can be directly employed in un-
bounded domains. However, the GP requires the inversion of matrix (with a dimension
that increases as the number of nodes grows) and the tuning of the hyperparameters of the
kernel function. In contrast, the NN construction does not need any matrix inversion and,
if we fix in advance the number k neighbours (for instance in the interpolation case, we
have k = 1) no hyperparameter tuning is required.
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5.5. Robust accelerating schemes

In this section, we present some alternatives in order to (a) reduce the dependence from
the initial nodes and (b) increase the applicability of RADIS, (c) speed up the convergence
of the emulator covering quickly the state space and finally (d) we discuss the computa-
tional cost of the proposed overall scheme. The resulting methods are robust schemes,
which can be also employed for extending the use of NN-AIS in unbounded supports.
This is achieved combining the non-parametric proposal function ˆ︁πt(x) with a parametric
proposal density, qpar(x). Hence, the complete proposal, denoted as φt(x). will be a mix-
ture of densities with a parametric and a non-parametric components.

Mixture with parametric proposal. The use of an additional parametric density q̄par(x)
can (i) ensure that the complete proposal has fatter tails than target pdf, and (ii) foster
the exploration of important regions that could be initially ignored due to a possible bad
initialization. Thus, we consider the following mixture as a proposal density in the inner
IS layer,

φt(x) = αtq̄par(x) + (1 − αt)
1
ĉt
ˆ︁πt(x), (5.20)

where αt ∈ [0, 1] for all t, and αt is a non-increasing function t. The idea is to set initially
α0 =

1
2 , and then decrease αt → α∞ as t → ∞ (e.g., we can set α∞ = 0). Note that φt(x)

must be evaluated in the denominator of the outer layer weights wt,n in (5.11), taking the
place of 1ˆ︁ct

ˆ︁πt(x) (see Table 5.1).

Remark 10. Choosing q̄par(x) with fatter tails than π̄(x), then φt(x) has also fatter tails
than π̄(x). Hence, we avoid the infinite variance issue of the IS weights [71].

See also [39, Section 7.1] for a theoretical and numerical example of the infinite vari-
ance problem. As an example, if X is bounded, q̄par(x) could be a uniform density over
X. IfX is unbounded, q̄par(x) can be, e.g., a Gaussian, a Student-t distribution or a mixture
of pdfs (see below).

Remark 11. The fact that φt(x) has fatter tails than π̄(x) ensures to have a non-zero prob-
ability of adding new nodes in any possible subset of the support X.

This strategy also allows the use of the NN-AIS in an unbounded support. In 5.10.3
we describe an extension of NN-AIS where the support of the NN approximation is also
adapted.

Parametric mixture by other AIS schemes. A more sophisticated option is to also
update q̄par(x) along the iterations. For instance, q̄par(x) = 1

C

∑︁C
c=1 qc(x|µt,c,Σt,c) can be

itself a mixture, whose parameters are adapted following another AIS scheme, so that the
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complete proposal would be

φt(x) = αt

⎛⎜⎜⎜⎜⎜⎝ 1
C

C∑︂
c=1

q̄c(x|µt,c,Σt,c)

⎞⎟⎟⎟⎟⎟⎠ + (1 − αt)
1
ct
ˆ︁πt(x), (5.21)

with αt ∈ [0, 1] for all t. As an example, the parametric mixture q̄par(x) can be ob-
tained following a population Monte Carlo (PMC) method, or a layered adaptive impor-
tance sampling (LAIS) technique and/or adaptive multiple importance sampling (AMIS)
scheme [4]. The weight αt is again a non-increasing function of the iteration t.
Regression versus interpolation. In the first iterations of RADIS, the use of ζ > 0 in the
GP approximation and/or considering the k nearest neighbours (instead only the closest
one, k = 1), also decreases the dependence on the initial nodes. Namely, reducing the
overfitting, at least in the first iteration of RADIS, also increases the robustness of the
algorithm.
More layers. To leverage the benefits of different emulator constructions in RADIS, one
possible strategy is to employ additional layers in the deep architecture, as depicted in
Fig. 5.3. For instance, with one additional layer, we could use jointly the GP and the NN
constructions. Another possibility is to consider several GP models with different kernel
functions or several NN schemes with different k.

5.5.1. Computational cost

In this section, we discuss computational details of our approach and hypothesize when
our approach is convenient also in terms of computational time. It is important to remark
that RADIS is useful also for constructing a good emulator (not just for approximating
integrals as other Monte Carlo schemes), choosing the nodes in a proper way, similarly
in an active learning scheme [40, 79]. Figures 5.6(d) and 5.11 in the numerical experi-
ments provide a comparison with a random addition of nodes, showing the benefits of the
adaptive construction employed in RADIS.

RADIS requires N evaluations of the posterior π(x) at each iteration, so that the total
number of posterior evaluations is E = N0 + NT . Let denote as Ceval-post the cost of
evaluating π(x) once, so that the total cost of evaluating the posterior is ECeval-post. In
addition to E posterior evaluations, RADIS carries out different other tasks, namely (i)
evaluate L times the current emulator per iteration, (ii) perform N resampling steps per
iteration over L possible samples, and (iii) compute the denominator of thefinal IS weights
at the end of the algorithm. Let Ceval-emulator, Cresampling and Cden-weights denote the total costs
after T iterations of RADIS, associated to tasks (i)-(iii). In term of computational time,
RADIS can be convenient with respect to other schemes, when the inequality

Ceval-post >
1
E

(︂
Ceval-emulator +Cresampling +Cden-weights

)︂
, (5.22)

is fulfilled. For an example, see the numerical experiment in Section 5.8.3 and the results
in Table 5.9. Recall that all the values Ceval-post, Ceval-emulator, Cresampling, and Cden-weights
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also depend on the specific implementation and language of the code and the different
processors/machines.
Generally, the term Ceval-emulator dominates the other two since it is composed of evaluating
L times the emulator for T iterations. Moreover, due to the non-parametric construction
and the fact that we increase the set of active nodes in N, evaluating the interpolator
becomes more costly with the iterations. More specifically, in the NN based approach,
after T iterations we have Ceval-emulator ≈

∑︁T
t=1O(LNt) = O(LNT 2). In the GP-AIS scheme,

we have the additional cost of inverting the Jt × Jt matrix at each iteration (recall that
Jt = N0+N(t−1)). This cost at each iteration is O(J3

t ) ≈ O(N3t3), for t big enough. Then,
in GP-AIS, Ceval-emulator ≈

∑︁T
t=1O(N3t3) + O(LNT 2) = O(N3T 4) + O(LNT 2).

In the next section, we describe different procedures to decrease Ceval-emulator.

5.6. Construction of parsimonious emulators

So far, we have considered updating the interpolant at each iteration t by adding all the N
samples drawn at that iteration. In order to control the computational cost of evaluating
the emulator, we can design a strategy for accepting or rejecting some of the possible
additional nodes. This can be done assigning acceptance probabilities, pA(xt,n) ∈ [0, 1],
to each of the N samples (in the same fashion of [44, 43]). Therefore, the update part of
Step 3 in Table 5.1 would be replaced by the routine in Table 5.2.

Table 5.2: Parsimonious update in Step 3 of Table 5.1.

- Initialization: Choose an acceptance function pA(x), set St = St−1, and consider
the cloud of resampled particles {xt,n}

N
n=1, from the previous step of Table 5.1.

- For n = 1, . . . ,N:

1. Draw u ∼ U([0, 1]).

2. If u ≤ pA(xt,n), then set St = St ∪ {xt,n}. Otherwise, If u > pA(xt,n), discard xt,n.

-Output: Return St and Jt = |St|.

Proper acceptance functions. We say that an acceptance probability, pA(x) : X → [0, 1],
is proper if satisfies

C1: pA(x)→ 0, if |π(x) −ˆ︁πt(x)| → 0, (5.23)

for any x ∈ X, and

C2: pA(x) = 0 if and only if |π(x) −ˆ︁πt(x)| = 0. (5.24)

Hence, for any node contained already in St−1, i.e., z ∈ St−1, we have pA(z) = 0. For this
reason, as we show below, the acceptance function often depends on the current emulator
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ˆ︁πt(x), i.e., we should write pA(x) = pA(x|ˆ︁πt). Hence, a more precise and parsimonious con-
struction would consider a sequential updating of the emulator (since pA(x) also should
change during the acceptance tests), as shown in Table 5.3.

Table 5.3: Alternative parsimonious update considering a sequential updating of the
emulator.

- Initialization: Set ˆ︁π(0)
t (x) = ˆ︁πt(x), choose an acceptance function p(0)

A (x) =
pA(x|ˆ︁π(0)

t ), set k = 0 and St = St−1, and consider the cloud of resampled par-
ticles {xt,n}

N
n=1, from the previous step of Table 5.1. Note that, more generally,

p(k)
A (x) = pA(x|ˆ︁π(k)

t ) where k ≥ 0 is an index.
- For n = 1, . . . ,N:

1. Draw u ∼ U([0, 1]).

2. If u ≤ p(k)
A (xt,n), then set St = St ∪ {xt,n}, and update the emulator constructionˆ︁π(k+1)

t (x) considering the new set St. Set also k ← k + 1.

-Output: Return St, Jt = |St| and ˆ︁πt+1(x) =ˆ︁πt+1(x;St) =ˆ︁π(k)
t (x).

Remark 12. Note that the procedures in Table 5.2 and 5.3 do not require additional eval-
uations of the target π, since all the values π(xt,n), for all n, are already obtained.

The difference between the schemes in Tables 5.2 and 5.3, in term of performance and
computational cost, becomes more relevant as N grows. Note that the order of the tests
in Table 5.3 could be also relevant and some strategies for ordering {xt,n}

N
n=1 (in a suit-

able way) could be designed. Below, we introduce some examples of proper acceptance
functions and also some reasonable improper ones.

5.6.1. Examples of proper acceptance functions

One possibility of proper acceptance function is

A1: pA(x) = 1 −
min{π(x),ˆ︁πt(x)}
max{π(x),ˆ︁πt(x)}

=
|π(x) −ˆ︁πt(x)|

max{π(x),ˆ︁πt(x)}
, (5.25)

where we have used |π(x)−ˆ︁πt(x)| = max{π(x),ˆ︁πt(x)}−min{π(x),ˆ︁πt(x)}. Another possibility
is to consider both the discrepancy between π and ˆ︁πt, and the distance to the closest node
s∗ ∈ St−1 to x, i.e.,

A2: pA(x) =
(︂
1 − e−α|π(x)−ˆ︁πt(x)|

)︂ (︂
1 − e−β∥x−s∗∥

)︂
, α, β ≥ 0. (5.26)

If either α = 0 or β = 0 (or both), then pA(x) = 0. As α → ∞ and β → ∞ grow,
then pA(x) → 1. When α = ∞ and β is finite, then pA(x) = 1 − e−β∥x−s∗∥ and the accep-
tance probability is bigger when the point x is far from its closest node, i.e., we have a
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space-filling strategy. When α is finite and β→ ∞, then pA(x) = 1 − e−α|π(x)−ˆ︁πt(x)|, and the
acceptance probability is bigger if there is a large discrepancy between π and the inter-
polant at x. Thus, unlike in (5.25), in (5.26) we should tune the values α, and β according
to the computational budget we have, or according to the trade-off between computational
effort and performance.
Note that, in the acceptance functions above, we have pA(x) ∈ [0, 1] for all x, and the
condition (5.23) is fulfilled. Moreover, these acceptance functions depend only on x, π(x)
andˆ︁πt(x). The decision is done considering the quality of the approximation ofˆ︁πt(x) and,
in Eq. (5.26), the relative position of x with respect to the nodes in St−1. They do not
depend on the rest of N−1 possible nodes within {xt,n}

N
n=1 to be tested. Nevertheless, if we

use the sequential updating scheme of Table 5.3, the acceptance probability will change
depending on the order in which we test the candidate nodes.
An example of proper acceptance function depending on the population of candidate
nodes is described next. Let us define R(x) = |π(x) −ˆ︁πt(x)|. Considering x ∈ {xt,1, ..., xt,N}

(i.e., one point within the set of possible nodes to be included) and defining Rmax =
max

x∈{xt,1,...,xt,N }
R(x), we can set

A3: pA(x) =
R(x)
Rmax

, with x ∈ {xt,n}
N
n=1. (5.27)

Again pA(x) ∈ [0, 1] and the condition (5.23) is satisfied. Note that a normalization of R(x)
using

∑︁N
n=1 R(xt,n) instead of Rmax would produce very small acceptance probabilities as N

grows (note that R(x) ≥ 0 for all x). This is a non beneficial effect in our opinion, since
the decrease of pA(x) is not due to a good quality of the approximationˆ︁πt, but is generated
by the increase of the possible alternative denominator

∑︁N
n=1 R(xt,n). Resampling schemes

could be also employed but provide improper acceptance functions, as we discuss below.

5.6.2. Examples of improper acceptance functions

Let us define the auxiliary weights ρ(x) = F(x)ˆ︁πt(x) where F(x) is function that can chosen
in different ways, F(x) = π(x), F(x) = |π(x) −ˆ︁πt(x)| or F(x) = |π(x) −ˆ︁πt(x)|ˆ︁πt(x), for
instance. The nodes to be included are then selected resampling N times within the set
{xt,n}

N
n=1 according to the following probability mass,

ρ̄(xt,i) =
ρ(xt,i)∑︁N

n=1 ρ(xt,n)
, i = 1, ...,N,

and taking only the unique values (i.e., without repetitions). Table 5.4 summarizes this
idea.

The acceptance probability is, in this case,

pA(xt,i) = 1 − (1 − ρ̄(xt,i))N . (5.28)

Thus, the procedure in Table 5.4 is equivalent (in term of number of added nodes) to
apply the procedure in Table 5.2 and pA(x) in (5.28) above. Observe also that, with these
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Table 5.4: Parsimonious update in Step 3 of Table 5.1 based on resampling.

- Initialization: Choose a numerator function F(x) (e.g., F(x) = π(x) or F(x) =
|π(x) −ˆ︁πt(x)|) for the weight ρ(x) = F(x)ˆ︁πt(x) . Set St = St−1, and consider the cloud of
resampled particles {xt,n}

N
n=1, from the previous step of Table 5.1. Then:

1. Resample N times within {xt,n}
N
n=1 according to the probability mass defined as

ρ̄t,i = ρ̄(xt,i) =
ρ(xt,i)∑︁N

n=1 ρ(xt,n)
, i = 1, ...,N,

obtaining the new set {˜︁xt,n}
N
n=1.

2. Take the unique values in {˜︁xt,n}
N
n=1 (i.e., removing the repetitions) obtaining

{vt,k}
K
k=1 (where K is the number of unique values in {˜︁xt,n}

N
n=1).

3. Set St = St ∪ {vt,1, ..., vt,K}.

-Output: Return St and Jt = |St|.

schemes, even in the ideal case ˆ︁πt(x) = π(x) for all x, we always add at least one node to
the new sets St (i.e., K ≥ 1). This is due to the improperness of the acceptance functions.
Then, these resampling-based schemes could possibly yield less parsimonious emulators.
Nevertheless, they are easy to implement and their implementation is computationally
faster than the rest of approaches, described previously. Starting from the samples zt,ℓ ∼

qaux(x) in RADIS, the added points {vt,k}
K
k=1 in Table 5.4 are then obtained as results of

two resampling procedures and finally considering the unique values:

{zt,ℓ}
L
ℓ=1

γ̄t,ℓ
−−→ {xt,n}

N
n=1

ρ̄t,ℓ
−−→ {vt,k}

K
k=1.

In the vanilla version of RADIS, the nodes are obtained applying just the first resampling
at each iteration. Another example of improper acceptance function that is not based on a
resampling procedure (and does not take into account all the population {xt,n}

N
n=1, jointly)

is

pA(x) =

⎧⎪⎪⎨⎪⎪⎩1 if |π(x) −ˆ︁πt(x)| > ϵ,

0 if |π(x) −ˆ︁πt(x)| ≤ ϵ,
for ϵ ≥ 0. (5.29)

Note that for a finite positive value of ϵ > 0, after some iterations, possibly we will
have pA(x) = 0, i.e., the adaptation of the emulator is stopped. This is the reason of its
improperness, since it does not fulfill C2. If ϵ = 0, then we always have pA(x) = 1,
adding all the nodes. If ϵ = ∞, we have always pA(x) = 0, and we never update the
emulator. With a suitable choice of ϵ (tuned according to computational budget available),
this acceptance function can be also a good option. A numerical comparison among these
acceptance probabilities is given in Section 5.8.
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5.7. RADIS for model emulation and sequential inversion

In this section, we describe the application of RADIS to solve Bayesian inverse problems.
We have already considered the case of obtaining a surrogate function for the (unnormal-
ized) density π (or log π). We here focus on inverse inference problems where our aim is
also to obtain an emulator of the costly forward model. More specifically, let us consider
a generic Bayesian inversion problem

y = h(x) + v. (5.30)

where h(x) : Rdx → Rdy represents a non-linear mapping defining a physical or mecha-
nistic model (e.g. a complex energy transfer model, a climate model subcomponent inte-
grating subgrid physical processes, or a set of differential equations describing a chemical
diffusion process) and v has a multivariate Gaussian pdf (e.g., with zero mean and a di-
agonal covariance matrix with σ2 in the diagonal). Considering a prior g(x) over x, the
posterior is

π̄(x) ∝ π(x) = exp
(︄
−

1
2σ2 ∥y − h(x)∥2

)︄
g(x),

which can be costly to evaluate if h(x) is a complex model. In this setting, it is often
required to build an emulator of the physical model h(x) instead of a surrogate function
for the pdf π [64, 35, 7, 78]. However, we can build ˆ︁h(x) using the same procedures in
Sect. 5.4.2, and then obtain

ˆ︁π(x) = exp
(︄
−

1
2σ2 ∥y −ˆ︁h(x)∥2

)︄
g(x),

which can be employed as proposal in our scheme. Hence, in this case, we obtain two
emulators: ˆ︁h(x) of the physical model, and ˆ︁π(x) of the posterior.

In many real-world applications, we have a sequence of inverse problems

yr = h(xr) + vr, r = 1, . . . ,R, (5.31)

where R denotes the number of observation nodes in the network, but the physical model
h is the same for all nodes. See an illustrative example in Fig. 5.4(a). The underlying
graph represents different features and may have different statistical meanings. Moreover,
it can contain prior information directly given in the specific problem. As an example,
consider the case of an image where each pixel is represented as a node in the network,
see Fig. 5.4(b), and the goal is to retrieve a set of parameters x from the observed or sim-
ulated pixels y. This is the standard scenario in remote sensing applications, where the
observations y are very high dimensional (depending on the sensory system and satellite
platform ranging from a few spectral channels to even thousands) and the set of param-
eters x describe the physical characteristics of each particular observation (e.g. leaf or
canopy structure, observation characteristics, vegetation health and status, etc). In other
settings the graph must be also inferred, i.e., the connections should be learned as well. A
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(a) (b)

Figure 5.4: (a) Different inversion problems related to each other involving the same un-
derlying physical model h(·). Their relationships are represented by (dashed lines) edges
between the nodes. (b) Example of network in an image, where each pixel represents
a node of the network. This is the scenario in remote sensing image processing, where
xi represents the physical state parameters to infer from a set of acquired (or simulated)
spectra yi (in this figure, we consider noise-free observations).

simple strategy is to consider the strength of the link is proportional to exp
(︂
−∥yr − y j∥

)︂
,

for instance. Other more sophisticated procedures can be also employed [16]. Given Eq.
(5.31), a piece of the likelihood function is

p(yr|xr) ∝ exp
(︄
−

1
2σ2 ∥yr − h(xr)∥2

)︄
, r = 1, . . . ,R.

Note that the observation model h(·) is shared in all the R nodes. The complete likelihood
function is p(y1:r|x1:r) = p(y1, ..., yR|x1, ..., xR) =

∏︁R
i=1 p(yr|xr). A complete Bayesian

analysis can be considered in this scenario, implementing also RADIS within a particle
filter for an efficient inference. However, it is out of the scope of this work and we leave
it as a future research line.

(a) (b) (c)

Figure 5.5: Evolution of ˆ︁πt from NN-AIS+U through iterations (a) t = 10, (b) t = 50, and (c) t = 100.
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5.8. Numerical experiments

In this section, we provide several numerical tests in order to show the performance of the
proposed scheme and compare them with benchmark approaches in the literature. The
first example corresponds to a nonlinear banana shaped density in dimension dx = 2,
where we compare NN-AIS against standard IS algorithms. The second test is a mul-
timodal scenario with dimension dx = 10, where we test the combination of an AIS
algorithm with NN-AIS against other AIS. An application to an astronomical model is
also given, where we provide a comparison in terms of computation time. Finally, we
consider an application to remote sensing, specifically, we test our scheme in multiple
bayesian inversions of PROSAIL.

5.8.1. Toy example 1: banana-shaped density

We consider a banana shaped target pdf,

π̄(x) ∝ exp

⎛⎜⎜⎜⎜⎜⎜⎝− (η1 − Bx1 − x2
2)2

2η2
0

−

dx∑︂
i=1

x2
i

2η2
i

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.32)

with B = 4, η0 = 4 and ηi = 3.5 for i = 1, ..., dx, where X = [−10, 10] × [−10, 10], i.e.,
bounded domain. We consider dx = 2 and compute in advance Z and the mean of the
target (i.e., the groundtruth) by using a costly grid, so that we can check the performance
of the different techniques.

Estimating Z and µ

We aim to estimate Z = 7.9976 and µ = [−0.4841, 0] with NN-AIS and compare it, in
terms of relative mean squared error (RMSE), with different IS algorithms considering
the same number of target evaluations. The results are averaged over 500 independent
simulations. The goal is to investigate the performance of NN-AIS as compared to other
parametric IS algorithms that consider a proposal, well designed in advance. We set
T = 100 and N = 10, and use 10 starting nodes (random chosen in the domain) to buildˆ︁π1(x|S0). With the selected values of T and N the total budget of target evaluations is
E = 10 + NT = 1010.

Methods. We consider three variants of NN-AIS to illustrate three different scenarios:
in the first one (denoted as NN-AIS) initial nodes uniform in [−10, 10] × [−10, 10], i.e.
good initialization, without q̄par(x); (NN-AIS+U) same initialization with q̄par(x) = 1

|X|
,

i.e. good initialization and with a good choice of q̄par(x); (NN-AIS+G) initial nodes are
uniform in [5, 10] × [5, 10] with Gaussian q̄par(x) = N(x|[2, 2]⊤, 32I2), i.e., a bad initial-
ization with a bad choice of the parametric proposal q̄par(x). In all cases, we consider a
fixed value of αt =

1
2 .
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(a) RMSE for Z (b) RMSE for µ

(c) RMSE for µ (d) L2 distance between ˆ︁πt and π versus t

Figure 5.6: (a) RMSE in log-scale for Z as function of evaluations E. (b) RMSE in log-scale for µ as
function of E. (c) RMSE of GP-AIS+U in log-scale for µ as function of E. (d) L2 distance between π andˆ︁πt when the nodes are adaptively obtained by NN-AIS+U (in solid line), and when the nodes are random
and uniformly chosen in the domain (in dashed line), as a function of t.

Furthermore, we compare the NN-AIS schemes with three alternative IS methods: (IS-
U) with uniform proposal in X, which is very good choice of proposal in this problem;
(IS-G⋆) with Gaussian proposal matching the moments of π̄(x), i.e., the optimal Gaussian
proposal; (IS-G⋆+U) with a proposal which is an equally weighted mixture of the two
previous cases. In addition, we also test our algorithm using GPs, denoted GP-AIS+U.

Discussion. As shown in Figures 5.6(a)-(b), NN-AIS and NN-AIS+U outperform the
rest. NN-AIS performs a bit better than NN-AIS+U: the use of a parametric proposal is
safer but entails a loss of performance, trading off exploitation for exploration. In Figure
5.6(a), NN-AIS+G shows worse performance in estimating Z in the early iterations as a
consequence of the bad initialization and bad parametric proposal. However, it quickly
improves and start performing as good as IS-G⋆ and IS-G⋆+U. In Figure 5.6(b), regard-
ing the estimation of µ, our methods perform better than alternative IS algorithms. Figure
5.6(c) shows that GP-AIS+U provides similar performance than NN-AIS+U. Overall,
this simple experiment shows the range of performance of our method: it is best if we use
only our method, provided that we have a good initialization; adding a good parametric
proposal is safer if we do not trust our initialization, showing just a small loss of perfor-
mance w.r.t. the first scenario. In the case both the initialization and parametric proposal
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(a) (b)

Figure 5.7: We show the number of additional evaluations required by IS-U to achieve the same RMSE
than NN-AIS with E = 1010 in (a) the estimation of Z, and (b) the estimation of µ. The red line represents
the RMSE of IS-U as a function of E, while the horizontal line is the RMSE achieved by NN-AIS with
E = 1010. The vertical dash line is at E = 1010.

are wrongly chosen, our method is able to achieve good results and recover quickly from
a bad initialization.

Additional comparison. we have run IS-U for E > 1010 until it reached the same
error in estimation achieved by NN-AIS. The results are depicted in Figures 5.7. Specifi-
cally, in Figure 5.7(a) we see that around 29000 more evaluations are needed to obtain the
same error in estimating Z, and Figure 5.7(b) shows that around 7000 more evaluations to
obtain the same error in estimating µ.

Convergence of ˆ︁πt to π

The convergence of ˆ︁πt to π depends on the fact that nodes should fill the space enough
(see 5.10.1). However, some filling strategies yield a faster convergence than others. In
our simulations, we aim to show that the construction provided by NN-AIS+U converges
faster than another construction using nodes random and uniformly chosen in the domain
X. Figures 5.5 and 5.6(d) show that the approximation ˆ︁πt obtained by NN-AIS+U is
indeed converging to π as t increases. In Figure 5.6(c), we show the L2 distance between
π and ˆ︁πt with random nodes (in dashed line), and by NN-AIS+U (in solid line), along
with the number of iterations t. As shown in Figure 5.6(d), theˆ︁πt gets more rapidly closer
to π in L2 when the nodes are sampled from NN-AIS+U rather than only adding random
points, uniformly over the domain.

Comparing NN-AIS+U with different values of L

In our proposed approach, we need to evaluate L times the approximation ˆ︁πt at each
iteration. The computation cost of the algorithm thus scales with L, which needs to be
big enough (and bigger than N) so that the resampling step and the estimation of ct are
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accurate. Here, we investigate the performance of NN-AIS+U for several values L ∈
{5000, 10000, 25000, 50000}. As expected, Figure 5.8 shows that the performance of the
algorithm deteriorates as we lower the value of L. However, note that all NN-AIS scheme
with the considered L perform better compared to standard IS with uniform proposal.

(a) (b)

Figure 5.8: Performance of NN-AIS+U with different choices of L ∈ {1000, 5000, 10000, 25000, 50000}
in (a) the estimation of Z, and (b) the estimation of µ. The red curve represents the RMSE of IS-U as a
function of E.

Results of the parsimonious constructions

In the vanilla version of RADIS, the approximationˆ︁πt is refined by adding the N samples
drawn at iteration t to the set of active nodes. Since we consider non-parametric approx-
imations, this implies that ˆ︁πt becomes more complex, i.e. more costly to evaluate, as t
grows. In Sect. 5.6, we showed means of controlling the complexity of ˆ︁πt by the com-
putation of acceptance probabilities: instead of adding all the samples, the n-th sample is
added with certain probability. Here, we test the application of several acceptance proba-
bilities to NN-AIS+U and compare the performance with respect to NN-AIS+U that ac-
cepts all nodes. We also examine the complexity, in terms of number of nodes, of the final
emulator. Specifically, we consider the acceptance functions A1 in Eq. (5.25), A2 in Eq.
(5.26) and A3 in Eq. (5.27). We also test three variants of the improper acceptance func-
tion in Sect. 5.6.2, namely F(x) = π(x), F(x) = |π(x)−ˆ︁πt(x)| and F(x) = |π(x)−ˆ︁πt(x)|ˆ︁πt(x).
The results are given in Figures 5.9, Figure 5.10 and Figure 5.11. Note that NN-AIS+U
(ALL) represents the vanilla version NN-AIS+U in Table 5.1, adding all the nodes at the
Step 3.

Figure 5.9(a) shows the application of the acceptance probability A2 for different
choices of α and β using the updating scheme in Table 5.3. Recall that, when α or β are
0, the acceptance probability is 0. When α ≫ 1 and β > 0, the nodes are added in a
space-filling fashion. On the contrary, when β ≫ 1 and α > 0, the nodes are added by
accounting for the discrepancy between π and ˆ︁πt. We note that the former strategy works
better than the latter, as shown in Figure 5.9(a). Moreover, the performance is better when
α = β = 1, that is, both strategies at the same time. As α and β grow, we recover the per-
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(a) (b) (c)

Figure 5.9: Performance of NN-AIS+U with acceptance function from Eq. (5.26) for different choices
of α and β, in (a) the estimation of Z. Number of nodes versus t in (b) in linear scale, and (c) in logarithm
scale. The black solid curve represents the number of nodes of NN-AIS+U that accepts all.

formance of the NN-AIS+U accepting all samples. Figure 5.10(a) shows the number of
nodes of the final constructed emulators. We see that the choice α = β = 100 produces
an approximation ˆ︁πt that has only half of the nodes of the algorithm accepting all the
samples, but achieves the same level of precision in the estimation. We also tested the
acceptance functions based on resampling in Eq. (5.28). The results are given in Figures
5.9(c) and 5.10(c). We also tested the acceptance functions A1 and A3, each one with the
two possible updating schemes from Tables 5.2 (non-sequential) and 5.3 (sequential). As
shown in Figure 5.9(b), the acceptance function A3 provides better results than A1. For
both, the use of a sequential updating scheme improve the results. Figure 5.10(b) shows
the number of final nodes of the emulator. We can observe that several parsimonious
schemes provide very good performance, close to the vanilla NN-AIS+U (with a much
smaller number of added nodes).

Finally, in Figure 5.11 we compare the best parsimonious schemes with the vanilla NN-
AIS+U method, showing their RMSE as function of the total number of added nodes at
each iterations. Furthermore, as the dashed line in Figure 5.6(d), we have compared with
an NN-AIS+U scheme where N nodes are added at each iteration but chosen randomly in
the space (instead of adding the nodes obtained in the inner resampling in Step 3 of Table
5.1). The corresponding curve is shown with a dashed line. The end point of each curve
is highlighted with greater black circle. The reason is that this last point is completely
comparable among the different curve since, at this point, we have the same number of
target evaluations E. Therefore, observing these last points, we can see that all the parsi-
monious schemes achieve the same or smaller error than the vanilla NN-AIS+U, with a
smaller number of added nodes.
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(a) (b) (c)

Figure 5.10: Final number of added nodes for the construction of the emulator for NN-AIS+U with
several acceptance functions of different parsimonious schemes.

Figure 5.11: RMSE for NN-AIS+U with different acceptance functions (choosing the best schemes in
the previous tests), versus the total number of added nodes at each iteration. We have also incorporated a
curve (depicted with dashed line) of an NN-AIS+U scheme where N nodes are added at each iteration but
chosen randomly in the space (instead of adding the nodes obtained in the inner resampling in Step 3 of
Table 5.1). The end point in each curve is highlighted with greater black circle. The reason is that this last
point is completely comparable among the different curve since, at this point, we have the same number of
target evaluations E. Observing these end points, we see that all the parsimonious schemes shown in the
figure provide the same or smaller error than the vanilla NN-AIS+U, with a smaller number of added nodes.

5.8.2. Toy example 2: multimodal density

In this experiment, we consider a multimodal Gaussian target in dx = 10,

π̄(x) =
1
3
N(x|µ1,Σ1) +

1
3
N(x|µ2,Σ2) +

1
3
N(x|µ3,Σ3),

with µ1 = [5, 0, . . . , 0], µ2 = [−7, 0, . . . , 0], µ3 = [1, . . . , 1] and Σ1 = Σ2 = Σ3 = 42I10.
We want to test the performance of the different methods in estimating the normalizing
constant Z = 1. Specifically, our aim is to test the combination of our NN-AIS scheme
with an AIS algorithm against other AIS algorithms. The budged of target evaluations is
E = 1000.

Methods. We consider three sophisticated AIS schemes, namely population Monte Carlo
(PMC)[10], layered adaptive IS (LAIS)[48] and adaptive multiple IS (AMIS)[14]. These

132



are AIS algorithms where the proposal (or proposals) gets updated at each iteration using
information from previous samples. Specifically, PMC performs multinomial resampling
to locate the proposals in the next iteration; AMIS matches the mean of the single pro-
posal with the current estimation of the posterior mean using all previous samples; LAIS
evolves the location parameters of the proposals with a MCMC algorithm. The goal is to
compare the performance of PMC, LAIS and AMIS with a combination of our NN-AIS
scheme and LAIS.
We set Gaussian pdfs as the proposal pdfs for all methods. We also need to set the number
of these proposals in PMC and LAIS, as well as the dispersion of the Gaussian densities.
For PMC, we test different number of proposals NPMC ∈ {10, 100, 200, 500}, whose means
are initialized at random in [−15, 15]10. At each iteration of PMC, one sample is drawn
from each of the NPMC proposals, hence the algorithm is run for TPMC =

1000
NPMC

iterations
for a fair comparison. As a second alternative, we consider the deterministic mixture
weighting approach for PMC, which is shown to have better overall performance, de-
noted DM-PMC [63, 81].
For LAIS, we also test different number of proposals NLAIS ∈ {10, 100, 200, 500}. We
consider the one-chain application of LAIS (OC-LAIS), that requires to run one MCMC
algorithm targeting π̄(x) to obtain the NLAIS location parameters, hence it requires NLAIS

evaluations of the target. Then, at each iteration of LAIS, one sample is drawn from the
mixture of proposals, hence we run the algorithm for TLAIS = 1000 − NLAIS iterations for
a fair comparison. For simplicity, we also consider Gaussian random-walk Metropolis to
obtain the NLAIS means.
Finally, we consider AMIS with several combinations of number of iterations TAMIS and
number of samples per iteration M. At each iteration, M samples are drawn from a single
Gaussian proposal, hence the total number of evaluations is E = MTAMIS. In this case, we
test E ∈ {1000, 2000, 3000, 5000}, so the comparison is not fair (penalizing our approach)
except for E = 1000.
Regarding our method, we use a mixture of NLAIS ∈ {100, 200, 500} proposal pdfs ob-
tained by LAIS as q̄par(x) as in Eq. (5.21) (we also use the means of these proposals as
initial nodes). We vary N, and run our combined scheme for T = E−NLAIS

N , keeping the
number of target evaluations E = 1000. For PMC, LAIS and AMIS, as well as for the
random walk proposal within the Metropolis algorithm, the covariance of the Gaussian
proposals was set to ξ2I10 and we test ξ = 1, ..., 6. All the methods are compared through
the mean absolute error (MAE) in estimating Z, and the results are averaged over 500
independent simulations.
The results are shown in Table 5.5, Table 5.6 and Table 5.7. We can see that NN-
AIS+LAIS provides more robust results than only using LAIS. Namely, NN-AIS+LAIS
obtains the same or a lower MAE than LAIS, depending on choice of the different param-
eters. Overall, the proposed scheme outperforms all the other benchmark AIS methods
such as PMC, DM-PMC, LAIS and AMIS easily, even considering more target evalua-
tions (penalizing our scheme) as shown in Table 5.7.
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Table 5.5: MAE for Z with E = 1000 (best and worst MAE of each method are bold-
faced)

Methods ξ = 1 ξ = 2 ξ = 3 ξ = 4 ξ = 5 ξ = 6

PMC

NPMC = 10 0.9993 0.9526 0.8603 0.6743 0.6024 0.6155
NPMC = 100 0.9998 0.9896 0.8853 0.6761 0.5192 0.4544
NPMC = 200 1.0002 0.9893 0.8816 0.7099 0.6389 0.5384
NPMC = 500 0.9995 0.9916 0.9741 0.8700 0.7421 0.6544

DM-PMC

NPMC = 10 0.9991 0.9478 0.8505 0.6009 0.5352 0.5814
NPMC = 100 0.9997 0.8719 0.4490 0.2425 0.1901 0.2193
NPMC = 200 0.9999 0.9321 0.5708 0.3257 0.2374 0.2524
NPMC = 500 1.0000 0.9888 0.7969 0.5009 0.3684 0.3800

OC-LAIS

NLAIS = 10 1.0000 1.0000 0.9992 0.9883 0.9468 0.9079
NLAIS = 100 0.9999 0.8731 0.4434 0.2785 0.2392 0.2870
NLAIS = 200 0.9982 0.7028 0.2418 0.1243 0.1406 0.2070
NLAIS = 500 0.9937 0.4949 0.1221 0.0857 0.1195 0.1786

Table 5.6: MAE for Z with E = 1000 (best of each combination of NLAIS and ξ are
boldfaced)

Methods ξ = 1 ξ = 2 ξ = 3 ξ = 4 ξ = 5 ξ = 6

NN-AIS+LAIS (NLAIS = 100)
N = 50 0.9778 0.3886 0.1334 0.1487 0.1624 0.1968

N = 100 0.9900 0.4152 0.1408 0.1519 0.1853 0.2502
N = 300 0.9907 0.4817 0.1761 0.1466 0.1869 0.2427

NN-AIS+LAIS (NLAIS = 200)
N = 100 0.7662 0.1607 0.1332 0.1179 0.1300 0.2000
N = 200 0.8195 0.2176 0.1001 0.1250 0.1418 0.1854
N = 400 0.8417 0.2954 0.1512 0.1218 0.1522 0.2060

NN-AIS+LAIS (NLAIS = 500)
N = 50 0.2428 0.1801 0.1614 0.1313 0.1190 0.1642

N = 100 0.2905 0.1406 0.1144 0.1046 0.1152 0.1851
N = 250 0.4139 0.1270 0.1226 0.0989 0.1262 0.1783

5.8.3. Inference in an Astronomical model

In recent years, the problem of revealing objects orbiting other stars has acquired large
attention in Astronomy. Different techniques have been proposed to discover exo-objects
but, nowadays, the radial velocity technique is still the most used [30, 3, 80]. The model
is highly non-linear and it is costly in terms of computation time (specially, for certain
sets of parameters). The evaluation of the posterior involves numerically integrating a
differential equation in time or an iterative procedure for solving a non-linear equation.
Typically, the iteration is performed until a threshold is reached, or a certain number of
iterations (e.g., typically 106 iterations), are performed. For the radial velocity model, this
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Table 5.7: MAE for Z of AMIS with E ∈ {1000, 2000, 3000, 5000}. Note that the com-
parison is unfair (penalizing our approach) except for E = 1000.

Methods ξ = 1 ξ = 2 ξ = 3 ξ = 4 ξ = 5 ξ = 6

AMIS
M = 10 0.9998 0.9997 0.9997 0.9996 0.9996 0.9995

E = 1000
M = 100 1.0000 1.0000 1.0000 0.9999 0.9997 0.9990
M = 200 1.0000 1.0000 1.0000 1.0000 0.9998 0.9994
M = 500 1.0000 1.0000 1.0000 1.0000 0.9998 0.9989

AMIS
M = 10 0.9155 0.9117 0.8981 0.8987 0.8891 0.8878

E = 2000
M = 100 0.9998 0.9986 0.9934 0.9784 0.9559 0.9072
M = 200 1.0000 1.0000 0.9998 0.9981 0.9888 0.9712
M = 500 1.0000 1.0000 1.0000 0.9998 0.9984 0.9953

AMIS
M = 10 0.3293 0.3402 0.3051 0.3381 0.3540 0.3443

E = 3000
M = 100 0.9725 0.9040 0.7963 0.6384 0.4964 0.3816
M = 200 0.9998 0.9977 0.9884 0.9527 0.8308 0.7119
M = 500 1.0000 1.0000 0.9998 0.9988 0.9859 0.9566

AMIS
M = 10 0.0766 0.0768 0.0695 0.0722 0.0699 0.0725

E = 5000
M = 100 0.1626 0.1176 0.0957 0.0810 0.0737 0.0656
M = 200 0.8771 0.6040 0.2824 0.1473 0.1163 0.0899
M = 500 1.0000 0.9982 0.9904 0.9449 0.7944 0.4532

is needed for solving Eq. (5.36) described below. In the following, we describe an orbital
model, which is equivalent for any N-body system observed from Earth, i.e. exoplanetary
systems, binary stellar system, double pulsars, etc.

Likelihood function and prior densities

When analysing radial velocity data of an exoplanetary system, it is commonly accepted
that the wobbling of the star around the centre of mass is caused by the sum of the grav-
itational force of each planet independently and that they do not interact with each other.
Each planet follows a Keplerian orbit and the radial velocity of the host star is given by

yk = V0 +

S∑︂
i=1

ζi
[︁
cos

(︁
ui,k + ωi

)︁
+ ei cos (ωi)

]︁
+ ξk, (5.33)

with k = 1, . . . ,K. The number of objects in the system is S , that is consider known
in this experiment (for the sake of simplicity). Note that the iteration index i = 1, ..., S
denotes the i-th object/planet. Both yk, ui,k depend on time t, and ξk is a Gaussian noise
perturbation with variance σ2

e . For simplicity, we consider this value known, σ2
e = 1. The

meaning of each parameter in Eq. (5.33) is given in Table 5.8. The likelihood function is
defined by (5.33) and some indicator variables described below. The angle ui,k is the true
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Table 5.8: Description of parameters in Eq. (5.33).

Parameter Description Units
For each planet
ζi amplitude of the curve m s−1

ui,k true anomaly rad
ωi longitude of periastron rad
ei orbit’s eccentricity . . .
Pi orbital period s
τi time of periastron passage s
Below: not depending on the number of objects/satellite

V0 mean radial velocity m s−1

anomaly of the planet i and it can be determined from

dui,k

dt
=

2π
Pi

(︁
1 + ei cos ui,k

)︁2

(1 − ei)
3
2

(5.34)

This equation has analytical solution. As a result, the true anomaly ui,k can be determined
from the mean anomaly Mi,k. However, the analytical solution contains a non linear term
that needs to be determined by iterating. First, we define the mean anomaly Mi,k as

Mi,k =
2π
Pi

(t − τi) , (5.35)

where τi is the time of periastron passage of the planet i and Pi is the period of the orbit
(see Table 5.8). Then, through the Kepler’s equation,

Mi,k = Ei,k − ei sin Ei,k, (5.36)

we have to obtain Ei,k, which is the eccentric anomaly. Equation (5.36) has no analytic
solution and it must be solved by an iterative procedure. A Newton-Raphson method is
typically used to find the roots of this equation [66]. For certain sets of parameters this
iterative procedure can be particularly slow.

Finally, we can also obtain ui,k from

tan
ui,k

2
=

√︃
1 + ei

1 − ei
tan

Ei,k

2
, (5.37)

Hence, the vector of variables to infer, x, is

x = [V0, ζ1, ω1,t, e1, P1, τ1, . . . , ζS , ωS , eS , PS , τS ], (5.38)

For a single object (e.g., a planet or a natural satellite), the dimension of x is dX = 5+1 = 6,
with two objects the dimension of x is is dx = 11 etc. Generally, we have dx = 1 + 5S .
Note that the observation model in Eq. (5.33) induces the likelihood function p(y|x),
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where y = [y1, ..., yK].
Priors. As prior densities we consider uniform pdfs in the following intervals: V0 ∈

[−20, 20], ζi ∈ [0, 50], ei ∈ [0, 1], Pi ∈ [0, 365], ωi,k ∈ [0, 2π], τi ∈ [0, Pi] (i.e., the
prior is zero outside these intervals), for all i = 1, . . . , S . This means that the likelihood
function is zero when the particles fall out of these intervals. Note that the interval of τi is
conditioned to the value Pi. This parameter is the time of periastron passage, i.e. the time
passed since the object passed the closest point in its orbit. It has the same units of Pi and
can take values from 0 to Pi.

Experiment setting and results

We generate a set of data {yk}
K
t=1 with K = 50, and S = 2 objects (so that dx = 11),

according to the observation model above. We set V = 2, ζ1 = 25, ω1 = 0.61, e1 = 0.1,
P1 = 15, τ1 = 3 (for the first object) and ζ2 = 5, ω2 = 0.17, e2 = 0.3, P2 = 115, τ2 = 25
(for the second object). We compare a standard IS scheme using the prior as proposal
and the NN-AIS+U scheme (using again the prior as uniform proposal component) using
the parsimonious scheme with acceptance function A3 in Eq. (5.27). In NN-AIS+U, we
consider N = 10000, T = 100 and L = 106. The total number of evaluations of the
posterior is then NT = 106 for NN-AIS+U. For the standard IS scheme, we consider
different number of samples {106, 2 · 106, 3 · 106, 4 · 106}. We compute the Relative MSE
(RMSE) in estimation of the 11 parameters in x, averaged over all the components. The
results are also averaged over 200 independent runs. Table 5.9 provides the RMSE and the
computational time, normalized with respect to the time spent by the standard IS scheme
with 106 samples. We can observe that, in order to obtain the same performance of NN-
AIS+U in terms of RMSE, the IS schemes require much more computational time than
NN-AIS+U. Therefore, this is an example with a real-world model where the inequality
(5.22) is fulfilled.

Table 5.9: Relative Mean Square Errors (MSE) and normalized computational time.

Methods NN-AIS+U IS IS IS IS
RMSE 5.755 9.439 7.943 6.524 5.431

normalized time 1.53 1 1.91 3.20 4.17
posterior evaluations (E) 106 106 2 · 106 3 · 106 4 · 106

5.8.4. Retrieval of biophysical parameters inverting an RTM model

In this experiment, we apply NN-AIS to retrieve biophysical parameters of a sequence
of problems involving the radiatrive transfer PROSAIL model. The purpose is to show
the ability of NN-AIS to share information from related inverse problems easily. The
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combined PROSPECT leaf optical properties model and SAIL canopy bidirectional re-
flectance model, also referred to as PROSAIL, have been used for almost two decades to
study plant canopy spectral and directional reflectance in the solar domain [33]. PRO-
SAIL has also been used to develop new methods for retrieval of vegetation biophysical
properties. It links the spectral variation of canopy reflectance, which is mainly related
to leaf biochemical contents, with its directional variation, which is primarily related to
canopy architecture and soil/vegetation contrast. This link is key to simultaneous estima-
tion of canopy biophysical/structural variables for applications in agriculture, plant phys-
iology, and ecology at different scales. PROSAIL has become one of the most popular
radiative transfer tools due to its ease of use, general robustness, and consistent validation
by lab/field/space experiments over the years.
Inversion of PROSAIL. The context is Bayesian inversion of an observation model h(x).8

In our setting, the observation model is PROSAIL, which models reflectance in terms of
leaf optical properties and canopy level characteristics. We choose only leaf optical prop-
erties as the set parameters of interest

x = [S st,Chl,Car,Cbr,Cw,Cm] ∈ R6, (5.39)

described in Table 5.10. In Table 5.11, we show the fixed values of canopy level char-
acteristics, which are determined by the leaf area index (LAI), the average leaf angle
inclination (ALA), the hot-spot parameter (Hotspot), and the parameters of system ge-
ometry described by the solar zenith angle (θs), view zenith angle (θν), and the relative
azimuth angle between both angles (∆Θ). The observation model is y = h(x) + v, where
v ∼ N(0, σ2Idy) with σ = 1. The observed data, denoted y ∈ Rdy with dy = 2101, cor-
responds to the detected spectra. We generated synthetic spectra and the goal is to infer
x studying the corresponding posterior distribution. The Gaussian noise v ∼ N(0, σ2I)
jointly with PROSAIL, h(x), induces the following likelihood function

ℓ(y|x) = N(y|h(x), σ2I). (5.40)

We set the prior g(x) as a product of indicator variables S st ∈ [1, 3], Chl ∈ [0, 100],
Car ∈ [0, 25], Cbr ∈ [0, 1], Cw ∈ [0, 0.05] and Cb ∈ [0, 0.02], i.e., the prior is zero outside
these intervals.9 The complete posterior is then p(x|y) = 1

Z ℓ(y|x)g(x). It is important to
remark that PROSAIL is an highly non-linear model and its inversion is a very compli-
cated problem, as shown in the remote sensing literature [8, 7].
Sequential inversion for image recovery. In remote sensing, the goal is usually to re-
cover an image formed by R pixels. A set of physical parameters xr is associated to the
r-th pixel. Hence, the corresponding vector of observations yr is also associate to each
pixel. We have then a collection of inverse problems, where we desire to retrieve xr

8The MATLAB code of PROSAIL is available in http://teledetection.ipgp.jussieu.fr/
prosail/.

9We have employed the ranges suggested http://opticleaf.ipgp.fr/index.php?page=

prospect.
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given yr, one for each pixel. Mathematically, let consider R measurements, {yr}
R
r=1, as-

sociated each to a different inverse problem, under the PROSAIL model, i.e., a mapping
h(x) : Rdx → Rdy ,

yr = h(xr) + vr, r = 1, . . . ,R. (5.41)

We assume vr ∼ N(0, σ2Idy), for all r = 1, . . . ,R, with dy = 2101, and σ = 1, and thus
we have a R posterior distributions pr(xr|yr) for r = 1, . . . ,R (we recall that xr ∈ R

dx ,with
dx = 6). We solve them sequentially while reusing information. Some examples of data
yr and model values are given in Figure 5.12.

Table 5.10: Description of parameters in Eq. (5.39).

Parameter Description Units
S st structure coefficient —
Chl chlorophyll content µg cm−2

Car carotenoid content µg cm−2

Cbr brown pigment content —
Cw water content cm
Cm dry matter content g cm−2

Table 5.11: Characteristics of the simulation used in the PROSAIL model.

Canopy level
LAI ALA Hotspot θs θν ∆Θ

5 30 0.01 30 10 90

Experiment. In real data settings, physical and geographical patterns are associated to
the parameters xr in the image. In order to check the performance of each algorithm,
we consider synthetic data. Thus, in this experiment, we have also generated synthetic
patterns in order to simulate a real scenario. In particular, we produce six patterns (recall
x ∈ R6) that represent handwritten digits (see Figure 5.13). Hence, in this setting, we have
R = 784 different observation vectors yr, r = 1, . . . ,R, for which we want to estimate the
vectors of true values xr, r = 1, . . . ,R. Each observation corresponds to a single pixel of
a 28×28 image. We also compute the maximum a-posteriori (MAP) of pr(xr|yr), xr,MAP,
as estimate of xr.
Methods. We use the NN-AIS scheme to estimate xr,MAP for r = 1, . . . , 784, and compare
it against IS using the prior as proposal density, in terms of relative squared error and by
looking at the recovered images. As parameters of our scheme we chose Ninit = 1000,
T = 20, N = 250 and L = 105. The Ninit initial points were taken at random in the
domain except for 11 points that were placed in the vertices of the domain. Our scheme
allows for sharing information from problem to the next one, so we also use the ˆ︁xs,MAP

for s = 1, . . . , r − 1 as initial nodes when estimating xr,MAP. Note that this is completely
fair since the model has been already evaluated at those points. The comparison is fair in
terms of model evaluations, with a total of E = 6000 for each r = 1, . . . , 784.
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Results. The results are shown in Figures 5.14 and 5.15. It can be seen that both
standard IS and NN-AIS are able to correctly recover components 2, 4, 5 and 6 of xr

(r = 1, . . . , 784), i.e., the images of “2”, “4”, “5” and “6” in both Figure 5.14 and Figure
5.15 look very close to the true ones (Figures 5.13(b),(d),(e) and (f) respectively). The
images recovered by NN-AIS have lower noise though. The components 1 and 3 of the
xr’s are completely lost with standard IS (see Figure 5.14), whereas NN-AIS is able at
least to achieve to recover the boundaries of the corresponding patterns. Indeed, NN-AIS
obtains a much lower error in estimation, as it is shown in Table 5.12 and Table 5.13.
The difficulty in recovering the components 1 (i.e., S st) and 3 (i.e., Car) deserves further
studies. This issue could be related to some relevant features of PROSAIL (e.g., the av-
erage partial derivatives with respect to these two components). We leave the study of
these specific issues for future work. In Table 5.14, we also show the averaged error in
the spectra produced by both methods as compared to the true observations.

Table 5.12: Relative Mean Absolute Errors (RMAE) for each component (averaged over
all spectra).

Components 1 2 3 4 5 6 Mean
Stand. IS 0.7556 0.4397 2.9431 0.6247 0.2096 0.2782 2.8516

Sequential NN-AIS 0.2045 0.2245 0.8891 0.1985 0.1425 0.1320 1.0715

Table 5.13: Mean Absolute Errors (RMAE) for each component (averaged over all spec-
tra).

Components 1 2 3 4 5 6 Mean
Stand. IS 0.9760 6.1754 9.8204 0.1348 0.0016 0.0012 0.8752

Sequential NN-AIS 0.2641 3.1535 2.9667 0.0428 0.0011 0.0006 0.2985

Table 5.14: Absolute and relative error (averaged over all the pixels) in the transformed
domain (“reconstruction of the spectra”)

Absolute Relative
Stand. IS 66.4395 0.0802

Sequential NN-AIS 11.0844 0.0198

5.9. Conclusions and future lines

In this work, we introduced a novel framework of adaptive importance sampling algo-
rithms. The key idea is the use of a non-parametric proposal density built by a regression
procedure (the emulator), that mimics the true shape of posterior pdf. Hence, the pro-
posal pdf represents also a surrogate model, that is in turn adapted through the iterations
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by adding new support points. The regression (e.g., obtained by nearest neighbors and
Gaussian processes) can be applied directly on the posterior domain or, alternatively, in
just one piece of the likelihood, such as an arbitrary physical model. Drawing from the
emulator is possible by a deep architecture of two nested IS layers. More sophisticated
deep structures, employing a a chain of emulators, have been described.

RADIS is an extremely efficient importance sampling scheme since the emulator (used
as proposal pdf) becomes closer and closer to the true posterior, as new nodes are incor-
porated. As a consequence, RADIS asymptotically converges to an exact sampler under
mild conditions. Several numerical experiments and theoretical supports confirm these
statements. Robust accelerating versions of RADIS have been also presented, as well as
combinations with other benchmark AIS algorithms. Cheap constructions of the emu-
lator have been also discussed and tested. The use of RADIS within a sequential Monte
Carlo scheme will be considered in future works. Furthermore, as future research lines,
we also plan to analyze in depth the PROSAIL inversion problem, approximating the par-
tial derivatives with respect some specific parameters by RADIS. Moreover, we also plan
to consider the adaptation of the auxiliary proposal q̄aux(x), adding also additional layers
in the proposed deep architecture.

Figure 5.12: An example of vector of data yr (hyperspectral reflectances, shown with solid
line) and the model values corresponding to 50 different samples, f(i) = f(x(i)

r ) (dashed
lines). Each component of the vector yr corresponds to a different wavelength (nm).
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Figure 5.13: Patterns of the true parameter values (scaled according to range of each
parameter), i.e., the ground-truths.
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Figure 5.14: Recovered by standard IS. We can observe the difficulty in the retrieval of
the first and third parameter.

5.10. Appendix

5.10.1. Theoretical support

In this section, we discuss several theoretical aspects of RADIS. First, we address the
error in the approximate sampling and evaluation of the interpolating proposal. Then, we
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Figure 5.15: Recovered by NN-AIS. We can observe the retrieval of first and third param-
eter is not completely successful.

show that the adaptive construction of the proposal decreases the distance with respect to
the true target as the number of nodes Jt grows. Finally, we show that this also minimizes
the variance of the IS weights.

Sampling Importance Resampling (SIR)

Let ˆ︁πt(x) the unnormalized interpolating proposal from which we aim to sample. Its
normalizing constant ct is not important in this first part. The SIR method allows to sample
from the density ˆ︁πt by resampling a sample drawn from another auxiliary (importance)
density [73][25, Chapter 24]. This method is also referred as the weighted bootstrap in
[75, Sect. 3.2]. The SIR algorithm is as follows:

1. Draw {x1, . . . , xL} i.i.d. from q̄aux(x), that is a density with fatter tails than ˆ︁πt(x).

2. Calculate the importance weights for each xi

γi = γ(xi) =
ˆ︁πt(xi)
q̄auxxi)

.

3. Resample N (N ≤ L) values {x∗1, . . . , x
∗
N} from {x1, . . . , xL} with probabilities pro-

portional to γi assigned to xi.

If L → ∞, or more precisely L
N → ∞, then the set {x∗1, . . . , x

∗
N} is asymptotically dis-

tributed as ˆ︁πt(x). Thus, the choice of L and N is important for two factors: (i) to reduce
the dependence of the x∗i ’s, and (ii) to have the distribution of x∗i as close toˆ︁πt as possible.
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The relative magnitude between N and L controls this dependence, while only the magni-
tude of L affects how close the distribution of the resampled particle is to the density ˆ︁πt.

Bias and correlation in SIR. Under mild conditions, as L
N → ∞, the density of resampled

particle converges to ˆ︁πt(x). For more details see [28, Sect. 6.2.4], [75, Sect. 3.2] and [72,
page 6 ]. As SIR is an approximate sampling algorithm, it has some bias10. If the first
and second moment of the IS weight γ(x) = ˆ︁π(xi)

q̄aux(x) exists, it can be shown that this bias
vanishes at O(L−1) rate [25, Chapter 24]. In [75, Sect. 3.2], they show the convergence of
the cdf of the resampled particle as L→ ∞ in the the univariate case.
Resampling N times from a unique pool of L samples from q̄aux(x) introduces correlation
in the resampled sample. However, when N ≪ L, this correlation is negligible. Some
heuristics suggest L

N = 20 [73], or L
N ≥ 10 [75]. For more details in the relation of the

values of L and N see [25][Sect. 24.3]. In [45] (see Figure 5 and Appendix A therein),
it is shown the “equivalent” density of a resampled particle for a fixed value of L, which
converges to the target pdf as L diverges. Furthermore, for computing the denominator of
the outer weights we need the normalizing constant of ˆ︁πt (see Eq. (5.11)). In this sense,
the inner IS also provides with an approximation by using the L samples from q̄aux(x),

ˆ︁ct =
1
L

L∑︂
ℓ=1

ˆ︁πt(zℓ)
q̄aux(zℓ)

. (5.42)

This estimate converges as L→ ∞ [71].

Variance of the IS weights

Let w(x) = π(x)
q̄(x) be the weight function evaluated at samples x ∼ q̄(x). First of all, note

that E[w(x)] = Z. Below, we show that the variance of w(x) is proportional to the Pearson
divergence between the posterior π̄ and proposal q, i.e.,

var[w(x)] =
∫︂
X

(w(x) − Z)2q̄(x)dx (5.43)

=

∫︂
X

(︄
π(x) − Zq̄(x)

q̄(x)

)︄2

q̄(x)dx (5.44)

= Z2
∫︂
X

(π̄(x) − q̄(x))2

q̄(x)
dx = Z2χ2(π̄∥q), (5.45)

where χ2(π̄∥q) =
∫︁
X

(π̄(x)−q̄(x))2

q̄(x) dx, is the Pearson divergence and we have used π̄(x) =
1
Zπ(x). Hence, if we construct a proposal such χ2(π̄∥q)→ 0, we would obtain var[ˆ︁Z] = 0.
Moreover, the mean square error (MSE) of ˆ︁I can also be shown to be bounded by this
divergence (see e.g. [1])

E[|I −ˆ︁I|2] ≤
C f (χ2(π̄∥q̄) + 1)

N
. (5.46)

Thus, it is beneficial to reduce the χ2(π̄∥q̄) in order to obtain accurate IS estimators.
10Measured as the difference in the probability of some set between the target pdf and the “equivalent”

pdf
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Pearson divergence and Lp distances

Now, we aim to show that χ2(π̄∥q̄) can be bounded in terms of the L2 and L∞ distances, be-
tween π̄(x) and q̄(x). Using Holder’s inequality and the fact that pdfs are always positive,
we can write

χ2(π̄∥q̄) =
∫︂
X

|π̄(x) − q̄(x)|
|π̄(x) − q̄(x)|
|q̄(x)|

dx =
⃦⃦⃦⃦⃦
⃦(π̄ − q)

(︄
π̄ − q̄

q̄

)︄⃦⃦⃦⃦⃦
⃦

L1

≤ ∥π̄ − q̄∥L2

⃦⃦⃦⃦⃦
π̄ − q̄

q̄

⃦⃦⃦⃦⃦
L2

. (5.47)

The L2 distance can be easily shown to be bounded by L∞ distance (considering a bounded
domain X), i.e.,

∥π̄ − q̄∥L2 =

(︄∫︂
X

|π̄(x) − q̄(x)|2dx
)︄ 1

2

≤
(︂
|X|max |π̄(x) − q̄(x)|2

)︂ 1
2

= |X|
1
2 ∥π̄ − q̄∥L∞ . (5.48)

Similarly, we have ⃦⃦⃦⃦⃦
π̄ − q̄

q̄

⃦⃦⃦⃦⃦
L2

≤ |X|
1
2

⃦⃦⃦⃦⃦
π̄ − q̄

q̄

⃦⃦⃦⃦⃦
L∞

. (5.49)

Thus, we can obtain the following result regarding the L∞ distance,

χ2(π̄∥q̄) ≤ |X|
⃦⃦⃦⃦⃦
π̄ − q̄

q̄

⃦⃦⃦⃦⃦
L∞

∥π̄ − q̄∥L∞ . (5.50)

Since we choose q̄ in order to have fatter tails than π̄ and since q̄, π̄ are bounded, then the
factor ∥ π̄−q̄

q̄ ∥L∞ in (5.50) vanishes to zero if ∥π̄ − q̄∥L∞ → 0. Therefore, if ∥π̄ − q̄∥L∞ → 0,
we have χ2(π̄∥q̄)→ 0. Due to (5.48)-(5.49), this result is also valid for the L2 distance. In
this work, we consider q̄ = q̄t =

1
ct
ˆ︁πt such ∥π −ˆ︁πt∥L∞ → 0 as t → ∞ (see section below),

and thus ∥π̄ − 1
ct
ˆ︁πt∥L∞ → 0, that implies χ2(π̄∥ 1

ct
ˆ︁πt)→ 0.

Convergence of the emulator to target function

For simplicity, let us focus on the interpolation case and a bounded X. Here, we show that
the interpolating constructions of Sect. 5.4.2, jointly with the adaptation process, lead to
a proposal 1ˆ︁ct

ˆ︁πt(x) that converges to π̄(x). Since ˆ︁ct is an unbiased estimation of the area
below ˆ︁πt(x), we focus on the convergence of ˆ︁πt(x) to the unnormalized posterior π(x).
As ˆ︁πt(x) → π(x), then ˆ︁ct → Z. In Sect. 5.5, we have introduced an extra parametric
density q̄par(x) to also ensure that new points can be added in any region of the domain X
during the adaptation. We show below that, when using the NN or GP constructions, the
approximation error of ˆ︁πt depends on a quantity called fill distance,

rt = max
x

min
i=1,...,Jt

∥x − xi∥2, (5.51)

145



which measures the filling of the space. In other words, the greater the fill distance, the
less covered the space is. For both constructions, decreasing the fill distance ensures thatˆ︁πt(x) converges in L∞ norm to π(x). Using a q̄par(x) that is not negative inX ensures every
region will be covered eventually, i.e., rt → 0 as t → ∞.

NN construction. If π is Lipschitz continuous, we have that⃦⃦⃦
π −ˆ︁πt

⃦⃦⃦
∞
≤ L0rt, (5.52)

where L0 is the Lipschitz constant and rt denotes the fill distance [40][App. D.4]. Equiv-
alently, we have [6] ⃦⃦⃦

π −ˆ︁πt

⃦⃦⃦
∞
≤ L0 max

i=1,...,Jt
diam(Ri), (5.53)

that is, the approximation error is bounded by the biggest Voronoi cell. Covering the space
(not necessarily with uniform points) ensure that maxi diam(Ri) → 0 [15] (equivalently
rt → 0), and thus ˆ︁πt → π as t → ∞.

GP construction. First, we recall a result valid when the GP regression is applied on
π, not a transformation. It can be shown that the approximation error ∥π−ˆ︁πt∥∞ is bounded
in terms of the fill distance (e.g. see [40][Sect. 7] and references therein)

∥π −ˆ︁πt∥∞ = O(λ(rt)). (5.54)

The speed of convergence, i.e., the functional form of λ(rt), depends on the choice of ker-
nel (e.g. under some circumstances and with Gaussian kernel, λ(rt) decays exponentially
when rt → 0).
In case we do not approximate π(x) directly, but we build an emulator of log π(x) or just
on the physical model h(x), it is also possible to show the convergence of the posterior
approximation. See, for instance, the error bounds in [77, Theorem 4.2].

5.10.2. A special interesting case for NN-AIS

Here, We focus on NN-AIS. We consider a bounded X and building ˆ︁πt with a nearest
neighbor (NN) approach. In Sect. 5.4.2, we show that the NN emulator at iteration t is
given by

ˆ︁πt(x) =
Jt∑︂

i=1

π(xi)IRi(x) =
Jt∑︂

i=1

π(xi)|Ri|

[︄
1
|Ri|
IRi(x)

]︄
, (5.55)

=

Jt∑︂
i=1

νi pi(x), (5.56)

where |Ri| is the measure of i-th Voronoi region (see Eq. (5.18) for the definition of Ri),
νi = π(xi)|Ri|, and pi(x) = 1

|Ri |
IRi(x) are uniform densities overRi. Hence,ˆ︁πt(x) is a mixture
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of Jt uniform densities where the mixture weight is proportional to νi. The normalizing
constant of ˆ︁πt(x) is given by

ct =

Jt∑︂
i=1

νi =

Jt∑︂
i=1

π(xi)|Ri|, (5.57)

so that the normalized proposal based on the NN emulator is

1
ct
ˆ︁πt(x) =

1
ct

Jt∑︂
i=1

νi pi(x) =
Jt∑︂

i=1

ν̄i pi(x),

where
ν̄i =

νi

ct
=

π(xi)|Ri|∑︁Jt
j=1 π(x j)|R j|

, i = 1, ...,N,

are also normalized. In order to sample 1
ct
ˆ︁πt(x), we would first (i) draw an index i∗ from

the set {1, . . . , Jt} with probabilities ν̄i =
1
ct
νi (i = 1, . . . , Jt), and then (ii) sample from

pi∗(x). In practice, we do not know the measures |Ri| and we are not able to draw sam-
ples uniformly in Ri. Hence, we use SIR method to solve the problem drawing from an
auxiliary pdf q̄aux(x) (see 5.10.1), as we have proposed in RADIS. Namely, we resample
from the set {zt,ℓ}

L
ℓ=1 ∼ q̄aux(x) with probabilities proportional to γt,ℓ =

ˆ︁πt(zt,ℓ)
q̄aux(zt,ℓ)

. Below, we
consider the special case that q̄aux(x) is uniform.

Approximating ν̄i’s. Let choose an uniform auxiliary density q̄aux(x), i.e., q̄aux(x) = 1
|X|

for all x ∈ X. We draw {zt,ℓ}
L
ℓ=1 from the uniform q̄aux(x). Then, the IS weight associated

with the ℓ-th sample is
γt,ℓ ∝ˆ︁πt(zt,ℓ) = π(xkℓ),

where
xkℓ = arg min

xk∈St
∥xk − zℓ∥,

i.e., xkℓ represents the NN of zℓ within the set of Jt nodes. Consider now the i-th node xi.
All samples whose NN is xi have weight proportional to π(xi). We denote those samples
as the set

Ui = {zt,ℓ : xi = arg min
xk
∥xk − zt,ℓ∥}. (5.58)

The number of samples within Ui can be written as |Ui| =
∑︁L
ℓ=1 I(xkℓ = xi). The proba-

bility of resampling a zt,ℓ that comes fromUi is proportional to |Ui|π(xi) (since there are
|Ui| samples with weight π(xi)). As L → ∞, by the law of large numbers, we have these
probabilities converge to the true ones

|Ui|π(xi)∑︁Jt
k=1 |Uk|π(xk)

→
|Ri|π(xi)∑︁Jt

k=1 |Rk|π(xk)
= ν̄i. (5.59)

Rejection sampling. Note also that the samples withinUi form a particle approximation
of the uniform density over Ri. Indeed, taking one sample at random fromUi corresponds
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to applying rejection sampling on pi(x). In order to see this, consider the rejection sam-
pling setting where pi(x) is the target probability and q̄aux(x) = 1

|X|
is the proposal. Note

that pi(x)
q̄aux(x) =

|X|

|Ri |
for all x ∈ Ri, and pi(x)

q̄aux(x) = 0 for all x ∉ Ri, so q̄aux(x) is a valid proposal for
rejection sampling with rejection constant M = |X|

|Ri |
[49, Chapter 3]. In rejection sampling,

we draw z ∼ q̄aux(x), u ∼ U[0, 1] and accept z if

u
|X|

|Ri|
q̄aux(z) ≤ pi(z). (5.60)

If the condition holds, z is an independent sample from pi(x). Otherwise we reject z, draw
another candidate z and so on. Note that, when z ∈ Ri, we have

u
|X|

|Ri|

1
|X|
≤

1
|Ri|
⇐⇒ u ≤ 1, (5.61)

so we always accept all z’s that are closest to node xi, becoming i.i.d. samples from pi(x).
Conversely, when z ∉ Ri, we have the condition u ≤ 0 that never holds, so that we always
reject them. Namely, the setUi contains i.i.d. samples from pi(x), that have been obtained
by rejection sampling.
Summary. With the particular choice q̄aux(x) = 1

|X|
for all x ∈ X, the SIR approach in

NN-AIS is equivalent to (i) estimating by Monte Carlo the mixture probabilities ν̄i, and
(ii) applying rejection sampling to sample uniformly within each Voronoi region Ri.

5.10.3. NN-AIS in unbonded domains

In this section, we recall how to extend the applicability of the nearest neighbor (NN)
construction (see Sect. 5.4.2) when the domain X is unbounded and show how to adapt
the support of NN approximation.

NN-AIS with a fixed support in an unbounded domain

Consider again the following mixture proposal,

φt(x) = αtq̄par(x) + (1 − αt)
1
ct
ˆ︁πt(x), (5.62)

where αt ∈ [0, 1] for all t, and q̄par(x) is parametric pdf that covers properly the tails of the
posterior π. Namely, q̄par(x) is defined in the unbounded domain X of π, whereas ˆ︁πt(x)
is built considering a bounded support D ⊂ X, decided in advance by the user. Hence,
φt is a valid proposal when using NN-AIS with unbounded X. In this simple scenario,D
is fixed and does not vary with the iteration t. However, the information provided by the
samples from q̄par(x) can be used to expand the support of ˆ︁πt, i.e., such it has an adaptive
support, as described below.
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Adapting support in NN-AIS

Let X be unbounded and ˆ︁πt be the surrogate model built with NN. LetDt ⊂ X denote the
compact subset of X where ˆ︁πt is defined, i.e., ˆ︁πt is zero outsideDt. Note thatDt depends
on t. The set of current nodes St is used to define the boundaries ofDt. One possible way
is as follows: Take Dt as the hyperrectangle whose edges are defined by the maximum
and minimum value, in each dimension, of the set St, i.e.,

Dt = {x ∈ X : min
st−1∈St−1

sd,t−1 ≤ xd ≤ max
st−1∈St−1

sd,t−1, d = 1, . . . , dx}, (5.63)

where xd denotes the d-th element of x, st−1 = [s1,t−1, . . . , sdx,t−1] ∈ St−1 and St−1 denotes
the set of nodes at iteration t. After adding new nodes, we update the bounds of the
hyperrectangle. Note that only samples from q̄par(x) that fall outside Dt will expand it.
Note that, the size of Dt is always increasing but controlled by the tail of π̄. Indeed,
the candidate samples drawn in the tails of π̄ will have very low values of π, so that the
probability of sampling those regions will be negligible (then these regions will be never
used). In the case we use a uniform q̄aux(x) in Dt to sample ˆ︁πt, note that q̄aux(x) actually
depends on t and is changing at every iteration wheneverDt changes.
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Abstract

This survey gives an overview of Monte Carlo methodologies using surrogate models, for dealing

with densities which are intractable, costly, and/or noisy. This type of problem can be found in nu-

merous real-world scenarios, including stochastic optimization and reinforcement learning, where

each evaluation of a density function may incur some computationally-expensive or even physical

(real-world activity) cost, likely to give different results each time. The surrogate model does not

incur this cost, but there are important trade-offs and considerations involved in the choice and

design of such methodologies. We classify the different methodologies into three main classes

and describe specific instances of algorithms under a unified notation. A modular scheme which

encompasses the considered methods is also presented. A range of application scenarios is dis-

cussed, with special attention to the likelihood-free setting and reinforcement learning. Several

numerical comparisons are also provided.

Keywords: Noisy Monte Carlo; Intractable Likelihoods; Approximate Bayesian Compu-
tation; Pseudo Marginal Metropolis; Surrogate models.

6.1. Introduction

Bayesian methods and their implementations by means of sophisticated Monte Carlo
techniques, such as Markov chain Monte Carlo (MCMC) and importance sampling (IS)
schemes, have become very popular [56, 39]. In the last years, there is a broad interest in
performing Bayesian inference in models where the posterior probability density function
(pdf) is analytically intractable, and/or costly to evaluate, and/or its evaluation is noisy.
Namely, there are several practical situations where the posterior distribution cannot be
evaluated pointwise or its evaluation is expensive [25, 2, 49, 42]. Such models occur in a
wide range of applications including spatial statistics, social network analysis, statistical
genetics, finance, etc. For instance, (a) for the use of massive datasets where the like-
lihood consists of a product of a large number of terms [10], or (b) for the existence of
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a large number of latent variables that we should marginalize out (hence, the posterior
pdf can be obtained only solving a high dimensional integral) [5]. Moreover, another
scenario is (c) when a piece of likelihood function is analytically unknown and it should
be approximated [49, 25]. The intractable likelihood models arising from, for example,
Markov random fields, such as those found in spatial statistics and network analysis [58].
In many settings, (d) the likelihood function is induced by a complex stochastic computer
model which is costly to evaluate pointwise [40]. (e) In other application fields, such as
reinforcement learning, a target function (usually a policy) cannot be exactly evaluated
neither quickly nor precisely, since such an evaluation corresponds to interaction with an
environment (possibly in the real world) which is inherently lengthy to obtain and sus-
ceptible to contamination by noise perturbation. Hence, the evaluation is obtained with a
certain degree of uncertainty [17].
Noisy computational schemes. The solutions proposed in the literature to performing
the inference in the scenarios (a)-(b)-(c) above, have been carried out using Monte Carlo
algorithms which often consider noisy evaluations of the target density [10, 5, 3, 49].
A natural approach in these cases is to replace the intractable/costly model with an ap-
proximation (or with a pointwise estimation in the case of a noisy model). Thus, the
corresponding Monte Carlo schemes also involve the use a surrogate model via regres-
sion techniques. Furthermore, in the scenario (d), if it is possible to draw artificial data
according the observation model, sometimes is preferable to generate fake data (given
some parameters) and to measure the discrepancy between the generated data and the ac-
tual data, instead of evaluating the costly likelihood function [11, 42]. This approach is
known as Approximate Bayesian Computation (ABC). This area has generated much ac-
tivity in the literature (see, e.g., [55]). The discrepancy measure plays the role a surrogate
model and, due to the stochastic generation of the artificial data, it also adds uncertainty
(i.e., as a noise perturbation) in the internal evaluations within the ABC-Monte Carlo
methods [42]. Finally, The last scenario (e) is intrinsically noisy, so that it also requires
specific computational solutions.

The three different cases above, intractable, costly and noisy evaluations of a poste-
rior distribution can appear and/or can be addressed separately [40, 2, 42]. In all of these
cases, a surrogate model can accelerate the Monte Carlo method or approximate the pos-
terior distribution [18, 50, 59, 34]. As described above, these cases also appear jointly
in real-world applications (specially, if we consider the algorithms designed to address
those issues): ‘intractable and costly’, ‘intractable and noisy’, or ‘costly and noisy’ poste-
rior evaluations, etc. The challenge posed by these contexts has led to the development of
recent theoretical and methodological advances in the literature. Furthermore, surrogate
models have been considered as an alternative to Monte Carlo for approximating com-
plicated integrals. Here, the surrogate is substituted directly into the integral of interest,
instead of the original density (e.g., a posterior). A cubature rule is subsequently obtained,
which makes a more efficient use of the posterior evaluations [14, 36, 37].
Contribution. In this work, we provide a survey of methods which use surrogate models
within Monte Carlo algorithms for dealing with noisy and costly posteriors. Some of them
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have been introduced only in the context of expensive posteriors [18]. Other schemes have
been designed only for improving the efficiency of the Monte Carlo methods considering
a more sophisticated proposal density (see for instance, [44, 40]). However, all of them
can be applied also in a noisy scenario. In Sections 6.2 and 6.3, we provide a general joint
framework which encompasses most of the techniques in the literature. We introduce the
vanilla schemes for noisy MH method (well studied in the literature, e.g., [5, 22]) and
also of a noisy IS scheme (which also has been studied in the literature in works such as
[26, 63]). We focus mainly on the static batch scenario for MCMC and IS algorithms.
However, most of the results presented in this work can be extended to the sequential
framework (consider, e.g., the recent work of [13]).
We classify the studied techniques in different families, and provide several explanatory
tables and figures. More specifically, we divide the algorithms in the literature in three
broad classes: 1) two-stage, 2) iterative refinement, and 3) exact. In Section 6.4, we also
provide detailed descriptions of specific examples of algorithms. For instance, we provide
a generic description of Metropolis-Hastings (MH) schemes on an iterative surrogate. The
moving target MH algorithm is a specific example of this [67]. Then, we describe some
specific implementation of the so-called Delayed Acceptance MH (DA-MH) methods [9].
We also introduce Noisy Deep Importance Sampling (N-DIS) which is a noisy version of
the Deep IS method in [40]. The range of application of the methods described above is
also discussed in Section 6.5. More specifically, we give a detailed description of two sce-
narios: the likelihood-free approach in Section 6.5.1, and the reinforcement learning (RL)
setting in Section 6.5.2 [62, 32]. We test the presented algorithms in different numerical
experiments in Section 6.6. The application to a benchmark RL problem, the double cart-
pole system [31], is given in Section 6.6.3. Finally, we conclude with brief discussion in
Section 6.7.

6.2. General framework

Let us assume that our goal is the study of the unnormalized density p(θ), θ ∈ Θ ⊂ Rd

using Monte Carlo methods. For instance, p(θ) may represent a posterior density in a
Bayesian inference problem. There are two problems: (P1) for any θ, we cannot evaluate
p(θ) exactly, but we only have access to a related noisy realization, and (P2) obtaining
such a noisy realization is expensive. Typically, this occurs in applications where the
function of interest p(θ) is intractable or expensive to evaluate. More specifically, in
many practical cases, we have access to a noisy realization related to p(θ), i.e.,

˜︁m(θ) = H(p(θ), ϵ), (6.1)

where H is a non-linear transformation involving p(θ) and ϵ, that is some noise perturba-
tion. Thus, for a given θ, ˜︁m(θ) is a random variable with

E[˜︁m(θ)] = m(θ), var[˜︁m(θ)] = s2(θ), (6.2)
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for some mean function, m(θ), and variance function, s2(θ). Some examples of noisy
models with the corresponding mean and variance functions are given in Appendix 6.8.3.
The unbiased case, m(θ) = p(θ), appears naturally in some applications, or it is often
assumed as a pre-established condition by the authors. In some other scenarios, the noisy
realizations are known to be unbiased estimates of some transformation of p(θ), e.g., of
log p(θ). This situation can be encompassed by the following special case. If we consider
an additive perturbation,

˜︁m(θ) = G (p(θ)) + ϵ, with E[ϵ] = 0, (6.3)

we have m(θ) = G (p(θ)). If G(·) : R → R is known and invertible, we have p(θ) =
G−1 (m(θ)).

Remark 1. Generally, transforming ˜︁m(θ) into an unbiased realization of p(θ) is not
straightforward, since E[G−1(˜︁m(θ))] ≠ p(θ). However, there are cases such as ˜︁m(θ) =
log p(θ) + ϵ, where we can take ˜︁p(θ) = e˜︁m(θ) which fulfills E[˜︁p(θ)] ∝ p(θ) [34, 23].

In a general case, we can state that m(θ) always contains statistical information related
to p(θ). The subsequent use of m(θ) depends on the specific application. In some settings,
it is also possible to control the noise level, by adding/removing data to the mini-batches
(e.g., in he context of Big Data) or interacting with an environment over longer/shorter
periods of time (e.g., in reinforcement learning). See the Section 6.5 and, in particular,
Section 6.5.2 for more details.
Different noise models have different behaviours of the variance function s2(θ). For in-
stance, an additive Gaussian noise with standard deviation σϵ(θ) is usually assumed in
the noisy optimization literature [7, 35]. The location dependence of σϵ(θ) give rise to
different behaviors. Some authors consider σϵ(θ) ∝ p(θ), i.e., noise strength proportional
to function values, which is interesting in practice [7, 35, 48] (see also Figure 6.2). An il-
lustrative one-dimensional example is provided below, showing a bimodal p(θ) perturbed
with two different noises, and the corresponding m(θ).

Illustrative example in 1D. As an illustration, let us consider the one-dimensional den-
sity p(θ) = 1

2N(θ;−1, 1) + 1
2N(θ; 5, 2), restricted in the finite domain [−8, 17], and two

noisy versions ˜︁m1(θ) = max(0, p(θ) + ϵ), and ˜︁m2(θ) = |p(θ) + ϵ |,

where ϵ ∼ N(0, 0.052). Namely, ˜︁mi(θ), i = 1, 2, correspond to rectified Gaussian and
folded Gaussian random variables, respectively (for any θ). In Figure 6.1-(a), we show
one realization of ˜︁m1(θ). In Figure 6.1-(b), we show the average of ˜︁m1(θ) (empirically and
theoretically). In Figure 6.1-(c), we show the histogram of samples obtained by running
a (pseudo-marginal) MH algorithm on ˜︁m1(θ). In these cases, the expected values do not
coincide with p(θ), i.e., mi(θ) ≠ p(θ). Analytical expressions of mi(θ), as well as s2

i (θ),
can be obtained as shown in App. 6.8.3. The variance behaviors are depicted in Figures
6.2(a)–(b).
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(a) ˜︁m1(θ) (b) m1(θ) and p(θ) (c) histogram of samples

Figure 6.1: (a) The target pdf p(θ) and a realization of ˜︁m1(θ) = max(0, p(θ)+ϵ). (b) Again
the target pdf p(θ) (dashed line), the mean function m(θ) = E[˜︁m(θ)] and its empirical
approximation averaging several realizations. (c) Histogram of the samples generated by
a noisy MCMC scheme.

(a) si(θ) vs θ (b) si(θ) vs p(θ)

Figure 6.2: Behavior of the variance s2
i (θ) in both models. (a) On the left: Plots of

√︂
s2

i (θ)

versus θ for i = 1, 2. (b) Plots of
√︂

s2
i (θ) versus p(θ) for i = 1, 2.

6.2.1. Vanilla schemes for Noisy MH and noisy IS

In this Section, we present two basic Monte Carlo algorithms working with noisy realiza-
tions ˜︁m(θ).
Noisy MH. The standard MH algorithm produces correlated samples from a target distri-
bution p(θ) by sampling candidates from a proposal density which are either rejected or
accepted according to a suitable probability. The evaluation of the target density p(θ) is
required at each iteration. A noisy version of this algorithm is obtained when we substitute
the evaluations of p(θ) (at the candidate points) with a realization of the random variable˜︁m(θ). The algorithm is shown in Table 6.1. If a different noisy realization ˜︁m(θt−1) is
obtained at each iteration, this algorithms is called Monte Carlo-within-Metropolis tech-
nique [46]. On the contrary, if it is recycled from the previous iteration, the algorithm
is called pseudo-marginal MH (PM-MH) algorithm [5]. The latter approach ensures the
algorithm is “exact” (see Theorem 1).
Noisy IS. In a standard IS scheme, a set of samples is drawn from a proposal density q(θ).
Then each sample is weighted according to the ratio p(θ)

q(θ) . Like in the MH case, a noisy

160



version of importance sampling can be obtained when we substitute the evaluations of
p(θ) with noisy realizations of ˜︁m(θ). See Table 6.2.

Theorem 1. Under certain conditions, the estimators constructed from the output of noisy
MH algorithm and noisy IS converge to expectations under m(θ).

Proof. For the MH algorithm, see [5, 6] and App. 6.8.1. For noisy IS, see App. 6.8.2. □

Theorem 2. The noisy estimators derived from noisy MH and noisy IS have higher vari-
ance than their non-noisy counterparts.

Proof. For the MH algorithm, see [6] For noisy IS, see App. 6.8.2. □

Table 6.1: Noisy Metropolis-Hastings (N-MH) algorithms

1. Inputs: Initial state θ0 and realization ˜︁m(θ0).

2. For t = 1, . . . ,T :

(a) Sample θprop ∼ φ(θ|θt−1) and obtain realization ˜︁mnow = ˜︁m(θprop).

(b) In the so-called pseudo-marginal MH (PM-MH) set ˜︁mbef = ˜︁m(θt−1); otherwise, in the so-
called Monte Carlo-within-MH, obtain a new realization ˜︁m at θt−1 and set ˜︁mbef = ˜︁m(θt−1).

(c) With probability

α(θt−1, θprop) = min
{︄

1,
˜︁mnow φ(θt−1|θprop)˜︁mbef φ(θprop|θt−1)

}︄
, (6.4)

accept θprop, i.e., set θt = θprop. Otherwise, reject θprop, i.e., set θt = θt−1.

3 Outputs: the chain {θt}
T
t=1.

Table 6.2: Noisy importance sampling algorithm

1. Inputs: Proposal distribution q(θ).

2. For n = 1, . . . ,N:

(a) Sample θn ∼ q(θ) and obtain realization ˜︁m(θn).

(b) Compute

wn =
˜︁m(θn)
q(θn)

(6.5)

3 Compute normalized weights: w̄n =
wn∑︁N
j=1 w j

, j = 1, . . . ,N.

4 Outputs: the weighted samples {θn, w̄n}
N
n=1.
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6.2.2. Accelerating and denoising by surrogates

The vanilla schemes described above can be improved by building surrogate regression
models ˆ︁m(θ) from the noisy realizations. More specifically, considering the set of J ob-
served points {θi,˜︁m(θi)}Ji=1, we apply a regression model for obtaining ˆ︁m(θ). We assume
to use a surrogate regression model such that ˆ︁m(θ) converges to m(θ) as J → ∞ The loca-
tions of the nodes can be chosen appropriately for ensuring the convergence when J → ∞,
under mild conditions. The accelerated schemes are obtained replacing ˜︁m(θ) with ˆ︁m(θ) in
the Tables 6.1 and 6.2 above. Then, the resulting algorithms target ˆ︁m(θ).

Remark 2. A necessary condition is that the construction of ˆ︁m(θ) must be strictly positive,ˆ︁m(θ) > 0, for all θ where m(θ) > 0.

Remark 3. Note that, if the transformation in Eq. (6.3) is known, we can undo it in
order to obtain ˆ︁p(θ) = G−1(ˆ︁m(θ)) and use it within the algorithms, which will target ˆ︁p(θ),
instead of ˆ︁m(θ).

Remark 4. Even if the transformation G is known in Eq. (6.3), and we can obtainˆ︁p(θ) = G−1(ˆ︁m(θ)), in general we have E[ˆ︁p(θ)] ̸∝ p(θ). One exception is the case
G(p(θ)) = log p(θ), which implies E[ˆ︁p(θ)] = E[G−1(˜︁m(θ))] = E[eϵ p(θ)] = E[eϵ]p(θ) ∝
p(θ).

Clearly, the selection of the design nodes {θi,˜︁m(θi)}Ji=1 is a very important point. In
the Monte Carlo literature, strategies for obtaining the set of design nodes are, for in-
stance, running a pilot MCMC run [23], applying Bayesian experimental design algo-
rithms [34, 61], space-filling heuristics [18, 41], or optimization [12]. In iterative re-
finement, the path of the chain can also be used to update the surrogate, either directly
by including some of the states of the chain [67], or indirectly by guiding the search of
design points with other techniques [18].

Note that the use of a surrogate is beneficial for working with both costly and noisy
target pdfs. In the following, we review different MCMC and IS approaches that can
deal with noisy and expensive target distributions. Some of these methods have been
originally proposed only for the expensive or just noisy case (i.e., in a more restricted
range of application), but they can address the complete problem considered in this work.
A schematic summary of the main notation of the work is given below.

Density Noisy realization Surrogate
p(θ) ˜︁m(θ) = H(p(θ), ϵ) ˆ︁m(θ)

More generally, in the MCMC context, approximations of the whole acceptance ratio can
be built and used instead of the true one. Properties of these “approximate” chains are
studied in [2].
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6.3. Overview and generic scheme

In this Section, we present a general scheme that combines Monte Carlo with the use of
surrogates, which encompasses most of the methods proposed in the literature for costly
or noisy target pdfs. Moreover, we distinguish three main classes of methods: (C1) two-
stage, (C2) iterative refinement, and (C3) exact schemes. Below, we provide a brief
description of each of them.
A graphical representation of the generic scheme is given in Figure 6.3, that is composed
of a series of blocks. Each approach in the literature is formed by a different combination
of blocks (e.g., see Table 6.4). The three main classes C1, C2, C3 have in common the
Block 2, i.e., performing one or more Monte Carlo iterations (e.g., MH or IS) with respect
to (w.r.t.) the surrogate ˆ︁m(θ) instead of ˜︁m(θ).

Remark 5. Note that this block can be viewed as sampling from a non-parametric pro-
posal. Furthermore, the application of Monte Carlo in Block 2 could be substituted with
a direct sampling of the surrogate when it is possible [44].

Blocks 1 and 3 refer to the two possible strategies for building the surrogate. The former
considers an offline construction, that is totally independent of the Monte Carlo algorithm
that will be run afterwards. The latter construction aims to build the surrogate online, i.e.,
during the Monte Carlo iterations. Lastly, Block 4 refers to making a correction for the
fact that we are working w.r.t. ˆ︁m(θ), and ultimately implies obtaining a noisy realization˜︁m(θ). The schemes are presented in increasing order of complexity.

Figure 6.3: General outline of the schemes considered in the work.

Two-stage schemes (offline approximation). This scheme includes blocks 1 and 2. A
two-stage scheme consists in running Monte Carlo algorithm on a fixed surrogate, that has
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been built offline, i.e., before the start of the algorithm. This scheme is preferred when the
computational budget is limited in advance, so it is all devoted to the surrogate construc-
tion. This scheme is very common in, e.g., the calibration of expensive computer codes
[12, 17]. The estimators derived from this scheme are biased (w.r.t. m(θ)). However, since
this scheme does not imply obtaining costly realizations ˜︁m(θ) in the second stage, the al-
gorithms can be run for many iterations and produce estimators with low variance. For
this scheme to be worth, the decrease in variance must compensate the presence of bias.
Recent methods proposed in the literature follow this scheme. For instance, in [23], a
pilot run of Monte-Carlo-within-Metropolis is carried out using unbiased estimates of
the likelihood function, in order to obtain the design points and build a GP surrogate of
log p(θ). In [34], a GP regression model of log p(θ) is built from noisy realizations by
sequentially maximizing sophisticated acquisition functions, derived from Bayesian deci-
sion theory/Bayesian experimental design. In [50], they propose accelerating algorithms
for doubly intractable posteriors by replacing the IS estimates (of the ratio of intractable
constants) with estimates provided by a surrogate. This surrogate is built in a previous
stage using GPs on the outputs of exchange algorithm runs.

Iterative refinement schemes (online approximation). This second scheme comprises
Blocks 1 (optionally), 2 and 3. It considers iteratively building the surrogate along with
the execution of the Monte Carlo algorithm, i.e., ˆ︁mt depends on t. In every iteration, a
test is performed in order to decide if we update the surrogate (i.e., obtain a new noisy
realization ˜︁m(θ)). The surrogate refinement can be made at the end and/or beginning of
the iteration (i.e., Block 3 could be placed before and/or after Block 2). This scheme is
also biased, but a continual refinement of the surrogate can produce an algorithm that is
asymptotically exact (in the sense of approximating m(θ)) [18, 67]. See [20] for contin-
ual refinement strategies of local approximations within MCMC algorithms. Generally
speaking, if the surrogate is improved infinitely often, and in a suitable way (e.g., with a
space-filling strategy), the error between the surrogate ˆ︁mt(θ) and m(θ) will approach zero.
An initial surrogate ˆ︁m0(θ) could be built offline by using some of the strategies of the
methods from the previous scheme. Clearly, constantly changing the target density within
a Monte Carlo algorithm difficult its analysis. Moreover, in MCMC algorithms, updating
the surrogate using past states of the chain produces the loss of Markov property, so (as
in the adaptive MCMC literature) one needs to carefully address this point [67, 18].
Some proposed methods that follow this scheme are [33, 18]. In [33], a GP regression
model of log p(θ) is built online by maximizing acquisition functions derived in order
to decrease the uncertainty in the computation of the MH accept-reject test (i.e., using
Bayesian decision theory/Bayesian experimental design). This algorithm can be consid-
ered as a two-stage procedure if we use a pilot run for the construction. In [18], a local GP
or polynomial approximation is built on log p(θ) and refined over the MCMC iterations
by using space-filling heuristics.

Exact schemes (with correction step). This scheme includes blocks (optionally) 1, 2,
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(optionally) 3 and 4. The main difference w.r.t. the previous schemes is the correction
step. At some iterations of the method, we obtain a noisy realization ˜︁m(θ), in order to
ensure the correctness of the algorithm, which will approximate and/or converge to m(θ).
The underlying idea is to use the surrogate ˆ︁m(θ) as a (non-parametric) proposal density
within a Monte Carlo method that targets m(θ). If ˆ︁m(θ) is a good approximation to m(θ),
we would propose very good candidates. Working with ˆ︁m(θ) is usually cheaper than ob-
taining new realizations ˜︁m(θ). However, the fact that a new realization ˜︁m(θ) has to be
obtained for every “correction” usually prevents significant computational savings. This
scheme can be used with a fixed offline-built surrogate, an online surrogate or combina-
tion of both.
Some examples of methods leveraging surrogate models to produce efficient proposals in
the literature are the following (mostly in the non-noisy context, i.e., ˜︁m(θ) = m(θ) = p(θ)).
In the MCMC context, the delayed acceptance (DA) schemes (see next Section) are two-
step MH algorithms that perform one MH iteration w.r.t. the surrogate and then compute
a corrected acceptance probability for the resulting proposal in order to preserve correct-
ness [16, 9]. Hence, DA schemes rely on approximate sampling from the surrogate via
one MH step. Other works consider an standard MH algorithm where the surrogate is
sampled with direct methods [44]. A rejection sampling (RS) scheme for sampling the
surrogate is applied in [68], where a kriging-based surrogate is built within a delayed re-
jection MH [30]. In the IS context, the authors in [40] propose sampling the surrogate
with IS resampling steps, and then weigh the resulting samples w.r.t. the true target.

Remark 6. Note that the online improvement of the surrogate corresponds to the adapta-
tion of the equivalent proposal of block B2 (see Remark 5) using not only the information
of past samples, but also the history of noisy evaluations of the target.

Table 6.3 provides some examples of methods belonging to this class and specifying the
type of Monte Carlo technique in the blocks 2 and 4. Finally, Table 6.4 provides a sum-
mary of the relationship between the three main classes and the blocks 2 and 4 in Figure
6.3.

Table 6.3: Summary of specific algorithms, attending to the Blocks 2 and 4.

Exact algorithms Block 2 Block 4

Sticky MCMC [44] direct MCMC

Noisy Deep IS [40] IS IS

Kriging AIS [8] MCMC IS

Delayed-acceptance MH [16, 9] MCMC MCMC

Kriging-based delayed rejection MH [68] RS MCMC

Honorable mentions. Other ways of using surrogates to improve Monte Carlo methods
that do not compromise the exactness are, e.g., HMC with gradient computations based
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Table 6.4: Relationship between the four main classes and the blocks (B1, B2, B3 and B4)

enumerated in Figure 6.3. In parenthesis, we write the blocks that are optional to each family of

methods.

Family Two-stage Iterative refinement Exact – w.r.t. m(θ)

Blocks B1, B2 (B1), B2, B3 (B1), B2, (B3), B4

Table 6.5: Several works in the literature classified into the three presented classes.

Two-stage Iterative refinement Exact

[12] [18] [16]
[34] [67] [59]
[23] [33] [40]
[64] [20] [44]

on the surrogate [54]. In [27], the authors introduce extensions of the previous idea to
multimodal scenarios by combining it with parallel tempering, where only the lowest
temperature chain addresses the true posterior while the other chains at higher tempera-
tures work with surrogates.

6.4. Specific instances of noisy Monte Carlo methods

In this section, we describe some specific techniques which are included in the generic
scheme described in the previous section. They are Monte Carlo algorithms that were in-
troduced mainly in the context of costly, but non-noisy, targets, but their extension to the
noisy setting is straightforward. We focus on the iterative and exact families of methods,
but it should be noted that the strategies for building offline surrogates (from the algo-
rithms within the two-stage scheme) could also be used to initialize the surrogates and
hence further improve these algorithms.

MH schemes on iterative surrogate. A generic MH algorithm targeting a surrogate
that is refined over T iterations is given in Table 6.6. This algorithm falls within the iter-
ative refinement scheme from the previous section. We also summarize different variants
using a joint description. Indeed, at each iteration, the surrogate is updated with proba-
bility ρupdate, obtaining a noisy realization and including it in the set of active nodes. The
different variants are obtained by designing a different probability ρupdate and deciding the
search strategy.
Note that the updating probability could depend on many features, e.g., on the current
surrogate ρupdate = ρ

(t)
update(ˆ︁mt−1, ψ) and other hyperparameters ψ. The new point to be in-

cluded, θnew, can be chosen by different strategies [18, 33]. As an example, in this work
we will specifically consider and compare two basic algorithms. The first one corresponds
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to ρupdate = 1, while the second one considers ρupdate = α(t)
MH [67]. In both, we consider

the simple choice θnew = θ
′, i.e., the new node is the proposed state at that iteration. The

updating block could be also placed before the MH acceptance test and repeated until
some criterion is met [18, 33].

Table 6.6: Metropolis-Hastings on surrogate with iterative refinement (MH-S)

1. Inputs: Initial state θ0 and initial surrogate ˆ︁m0(θ) = ˆ︁m0(θ;S(0)).

2. For t = 1, . . . ,T :

(a) Sample θprop ∼ φ(θ|θt−1).

(b) With probability

α(θt−1, θprop) = min
{︄

1,
ˆ︁mt−1(θprop)φ(θt−1|θprop)ˆ︁mt−1(θt−1)φ(θprop|θt−1)

}︄
, (6.6)

accept θprop, i.e., set θt = θprop. Otherwise, reject θprop, i.e., set θt = θt−1.

(c) With probability ρupdate,

(a) Search θ⋆ and obtain realization ˜︁m(θ⋆).

(b) Update design nodes set S(t) = S(t−1) ∪ {θ⋆,˜︁m(θ⋆)}

3 Outputs: The chain {θt}
T
t=1 and the final surrogate ˆ︁mT (θ).

Delayed-acceptance Metropolis-Hastings. The DA-MH algorithm is a modified MH
algorithm (also called ‘two-step MH’ or ‘MH with early rejection’ [16, 9]) where, at each
iteration, the proposed state θprop undergoes two MH accept-reject tests. We consider
here delayed-acceptance pseudo-marginal MH (DA-PM-MH), where noisy evaluations
are recycled as commented above. At each iteration, the proposed state is tested first
against ˆ︁m(θ) (i.e., block B2 is a MH step on the surrogate) and, upon acceptance, then
against ˜︁m(θ) (i.e., block B4 is a noisy MH step).

The computational savings occur when θprop is rejected in the first test, since it avoids
performing the second MH test and computing the costly noisy realization ˜︁m(θprop). In
this work, we consider a general version DA-PM-MH (also called surrogate transition
method [39]) that allows for multiple iterations w.r.t. ˆ︁m in the first step. The details are
given in Table 6.7. The standard DA-PM-MH algorithm is recovered setting Tsurr = 1.
The standard DA-PM-MH has always a lower acceptance than vanilla PM-MH [9], but
can provide better performance. However, for Tsurr ≥ 1, the acceptance probability can be
higher than in the standard MH.
Indeed, this general form of the DA-PM-MH algorithm makes it clear that first step aims
at obtaining a good candidate ξTsurr by sampling (via MCMC) from a proposal density ˆ︁m
built by a (usually non-parametric) surrogate model. The candidate sample ξTsurr is then
employed in a MH test w.r.t. ˜︁m. It is important to note that, if all tests in the secondary
chain got rejected, then θprop = ξTsurr = θt−1, so the MH test of the main chain is trivially
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accepted without needing to obtain a new noisy realization, i.e., the chain remains at θt−1.
We can interpret the DA-MH as a two-step algorithm where, in the first step, samples
approximately distributed as the surrogate are generated. Thus, other algorithms such as
sticky MCMC [44] can be considered as ‘ideal’ version of DA-MH, since the samples
are drawn directly from the surrogate (i.e. the acceptance probability in the first step is
always one).

Table 6.7: DA-PM-MH algorithm

1. Inputs: Initial state θ0, initial realization ˜︁m(θ0), surrogate ˆ︁m0(θ;S(0)), and number of ‘inner’
iterations Tsurr.

2. For t = 1, . . . ,T :

(a) Starting from θt−1, run Tsurr iterations of MH with respect to ˆ︁m(θ). That is, set ξ0 = θt−1

and do for k = 1, . . . ,Tsurr:

(i) Sample ξ′ ∼ φ(θ|ξk−1)

(ii) With probability

α1(ξk−1, ξ
′) = min

{︄
1,

ˆ︁mt−1(ξ′)φ(ξk−1|ξ
′)ˆ︁mt−1(ξk−1)φ(ξ′|ξk−1)

}︄
,

accept ξ′, i.e., set ξk = ξ
′. Otherwise, reject ξ′, i.e., set ξk = ξk−1.

(b) Set θprop = ξTsurr , and accept it with probability

α1(θt−1, θprop) = min
{︄

1,
˜︁m(θprop)ˆ︁mt−1(θt−1)˜︁m(θt−1)ˆ︁mt−1(θprop)

}︄
,

i.e., set θt = θprop. Otherwise, reject θprop, i.e., set θt = θt−1.

(c) With probability ρupdate,

1. Search θ⋆ and obtain realization ˜︁m(θ⋆).

2. Update design nodes set S(t) = S(t−1) ∪ {θ⋆,˜︁m(θ⋆)}

3 Outputs: The chain {θt}
T
t=1.

Noisy Deep Importance Sampling (N-DIS). The Deep Importance Sampling (DIS) is
an adaptive IS scheme introduced in [40], which uses a non-parametric surrogate as its
proposal density. It can be seen as a multivariate extension of the technique in [44].
Here, we consider a noisy version of DIS, which is described in Table 6.8. Again the
underlying idea is to use the surrogate ˆ︁m(θ) as proposal density. For sampling from ˆ︁m(θ),
N-DIS employs a Sampling Importance Resampling (SIR) approach [57], using an aux-
iliary/parametric proposal, q(θ) (i.e., block B1 is a SIR scheme). More specifically, a set
{y}Lℓ=1 is sampled from q(θ), with L ≫ 1, and weighted according to ˆ︁m. Then, N resam-
pling steps (N ≪ L) are performed to obtain {θi}

N
i=1, that are approximately distributed

as ˆ︁m(θ) [57]. These samples are finally weighted considering the corresponding realiza-
tions ˜︁m(θi) (i.e., block B4 is a IS iteration). Thus, N-DIS is as a two-stage IS scheme,
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where the inner IS stage is employed to draw from the surrogate ˆ︁m. Furthermore, N-
DIS is an iterative algorithm where the previous steps are repeated and the set {θi}

N
i=1 is

used to refine the surrogate at each iteration. Hence, compared to a standard IS scheme,
N-DIS improves the performance by using a non-parametric surrogate proposal densityˆ︁m(θ) that gets closer and closer to m(θ). Moreover, N-DIS could be interpreted as an IS
version equivalent to the DA-MH algorithm. Note that, N-DIS uses deterministic mixture
IS weights in Eq. (6.7) which provide more stability in the results [19].

Table 6.8: N-DIS algorithm with noisy realizations

1. Inputs: Proposal distribution q(θ) and initial surrogate ˆ︁m0(θ) = ˆ︁m0(θ;S(0)).

2. For t = 1, . . . ,T :

(a) Sample ξt,ℓ ∼ q(θ), ℓ = 1, . . . , L

(b) Compute γt,ℓ =
ˆ︁mt−1(ξt,ℓ)

q(ξt,ℓ)
, ℓ = 1, . . . , L

(c) Resample θt,n ∼ {ξt,ℓ}
L
ℓ=1, n = 1, . . . ,N, with probabilities proportional to {γt,ℓ}

L
ℓ=1 (with

N ≪ L)

(d) Obtain noisy realizations and compute (n = 1, . . . ,N)

wt,n =
˜︁m(θt,n)

1
t

t−1∑︁
τ=0

ˆ︁mτ(θt,n)
; (6.7)

(e) Update design nodes set S(t) = S(t−1) ∪ {(θt,n,˜︁m(θt,n))}Nn=1.

3 Compute normalized weights: w̄n =
wn∑︁N
j=1 w j

, j = 1, . . . ,N.

4 Outputs: the weighted samples {θn, w̄n}
N
n=1 and the final surrogate ˆ︁mt(θ).
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6.5. Application scenarios

A brief description of practical scenarios where we must handle noisy and costly target
evaluations is provided below. Namely, all the settings given below can be encompassed
in the general framework described above.
Pseudo-Marginal approach: Here, the unnormalized density can be expressed as a
marginal distribution, i.e., p(θ) =

∫︁
V

p(θ, v)dv where v is an auxiliary variable. Hence,
p(θ) cannot be computed in closed-form. When the aim is to run a MH algorithm on p(θ),
rather than on the joint p(θ, v), the evaluation of p(θ) at each θ can be estimated noisily
by using IS [5, 4].
ABC, likelihoods-free. In the likelihood-free (and/or synthetic likelihood) inference set-
ting, it is assumed that the likelihood function is unknown or we cannot evaluate it, but we
are able to generate independent data from it. In this scenario, substituting the intractable
likelihood with an approximate likelihood is one possibility. This approximation is in turn
approximated pointwise with Monte Carlo using pseudo-data sets [43, 53]. See Section
6.5.1 below for more details.
Doubly intractable posteriors. When only a part of the likelihood can be evaluated and
another piece of the likelihood is unknown (typically a partition function Z(θ)), we are in
doubly intractable posterior setting. Note that differently from the ABC case, here some
part of the likelihood is available. In this case, the unknown part of the likelihood must
be estimated, so that the evaluation of the complete likelihood will be noisy.
Use of mini-batches (Big Data). The evaluation of the likelihood function can be pro-
hibitively expensive when there are huge amounts of data. In this context, a subsampling
strategy consists in computing the log-likelihood function using a random subset of data
points, hence forming an unbiased estimator of the complete log-likelihood [10].
Reinforcement learning (RL). Direct policy search is an important branch of reinforce-
ment learning, particularly in robotics [21, 15]. In this context, θ is the parametrization
of the policy of some agent, and p(θ) represents an expected return (i.e., a payoff func-
tion) for that policy. The expected return is approximated by the empirical return over an
episode, i.e., the agent is run for a number of time steps and accumulates a payoff. More
details are given in Section 6.5.2.
Other application scenarios. The topic of inference in noisy and costly settings is also of
interest in the inverse problem literature, such as in the calibration of expensive computer
codes [24, 17, 12]. Noisy likelihood evaluations are also considered for building surro-
gates, and then use them in order to obtain a variational approximations to the posterior
[1].

6.5.1. Likelihood-free context

The Likelihood-free framework in Bayesian inference presents some peculiarities which
deserve a specific discussion. We start with a brief description of a generalized approxi-
mate Bayesian computation (ABC) scheme in the same fashion of [66, 52]. Given some
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vector of data ytrue ∈ RDY , in several applications, sampling from a posterior distribution
p(θ) = p(θ|ytrue) ∝ ℓ(ytrue|θ)g(θ) is required, where ℓ(ytrue|θ) represents a likelihood
function and g(θ) a prior density. In some context, the pointwise evaluation of ℓ(ytrue|θ)
is not possible, but we can generate artificial data, y′ ∼ ℓ(y|θ). Hence, we could draw
samples in an extended space, [θ′, y′], from the joint pdf q(θ, y) = ℓ(y|θ)g(θ), drawing
first θ′ ∼ g(θ) and then y′ ∼ ℓ(y|θ).
The idea behind several ABC algorithms is the following. Let us consider the following
extended target pdf in the extended space [θ, y],

pe(θ, y|ytrue, ϵ) ∝ h(ytrue|y, θ, ϵ)ℓ(y|θ)g(θ),

where h(ytrue|y, θ, ϵ) ≥ 0 is a surrogate extended likelihood and ϵ > 0 is a positive param-
eter, chosen by the user. In many ABC approaches, different authors consider a simplified
version where

h(ytrue|y, θ, ϵ) = h(ytrue|y, ϵ),

for instance, h(ytrue|y, ϵ) ∝ exp
(︂
−
||ytrue−y||2

2ϵ2

)︂
. Hence, we can simplify the previous expres-

sion as pe(θ, y|ytrue) ∝ h(ytrue|y, ϵ)ℓ(y|θ)g(θ). The simplest choice, as in the rejection-
ABC scheme, is ⎧⎪⎪⎨⎪⎪⎩h(ytrue|y, ϵ) ∝ 1 if ||ytrue − y|| < ϵ,

h(ytrue|y, ϵ) = 0 if ||ytrue − y|| ≥ ϵ.
(6.8)

Therefore, the ABC target density is

mABC(θ|ytrue, ϵ) =
∫︂
RDY

pe(θ, y|ytrue, ϵ)dy ∝
∫︂
RDY

h(ytrue|y, ϵ)ℓ(y|θ)g(θ)dy. (6.9)

The function h(ytrue|y, ϵ) must be chosen such that mABC(θ|ytrue, ϵ) converges to p(θ|ytrue)
as ϵ → 0. Several computational algorithms designed for the ABC context are based on
the following noisy naive Monte Carlo scheme in the extended space with target pdf
mABC(θ|ytrue, ϵ) in Eq. (6.9), and proposal density q(θ, y) = ℓ(y|θ)g(θ):

• For t = 1, ...,T :

1. Draw θt ∼ g(θ),

2. Draw N artificial data, y(1)
t , . . . , y(N)

t ∼ ℓ(y|θt).11

3. Assign to θt, the noisy evaluation

˜︁mϵ(θt) =
1
N

N∑︂
n=1

h(ytrue|y(n)
t , ϵ). (6.10)

• Return {θt,˜︁m(θt)}.

11Note that {θt, y(n)
t } ∼ q(θ, y) for all n. See the generalized chain rule in [45].
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Thus, the pairs {θt,˜︁mϵ(θt)} can be used for performing inference on mABC(θ|ytrue, ϵ). In-
deed, by standard Monte Carlo arguments, ˜︁mϵ(θ) ≈

∫︁
RDY

h(ytrue|y, ϵ)ℓ(y|θ)g(θ)dy. Increas-
ing N, we reduce the variance of ˜︁mϵ(θ), becoming closer and closer to mABC(θ|ytrue, ϵ).
Decreasing ϵ → 0, we reduce the bias between mABC(θ|ytrue, ϵ) and p(θ|ytrue). Instead of
sampling θt from g(θ), we can use a generic proposal q(θ) (i.e., q(y, θ) = ℓ(y|θ)q(θ)) and
we obtain ˜︁mϵ(θt) =

⎡⎢⎢⎢⎢⎢⎣ 1
N

N∑︂
n=1

h(ytrue|y(n)
t , ϵ)

⎤⎥⎥⎥⎥⎥⎦ g(θt)
q(θt)

, θt ∼ q(θ). (6.11)

Remark 7. Clearly, for a fixed computational cost, there exists a trade-off between ex-
ploration and accuracy, i.e., between T and N. For a related discussion, see [22, 38].

Since simulating N datasets for each θ can be costly, it has been proposed to use sur-
rogates in order to accelerate the ABC algorithms. For instance, we can build a surrogateˆ︁m(θ) considering the pairs {θt,˜︁m(θt)} or some related evaluations. In [66], a two-stage
approach is used, where a GP surrogate of log mABC is built offline, and then a random-
walk MH algorithm is applied on this surrogate An iterative refinement scheme using
simulations (θt, y(n)

t ) is considered in [47]. Finally, the work by [29] combines Bayesian
optimization with ABC in a two-stage scheme to build a surrogate of the discrepancy
function ∆θ which measures the difference between ytrue and yθ, the data generated with
parameter θ.

Remark 8. In the ABC context, we identify two surrogate functions: an internal surrogate
h(ytrue|y, θ, ϵ) (that, generally, could also depends on θ as in the synthetic likelihood
approach [53]) and the external surrogate ˆ︁m(θ), for accelerating the algorithm.

6.5.2. Application to Reinforcement Learning

Reinforcement learning (RL), which has many connections with control theory [28, 60], is
a popular and fast-growing area of machine learning. An agent interacts with an environ-
ment by taking an action and, as a result of this action, it receives a state/observation and
a reward. This occurs at each time step. One interaction/step is summarized as a state-
action-reward triplet, (st, at, rt), where t denotes the time index. Therefore, an episode
consists of T steps over the environment (e.g., playing a game, if the environment repre-
sents a game, or otherwise interacting with the environment – such as in robotics)

τ = {s0, (s1, a1, r1), (s2, a2, r2), . . . , (sT , aT , rT )} = {s0:T , a1:T , r1:T }. (6.12)

The dynamics of the environment can be represented as follows, in the case of Markovian
processes. For t = 1, 2, . . . ,T : ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

at ∼ πθ(a|st−1),

st ∼ penv(s|st−1, at),

rt ∼ renv(r|st, at, st−1),

(6.13)
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where the reward function renv and the transition function penv are determined by the
application/environment. The policy πθ(·) determines which action the agent takes. De-
terministic rules can be also employed for deciding at and receiving a reward rt. The
payoff (i.e., accumulated reward, known as the return, or gain) for each episode is

R(θ; τ) =
T∑︂

t=1

rt. (6.14)

In certain settings, one can control the length T of the episode τ. The goal is to find an
optimal policy (i.e., optimal θ) that maximizes the expected cumulative reward. There are
a plethora of approaches to reinforcement learning, many falling under the category of so-
called value-based methods (see [60] for an introduction and overview). Here, however,
we focus specifically on the area of direct policy search, which is particularly apt for
applications with continuous and small-but-complex action spaces such as robotics [21],
and possibly non-Markovian settings (we refer to penv). More specifically, we focus on
model-free policy search, i.e., learning the policy based on sampling trajectories; we do
not attempt to recover penv or renv. In this sense also, we are close to the large area of
stochastic optimization [51]. We are interested in studying the following function in the
parameter space,

p(θ) = Eτ[R(θ; τ)] =
∫︂
T

R(θ; τ)p(τ|θ)dτ, (6.15)

where R(·) from (6.14), and τ ∼ p(τ|θ) is generated following the model in Eq. (6.13),
i.e.,

p(τ|θ) = p(s0:T , a0:T , r1:T |θ),

= p0(s0)
T∏︂

t=1

renv(rt|st, at, st−1)penv(st|st−1, at−1)πθ(at−1|st−1). (6.16)

In a model-free direct search, we are not able to evaluate the distribution p(τ|θ), but we
can draw from it by “playing the game”. Namely, we can estimate p(θ) by using sampled
episodes. Given N episodes τi ∼ p(τ|θ) (i = 1, . . . ,N) generated according to p(τ|θ) with
fixed θ (and fixing T ), we can obtain the Monte Carlo estimation of the expected return

˜︁m(θ) =
1
N

N∑︂
i=1

R(θ; τi), τi ∼ p(τ|θ), (6.17)

=
1
N

N∑︂
i=1

T∑︂
t=1

r(i)
t . (6.18)

In this case, we have m(θ) = E[˜︁m(θ)] = p(θ). The variance

s2(θ) = var
[︁˜︁m(θ)

]︁
=

1
N

var [R(θ; τi)] . (6.19)

The term var[R(θ, τ)] can have different forms depending on multiple aspects. The mag-
nitude of the noise is reduced by averaging multiple episodes since the variance s2(θ)
decreases at rate 1

N .
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Remark 9. As in the ABC setting, there is clearly a trade-off between precision in the
evaluation of the target function and overall computational cost (which increases as N
grows). This trade-off has been studied in the context of MCMC and IS [22, 38].

Note that the distribution ˜︁m(θ) also depends of the length T of the episode. More specifi-
cally, the variance of the random variable ˜︁m(θ) decreases with T . If the process is ergodic,
averaging over very long periods is equivalent to repeating the process multiple times. The
noise can therefore be reduced by both prolonged simulation or repeated sampling at the
expense of a higher computational cost per function evaluation.

6.6. Numerical experiments

In this section, we compare different algorithms discussed in Section 4. It is important to
remark that all the techniques are always compared with the same number of evaluations
(denoted as E) of the noisy target pdf. Moreover, a k-nearest neighbor (kNN) regression
is applied in order to construct the surrogate function. Recall that the baseline PM-MH
algorithm is not using a surrogate model (see Table 6.1).
In the first experiment, the target is a two-dimensional banana-shaped density which is
non-linear benchmark in the literature [19], perturbed with two different noises: one is an
unbiased noise, and with the other noisy the target distribution becomes a heavy-tailed ba-
nana pdf. The second experiment considers a multimodal target density. Finally, we apply
the algorithms in a benchmark RL problem consisting on balancing two poles attached to
a cart.

6.6.1. Non-linear banana density

We consider a banana-shaped target pdf,

p(θ) ∝ exp
(︄
−

(η1 − Bθ1 − θ
2
2)2

2η2
0

−
θ2

1

2η2
1

−
θ2

2

2η2
2

)︄
, (6.20)

with B = 4, η0 = 4 and ηi = 3.5 for i = 1, . . . , 2, where Θ = [−10, 10] × [−10, 10],
i.e., bounded domain. The goal is to compare the performance of the different algorithms
against a vanilla PM-MH algorithm for two different noises. Specifically, we compare

• (1) DA-PM-MH with Tsurr = 1,

• (2) DA-PM-MH with Tsurr = 5,

• (3) MH-S with ρupdate = 1,

• (4) MH-S with ρupdate = αMH.
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The baseline corresponds to a PM-MH algorithm with 5000 iterations. We consider the
same proposal φ(θ|θ′) = N(θ|θ′, 32I2) for all the methods (including the baseline). The
surrogate is built with k-nearest neighbor (kNN) regression using K ∈ {1, 10, 100} neigh-
bors. For all methods, the surrogate is initialized as a uniform distribution and updated
from there on using the incoming realizations ˜︁m(θ). Note that MH-S with ρ = 1 is equiv-
alent to PM-MH when K = 1. We include it in that case for the sake of completeness. We
set E = 5000 as the budget of noisy target evaluations.
In addition, we have applied IS schemes for the two noises. Specifically, we compare
standard (noisy) IS against N-DIS, using again the nearest neighbor surrogate. For the
standard noisy IS, we use a uniform proposal in X. For N-DIS, we test T = 5,N = 1000
and T = 10,N = 500, so that the total number of evaluations is E = NT = 5000.
Unbiased banana. First, we consider the noise ˜︁m(θ) = ϵp(θ) with ϵ ∼ Exp(1). In this
case, the expected target is p(θ). We consider the estimation of the mean and the diag-
onal of the covariance matrix, whose ground truths are µ = [−0.48, 0] and diag(Σ) =
[1.38, 8.90]. We show the results in Figures 6.4 and 6.6.
Heavy-tailed banana. Then, we consider the noise ˜︁m(θ) = max(0, p(θ) + ϵ) with ϵ ∼
N(0, 0.012). For this choice, we have m(θ) ≠ p(θ), so we have to evaluate the perfor-
mance in the estimation of the new moments, i.e., this noise changes the density that
the methods target, whose ground truths are ˜︁µ = [−0.38, 0] and diag(˜︁Σ) = [6.74, 12.84].
The resulting density m(θ) has constant tails since this noise introduce bias in the low
probability regions (as in Figure 6.1). We show the results in Figures 6.5 and 6.7.

Dependence on the surrogate

The use of surrogate improves the performance, but can be detrimental as well. This
duality accounts for the differences in performance between estimating µ (upper rows of
Figures 6.4 and 6.5) and estimating diag(Σ) (lower rows of Figures 6.4 and 6.5).
Benefits of using surrogates. For both noises, the considered algorithms perform better
than the baseline in the estimation of µ for all K, something that it is related to properly
visiting the regions of high probability. In this sense, it shows that using surrogates within
MCMC algorithms help in discovering high-probability regions. In IS, the use of surro-
gates also improves the performance in the estimation of the mean, as it can be seen in
Figure 6.9(a) and Figure 6.7(a).
Pathological constructions. Both choices of noise produce noisy realizations ˜︁m(θ) that
are skewed towards 0, specially in the low-probability regions. A surrogate built with such
evaluations may difficult the exploration of the tails of the distribution. This can be seen
at the error in estimating the variance in Figure 6.4(d) and Figure 6.5(d), where the con-
sidered methods perform worse than the baseline. Although the DA-PM-MH algorithms
(with Tsurr = 1 and Tsurr = 5) are “exact”, they fail at estimating the variance since the
surrogate does not fulfill the minimum requirements. In fact, a ‘bad’ surrogate is prevent-
ing the chain to explore the regions properly. Increasing K makes the surrogate smoother
and hence should improve the variance estimation. This is confirmed in Figure 6.4(e)-(f)
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and Figure 6.5(e)-(f), where the DA-PM-MH algorithms perform better than the baseline.
The MH-S algorithms present a trade-off between performance and exactness/bias as we
increase K, that we comment below.

Bias in iterative refinement algorithms

Since these algorithms target the surrogate, the choice of K affects the performance. In
Figures 6.4(a)-(c), we see the algorithms MH-S with ρ = 1 and ρ = α beat the baseline
in the estimation of µ. However, in Figures 6.4(d)-(f) the situation is the opposite, per-
forming worse than the baseline in the estimation of diag(Σ) for the K considered. As we
commented above, the exponential distribution with λ = 1 concentrates around 0, hence
this noise tends to give noisy realizations that underestimate the true density. In low-
probability regions and when K = 1, this phenomenon amplifies since realizations with
very low value difficult that their neighborhood gets properly explored. This is why MH-S
is able to estimate µ with K = 1 (i.e. the high-probability region is properly visited), but
fails at estimating diag(Σ).
We increase K in order to reduce this problem. However, attending to Figures 6.4(e)-(f)
for K = 10 and K = 100, both MH-S still perform poorly in the estimation of diag(Σ).
Now, this is because the surrogate has huge bias (since, for fixed number of nodes, as
we consider more neighbors, the surrogate becomes a flattened version of p(θ)). In other
words, regarding the choice of K for the MH-S, the increase in performance is traded off
with exactness. Note that this bias is detected when estimating the variance, since this
biased surrogate has µ almost unaltered.
Regarding the second type of noise in Figure 6.5, the conclusions are similar. In Figure
6.5(d), we see that estimation of the variance is even worse with this second noise, since
the target has now constant tails which are not captured by the surrogate with K = 1.
However, MH-S algorithms perform better (w.r.t. the previous noise) in the estimation of
the variance for K = 10. This is probably due to the surrogate having a low bias w.r.t. the
true target m(θ), which is broader than in the previous noise.

6.6.2. Bimodal target density

Now, we consider the density

p(θ) =
1
2
N(θ|[10, 0]⊤, 32I2) +

1
2
N(θ|[−10, 0]⊤, 32I2),

where Θ = [−20, 20] × [−20, 20], i.e., bounded domain. We consider the noise ˜︁m(θ) =
ϵp(θ) with ϵ ∼ Exp(1). As in the previous experiment, we compare the algorithms in the
estimation of the mean µ = [0, 0]⊤ and the diagonal of the covariance matrix diag(Σ) =
[108.87, 9]⊤. For the MCMC algorithms, this time we consider a proposal, φ(θ|θ′) =
N(θ|θ′, 22I2), intentionally chosen so that the mixing can be slow for some initializations.
We set E = 5000 as the budget of noisy evaluations. Results are shown in Figure 6.8. The
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(a) K = 1 (b) K = 10 (c) K = 100

(d) K = 1 (e) K = 10 (f) K = 100

Figure 6.4: Relative median squared error in estimation of the mean (upper row) and
variance (lower row) of the banana pdf with multiplicative exponential noise.

(a) K = 1 (b) K = 1 (c) K = 1

(d) K = 1 (e) K = 1 (f) K = 1

Figure 6.5: Relative median squared error in estimation of the mean (upper row) and vari-
ance (lower row) of the banana pdf perturbed as ˜︁f (θ) = max(0, p(θ) + ϵ), ϵ ∼ N(0, 0.01).

results of the IS schemes on the same noisy target are shown in Figure 6.9.
Improved exploration by surrogates. In this example, the chosen proposal φ(θ′|θ) is
not able to explore efficiently the space since the two modes are rather distant. For this
reason, the results of PM-MH are much worse than the algorithms that perform several
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(a) Estimation of the mean. (b) Estimation of the variance.

Figure 6.6: Relative median squared error in estimation of the mean (left) and variance
(right) of the banana pdf with multiplicative exponential noise, by importance sampling
schemes.

(a) Estimation of the mean. (b) Estimation of the variance.

Figure 6.7: Relative median squared error in estimation of the mean (left) and variance
(right) of the banana pdf with rectified additive Gaussian noise, by importance sampling
schemes.

steps w.r.t. the surrogate, namely, DA-PM-MH with Tsurr = 5 and MH-S with ρ = α,
as can be seen in Figure 6.8. This shows that performing several steps w.r.t. surrogate
is beneficial for the exploration and for discovering different modes, specially when the
proposal does not propose big jumps. Regarding the results of IS, we see in Figure 6.9
that the use of surrogates improve the performance, but not as much as in the MCMC test,
since IS with uniform density already performs very well as compared to PM-MH.
Pathological constructions. In this example, we encounter the negative effect of a bad
surrogate construction. In Figures 6.8(a)-(b)-(d)-(e), we see that DA-PM-MH with Tsurr =

1 performs equal or worse than the baseline technique, i.e., PM-MH. This is probably
due to the joint effect of small jumps proposed by φ(θ|θ′) and performing only one step
w.r.t. the surrogate, which in turn makes a myopic construction of the surrogate possibly
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missing one of the modes. This pathological behavior is worst when K = 1, but improves
as we increase K, matching the performance of PM-MH for K = 100.

(a) K = 1 (b) K = 10 (c) K = 100

(d) K = 1 (e) K = 10 (f) K = 100

Figure 6.8: Relative median squared error in estimation of the mean (upper row) and
variance (lower row) of the bimodal pdf with multiplicative exponential noise.

(a) Estimation of the mean. (b) Estimation of the variance.

Figure 6.9: Relative median squared error in estimation of the mean (left) and variance
(right) of the bimodal pdf with multiplicative exponential noise, by importance sampling
schemes.

6.6.3. Double cart pole

We consider a variant of the popular cart-pole system, which is a standard benchmark in
RL [31]. In the basic cart-pole environment, the goal is to balance a pole that is hinged on
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a cart. The cart is able to move freely along the x-axis. The observations are the position
x and velocity ẋ of the cart, and the angle α and angular velocity α̇ of the pole. The action
is continuous and corresponds to the force applied to the cart. The agent receives one
point for each iteration that x and α are within some bounds.

We consider here the more challenging variant where another shorter pole is hinged
on the cart (see Figure 6.10). Hence, the state vector is s = [x, ẋ, α1, α̇1, α2, α̇2]⊤. The
transition penv is deterministic, determined by the evolution of the dynamical system,
where each iteration corresponds to 0.02s [65]. We consider the simplest neural network
for the policy a = πθ(s) = θ⊤s, i.e., a linear policy. Hence, the parameter θ ∈ R6.12

The return R(θ, τ) is the number of iterations before any of x, α1 or α2 go out of bounds,
where Tmax = 1000. Hence, the maximum return is 1000. Regarding the parameters such
as the masses, lengths, friction coefficients, etc., we take the same values as in [31]. At
the beginning of each episode, the initial state is obtained by sampling each component
uniformly within the following intervals: x ∈ [−1.944, 1.944], ẋ ∈ [−1.215, 1.215], α1 ∈

[−0.0472, 0.0472], α̇1 ∈ [−0.135088, 0.135088], α2 ∈ [−0.10472, 0.10472] and α̇2 ∈

[−0.135088, 0.135088]. Note that, in this example, the noisiness comes only from the
initial distribution.

Figure 6.10: Double pole balancing problem.

We consider a realization ˜︁m(θ) of p(θ) by simulating one single episode. We first run
106 iterations of PM-MH on ˜︁m(θ) in order to have a rough estimation (groundtruth) of the
marginal histograms w.r.t. we can compare the algorithms. We consider a bounded do-
main θ ∈ [−60, 60]6. We compare two MH-S algorithms and one DA-PM-MH algorithm
using again a nearest neighbor surrogate, with K = 100. The budget is E = 105 evalua-
tions. A PM-MH algorithm with the same number of evaluations is also considered. In
Figure 6.11, we show the estimated marginal densities. In Table 6.9, we show the MMSE
estimations of θ provided by the different algorithms. We can observe that the compared
techniques are able to approximate the groundtruth marginal histograms. However, the
DA-PM-MH scheme seems to provide slightly better approximations.

12The use of more sophisticated architectures (such as including hidden layers with variable number of
hidden units, biases and skip-layers) can produce more effective controllers at the expense of increasing the
dimensionality of θ.
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θ1 θ2 θ3 θ4 θ5 θ6 Exp. return

PM-MH (T = 106) -7.1281 -15.0300 5.1756 15.0946 15.4696 4.9734 1000
PM-MH (T = 105) -5.6738 -15.7544 3.0080 14.9182 16.3909 6.0570 1000
MH-S (ρ = 1) -6.6351 -10.2346 -1.9859 12.5025 12.8274 6.0455 1000
MH-S (ρ = α) -8.9285 -17.0432 4.0197 13.3249 15.7900 3.9512 1000
DA-PM-MH (Tsurr = 5) -5.7748 -17.5469 6.6250 15.9932 17.5892 5.2058 1000

Table 6.9: MMSE estimates for the double cart pole system computed by the different
algorithms.

(a) (b) (c)

(d) (e) (f)

Figure 6.11: Marginal densities of the double cart pole system, obtained by the different
algorithms.

6.7. Conclusions

We have provided an overview of Monte Carlo methods which use surrogate models built
with regression techniques, for dealing with noisy and costly densities. Indeed, by em-
ploying surrogate models, we can avoid the evaluation of expensive true models and per-
form a smoothing of the noisy realizations. This has important implications for perfor-
mance in real-world applications.
We have described a general joint framework which encompasses most of the techniques
in the literature. We have given a classification of the analyzed techniques in three main
families. We have highlighted the connections and differences among the algorithms by
means of several explanatory tables and figures. The range of application of the methods
have been discussed. Specifically, a detailed description of the likelihood-free approach
and the reinforcement learning setting is presented.
Numerical simulations have shown that, generally, the use of surrogates can improve the
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performance of the algorithms. Indeed, the surrogate plays the role of an adaptive non-
parametric proposal which is adapted using not only the spatial information contained in
the samples, but also the noisy evaluations of the target. This increases the efficiency of
the corresponding Monte Carlo estimators since it fosters the exploration of the space. On
the other hand, pathological constructions of the surrogate, i.e., when the surrogate takes
small values in high probability regions of the target pdf, can jeopardize the performance
of the algorithms, at least in the first iterations. Furthermore, the correction step in the
exact algorithms yields more robust schemes.

6.8. Appendix

6.8.1. Proof for noisy MH algorithm

We provide here a simple proof showing that the invariant density of a MH algorithm
using noisy realizations ˜︁m(θ) is m(θ) (i.e. a pseudo-marginal MH algorithm). For more
details see [5, 6]. Let us consider the acceptance ratio of the noisy MH algorithm

r(θt−1, θprop) =
˜︁m(θprop)φ(θt−1|θprop)˜︁m(θt−1)φ(θprop|θt−1)

. (6.21)

Now, let us rewrite it as

r(θt−1, θprop) =

˜︁m(θprop)
m(θprop)m(θprop)φ(θt−1|θprop)
˜︁m(θt−1)
m(θt−1)m(θt−1)φ(θprop|θt−1)

. (6.22)

Define λ = ˜︁m(θ)
m(θ) as a random variable with pdf given by g(λ|θ). Note that E[λ|θ] ∝ 1 for

any θ. Denoting λprop =
˜︁m(θprop)
m(θprop) and λt−1 =

˜︁m(θt−1)
m(θt−1) , multiplying by g(λprop|θprop)g(λt−1|θt−1)

in both numerator and denominator, and rearranging the terms we see that the acceptance
ratio is

r(θt−1, θprop) =
λpropm(θprop)g(λprop|θprop)φ(θt−1|θprop)g(λt−1|θt−1)
λt−1m(θt−1)g(λt−1|θt−1)φ(θprop|θt−1)g(λprop|θprop)

. (6.23)

Now, let us define qequiv(θ, λ|θ′, λ′) = g(λ|θ)φ(θ|θ′) as the equivalent proposal in the joint
space (θ, λ). Hence, the ratio is finally expressed as

r(θt−1, θprop, λt−1, λprop) =
λpropm(θprop)g(λprop|θprop)qequiv(θt−1,wt−1|θprop, λprop)
λt−1m(θt−1)g(λt−1|θt−1)qequiv(θprop,wprop|θt−1, λt−1)

. (6.24)

It can be seen now that the invariant density is proportional to λ · m(θ) · g(λ|θ), whose
marginal is

∫︁
λ m(θ)g(λ|θ)dλ ∝ m(θ).
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6.8.2. Proof for noisy IS

We show that an IS estimator built with noisy realizations ˜︁m(θ), converges to expectations
w.r.t. m(θ). Let q(θ) denote a proposal pdf, and let

˜︁Z = 1
N

N∑︂
i=1

˜︁m(θi)
q(θi)

=
1
N

N∑︂
i=1

˜︁wi, (6.25)

be the IS estimator built with noisy realizations, where ˜︁wi =
˜︁m(θi)
q(θi)

are the noisy weights,
and {θi}

N
i=1 are iid samples from q. The non-noisy IS estimator

ˆ︁Z = 1
N

N∑︂
i=1

m(θi)
q(θi)

=
1
N

N∑︂
i=1

wi, (6.26)

is an unbiased estimator of Z =
∫︁

m(θ)dθ, i.e., E[ˆ︁Z] = Z, converging as N → ∞ at rate
1
N . We aim to show that ˜︁Z is also an unbiased estimator of Z, with greater variance thanˆ︁Z, but the same convergence speed, i.e., its variance decreases at 1

N rate.

LetΘ = (θ1, . . . , θN) denote the N samples from q. By the law of total expectation, we
have that E[˜︁Z] = E

[︂
E[˜︁Z|Θ]

]︂
. In the inner expectation, we use the fact the ˜︁wi’s are i.i.d.,

hence

E[˜︁Z|Θ] =
1
N

N∑︂
i=1

E[˜︁wi|θi] =
1
N

N∑︂
i=1

1
q(θi)
E[˜︁m(θi)|θi] = ˆ︁Z, (6.27)

and

E[˜︁Z] = E
[︂
E[˜︁Z|Θ]

]︂
= E[ˆ︁Z] = Z. (6.28)

By the law of total variance, we have that

var[˜︁Z] = E
[︂
var[˜︁Z|Θ]

]︂
+ var

[︂
E[˜︁Z|Θ]

]︂
. (6.29)

Using the above result, we have that the second term is

var
[︂
E[˜︁Z|Θ]

]︂
= var[ˆ︁Z] = O (1/N) . (6.30)

Regarding the first term, we have

var[˜︁Z|Θ] =
1

N2

N∑︂
i=1

var[˜︁wi|θi] =
1

N2

N∑︂
i=1

1
q(θi)2var[˜︁m(θi)|θi]

=
1

N2

N∑︂
i=1

s2(θi)
q(θi)2 . (6.31)

Assuming that s2(θ)
q(θ) < ∞ for all θ, we have that

E
[︂
var[˜︁Z|Θ]

]︂
=

1
N2

N∑︂
i=1

E

[︄
s2(θi)
q(θi)2

]︄
=

1
N
E

[︄
s2(θ)
q(θ)2

]︄
. (6.32)
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Hence, we finally have that

var[˜︁Z] =
1
N
E

[︄
s2(θ)
q(θ)2

]︄
+ var[ˆ︁Z] = O

(︄
1
N

)︄
≥ var[ˆ︁Z]. (6.33)

From this expression, we can deduce that the variance of ˜︁Z depends on the mismatch
between q(θ) and s2(θ). Proving that the noisy IS estimator ˜︁I = 1

N

∑︁N
i=1

˜︁m(θ) f (θ)
q(θ) converges

to I =
∫︁

f (θ)m(θ)dθ is immediate. Thus, the ratio ˜︁I˜︁Z = 1∑︁N
j=1 ˜︁w j

∑︁N
i=1 ˜︁wi f (θi), (i.e. the noisy

self-normalized IS estimator) is a consistent estimator of
∫︁
Θ

f (θ)m(θ)dθ∫︁
Θ

m(θ)dθ
.

6.8.3. Analytical expressions of the noise models in illustrative example

Let ϵ ∼ N(0, σ2). The analytical expressions of m(θ) for the noise models in the illustra-
tive example of Sect. 6.2 are provided here.
Rectified Gaussian. By setting ˜︁m(θ) = max(0, p(θ) + ϵ), then ˜︁m(θ)|θ ∼ NR(p(θ), σ2) is a
rectified Gaussian random variable, whose mean is

m(θ) =
[︄
p(θ) + σ

ϕ(−p(θ)/σ)
1 −Φ(−p(θ)/σ)

]︄ [︁
1 −Φ(−p(θ)/σ)

]︁
,

where ϕ(θ) andΦ(θ) are the pdf and cdf, respectively, of the standard normal distribution.

Folded Gaussian. The random variable ˜︁m(θ) = |p(θ) + ϵ | corresponds to a folded Gaus-
sian random variable. We have

m(θ) = σ

√︃
2
π

exp
(︂
−p2(θ)/2σ2

)︂
+ p(θ)[1 − 2Φ(−p(θ)/σ)].
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Abstract

Many applications in signal processing and machine learning require the study of probability den-

sity functions (pdfs) that can only be accessed through noisy evaluations. In this work, we analyze

the noisy importance sampling (IS), i.e., IS working with noisy evaluations of the target density.

We present the general framework and derive optimal proposal densities for noisy IS estima-

tors. The optimal proposals incorporate the information of the variance of the noisy realizations,

proposing points in regions where the noise power is higher. We also compare the use of the

optimal proposals with previous optimality approaches considered in a noisy IS framework.

Keywords: Bayesian Inference; Noisy Monte Carlo; Pseudo-marginal Metropolis-Hastings;
Noisy IS.

7.1. Introduction

A wide range of modern applications, especially in Bayesian inference framework [22],
require the study of probability density functions (pdfs) which can be evaluated stochas-
tically, i.e., only noisy evaluations can be obtained [16, 30, 1, 21]. For instance, this is
the case of the pseudo-marginal approaches and doubly intractable posteriors [4, 24], ap-
proximate Bayesian computation (ABC) and likelihood-free schemes [25, 17], where the
target density cannot be computed in closed-form.
The noisy scenario also appears naturally when mini-batches of data are employed instead
of considering the complete likelihood of huge amounts of data [6, 26]. More recently,
the analysis of noisy functions of densities is required in reinforcement learning (RL),
especially in direct policy search which is an important branch of RL, with applications
in robotics [11, 8]. The topic of inference in noisy settings (or where a function is known
with a certain degree of uncertainty) is also of interest in the inverse problem literature,
such as in the calibration of expensive computer codes [14, 7]. This is also the case when
the construction of an emulator is considered, as a surrogate model [1, 29, 20].

In this work, we study the importance sampling (IS) scheme under noisy evaluations
of the target pdf. The noisy IS scenario has been already analyzed in the literature [16,
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30, 15]. In the context of optimization, some theoretical results can be found [2]. In
the sequential framework, IS schemes with random weights can be found and have been
studied in different works [16, 10, 9, 23]. We provide the optimal proposal densities
for different noisy scenarios, including also the case of integrals involving vector-valued
functions. Moreover, we discuss the convergence and variance of the estimators in a
general setting. We consider a different approach with respect to other studies in the
literature [30, 12]. In those works, the authors analyzed the trade-off between decreasing
the noise power (by increasing the number of auxiliary samples) and increasing the total
number of samples in the IS estimators. Here, this information is encompassed within the
optimal proposal density, which plays a similar role to an acquisition function in active
learning [20, 29]. This is information is relevant, especially if the noisy evaluations are
also costly to obtain.

7.2. Background

7.2.1. Bayesian inference

In many applications, we aim at inferring a variable of interest given a set of observations
or measurements. Let us denote the variable of interest by x ∈ D ⊆ Rdx , and let y ∈ Rdy

be the observed data. The posterior pdf is then

p̄(x|y) =
ℓ(y|x)g(x)

Z(y)
, (7.1)

where ℓ(y|x) is the likelihood function, g(x) is the prior pdf, and Z(y) is the model evi-
dence (a.k.a. marginal likelihood) which is a useful quantity in model selection problems
[19]. For simplicity, in the following, we skip the dependence on y in p̄(x) = p̄(x|y) and
Z = Z(y). Generally, Z is unknown, so we are able to evaluate the unnormalized target
function, i.e., the numerator on the right hand side of Eq. (7.1),

p(x) = ℓ(y|x)g(x). (7.2)

The analytical study of the posterior density p̄(x) ∝ p(x) is unfeasible, so that numerical
approximations are required [27, 22].

7.2.2. Noisy framework

Generally, we desire to approximate the unnormalized density p(x), x ∈ X ⊂ Rd, and
the corresponding normalizing constant Z, using Monte Carlo methods. The unnormal-
ized density p(x) can represent a posterior density in a Bayesian inference problem, as
described above. We assume that, for any x, we cannot evaluate p(x) exactly, but we only
have access to a related noisy realization. Moreover, in many applications, obtaining such
a noisy realization may be expensive. Hence, analyzing in which x we require a noisy
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realization of p(x) is an important problem, which is related to the concept of optimality
that we consider below.
In the following, we introduce a concise mathematical formalization of the noisy sce-
nario. This simple framework contains real application scenarios, such as latent variable
models [30] (see example 4 in Sect. 7.4.1), likelihood-free inference setting [25], doubly
intractable posteriors [24], mini batch-based inference [6]. More specifically, we assume
to have access to a noisy realization related to p(x), i.e.,

˜︁m(x) = H(p(x), ϵ), (7.3)

where H is a non-linear transformation involving p(x) and ϵ, that is some noise perturba-
tion. Thus, for a fixed value x, ˜︁m(x) is a random variable with

m(x) = E[˜︁m(x)], s(x)2 = Var[˜︁m(x)], (7.4)

for some mean function, m(x), and variance function, s(x)2. The assumption that ˜︁m(x)
must be strictly positive is important in practice [16, 12].

Noise power. In some applications, it is also possible to control the noise power s(x)2, for
instance by adding/removing data to the mini-batches (e.g., in the context of Big Data) [6],
increasing the number of auxiliary samples in latent variables models [4], or interacting
with an environment over longer/shorter periods of time (e.g., in reinforcement learning)
[11].

Unbiased scenario and related cases. The scenario where m(x) = p(x) appears naturally
in some applications (such as in the estimation of latent variable and stochastic volatil-
ity models in statistics [30, 3]; or in the context of optimal filtering of partially observed
stochastic processes [15]), or it is often assumed as a pre-established condition by the
authors [30, 16]. In some other scenarios, the noisy realizations are known to be unbiased
estimates of some transformation of p(x), e.g., of log p(x) [18, 13]. This situation can be
encompassed by the following special case. If we consider an additive perturbation,

˜︁m(x) = G (p(x)) + ϵ, with E[ϵ] = 0, (7.5)

we have m(x) = E[˜︁m(x)] = G (p(x)), where G(·) : R → R. If G is known and invertible,
we have p(x) = G−1 (m(x)).
Generally, we can state that m(x) always contains statistical information related to p(x).
The subsequent use of m(x) depends on the specific application. Thus, we study the mean
function m(x). Hence, our goal is to approximate efficiently integrals involving m(x), i.e.,

I =
1
Z̄

∫︂
X

f(x)m(x)dx, Z̄ =
∫︂
X

m(x)dx, (7.6)

where f(x) : X → Rd f and I = [I1, . . . , Id f ]
⊤ ∈ Rd f denotes the vector of integrals of

interest. Note that, in the unbiased case m(x) = p(x), we have Z̄ = Z. An integral
involving m(x) can be approximated employing a cloud of random samples using the
noisy realizations ˜︁m(x) via Monte Carlo methods.
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7.3. Noisy Importance Sampling

In a non-noisy IS scheme, a set of samples is drawn from a proposal density q(x). Then
each sample is weighted according to the ratio p(x)

q(x) . A noisy version of importance sam-
pling can be obtained when we substitute the evaluations of p(x) with noisy realizations
of ˜︁m(x). See Table 7.1 and note that the importance weights wn in Eq. (7.9) are computed
using the noisy realizations. Below, we show thatˆ︁Z = 1

N

N∑︂
n=1

wn, (7.7)

is an unbiased estimator of Z̄, and

ˆ︁Istd =
1

NZ̄

N∑︂
n=1

wnf(xn), ˆ︁Iself =
1

Nˆ︁Z
N∑︂

n=1

wnf(xn), (7.8)

are consistent estimators of I. The estimatorˆ︁Istd requires the knowledge of Z̄, that is not
needed in the so-called self-normalized estimator,ˆ︁Iself.

Table 7.1: Noisy importance sampling algorithm

1. Inputs: Proposal distribution q(x).

2. For n = 1, . . . ,N:

(a) Sample xn ∼ q(x) and obtain one realization ˜︁m(xn).

(b) Compute

wn =
˜︁m(xn)
q(xn)

(7.9)

4 Outputs: the weighted samples {xn,wn}
N
n=1.

Theorem 3. The estimators above constructed from the output of noisy IS converge to
expectations under m(x). More specifically, we have ˆ︁Z andˆ︁Istd are unbiased estimators
of Z̄ and I respectively, andˆ︁Iself is a consistent estimator of I. Moreover, these estimators
have higher variance than their non-noisy counterparts.

Proof. Here, we provide a simple proof of convergence by applying iterated conditional
expectations. Equivalently, the correctness of the approach can be proved by using an
extended space view (see, e.g., [15, 30]).
Let x1:N = [x1, . . . , xN] denote the N samples from q. By the law of total expectation, we
have that E[ˆ︁Z] = E

[︂
E[ˆ︁Z|x1:N]

]︂
. In the inner expectation, we use the fact the wi’s are i.i.d.,

hence

E[ˆ︁Z|x1:N] =
1
N

N∑︂
i=1

E[wi|xi] =
1
N

N∑︂
i=1

1
q(xi)
E[˜︁m(xi)|xi] =

1
N

N∑︂
i=1

m(xi)
q(xi)

= ˜︁Z,
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where ˜︁Z is the non-noisy IS estimator of Z̄, which is also unbiased, i.e.,

E[ˆ︁Z] = E
[︂
E[ˆ︁Z|x1:N]

]︂
= E[˜︁Z] = Z̄.

Therefore, ˆ︁Z is an unbiased estimator of Z̄ =
∫︁
X

m(x)dx, i.e., E[ˆ︁Z] = Z̄. Moreover, we
show below that Var[ˆ︁Z] decreases to zero as N → ∞. Hence, ˆ︁Z is a consistent estimator
of Z̄. Now, with the same arguments, we can prove that the estimator ˆ︁E = 1

N

∑︁N
i=1

˜︁m(x)f(x)
q(x)

is also unbiased and converges to E =
∫︁
X

f(x)m(x)dx. Thus, both the estimatorˆ︁Istd, and
the ratio ˆ︁I = 1ˆ︁Zˆ︁E = 1∑︁N

j=1 w j

N∑︂
i=1

wif(xi),

which is the noisy self-normalized IS estimatorˆ︁Iself in Eq. (7.8), are consistent estimators
of

I =

∫︁
X

f(x)m(x)dx∫︁
X

m(x)dx
=

1
Z̄

∫︂
X

f(x)m(x)dx,

given in Eq. (7.6).

□

Variance of ˆ︁Z. By the law of total variance, we have that

Var[ˆ︁Z] = E
[︂
Var[ˆ︁Z|x1:N]

]︂
+ Var

[︂
E[ˆ︁Z|x1:N]

]︂
.

In a non-noisy scenario, i.e., in a non-noisy IS setting, the first term is null. Using the fact
that ˆ︁Z is unbiased, we have that the second term is

Var
[︂
E[ˆ︁Z|x1:N]

]︂
= Var[˜︁Z] = O (1/N) .

Regarding the first term, we have

Var[ˆ︁Z|x1:N] =
1

N2

N∑︂
i=1

Var[wi|xi] =
1

N2

N∑︂
i=1

1
q(xi)2 Var[˜︁m(xi)|xi] =

1
N2

N∑︂
i=1

s(xi)2

q(xi)2 .

Assuming that s(x)2

q(x)2 < ∞ for all x, we have that

E
[︂
Var[ˆ︁Z|x1:N]

]︂
=

1
N2

N∑︂
i=1

E

[︄
s(xi)2

q(xi)2

]︄
=

1
N
E

[︄
s(x)2

q(x)2

]︄
, where x ∼ q(x).

Hence, we finally have that

Var[ˆ︁Z] =
1
N
E

[︄
s(x)2

q(x)2

]︄
+ Var[˜︁Z] ≥ Var[˜︁Z]. (7.10)

Therefore, ˆ︁Z has a greater variance than ˜︁Z, but the same convergence speed, i.e., its vari-
ance decreases at 1

N rate. Proving that ˆ︁E has greater variance than its non-noisy version is
straightforward.
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7.4. Optimal Proposal Density in Noisy IS

In this section, we derive the optimal proposals for the noisy IS estimators ˆ︁Z,ˆ︁Istd andˆ︁Iself.

7.4.1. Optimal proposal for ˆ︁Z
We can rewrite the variance of ˆ︁Z in Eq. (7.10) as

Var[ˆ︁Z] =
1
N
E

[︄
m(x)2 + s(x)2

q(x)2

]︄
−

1
N

Z̄2
.

By Jensen’s inequality, the first term is bounded below by

E

[︄
m(x)2 + s(x)2

q(x)2

]︄
≥

⎛⎜⎜⎜⎜⎜⎝E ⎡⎢⎢⎢⎢⎢⎣ √︁
m(x)2 + s(x)2

q(x)

⎤⎥⎥⎥⎥⎥⎦⎞⎟⎟⎟⎟⎟⎠2

.

The minimum variance Vmin = minq Var[ˆ︁Z] is thus attained at

qopt(x) ∝
√︁

m(x)2 + s(x)2, (7.11)

Note that, for finite N, Vmin is always greater than 0, specifically,

Vmin =
1
N

[︄∫︂
X

√︁
m(x)2 + s(x)2dx

]︄2

−
1
N

Z̄2
. (7.12)

Hence, differently from the non-noisy setting, in noisy IS the optimal proposal does not
provide an estimator with null variance. If s(x) = 0 for all x, then we come back to the
non-noisy scenario and Vmin =

1
N

[︂∫︁
X

m(x)dx
]︂2
− 1

N Z̄2
= 0. Note that the variance of using

q(x) = 1
Z̄ m(x) is

Vsub-opt =
Z̄
N

∫︂
X

m(x)2 + s(x)2

m(x)
dx −

1
N

Z̄2
=

Z̄
N

∫︂
X

s(x)2

m(x)
dx. (7.13)

In the following, we show several examples of noise models and their corresponding
optimal proposal densities.
Example 1. Let us consider a Bernoulli-type noise where ˜︁m(x) = pmaxϵ, where ϵ ∼
Bernoulli

(︂
p(x)
pmax

)︂
, and pmax = max p(x). Then, we have

m(x) = p(x), s(x)2 = p(x)[pmax − p(x)].

Replacing in Eq. (7.11), the optimal proposal density in this case is

qopt(x) ∝ p(x)
√︁

1 + [pmax − p(x)]2. (7.14)

Example 2. Let us consider ˜︁m(x) = |p(x) + ϵ |, with ϵ ∼ N(0, σ2). In this scenario, the
random variable ˜︁m(x) corresponds to a folded Gaussian random variable. We have

m(x) = σ

√︃
2
π

exp
(︂
−p2(x)/2σ2

)︂
+ p(x)[1 − 2Φ(−p(x)/σ)],

s(x)2 = p(x)2 + σ2 − m(x)2,
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where Φ(x) is the cumulative function of the standard Gaussian distribution. Then,

qopt(x) ∝
√︁

p(x)2 + σ2. (7.15)

Example 3. Let us consider a multiplicative noise ˜︁m(x) = eϵ p(x) with E[ϵ] = 0, hence

m(x) = p(x)E[eϵ] ∝ p(x), s(x)2 = p(x)2Var[eϵ].

If we denote A = E[eϵ] and σ2 = Var[eϵ], then m(x) = Ap(x) and s(x)2 = σ2 p2(x). In this
case, the optimal proposal coincides with the optimal one in the non-noisy setting, since

qopt(x) ∝
√︁

A2 p2(x) + σ2 p2(x) = p(x)
√

A2 + σ2 ∝ p(x). (7.16)

Example 4. In latent variable models, the noisy realization corresponds to the product of
dy independent IS estimators, each built from R auxiliary samples. With dy large enough,
the distribution of this realization is approximately lognormal, i.e.,

˜︁m(x) ∼ logN(µ(x), σ2(x)),

where µ(x) = log p(x) − γ2(x)
2R and σ2(x) = γ2(x)

R , for some function γ2(x) [30, 12]. Equiva-
lently, they write ˜︁m(x) = p(x)eϵ , where ϵ ∼ N(µ(x), σ2(x)). Hence,

m(x) = p(x), s(x)2 = (eγ
2(x)/R − 1)p(x)2,

and the optimal proposal is

qopt(x) ∝ p(x)e
γ2(x)

2R . (7.17)

This example is related with the cases studied in [30, 12].

7.4.2. Optimal proposal forˆ︁Istd

We have already seen that the optimal proposal that minimizes the variance of ˆ︁Z is
qopt(x) ∝

√︁
m(x)2 + s(x)2. Let us consider now the estimator ˆ︁Istd. Note that this esti-

mator assumes we can evaluate Z̄ =
∫︁
X

m(x)dx. Since we are considering a vector-valued
function, the estimator has d f components ˆ︁Istd = [ˆ︁Istd,1 . . .ˆ︁Istd,d f ]

⊤, and Var[ˆ︁Istd] corre-
sponds to a d f × d f covariance matrix. We aim to find the proposal that minimizes the
sum of diagonal variances. From the results of the previous section, it is straightforward
to show that the variance of the p-th component is

Var[ˆ︁Istd,p] = Var[˜︁Istd,p] +
1

NZ̄2E

[︄
fp(x)2s(x)2

q(x)2

]︄
=

1

NZ̄2E

[︄
fp(x)2(m(x)2 + s(x)2)

q(x)2

]︄
−

1

NZ̄2 I2
p,

where fp(x) and Ip are respectively the p-th components of f(x) and I, and ˜︁Istd,p denotes
the non-noisy estimator (i.e. using m(x) instead of ˜︁m(x)). Thus,

d f∑︂
p=1

Var[ˆ︁Istd,p] =
1

NZ̄2E

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑︁d f

p=1 fp(x)2(m(x)2 + s(x)2)

q(x)2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ − 1

NZ̄2

d f∑︂
p=1

I2
p.
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By Jensen’s inequality, we have

E

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑︁d f

p=1 fp(x)2(m(x)2 + s(x)2)

q(x)2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ≥
⎛⎜⎜⎜⎜⎜⎝E ⎡⎢⎢⎢⎢⎢⎣ √︁

m(x)2 + s(x)2 ∥f(x)∥2
q(x)

⎤⎥⎥⎥⎥⎥⎦⎞⎟⎟⎟⎟⎟⎠2

,

where ∥f(x)∥2 denotes the euclidean norm. The equality holds if and only if
√

m(x)2+s(x)2∥f(x)∥2
q(x)

is constant. Hence, the optimal proposal is

qopt(x) ∝ ∥f(x)∥2
√︁

m(x)2 + s(x)2. (7.18)

7.4.3. Optimal proposal forˆ︁Isel f

Let us consider the case of the self-normalized estimatorˆ︁Iself. Recall thatˆ︁Iself =
ˆ︁Eˆ︁Z , whereˆ︁E denotes the noisy estimator of E =

∫︁
X

f(x)m(x)dx, so that we are considering ratios of
estimators. Again, we aim to find the proposal that minimizes the variance of the vector-
valued estimatorˆ︁Iself. When N is large enough, the variance of p-th ratio is approximated
as [28],

Var[ˆ︁Iself,p] = Var

⎡⎢⎢⎢⎢⎢⎣ ˆ︁Epˆ︁Z
⎤⎥⎥⎥⎥⎥⎦ ≈ 1

Z̄2 Var[ˆ︁Ep] − 2
Ep

Z
Cov[ˆ︁Ep,ˆ︁Z] +

E2
p

Z̄4 Var[ˆ︁Z],

where Ep is the p-th component of E, and

Var[ˆ︁Ep] =
1
N
E

[︄
fp(x)2(m(x)2 + s(x)2)

q(x)2

]︄
−

1
N

E2
p,

Var[ˆ︁Z] =
1
N
E

[︄
m(x)2 + s(x)2

q(x)2

]︄
−

1
N

Z̄2
,

Cov[ˆ︁Ep,ˆ︁Z] =
1
N
E

[︄
fp(x)(m(x)2 + s(x)2)

q(x)2

]︄
−

1
N

EpZ̄.

The first two results have been already obtained in the previous sections. The third result
is given in Appendix 7.7.1. The sum of the variances is thus

d f∑︂
p=1

Var[ˆ︁Iself,p] ≈
1

NZ̄2E

⎡⎢⎢⎢⎢⎢⎢⎢⎣ (m(x)2 + s(x)2)
∑︁d f

p=1( fp(x) − Ip)2

q(x)2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ .
By Jensen’s inequality, we can derive that the optimal proposal is

qopt(x) ∝ ∥f(x) − I∥2
√︁

m(x)2 + s(x)2. (7.19)

Relationship with active learning. The optimal density qopt(x) can be interpreted as an
acquisition density, suggesting the regions of the space which require more number of
acquisitions of the realizations ˜︁m(x). Namely, qopt(x) plays a role similar to an acquisi-
tion function in active learning. This is information is relevant, especially if the noisy
evaluations are also costly to obtain.
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7.4.4. Connection with other types of optimality

Here, we discuss another approach for optimality in noisy IS and connect it with our
work. Other related works, in Monte Carlo and noisy optimization literature, focus on
the trade-off between accuracy/noisiness and computational cost [30, 12, 5]. In those set-
tings, it is assumed that one can control the variance s(x)2 of the noisy realizations ˜︁m(x).
Clearly, taking samples with higher accuracy, i.e. small variance s(x)2, is beneficial since

it decrease the magnitude of the terms E
[︂

s(x)2

m(x)2

]︂
and E

[︃
fp(x)2 s(x)2

m(x)2

]︃
, which are responsible for

the efficiency loss in the estimators, due to the presence of noise. However, taking accu-
rate estimates implies increased computational cost, hence one must reduce the number
of samples N, which affect the overall Monte Carlo variance. This trade-off have been
investigated in both MCMC and IS frameworks [30, 12].

Let R denote the number of auxiliary samples employed to reduce the variance of
the noisy realizations. Namely, greater R implies greater accuracy but also greater cost.
Moreover, this number could depend on x, i.e., R(x) : X → N+\{0}. Then, the goal is
to obtain the optimal function R(x) by balancing the decrease in variance with the extra
computational cost (see, e.g., Sections 3.3, 3.4 and 5 of [30]). Namely, in this different
approach, they try to reduce s(x)2 at certain x increasing the value of R(x), instead of
using an optimal proposal pdf for the noisy scenario. On the contrary, in this work we
have considered the use of optimal proposal pdfs and that s(x)2 is not tuned by the user,
which means that R is arbitrary and set constant for all x.

7.5. Numerical experiments

In this section, we consider two illustrative numerical example where we clearly show
the performance of the optimal proposal pdf in the noisy IS setting (showing the vari-
ance gains in estimation, with respect to the use the optimal proposal density from the
non-noisy setting). For simplicity, we consider one-dimensional scenarios, and test the
optimal proposal pdf with different densities p(x) (uniform and Gaussian), and different
types of variance behavior, σ(x).

First experiment. Let p(x) = 1
b−a for x ∈ [a, b], i.e., a uniform density in [a, b] with

a = 0.1 and b = 10. We set ˜︁m(x) = p(x)eϵ with ϵ ∼ N
(︂
−σ2/2, σ2

)︂
so that E[eϵ] = 1, and

we have m(x) = E[˜︁m(x)] = p(x).
We consider the estimation of Z̄ = 1 using the optimal proposal pdf qopt(x) in Eq. (7.11),
and the optimal proposal pdf in the non-noisy setting, i.e., qsub-opt(x) = p(x). More specif-
ically, we consider

σ(x) = A| log(x)|, A > 0.

Hence,

s(x)2 =
eσ(x)2

− 1
(b − a)2 , and qopt(x) ∝

1
b − a

eσ(x)2
.
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Clearly, by changing A, we change the form of both s(x)2 and qopt(x). For instance,
increasing A also increases the magnitude of s(x)2 and hence the mismatch between
qsub-opt(x) = p(x) and qopt(x), as depicted in Figure 7.1. Indeed, for A = 0.2, qopt(x) is
almost identical to p(x) since the magnitude of s(x) is small w.r.t. the values of p(x). As
A increases, qopt(x) deviates from p(x), being in the middle between p(x) and s(x), and
eventually would converge to s(x) for A ≫ 1. It is also interesting to note that qopt(x)
with A = 1.2 has very little probability mass around x = 1, where the noise is zero, since
it needs to concentrate probability mass in the extremes of the interval, where the noise
power is huge.
Let also denote as Vsub-opt the variance obtained using qsub-opt(x) = p(x) given in Eq. (7.12),
and Vopt = Vmin the variance obtained using qopt(x) given in Eq. (7.13). In Figure 7.3(a),
we show the ratio of variances Vsub-opt

Vopt
both theoretically and empirically, as a function of

A, where Vsub-opt and Vopt are the variances of ˆ︁Z when using p(x) and qopt(x) as proposals,
respectively. We can observe the clear advantage of using the optimal proposal density
qopt(x) in Eq. (7.11).

Second experiment. Let us consider now a Gaussian pdf, p(x) = N(x|0, 1), and the
same error model as in the previous example but considering

σ(x) = A|x|
1
2 , A > 0.

Figure 7.2 depicts the qopt(x) and s(x), as a function of x, for several values of A. Note that,
in this example, increasing A makes qopt(x) become bimodal. As in the previous example,
as A increases, the optimal proposal qopt(x) will converge to s(x). The theoretical and
empirical curves of the ratio of variances, Vsub-opt

Vopt
, in estimating Z are shown in Figure

7.3(b).

(a) qopt(x) for different values of A. (b) s(x) for different values of A in log-scale.

Figure 7.1: Uniform example. (a) Optimal proposals qopt(x) for different values of A, and
the qsub-opt(x) = p(x) in dashed line; (b) The standard deviation s(x) for different values of
A.
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(a) qopt(x) for different values of A. (b) s(x) for different values of A.

Figure 7.2: Gaussian example. (a) Optimal proposals qopt(x) for different values of A,
and the qsub-opt(x) = p(x) in dashed line; (b) The standard deviation s(x)2 for different
values of A.
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(a) Uniform example. (b) Gaussian example.

Figure 7.3: Theoretical and empirical ratio of variances Vsub-opt

Vopt
in the estimation of Z̄ = 1

for both experiments. The x-axis denotes the noise level (larger A means greater noise).

7.6. Conclusions

Working with noisy evaluations of the target density is usual in Monte Carlo, especially
in the last years. In this work, we have analyzed the use of optimal proposal densities in
a noisy IS framework. Previous works have focused on the trade-off between accuracy
in the evaluation and computational cost in order to form optimal estimators. In this
work, we have considered a general setting and derived the optimal proposals for the
noisy IS estimators. These optimal proposals incorporate the variance function of the
noisy evaluation in order to propose samples in regions that are more affected by noise.
In this sense, we can informally state that the optimal proposal densities play the role of
an acquisition function that also take into account the noise power.
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7.7. Appendix

7.7.1. Covariance between ˆ︁Ep and ˆ︁Z
We show that

Cov[ˆ︁Ep,ˆ︁Z] =
1
N
E

[︄
fp(x)(m(x)2 + s(x)2)

q(x)2

]︄
−

1
N

EpZ̄.

First, recall that Cov[ˆ︁Ep,ˆ︁Z] = E[ˆ︁Epˆ︁Z] − EpZ̄. By the law of iterated expectations,

E[ˆ︁Epˆ︁Z] = E[E[ˆ︁Epˆ︁Z|x1:N]].

The inner expectation is

E[ˆ︁Epˆ︁Z|x1:N] = E

⎡⎢⎢⎢⎢⎢⎢⎣ 1
N2

N∑︂
i=1

w2
i fp(xi) +

2
N2

N∑︂
i=1

N∑︂
j>i

wiw j fp(xi)
⃓⃓⃓⃓⃓
x1:N

⎤⎥⎥⎥⎥⎥⎥⎦
=

1
N2

N∑︂
i=1

fp(xi)(s(xi)2 + m(xi)2)
q(xi)2 +

2
N2

N∑︂
i=1

N∑︂
j>i

m(xi) f (xi)
q(xi)

m(x j)
q(x j)

.

Hence, we obtain

E
[︂
E[ˆ︁Epˆ︁Z|x1:N]

]︂
=

1
N
E

[︄
f (x)(s(x)2 + m(x)2)

q(x)2

]︄
+

2
N2

N∑︂
i=1

N∑︂
j>i

E

[︄
m(xi) f (xi)

q(xi)

]︄
E

[︄
m(x j)
q(x j)

]︄

=
1
N
E

[︄
f (x)(s(x)2 + m(x)2)

q(x)2

]︄
+

2
N2

N∑︂
i=1

N∑︂
j>i

EpZ̄

=
1
N
E

[︄
f (x)(s(x)2 + m(x)2)

q(x)2

]︄
+ EpZ̄

(︄
1 −

1
N

)︄
.

Combining the results, we obtain the desired expression.
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Abstract

This is an up-to-date introduction to, and overview of, marginal likelihood computation for model

selection and hypothesis testing. Computing normalizing constants of probability models (or ra-

tio of constants) is a fundamental issue in many applications in statistics, applied mathematics,

signal processing and machine learning. This article provides a comprehensive study of the state-

of-the-art of the topic. We highlight limitations, benefits, connections and differences among the

different techniques. Problems and possible solutions with the use of improper priors are also de-

scribed. Some of the most relevant methodologies are compared through theoretical comparisons

and numerical experiments.

Keywords: Marginal likelihood, Bayesian evidence, numerical integration, model selec-
tion, hypothesis testing, quadrature rules, double-intractable posteriors, partition func-
tions.

8.1. Introduction

Marginal likelihood (a.k.a., Bayesian evidence) and Bayes factors are the core of the
Bayesian theory for testing hypotheses and model selection [54, 88]. More generally, the
computation of normalizing constants or ratios of normalizing constants has played an
important role in statistical physics and numerical analysis [99]. In the Bayesian setting,
the approximation of normalizing constants is also required in the study of the so-called
double intractable posteriors [53].

Several methods have been proposed for approximating the marginal likelihood and
normalizing constants in the last decades. Most of these techniques have been originally
introduced in the field of statistical mechanics. Indeed, the marginal likelihood is the anal-
ogous of a central quantity in statistical physics known as the partition function which is
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also closely related to another important quantity often called free-energy. The relation-
ship between statistical physics and Bayesian inference has been remarked in different
works [3, 51].

The model selection problem has been also addressed from different points of view.
Several criteria have been proposed to deal with the trade-off between the goodness-of-fit
of the model and its simplicity. For instance, the Akaike information criterion (AIC) or
the focused information criterion (FIC) are two examples of these approaches [91, 19].
The Bayesian-Schwarz information criterion (BIC) is related to the marginal likelihood
approximation, as discussed in Section 8.3. The deviance information criterion (DIC) is
a generalization of the AIC, which is often used in Bayesian inference [97, 98]. It is par-
ticularly useful for hierarchical models and it can be approximately computed when the
outputs of a Markov Chain Monte Carlo (MCMC) algorithm are given. However, DIC is
not directly related to the Bayesian evidence [85]. Another different approach, also based
on information theory, is the so-called minimum description length principle (MDL) [43].
MDL was originally derived for data compression, and then was applied to model selec-
tion and hypothesis testing. Roughly speaking, MDL considers that the best explanation
for a given set of data is provided by the shortest description of that data [43].
In the Bayesian framework, there are two main classes of sampling algorithms. The first
one consists in approximating the marginal likelihood of different models or the ratio
of two marginal likelihoods. In this work, we focus on this first approach. The sec-
ond sampling approach extends the posterior space including a discrete indicator variable
m, denoting the m-th model [11, 42]. For instance, in the well-known reversible jump
MCMC [42], a Markov chain is generated in this extended space, allowing jumps be-
tween models with possibly different dimensions. However, generally, these methods are
difficult to tune and the mixing of the chain can be poor [45]. For further details, see also
the interesting works [22, 41, 20]. The average number of MCMC iterations when the
chain jumps or stays into the m-th model is proportional to the marginal likelihood of the
corresponding model.
In this work, we provide an extensive review of computational techniques for the marginal
likelihood computation. The main contribution is to present jointly numerous computa-
tional schemes (introduced independently in the literature) with a detailed description
under the same notation, highlighting their differences, relationships, limitations and
strengths. Most of them are based on the importance sampling (IS) approach and sev-
eral of them are combination the MCMC and IS schemes. It is also important to remark
that parts of the presented material are also novel, i.e., no contained in previous works. We
have widely studied, analyzed and jointly described with a unique notation and classifi-
cation, the methodologies presented in a vast literature from 1990s to the recent proposed
algorithms (see Table 8.24). We also discuss issues and solutions when improper priors
are employed. Therefore, this survey provides an ample covering of the literature, where
we highlight important details and comparisons in order to facilitate the understanding of
the interested readers and practitioners.
The problem statement and the main notation are introduced in the Section 8.2.1. Rele-
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vant considerations regarding the marginal likelihood and other model selection strategies
are given in Section 8.2.2 and Section 8.7. Specifically, a description of how the marginal
likelihood handles the model fit and the model complexity is provided in Section 8.2.2.
The dependence on the prior selection and the possible choice of an improper prior are
discussed in Section 8.7. The different techniques have been classified in four main fam-
ilies, as shown in Section 8.2.3. Sections 8.3, 8.4, 8.5, 8.6 are devoted to the detailed
description of the computational schemes for approximating the Bayesian evidence. Sec-
tion 8.8 contains some numerical experiments. In Section 8.9, we conclude with a final
summary and discussion. We provide also theoretical analyses of some of the experiments
and other comparisons in the Supplementary Material.

8.2. Problem statement and preliminary discussions

8.2.1. Framework and notation

In many applications, the goal is to make inference about a variable of interest, θ = θ1:Dθ
=

[θ1, θ2, . . . , θDθ
] ∈ Θ ⊆ RDθ , where θd ∈ R for all d = 1, . . . ,Dθ, given a set of observed

measurements, y = [y1, . . . , yDy] ∈ R
Dy . In the Bayesian framework, one complete model

M is formed by a likelihood function ℓ(y|θ,M) and a prior probability density function
(pdf) g(θ|M). All the statistical information is summarized by the posterior pdf, i.e.,

P(θ|y,M) =
ℓ(y|θ,M)g(θ|M)

p(y|M)
, (8.1)

where
Z = p(y|M) =

∫︂
Θ

ℓ(y|θ,M)g(θ|M)dθ, (8.2)

is the so-called marginal likelihood, a.k.a., Bayesian evidence. This quantity is important
for model selection purpose, as we show below. However, usually Z = p(y|M) is un-
known and difficult to approximate, so that in many cases we are only able to evaluate the
unnormalized target function,

π(θ|y,M) = ℓ(y|θ,M)g(θ|M). (8.3)

Note that P(θ|y,M) ∝ π(θ|y,M) [54, 88]. For the sake of simplicity, hereafter we use the
simplified notation P(θ|y) and π(θ|y). Thus, note that

Z =
∫︂
Θ

π(θ|y)dθ. (8.4)

Model Selection and testing hypotheses. Let us consider now M possible models (or
hypotheses),M1, ...,MM, with prior probability mass pm = P (Mm), m = 1, ...,M. Note
that, we can have variables of interest θ(m) = [θ(m)

1 , θ(m)
2 , . . . , θ(m)

Dm
] ∈ Θm ∈ R

Dm , with
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possibly different dimensions in the different models. The posterior of the m-th model is
given by

p(Mm|y) =
pm p(y|Mm)

p(y)
∝ pmZm (8.5)

where Zm = p(y|Mm) =
∫︁
Θ
ℓ(y|θm,Mm)g(θm|Mm)dθm, and p(y) =

∑︁M
m=1 p(Mm)p(y|Mm).

Moreover, the ratio of two marginal likelihoods

Zm

Zm′
=

p(y|Mm)
p(y|Mm′)

=
p(Mm|y)/pm

p(Mm′ |y)/pm′
, (8.6)

also known as Bayes factors, represents the posterior to prior odds of models m and m′.
If some quantity of interest is common to all models, the posterior of this quantity can
be studied via model averaging [46], i.e., a complete posterior distribution as a mixture
of M partial posteriors linearly combined with weights proportionally to p(Mm|y) (see,
e..g, [72, 101]). Therefore, in all these scenarios, we need the computation of Zm for all
m = 1, ...,M. In this work, we describe different computational techniques for calculat-
ing Zm, mostly based on Markov Chain Monte Carlo (MCMC) and Importance Sampling
(IS) algorithms [88]. Hereafter, we assume proper prior g(θ|Mm). Regarding the use of
improper priors see Section 8.7.2. Moreover, we usually denote Z, Θ, M, omitting the
subindex m, to simplify notation. It is important also to remark that, in some cases, it is
also necessary to approximate normalizing constants (that are also functions of the param-
eters) in each iteration of an MCMC algorithm, in order to allow the study of the posterior
density. For instance, this is the case of the so-called double intractable posteriors [53].

Remark 1. The evidence Z is the normalizing constant of π(θ|y), hence most of the meth-
ods in this review can be used to approximate normalizing constants of generic pdfs.

Remark 2. Instead of approximating the single values Zm for all m, another approach
consists in estimating directly the ratio of two marginal likelihoods Zm

Zm′
, i.e., approximating

directly the Bayes factors. For these reasons, several computational methods focus on
estimating the ratio of two normalizing constants. However, they can be used also for
estimating a single Zm provided that Zm′ is known.
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Table 8.1: Main notation of the work.

Dθ dimension of the parameter space, θ ∈ Θ ⊂ RDθ .
Dy Total number of data.

θ parameters; θ = [θ1, . . . , θDθ
].

y Data, y = [y1, . . . , yDy].

ℓ(y|θ) Likelihood function.
g(θ) Prior pdf.

P(θ|y) Posterior pdf, P(θ|y) = ℓ(y|θ)g(θ)
Z .

π(θ|y) Unnormalized posterior, π(θ|y) = ℓ(y|θ)g(θ) ∝ P(θ|y).
Z = p(y) Marginal likelihood, a.k.a., Bayesian evidence Z =

∫︁
Θ
π(θ|y)dθ.

q̄(θ) Proposal pdf.
q(θ) Unnormalized proposal function, q(θ) ∝ q̄(θ).

8.2.2. Model fit and model complexity

Bounds of the evidence Z

Let us denote the maximum and minimum value of the likelihood function as ℓmin =

ℓ(y|θmin) = min
θ∈θ

ℓ(y|θ), and ℓmax = ℓ(y|θmax) = max
θ∈θ

ℓ(y|θ), respectively. Note that

Z =
∫︂
Θ

ℓ(y|θ)g(θ)dθ ≤ ℓ(y|θmax)
∫︂
Θ

g(θ)dθ = ℓ(y|θmax).

Similarly, we can obtain Z ≥ ℓ(y|θmin). The maximum and minimum value of Z are
reached with two degenerate choices of the prior, g(θ) = δ(θ−θmax) and g(θ) = δ(θ−θmin).
Hence, for every other choice of g(θ), we have

ℓ(y|θmin) ≤ Z ≤ ℓ(y|θmax). (8.7)

Namely, depending on the choice of the prior g(θ), we can have any value of Bayesian
evidence contained in the interval [ℓ(y|θmin), ℓ(y|θmax)]. For further discussion see Section
8.7.
The two possible extreme values correspond to the worst and the best model fit, respec-
tively. Below, we will see that if Z = ℓ(y|θmin) the chosen prior, g(θ) = δ(θ− θmin), applies
the greatest possible penalty to the model whereas, if Z = ℓ(y|θmax), the chosen prior,
g(θ) = δ(θ − θmax), does not apply any penalization to the model complexity (we have
the maximum overfitting). Namely, the evidence Z is an average of the likelihood values,
weighted according to the prior.
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Occam factor and implicit/intrinsic complexity penalization in Z

The marginal likelihood can be expressed as

Z = ℓmaxW, (8.8)

where W ∈ [0, 1] is the Occam factor [48, Sect. 3]. More specifically, the Occam factor
is defined as

W =
1
ℓmax

∫︂
Θ

g(θ)ℓ(y|θ)dθ, (8.9)

and it is ℓmin
ℓmax
≤ W ≤ 1. The factor W measures the penalty of the model complexity

intrinsically contained in the marginal likelihood Z: this penalization depends on the
chosen prior and the number of data involved. We show below that the Occam factor
measures the “overlap” between likelihood and prior, i.e., how diffuse the prior is with
respect to the likelihood function. Finally, it is important to remark that, considering the
posterior of the m-th model p(Mm|y), we have another possible penalization term due to
the prior pm = P(Mm) ∈ [0, 1], i.e.,

p(Mm|y) ∝ Zpm = ℓmaxW pm = ℓmax ˜︁W,

where we have defined the posterior Occam factor as ˜︁W = W pm.

Occam factor with uniform priors

One-dimensional case. Let start with a single parameter, θ = θ, and a uniform prior
in [a, b]. We can define the amount of the likelihood mass is contained inside the prior
bounds,

∆ℓ =
1
ℓmax

∫︂ b

a
ℓ(y|θ)dθ, where ℓmax = max

θ∈θ
ℓ(y|θ). (8.10)

Defining also the width of the prior as ∆θ = |Θ| = b − a, note that 0 ≤ ∆ℓ ≤ ∆θ, where
the equality ∆ℓ = ∆θ is given when the likelihood is ℓ(y|θ) = ℓmax is constant. The Occam
factor is given as the ratio of ∆ℓ and the width of a uniform prior ∆θ [48],

W =
∆ℓ

∆θ
. (8.11)

If the likelihood function is integrable in R, then there exists a finite upper bound for ∆ℓ
when ∆θ → ∞, that is ∆∗ℓ =

1
ℓmax

∫︁ +∞
−∞

ℓ(y|θ)dθ. Hence, in this scenario, we can see that an
increase of ∆θ makes that W approaches 0.

Multidimensional case. Consider now a multidimensional case, θ = [θ1, θ2, . . . , θDθ
] ∈

Θ ⊆ RDθ , where we can use the same uniform prior, with the same width ∆θ = |Θ|, for
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all the parameters. In this case, ∆ℓ = 1
ℓmax

∫︁
Θ
ℓ(y|θ)dθ ≤ (∆θ)Dθ is Dθ-dimensional integral,

and ℓmax = max ℓ(y|θ). Then, for Dθ parameters, the Occam factor is

W =
∆ℓ

(∆θ)Dθ
. (8.12)

Usually, as Dθ grows, the fitting improves until reaching (or approaching) a maximum,
possible overfitting. Then, with Dθ big enough, ℓmax tends to be virtually constant (reach-
ing the maximum overfitting). If

∫︁
Θ
ℓ(y|θ)dθ grows slower than (∆θ)Dθ as Dθ → ∞, and

assuming for an illustrative purpose ∆θ > 1, then W converges to 0 as Dθ → ∞. That
is, when we introduce more and more parameters, the increase in model fit will be dom-
inated, at some point, by the model complexity penalization implicitly contained in the
evidence Z.

Marginal likelihood and information criteria

Considering the expressions (8.8) and (8.12) and taking the logarithm, we obtain

log Z = log ℓmax + log W = log ℓmax + log∆ℓ − Dθ log∆θ,

= log ℓmax + ηDθ, (8.13)

where η = log∆ℓ
Dθ
− log∆θ is a constant value, which also depends on the number of data Dy

and, generally, η = η(Dy,Dθ). Different model selection rules in the literature consider the
simplification η = η(Dy). Note that log ℓmax is a fitting term whereas ηDθ is a penalty for
the model complexity. Instead of maximizing Z (or log Z) for model selection purposes,
several authors consider the minimization of some cost functions derived by different
information criteria. To connect them with the marginal likelihood maximization, we
consider the expression of −2 log Z = −2I where I = − log Z resembles the Shannon
information associated to Z = p(y) , i.e.,

2I = −2 log Z = −2 log ℓmax − 2ηDθ. (8.14)

The expression above encompasses several well-known information criteria proposed in
the literature and shown in Table 8.2, which differ for the choice of η. In all these cases,
η is just a function of the number of data Dy. More details regarding these information
criteria are given in Section 8.3.

Remark 3. The penalty term in the information criteria is the same for every parameter.
The Bayesian approach allows the choice of different penalties, assuming different priors,
one for each parameter.

8.2.3. A general overview of the computational methods

After a depth revision of the literature, we have recognized four main families of tech-
niques, described below. We list them in order of complexity, from the simplest to the
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Table 8.2: Different information criterion for model selection.

Criterion Choice - approximation of η

Bayesian-Schwarz information criterion (BIC) [94] − 1
2 log Dy

Akaike information criterion (AIC) [97] −1
Hannan-Quinn information criterion (HQIC) [44] − log(log(Dy))

most complex underlying main idea. However, each class can contain both simple and
very sophisticated algorithms.

Family 1: Deterministic approximations. These methods consider an analytical approxi-
mation of the function P(θ|y). The Laplace method and the Bayesian Information Crite-
rion (BIC), belongs to this family (see Section 8.3).

Family 2: Methods based on density estimation. This class of algorithms uses the equality

ˆ︁Z = π(θ∗|y)ˆ︁P(θ∗|y)
, (8.15)

where ˆ︁P(θ∗|y) ≈ P(θ∗|y) represents an estimation of the density P(θ|y) at some point θ∗.
Generally, the point θ∗ is chosen in a high-probability region. The techniques in this fam-
ily differ in the procedure employed for obtaining the estimation ˆ︁P(θ∗|y). One famous
example is the Chib’s method [15]. Section 8.3 is devoted to describe methods belonging
to family 1 and family 2.

Family 3: Importance sampling (IS) schemes. The IS methods are based on rewriting Eq.
(8.2) as an expected value w.r.t. a simpler normalized density q̄(θ), i.e., Z =

∫︁
Θ
π(θ|y)dθ =

Eq̄

[︂
π(θ|y)
q̄(θ)

]︂
. This is the most considered class of methods in the literature, containing nu-

merous variants, extensions and generalizations. We devote Sections 8.4-8.5 to this family
of techniques.

Family 4: Methods based on a vertical representation. These schemes rely on changing
the expression of Z =

∫︁
Θ
ℓ(y|θ)g(θ)dθ (that is a multidimensional integral) to equivalent

one-dimensional integrals [84, 105, 95]. Then, a quadrature scheme is applied to approx-
imate this one-dimensional integral. The most famous example is the nested sampling
algorithm [95]. Section 8.6 is devoted to this class of methods.

8.3. Methods based on deterministic approximations and density estimation

In this section, we consider approximations of P(θ|y), or its unnormalized version π(θ|y),
in order to obtain an estimation Z. In a first approach, the methods consider P(θ|y) or
π(θ|y) as a function, and try to obtain a good approximation given another parametric or
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non-parametric family of functions. Another approach consists in approximating P(θ|y)
only at one specific point θ∗, i.e., ˆ︁P(θ∗|y) ≈ P(θ∗|y) (θ∗ is usually chosen in high posterior
probability regions), and then using the identity

ˆ︁Z = π(θ∗|y)ˆ︁P(θ∗|y)
. (8.16)

The latter scheme is often called candidate’s estimation.

8.3.1. Laplace’s method

Let us define ˆ︁θMAP ≈ θMAP = arg max P(θ|y) (obtained by some optimization method),
which is an approximation of the maximum a posteriori (MAP), and consider a Gaussian
approximation of P(θ|y) around ˆ︁θMAP, i.e.,

ˆ︁P(θ|y) = N(θ|ˆ︁θMAP,ˆ︁Σ), (8.17)

with ˆ︁Σ≈ − H−1, which is an approximation of the negative inverse Hessian matrix of
log π(θ|y) at ˆ︁θMAP. Replacing in Eq. (8.16), with θ∗ = ˆ︁θMAP, we obtain the Laplace
approximation

ˆ︁Z = π(ˆ︁θMAP|y)

N(ˆ︁θMAP|ˆ︁θMAP,ˆ︁Σ)
= (2π)

Dx
2 |ˆ︁Σ| 12π(ˆ︁θMAP|y). (8.18)

This is equivalent to the classical derivation of Laplace’s estimator, which is based on
expanding the log π(θ|y) = log(ℓ(y|θ)g(θ)) as quadratic around ˆ︁θMAP and substituting in
Z =

∫︁
π(θ|y)dθ, that is,

Z =
∫︂

π(θ|y)dθ =
∫︂

exp{log π(θ|y)}dθ (8.19)

≈

∫︂
exp

{︄
log π(ˆ︁θMAP|y) −

1
2

(θ −ˆ︁θMAP)Tˆ︁Σ−1(θ −ˆ︁θMAP)
}︄

dθ (8.20)

= (2π)
Dx
2 |ˆ︁Σ| 12π(ˆ︁θMAP|y). (8.21)

In [52], they propose to use samples generated by a Metropolis-Hastings algorithm to es-
timate the quantities ˆ︁θMAP and ˆ︁Σ [88]. The resulting method is called Laplace-Metropolis
estimator. The authors in [23] present different variants of the Laplace’s estimator. A
relevant extension for Gaussian Markov random field models, is the so-called integrated
nested Laplace approximation (INLA) [90].

8.3.2. Bayesian-Schwarz information criterion (BIC)

Let us define ˆ︁θMLE ≈ θMLE = arg max ℓ(y|θ). The following quantity

BIC = Dθ log Dy − 2 log ℓ(y|ˆ︁θMLE), (8.22)
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was introduced by Gideon E. Schwarz in [94], where Dθ represents the number of param-
eters of the model (θ ∈ RDθ), Dy is the number of data,13 and ℓ(y|ˆ︁θMLE) is the estimated
maximum value of the likelihood function. The value of ˆ︁θMLE can be obtained using sam-
ples generated by a MCMC scheme. The BIC expression can be derived similarly to the
Laplace’s method, but this time with a second-order Taylor expansion of the log Z around
its maximum θMLE and a first-order expansion of the prior around θMLE [50, Ch. 9.1.3].
The derivation is given in the Supplementary Material. Then, the final approximation is

Z ≈ ˆ︁Z = exp
(︃
log ℓ(y|ˆ︁θMLE) −

Dθ

2
log Dy

)︃
= exp

(︄
−

1
2

BIC
)︄
, as Dy → ∞, (8.23)

and BIC ≈ −2 log Z, asymptotically as the number of data Dy grows. Then, smaller
BIC values are associated to better models. Note that BIC clearly takes into account the
complexity of the model since higher BIC values are given to models with more number
of parameters Dθ. Namely the penalty Dθ log Dy discourages overfitting, since increasing
the number of parameters generally improves the goodness of the fit. Other criteria can
be found in the literature, such as the well-known Akaike information criterion (AIC),

AIC = 2Dθ − 2 log ℓ(y|ˆ︁θMLE).

However, they are not an approximation of the marginal likelihood Z and are usually
founded on information theory derivations. Generally, they have the form of cp−2 log ℓ(y|ˆ︁θMLE)
where the penalty term cp of the model complexity changes in each different criterion
(e.g., cp = Dθ log Dy in BIC and cp = 2Dθ in AIC). Another example that uses MCMC
samples is the Deviance Information Criterion (DIC), i.e.,

DIC = −
4
N

N∑︂
n=1

log ℓ(y|θn) − 2 log ℓ(y|θ̄), where θ̄ =
1
N

N∑︂
n=1

θn, (8.24)

and {θn}
N
n=1 are outputs of an MCMC algorithm [97]. In this case, note that cp = −

4
N

∑︁N
i=1 log ℓ(y|θn).

DIC is considered more adequate for hierarchical models than AIC, BIC [97], but is not
directly related to the marginal likelihood [85]. See also related comments in Section
8.2.2.

8.3.3. Kernel density estimation (KDE)

KDE can be used to approximate the value of the posterior density at a given point θ∗,
and then consider Z ≈ π(θ∗ |y)ˆ︁P(θ∗ |y)

. For instance, we can build a kernel density estimate (KDE)
of P(θ|y) based on M samples distributed according to the posterior (obtained via an
MCMC algorithm, for instance) by using M normalized kernel functions k(θ|µm, h) (with∫︁
Θ

k(θ|µm, h)dθ = 1 for all m) where µm is a location parameter and h is a scale parameter,

ˆ︁P(θ∗|y) =
1
M

M∑︂
m=1

k(θ∗|µm, h), {µm}
M
m=1 ∼ P(θ|y) (e.g., via MCMC). (8.25)

13Note that, for simplicity, we are considering scalar observations yi, so that the dimension Dy of the data
vector y coincides with the number of data.
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Generally, ˆ︁P(θ∗|y) is a biased estimation of P(θ∗|y). The estimator is ˆ︁Z = π(θ∗ |y)ˆ︁P(θ∗ |y)
where

the point θ∗ can be chosen as ˆ︁θMAP. If we consider N different points θ1, ..., θN (selected
without any specific rule) we can also write a more general approximation,

ˆ︁Z = 1
N

N∑︂
n=1

π(θn|y)ˆ︁P(θn|y)
. (8.26)

Remark 4. The estimator above is generally biased and depends on the choices of (a)
of the points θ1, ..., θN , (b) the scale parameter h, and (c) the number of samples M for
building ˆ︁P(θ∗|y).

Remark 5. A improved version of this approximation can be obtained by the importance
sampling approach described in Sect. 8.4, where θ1, ..., θN are drawn from the KDE mix-
ture ˆ︁P(θ|y). In this case, the resulting estimator is unbiased.

8.3.4. Chib’s method

In [15, 16], the authors present more sophisticated methods to estimate P(θ∗|y) using
outputs from Gibbs sampling and the Metropolis-Hastings (MH) algorithm respectively
[88]. Here we only present the latter method, since it can be applied in more general
settings. In [16], the authors propose to estimate the value of the posterior at one point
θ∗,i.e., P(θ∗|y), using the output from a MH sampler. More specifically, let us denote
the current state as θ. A possible candidate as future state z ∼ φ(z|θ) (where φ(z|θ)
represents the proposal density used within MH), is accepted with probability α(θ, z) =
min

{︂
1, π(z|y)φ(θ|z)

π(θ|y)φ(z|θ)

}︂
[88, 61]. This is just an example of α(θ, z) that by construction the

probability α satisfies the detailed balance condition [61, Section 2.4],[59], i.e.,

α(θ, z)φ(z|θ)P(θ|y) = α(z, θ)φ(θ|z)P(z|y). (8.27)

By integrating in θ both sides, we obtain∫︂
Θ

α(θ, z)φ(z|θ)P(θ|y)dθ =
∫︂
Θ

α(z, θ)φ(θ|z)P(z|y)dθ,

= P(z|y)
∫︂
Θ

α(z, θ)φ(θ|z)dθ,

hence finally we can solve with respect to P(z|y) obtaining

P(z|y) =

∫︁
Θ
α(θ, z)φ(z|θ)P(θ|y)dθ∫︁
Θ
α(z, θ)φ(θ|z)dθ

. (8.28)

This suggests the following estimate of P(θ∗|y) at a specific point θ∗ (note that θ∗ plays
the role of z in the equation above),

ˆ︁P(θ∗|y) =

1
N1

∑︁N1
i=i α(θi, θ

∗)φ(θ∗|θi)

1
N2

∑︁N2
j=1 α(θ∗, v j)

, {θi}
N1
i=1 ∼ P(θ|y), {v j}

N2
j=1 ∼ φ(θ|θ∗). (8.29)
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The same outputs of the MH scheme can be considered as {θi}
N1
i=1. The final estimator is

again ˆ︁Z = π(θ∗ |y)ˆ︁P(θ∗ |y)
, i.e.,

ˆ︁Z = π(θ∗|y)
1

N2

∑︁N2
j=1 α(θ∗, v j)

1
N1

∑︁N1
i=i α(θi, θ∗)φ(θ∗|θi)

, {θi}
N1
i=1 ∼ P(θ|y), {v j}

N2
j=1 ∼ φ(θ|θ∗). (8.30)

The point θ∗ is usually chosen in an high probability region. Interesting discussions are
contained in [75], where the authors also show that this estimator is related to bridge
sampling idea described in Section 8.4.2. For more details, see Section 8.4.2.

8.3.5. Interpolative approaches

Another possibility is to approximate Z by substituting the true π(θ|y) with interpolation
or a regression function ˆ︁π(θ|y) in the integral (8.4). For simplicity, we focus on the inter-
polation case, but all the considerations can be easily extended for a regression scenario.
Given a set of nodes {θ1, . . . , θN} ⊂ Θ and N nonlinear functions k(θ, θ′) : Θ × Θ → R
chosen in advance by the user (generally, centered around θ′), we can build the interpolant
of unnormalized posterior π(θ|y) as follows

ˆ︁π(θ|y) =
N∑︂

i=1

βik(θ, θi), (8.31)

where βi ∈ R and the subindex u denotes that is an approximation of the unnormalized
function π(θ|y). The coefficients βi are chosen such that ˆ︁πu(θ|y) interpolates the points
{θn, π(θn|y)}, that is, ˆ︁π(θn|y) = π(θn|y). Then, we desire that

N∑︂
i=1

βik(θn, θi) = π(θn|y),

for all n = 1, ...,N. Hence, we can write a N × N linear system where the βi are the N
unknowns, i.e., ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k(θ1, θ1) k(θ1, θ2) . . . k(θ1, θN)
k(θ2, θ1) k(θ2, θ2) . . . k(θ2, θN)

...
. . .

...

k(θN , θ1) k(θN , θ2) . . . k(θN , θN)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
β1

β2
...

βN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
π(θ1|y)
π(θ2|y)

...

π(θN |y)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (8.32)

In matrix form, we have
Kβ = y, (8.33)

where (K)i, j = k(θi, θ j) and y = [π(θ1|y), . . . , π(θN |y)]⊤. Thus, the solution is β = K−1y.
Now the interpolant ˆ︁πu(θ|y) =

∑︁N
i=1 βik(θ, θi) can be used to approximate Z as follows

ˆ︁Z = ∫︂
Θ

ˆ︁πu(θ|y)dθ =
N∑︂

i=1

βi

∫︂
Θ

k(θ, θi)dθ. (8.34)
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If we are able to compute analytically
∫︁
Θ

k(θ, θi)dθ, we have an approximation ˆ︁Z. Some
suitable choices of k(·, ·) are rectangular, triangular and Gaussian functions. More specif-
ically, if all the nonlinearities k(θ, θi) are normalized (i.e.

∫︁
Θ

k(θ, θi)dθ = 1), the approxi-
mation of Z is ˆ︁Z = ∑︁N

i=1 βi. This approach is related to the so-called Bayesian quadrature
(using Gaussian process approximation) [87] and the sticky proposal constructions within
MCMC or rejection sampling algorithms [40, 38, 60, 73]. Adaptive schemes adding se-
quentially more nodes could be also considered, improving the approximation ˆ︁Z [38, 60].
The quality of the interpolating approximation deteriorates as the dimension of θ grows
(see e.g. [6] for explicit error bounds).

8.4. Techniques based on IS

Most of the techniques for approximating the marginal likelihood are based on the impor-
tance sampling (IS) approach. Other methods are directly or indirectly related to the IS
framework. In this sense, this section is the core of this survey. The standard IS scheme
relies on the following equality,

Z =
∫︂
Θ

π(θ|y)dθ = Eq̄

[︄
π(θ|y)
q̄(θ)

]︄
=

∫︂
Θ

π(θ|y)
q̄(θ)

q̄(θ)dθ (8.35)

=

∫︂
Θ

ℓ(y|θ)g(θ)
q̄(θ)

q̄(θ)dθ, (8.36)

where q̄(θ) is a simpler normalized proposal density,
∫︁
Θ

q̄(θ)dθ = 1.

IS version 1. Drawing N independent samples from proposal q̄(θ), the unbiased IS esti-
mator (denoted as IS vers-1) of Z is

ˆ︁ZIS 1 =
1
N

N∑︂
i=1

π(θi|y)
q̄(θi)

(8.37)

=
1
N

N∑︂
i=1

wi, (8.38)

=
1
N

N∑︂
i=1

ℓ(y|θi)g(θi)
q̄(θi)

=
1
N

N∑︂
i=1

ρiℓ(y|θi), {θi}
N
i=1 ∼ q̄(θ), (8.39)

where wi =
π(θi |y)
q̄(θi)

are the standard IS weights and ρi =
g(θi)
q̄(θi)

.

Optimal proposal in IS vers-1. The optimal proposal, in terms of mean square error
(MSE), in the standard IS scheme above is q̄opt(θ) = P(θ|y).

IS version 2. An alternative IS estimator (denoted as IS vers-2) is given by, considering
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a possibly unnormalized proposal pdf q(θ) ∝ q̄(θ) (the case q(θ) = q̄(θ) is also included),

ˆ︁ZIS 2 =
1∑︁N

n=1
g(θn)
q(θn)

N∑︂
i=1

g(θi)
q(θi)

ℓ(y|θi), (8.40)

=
1∑︁N

n=1 ρn

N∑︂
i=1

ρiℓ(y|θi), (8.41)

=

N∑︂
i=1

ρ̄iℓ(y|θi), {θi}
N
i=1 ∼ q̄(θ). (8.42)

The estimator above is biased. However, it is a convex combination of likelihood values
ℓ(y|θi) since

∑︁N
i=1 ρ̄i = 1. Hence, in this case min

i
ℓ(y|θi) ≤ ˆ︁Z ≤ max

i
ℓ(y|θi), i.e., the esti-

mator fulfills the bounds of Z, shown Section 8.2.2. Moreover, the estimator allows the
use of an unnormalized proposal pdf q(θ) ∝ q̄(θ) and ρi =

g(θi)
q(θi)

. For instance, one could
consider q̄(θ) = P(θ|y), i.e., generate samples {θi}

N
i=1 ∼ P(θ|y) by an MCMC algorithm

and then evaluate ρi =
g(θi)
π(θi |y) .

Optimal proposal in IS vers-2. The optimal proposal, in terms of MSE, for the IS
vers-2 is q̄opt(θ) ∝ |P(θ|y) − g(θ)|.

Table 8.3 summarizes the IS estimators and shows some important special cases that will
be described in the next section.

Table 8.3: IS estimators Eqs. (8.37)-(8.40) and relevant special cases.

ˆ︁ZIS 1 =
1
N

∑︁N
i=1

g(θi)
q̄(θi)

ℓ(y|θi) = 1
N

∑︁N
i=1 ρiℓ(y|θi), ρi =

g(θi)
q̄(θi)

Name Estimator q(θ) q̄(θ) Need of MCMC Unbiased
Naive Monte Carlo 1

N

∑︁N
i=1 ℓ(y|θi) g(θ) g(θ) — ✓

ˆ︁ZIS 2 =
1∑︁N

n=1
g(θn)
q(θn)

∑︁N
i=1

g(θi)
q(θi)

ℓ(y|θi) =
∑︁N

i=1 ρ̄iℓ(y|θi)

Name Estimator q(θ) q̄(θ) Need of MCMC Unbiased
Naive Monte Carlo 1

N

∑︁N
i=1 ℓ(y|θi) g(θ) g(θ) — ✓

Harmonic mean
(︂

1
N

∑︁N
i=1

1
ℓ(y|θi)

)︂−1
π(θ|y) P(θ|y) ✓ —

Different sub-families of IS schemes are commonly used for computing normalizing con-
stants [14, chapter 5]. A first approach uses draws from a proposal density q̄(θ) that is
completely known (i.e. direct sampling and evaluate). Sophisticated choices of q̄(θ) fre-
quently imply the use of MCMC algorithms to sample from q̄(θ) and that we can only
evaluate q(θ) ∝ q̄(θ). The one-proposal approach is described in Section 8.4.1. A sec-
ond class is formed by methods which use more than one proposal density or a mixture
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of them (see Sections 8.4.2, 8.4.3 and 8.5). Moreover, adaptive importance sampling
(AIS) schemes are often designed, where the proposal (or the cloud of proposals) is im-
proved during some iterations, in some way such that q̄t(θ) (where t is an iteration index)
becomes closer and closer to the optima proposal qopt(θ). For more details, see the reviews
in [7]. Some AIS methods, obtained combining MCMC and IS approaches, are described
in Section 8.5.

8.4.1. Techniques using draws from one proposal density

In this section, all the techniques are IS schemes which use a unique proposal pdf, and
are based on the identity Eq. (8.35). The techniques differ in the choice of q̄(θ). Recall
that the optimal proposal choice for IS vers-1 is q̄(θ) = P(θ|y) = 1

Zπ(θ|y). This choice is
clearly difficult for two reasons: (a) we have to draw from P and (b) we do not know Z,
hence we cannot evaluate q̄(θ) but only q(θ) = π(θ|y) (where q(θ) ∝ q̄(θ)). However, there
are some methods based on this idea, as shown in the following. The techniques below
are enumerated in an increasing order of complexity.

Naive Monte Carlo (arithmetic mean estimator). It is straightforward to note that the
integral above can be expressed as Z = Eg[ℓ(y|θ)], then we can draw N samples {θi}

N
i=1

from the prior g(θ) and compute the following estimator

ˆ︁Z = 1
N

N∑︂
i=1

ℓ(y|θi), {θi}
N
i=1 ∼ g(θ). (8.43)

Namely a simple average of the likelihoods of a sample from the prior. Note that ˆ︁Z will be
very inefficient (large variance) if the posterior is much more concentrated than the prior
(i.e., small overlap between likelihood and prior pdfs). Therefore, alternatives have been
proposed, see below. It is a special case of the IS estimator with the choice q̄(θ) = g(θ)
(i.e., the proposal pdf is the prior).

Harmonic mean (HM) estimators. The HM estimator can be directly derived from
the following expected value,

EP

[︄
1

ℓ(y|θ)

]︄
=

∫︂
Θ

1
ℓ(y|θ)

P(θ|y)dθ, (8.44)

=
1
Z

∫︂
Θ

1
ℓ(y|θ)

ℓ(y|θ)g(θ)dθ =
1
Z

∫︂
Θ

g(θ)dθ =
1
Z
. (8.45)

The main idea is again to use the posterior itself as proposal. Since direct sampling from
P(θ|y) is generally impossible, this task requires the use of MCMC algorithms. Thus, the
HM estimator is

ˆ︁Z = ⎛⎜⎜⎜⎜⎜⎝ 1
N

N∑︂
i=1

1
ℓ(y|θi)

⎞⎟⎟⎟⎟⎟⎠−1

=
1

1
N

∑︁N
i=1

1
ℓ(y|θi)

, {θi}
N
i=1 ∼ P(θ|y) (via MCMC). (8.46)
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The HM estimator converges almost surely to the correct value, but the variance of ˆ︁Z is
often high and possibly infinite. 14 The HM estimator is a special case of Reverse Impor-
tance Sampling (RIS) below.

Reverse Importance Sampling (RIS). The RIS scheme [33], also known as reciprocal
IS, can be derived from the identity

1
Z
= EP

[︄
f (θ)
π(θ|y)

]︄
=

∫︂
Θ

f (θ)
π(θ|y)

P(θ|y)dθ (8.47)

where we consider an auxiliary normalized function f (θ), i.e.,
∫︁
Θ

f (θ)dθ = 1. Then, one
could consider the estimator

ˆ︁Z =

⎛⎜⎜⎜⎜⎜⎝ 1
N

N∑︂
i=1

f (θi)
π(θi|y)

⎞⎟⎟⎟⎟⎟⎠−1

=

⎛⎜⎜⎜⎜⎜⎝ 1
N

N∑︂
i=1

f (θi)
ℓ(y|θi)g(θi)

⎞⎟⎟⎟⎟⎟⎠−1

, θi ∼ P(θ|y) (via MCMC).(8.48)

The estimator above is consistent but biased. Indeed, the expression 1
N

∑︁N
i=1

f (θi)
π(θi |y) is a

unbiased estimator of 1/Z, but ˆ︁Z in the Eq. (8.48) is not an unbiased estimator of Z.
Note that P(θ|y) plays the role of importance density from which we need to draw from.
Therefore, another sampling technique must be used (such as a MCMC method) in order
to generate samples from P(θ|y). In this case, we do not need samples from f (θ), although
its choice affects the precision of the approximation. Unlike in the standard IS approach,
f (θ) must have lighter tails than π(θ|y) = ℓ(y|θ)g(θ). For further details, see the example
in Section 8.8.1. Finally, note that the HM estimator is a special case of RIS when f (θ) =
g(θ) in Eq. (8.48). In [89], the authors propose taking f (θ) that is uniform in a high
posterior density region whereas, in [104], they consider taking f (θ) to be a piecewise
constant function.

The pre-umbrella estimators

All the estimators that we have seen so far can be unified within a common formulation,
considering the more general problem of estimating a ratio of two normalizing constants
c1/c2, where ci =

∫︁
qi(θ)dθ and q̄i(θ) = qi(θ)/ci, i = 1, 2. Assuming we can evaluate both

q1(θ), q2(θ), and draw samples from one of them, say q̄2(θ), the importance sampling
estimator of ratio c1/c2 is

c1

c2
= Eq̄2

[︄
q1(θ)
q2(θ)

]︄
≈

1
N

N∑︂
i=1

q1(θi)
q2(θi)

, {θi}
N
i=1 ∼ q̄2(θ). (8.49)

Remark 6. The relative MSE (rel-MSE) of (8.49), in estimation of the ratio r = c1
c2

, i.e.,

rel-MSE = E[(ˆ︁r−r)2]
r2 , is given by rel-MSE = 1

Nχ
2(q̄1||q̄2), where χ2(q̄1||q̄2) is the Pearson

14See the comments of Radford Neal’s blog, https://radfordneal.wordpress.com/2008/08/17/
the-harmonic-mean-of-the-likelihood-worst-monte-carlo-method-ever/, where R. Neal
defines the HM estimator as “the worst estimator ever”.
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divergence between q̄1 and q̄2 [13].

This framework includes almost all the estimators discussed so far in this section, as
shown in Table 8.4. However, the IS vers-2 estimator is not a special case of Eq. (8.49).

Table 8.4: Summary of techniques considering the expression (8.49).

Name q1(θ) q2(θ) c1 c2 Proposal pdf q̄2(θ) c1/c2

IS vers-1 π(θ|y) q̄(θ) Z 1 q̄(θ) Z
Naive Monte Carlo π(θ|y) g(θ) Z 1 g(θ) Z

Harmonic mean g(θ) π(θ|y) 1 Z P(θ|y) 1/Z
RIS f (θ) π(θ|y) 1 Z P(θ|y) 1/Z

Below we consider an extension of Eq. (8.49) where an additional density q̄3(θ) is
employed for generating samples.

Umbrella Sampling (a.k.a. ratio importance sampling)

The IS estimator of c1/c2 given in Eq. (8.49) may be inefficient when there is little overlap
between q̄1(θ) and q̄2(θ), i.e., when

∫︁
Θ

q̄1(θ)q̄2(θ)dθ is small. Umbrella sampling (origi-
nally proposed in the computational physics literature, [100]; also studied under the name
ratio importance sampling in [13]) is based on the identity

c1

c2
=

c1/c3

c2/c3
=
Eq̄3

[︂
q1(θ)
q3(θ)

]︂
Eq̄3

[︂
q2(θ)
q3(θ)

]︂ ≈ ∑︁N
i=1

q1(θi)
q3(θi)∑︁N

i=1
q2(θi)
q3(θi)

, {θi}
N
i=1 ∼ q̄3(θ) (8.50)

where q̄3(θ) ∝ q3(θ) represents a middle density. A good choice of q̄3(θ) should have large
overlaps with both q̄i(θ), i = 1, 2. The performance of umbrella sampling clearly depends
on the choice of q̄3(θ). Note that, when q̄3 = q̄2, we recover Eq. (8.49).

Optimal umbrella proposal. The optimal umbrella sampling density q̄opt
3 (θ), that mini-

mizes the asymptotic relative mean-square error, is

q̄opt
3 (θ) =

|q̄1(θ) − q̄2(θ)|∫︁
|q̄1(θ′) − q̄2(θ′)|dθ′

=
|q1(θ) − c1

c2
q2(θ)|∫︁

|q1(θ′) − c1
c2

q2(θ′)|dθ′
. (8.51)

Remark 7. The rel-MSE in estimation of the ratio c1
c2

of the optimal umbrella estimator,
with N great enough, is given by rel-MSE ≈ 1

N L2
1(q̄1, q̄2), where L2

1(q̄1, q̄2) denotes the
L1-distance between q̄1 and q̄2 [13, Theorem 3.2]. Moreover, since L2

1(q̄1, q̄2) ≤ χ2(q̄1||q̄2),
the optimal umbrella estimator is asymptotically more efficient than the estimator (8.49)
[12, Sect. 3].

Two-stage umbrella sampling. Since this q̄opt
3 (θ) depends on the unknown ratio c1

c2
, it
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is not available for a direct use. The following two-stage procedure is often used in prac-
tice:

1. Stage 1: Draw N1 samples from an arbitrary density q̄(1)
3 (θ) and use them to obtain

ˆ︁r(1) =

∑︁N1
i=1

q1(θi)
q(1)

3 (θi)∑︁N1
i=1

q2(θi)
q(1)

3 (θi)

, {θi}
N1
i=1 ∼ q̄(1)

3 (θ). (8.52)

and define

q̄(2)
3 (θ) ∝ |q1(θ) −ˆ︁r(1)q2(θ)|. (8.53)

2. Stage 2: Draw N2 samples from q̄(2)
3 (θ) via MCMC and define the umbrella sam-

pling estimatorˆ︁r(2) of c1
c2

as follows

ˆ︁r(2) =

∑︁n2
i=1

q1(θi)
q(2)

3 (θi)∑︁n2
i=1

q2(θi)
q(2)

3 (θi)

, {θi}
n2
i=1 ∼ q̄(2)

3 (θ). (8.54)

Remark 8. The number of stages could be increased considering, at each t-th stage, the
proposal q̄(t)

3 (θ) ∝ |q1(θ) −ˆ︁r(t−1)q2(θ)| and obtaining a new estimationˆ︁r(t). In this case, we
have an umbrella scheme with adaptive proposal q̄(t)

3 (θ).

Umbrella for Z: the self-normalized Importance Sampling (Self-IS)

Here, we describe an important special case of the umbrella sampling approach. Consid-
ering the umbrella identity (8.50) an setting q1(θ) = π(θ|y), q2(θ) = q̄2(θ) = f (θ), c1 = Z,
c2 = 1 and c3 ∈ R, we obtain

ˆ︁Z = 1∑︁N
i=1

f (θi)
q3(θi)

N∑︂
i=1

π(θi|y)
q3(θi)

. {θi}
N
i=1 ∼ q̄3(θ). (8.55)

which is called the self-normalized IS (Self-IS) estimator. Note that f (θ) is an auxiliary
normalized pdf, but we draw samples from q̄3(θ). In order to understand the reason of
its name is interesting to derive it with standard IS arguments. Let us consider that our
proposal q(θ) in the standard IS scheme is not normalized, and we can evaluate it up to
a normalizing constant q(θ) ∝ q̄(θ). We also denote c =

∫︁
Θ

q(θ)dθ. Note that this also
occurs in the ideal case of using q̄(θ) = P(θ|y) = 1

Zπ(θ|y) where c = Z and q(θ) = π(θ|y).
In this case, we have ˆ︁Z

c
=

1
N

N∑︂
i=1

π(θi|y)
q(θi)

, {θi}
N
i=1 ∼ q̄(θ). (8.56)

Therefore, we need an additional estimation of c. We can also use IS for this goal, con-
sidering a new normalized reference function f (θ), i.e.,

∫︁
Θ

f (θ)dθ = 1. Now,

1
c
= Eq̄

[︄
f (θ)
q(θ)

]︄
=

∫︂
Θ

f (θ)
q(θ)

q̄(θ)dθ ≈
1
N

N∑︂
i=1

f (θi)
q(θi)

, {θi}
N
i=1 ∼ q̄(θ). (8.57)
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Replacing (8.57) into (8.56), we obtain the self-normalized IS estimator in Eq. (8.55),
i.e., ˆ︁Z = 1∑︁N

i=1
f (θi)
q(θi)

∑︁N
i=1

π(θi |y)
q(θi)

with {θi}
N
i=1 ∼ q̄(θ).

The HM estimator is also a special case of Self-IS setting again f (θ) = g(θ) and q̄(θ) =
P(θ|y), so that q(θ) = π(θ|y). Moreover, the RIS estimator is a special case of the Self-IS
estimator above when q̄(θ) = P(θ|y) and q(θ) = π(θ|y).

Optimal self-IS (O-Self-IS). Since the Self-IS estimator is a special case of umbrella
sampling, the optimal proposal in this case is q̄opt(θ) ∝ |P(θ|y) − f (θ)|, and the optimal
estimator is

ˆ︁ZO-Self-IS =

∑︁N
i=1

π(θi)
|P(θi |y)− f (θi)|∑︁N

i=1
f (θi)

|P(θi |y)− f (θi)|

, θi ∼ q̄opt(θ) ∝ |P(θ|y) − f (θ)|. (8.58)

Since the density cannot be evaluated (and also is not easy to draw from), this estimator
is not of direct use and we need to resort to the two-stage procedure that we discussed
above. Due to Remark 7, the O-Self-IS estimator is asymptotically more efficient than IS
vers-1 estimator using f (θ) as proposal, i.e., drawing samples from q̄(θ) = f (θ).

Summary

The more general expressions are the two identities (8.49)-(8.50) for estimating a ratio
of normalizing constants c1

c2
. The umbrella identity (8.50) is the more general since three

densities are involved, and contains the Eq. (8.49) as special case when q3(θ) = q2(θ).
The Self-IS estimator coincides with the umbrella estimator when we approximate only
one normalizing constant, Z (i.e., for c1

c2
= Z). Therefore, regarding the estimation of only

one constant Z, the Self-IS estimator has the more general form and includes the rest of
estimators as special cases. All these connections are summarized in Table 8.5. Finally,
Table 8.6 provides another summary of the one-proposal estimators of Z. Note that in the
standard IS estimator the option q̄(θ) = P(θ|y) is not feasible, whereas it is possible for its
second version.

In the next section, we discuss a generalization of Eq. (8.49) for the case where we
use samples from both q̄1(θ) and q̄2(θ).

8.4.2. Techniques using draws from two proposal densities

In the previous section, we considered estimators of Z that use samples drawn from a
single proposal density. More specifically, we have described several IS schemes using
a generic pdf q̄(θ) or P(θ|y) as proposal density. In this section, we introduce schemes
where q̄(θ) and P(θ|y) are employed jointly. More generally, we consider estimators of
a ratio of constants, c2

c1
, that employ samples from two proposal densities, denoted as

q̄i(θ) =
qi(θ)

ci
, i = 1, 2. Note that drawing N1 samples from q̄1(θ) and N2 samples from

q̄2(θ) is equivalent to sampling by a deterministic mixture approach from the mixture
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Table 8.5: Summary of techniques considering the umbrella sampling identity (8.50) for
computing c1

c2
= Z. Note that Self-IS has the more general form and includes the rest of

estimators as special cases.

For estimating a generic ratio c1/c2
Umbrella q1(θ) q2(θ) q3(θ) c1 c2 c3 sampling from q̄3(θ)

Eq. (8.49) - (q3 = q2) q1(θ) q2(θ) q2(θ) c1 c2 c2 sampling from q̄2(θ)
For estimating Z

Self-IS π(θ|y) f (θ) q(θ) Z 1 c3 q̄(θ)
Special cases of Self-IS

Naive Monte Carlo π(θ|y) g(θ) g(θ)

Z 1

1 g(θ)
Harmonic Mean π(θ|y) g(θ) π(θ|y) Z P(θ|y)

RIS π(θ|y) f (θ) π(θ|y) Z P(θ|y)
IS vers-1; Eq. (8.37) π(θ|y) q̄(θ) q̄(θ) 1 q̄(θ)
IS vers-2; Eq. (8.40) π(θ|y) g(θ) q̄(θ) 1 q̄(θ)

Table 8.6: One-proposal estimators of Z

Name Estimator Proposal pdf Need of MCMC Unbiased

IS vers-1 1
N

∑︁N
i=1 ρiℓ(y|θi) Generic, q̄(θ) — ✓

IS vers-2
∑︁N

i=1 ρ̄iℓ(y|θi) Generic, q̄(θ) no, if q̄(θ) ≠ P(θ|y) —
Naive MC 1

N

∑︁N
i=1 ℓ(y|θi) Prior, g(θ) — ✓

Harmonic mean
(︂

1
N

∑︁N
i=1

1
ℓ(y|θi)

)︂−1
Posterior, P(θ|y) ✓ —

RIS
(︂

1
N

∑︁N
i=1

f (θi)
π(θi |y)

)︂−1
Posterior, P(θ|y) ✓ —

Self-IS
(︂∑︁N

i=1
f (θi)
q(θi)

)︂−1 ∑︁N
i=1

π(θi |y)
q(θi)

Generic, q̄(θ) no, if q̄(θ) ≠ P(θ|y) —

q̄mix(θ) =
N1

N1+N2
q̄1(θ) + N2

N1+N2
q̄2(θ), i.e., a single density defined as mixture of two pdfs

[28]. Thus, methods drawing from a mixture of two pdfs as q̄mix(θ), are also considered
in this section.

Bridge sampling identity

All the techniques, that we will describe below, are based on the following bridge sam-
pling identity [74],

c1

c2
=
Eq̄2

[q1(θ)α(θ)]
Eq̄1

[q2(θ)α(θ)]
. (8.59)

where α(θ) is an arbitrary function defined on the intersection of the supports of q̄1 and
q̄2. Note that the expression above is an extension of the Eq. (8.49). Indeed, taking
α(θ) = 1

q2(θ) , we recover Eq. (8.49). The identity in Eq. (8.59) and the umbrella identity
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in Eq. (8.50) are both useful when q̄1 and q̄2 have little overlap, i.e.,
∫︁
Θ

q̄1(θ)q̄2(θ)dθ is
small. Moreover, If we set q1(θ) = π(θ|y), c1 = Z, q2(θ) = q̄(θ) and c2 = 1, then the
identity becomes

Z =
Eq̄

[︁
π(θ|y)α(θ)

]︁
EP

[︁
q̄(θ)α(θ)

]︁ . (8.60)

The corresponding estimator employs samples from both q̄ and P, i.e.,

ˆ︁Z = 1
N2

∑︁N2
j=1 α(z j)π(z j|y)

1
N1

∑︁N1
i=i α(θi)q̄(θi)

, {θi}
N1
i=1 ∼ P(θ|y), {z j}

N2
j=1 ∼ q̄(θ). (8.61)

Figure 8.1 summarizes the connections among the Eqs. (8.49), (8.59), (8.60) and the
corresponding different methods. The standard IS and RIS schemes have been described
in the previous sections, whereas the corresponding locally-restricted versions will be
introduced below.

Figure 8.1: Graphical representation of the relationships among the Eqs. (8.49) (pre-
umbrella identity), (8.59) (general bridge sampling identity), (8.60) (bridge sampling for
Z) and the corresponding different methods, starting from bridge sampling identity (8.59).

Relationship with Chib’s method

The Chib estimator, described in Section 8.3.4, is

ˆ︁Z = π(θ∗|y) 1
N2

∑︁N2
j=1 α(θ∗, v j)

1
N1

∑︁N1
i=i α(θi, θ∗)φ(θ∗|θi)

, {θi}
N1
i=1 ∼ P(θ|y), {v j}

N2
j=1 ∼ φ(θ|θ∗), (8.62)

where φ(θ|θ∗) is the proposal used inside an MCMC algorithm, α(x, z) : RDθ × RDθ →

R+ represents acceptance probability of this MCMC scheme and the point θ∗ is usually
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chosen in a high probability region. Note that the balance condition involving the function
φ, P and α must be satisfied,

α(θ, z)φ(z|θ)π(θ|y) = α(z, θ)φ(θ|z)π(z|y).

Using the balance condition above, if we replace α(θ∗, v j) =
α(v j,θ

∗)φ(θ∗ |v j)π(v j |y)
φ(v j |θ∗)π(θ∗ |y) inside the

numerator of (8.62), we obtain

ˆ︁Z = 1
N2

∑︁N2
j=1

φ(θ∗ |v j)
φ(v j |θ∗)

α(v j, θ
∗)π(v j|y)

1
N1

∑︁N1
i=i α(θi, θ∗)φ(θ∗|θi)

, (8.63)

and if we also assume a symmetric proposal φ(θ|θ∗) = φ(θ∗|θ), we can finally write

ˆ︁Z = 1
N2

∑︁N2
j=1 α(v j, θ

∗)π(v j|y)
1

N1

∑︁N1
i=i α(θi, θ∗)φ(θi|θ∗)

, {θi}
N1
i=1 ∼ P(θ|y), {v j}

N2
j=1 ∼ φ(θ|θ∗), (8.64)

We can observe a clear connection between the estimators (8.61) and (8.62). Clearly,
φ(θ|θ∗) plays the role of q̄(θ) in (8.61), and the acceptance function α(x, z) plays the role of
the α function in (8.61). However, in this case, φ(θ|θ∗) participates also inside the MCMC
used for generating {θi}

N1
i=1 ∼ P(θ|y). The function α takes also part to the generation

MCMC chain, {θi}
N1
i=1 (being the acceptance probability of the new states), and generally

its evaluation involves the evaluation of φ and P. Note also that (8.62) is more generic
than (8.64), being valid also for non-symmetric proposals φ. For further discussion see
[75].

Locally-restricted IS and RIS

In the literature, there exist variants of the estimators in Eqs. (8.43) and (8.46). These cor-
rected estimators are attempts to improve the efficiency (e.g., remove the infinite variance
cases, specially in the harmonic estimator) by restricting the integration to a smaller sub-
set of Θ (usually chosen in high posterior/likelihood-valued regions) generally denoted
by B ⊂ Θ. As an example, B can be a rectangular or ellipsoidal region centered at the
maximum a posteriori (MAP) estimate ˆ︁θMAP.

Locally-restricted IS estimator. Consider the posterior mass of subset B ⊂ Θ,

ZB =
∫︂
B

P(θ|y)dθ =
∫︂
Θ

IB(θ)
ℓ(y|θ)g(θ)

Z
dθ, (8.65)

where IB(θ) is an indicator function, taking value 1 for θ ∈ B and 0 otherwise. It leads to
the following representation

Z =
1

ZB

∫︂
Θ

IB(θ)ℓ(y|θ)g(θ)dθ =
1

ZB
Eq̄

[︄
IB(θ)

ℓ(y|θ)g(θ)
q̄(θ)

]︄
. (8.66)
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We can estimate ZB considering N1 samples from P(θ|y) by taking the proportion of sam-
ples inside B. The resulting locally-restricted IS estimator of Z is

ˆ︁Z = 1
N1

∑︁N1
i=1
IB(zi)ℓ(y|zi)g(zi)

q̄(zi)

1
N2

∑︁N2
i=1 IB(θi)

, {zi}
N1
i=1 ∼ q̄(θ), {θi}

N2
i=1 ∼ P(θ|y) (via MCMC). (8.67)

Note that the above estimator requires samples from two densities, namely the proposal
q̄(θ) and the posterior density P(θ|y) (via MCMC).

Locally-restricted RIS estimator. To derive the locally-restricted RIS estimator, consider
the mass of B under q̄(θ),

Q̄(B) =
∫︂
B

q̄(θ)dθ = Z · EP

[︄
IB(θ)

q̄(θ)
ℓ(y|θ)g(θ)

]︄
, (8.68)

which leads to the following representation

Z =
Q̄(B)

EP

[︂
IB(θ)q̄(θ)
ℓ(y|θ)g(θ)

]︂ . (8.69)

Q̄(B) can be estimated using a sample from q̄(θ) by taking the proportion of sampled
values inside B. The locally-restricted RIS estimator is

ˆ︁Z = 1
N1

∑︁N1
i=1 IB(zi)

1
N2

∑︁N2
i=1
IB(θi)q̄(θi)
ℓ(y|θi)g(θi)

, {zi}
N1
i=1 ∼ q̄(θ), {θi}

N2
i=1 ∼ P(θ|y). (8.70)

Other variants, where B corresponds to highest density regions, can be found in [89].

Optimal construction of bridge sampling

Identities as (8.59) are associated to the bridge sampling approach. However, considering
α(θ) = q3(θ)

q2(θ)q1(θ) in Eq. (8.59), bridge sampling can be also motivated from the expression

c1

c2
=

c3/c2

c3/c1
=
Eq̄2

[︂
q3(θ)
q2(θ)

]︂
Eq̄1

[︂
q3(θ)
q1(θ)

]︂ , (8.71)

where the density q̄3(θ) ∝ q3(θ) is in some sense “in between” q1(θ) and q2(θ). That is,
instead of applying directly (8.49) to c1

c2
, we apply it to first estimate c3

c2
and c3

c1
, and then

take the ratio to cancel c3. The bridge sampling estimator of c1
c2

is then

c1

c2
≈

1
N2

∑︁N2
i=1

q3(zi)
q2(zi)

1
N1

∑︁N1
i=1

q3(θi)
q1(θi)

, {θi}
N1
i=1 ∼ q̄1(θ), {zi}

N2
i=1 ∼ q̄2(θ). (8.72)

Remark 9. We do not need to draw samples from q̄3(θ), but only evaluate q3(θ). For a
comparison with umbrella sampling see Table 8.7.
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Table 8.7: Joint use of three densities: comparison between bridge and umbrella sampling.

Method q̄1(θ) q̄3(θ) q̄2(θ) Identity

Umbrella sampling evaluate draw from evaluate c1
c2
= c1/c3

c2/c3
- (8.50)

Bridge sampling draw from evaluate draw from c1
c2
= c3/c2

c3/c1
- (8.71)

Optimal bridge density. It can be shown that the optimal bridge density q̄3(θ) can be ex-
pressed as a weighted harmonic mean of q̄1(θ) and q̄2(θ) (with weights being the sampling
rates),

q̄opt
3 (θ) =

1
N2

N1+N2
[q̄1(θ)]−1 + N1

N1+N2
[q̄2(θ)]−1

=
1
c2
·

N1 + N2

N2
c1
c2

q−1
1 (θ) + N1q−1

2 (θ)

∝ qopt
3 (θ) =

q1(θ)q2(θ)
N1q1(θ) + N2

c1
c2

q2(θ)
. (8.73)

This is an optimal bridge density if both Ni are strictly positive, Ni > 0, hence we draw
from both q̄i(θ). Note that q̄opt

3 (θ) depends on the unknown ratio r = c1
c2

. Therefore, we
cannot even evaluate qopt

3 (θ). Hence, we need to resort to the following iterative procedure
to approximate the optimal bridge sampling estimator. Noting that

qopt
3 (θ)
q2(θ)

=
q1(θ)

N1q1(θ) + rN2q2(θ)
,

qopt
3 (θ)
q1(θ)

=
q2(θ)

N1q1(θ) + rN2q2(θ)
. (8.74)

The iterative procedure is formed by the following steps:

1. Start with an initial estimateˆ︁r(1) ≈
c1
c2

(using e.g. Laplace’s).

2. For t = 1, ...,T :

(a) Draw {θi}
N1
i=1 ∼ q̄1(θ) and {zi}

N2
i=1 ∼ q̄2(θ) and iterate

ˆ︁r(t+1) =

1
N2

∑︁N2
i=1

q1(zi)
N1q1(zi) + N2ˆ︁r(t)q2(zi)

1
N1

∑︁N1
i=1

q2(θi)
N1q1(θi) + N2ˆ︁r(t)q2(θi)

. (8.75)

Remark 10. In [13, Theorem 3.3], the authors show that the asymptotic error of optimal
bridge sampling with q̄opt

3 in Eq. (8.73) is always greater than the asymptotic error of
optimal umbrella sampling using q̄opt

3 (θ) ∝ |q̄1(θ) − q̄2(θ)| in Eq. (8.51).
Optimal bridge sampling for Z. Given the considerations above, an iterative bridge
sampling estimator of Z is obtained by setting q1(θ) = π(θ|y), c1 = Z, q̄2(θ) = q̄(θ), so that

ˆ︁Z(t+1) =

1
N2

∑︁N2
i=1

π(zi|y)
N1π(zi|y) + N2Z(t)q̄(zi)

1
N1

∑︁N1
i=1

q̄(θi)
N1π(θi|y) + N2Z(t)q̄(θi)

, {zi}
N2
i=1 ∼ q̄(θ) and {θi}

N1
i=1 ∼ P(θ|y). (8.76)
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for t = 1, ...,T . Looking at Eqs. (8.73) and (8.71), when N1 = 0, that is, when all samples
are drawn from q̄(θ), the estimator above reduces to (non-iterative) standard IS scheme
with proposal q̄(θ). When N2 = 0, that is, when all samples are drawn from P(θ|y), the
estimator becomes the (non-iterative) RIS estimator. See [13] for a comparison of optimal
umbrella sampling, bridge sampling and path sampling (described in the next section).
An alternative derivation of the optimal bridge sampling estimator is given in [89], by
generating samples from a mixture of type ψ(θ) ∝ π(θ|y) + υq̄(θ). However, the resulting
estimator employs the same samples drawn from ψ(θ) in the numerator and denominator,
unlike in Eq. (8.76).

Other estimators drawing from a generic proposal and the posterior

Let consider again the scenario where we have a set of samples {θi}
N1
i=1 from the posterior

P(θ|y) and set {zi}
N2
i=1 from some proposal q̄(θ), as in the bridge sampling case described

above. However, here we consider that these two sets {˜︁θi}
N1+N2
i=1 = {{θi}

N1
i=1, {zi}

N2
i=1} are drawn

from the mixture q̄mix(θ) = N1
N1+N2

P(θ|y) + N2
N1+N2

q̄(θ) considering a deterministic mixture
sampling approach [28], Thus, we can use the IS identities that use a single proposal,
namely Eqs. (8.49) and (8.50).

Importance sampling with mixture (M-IS). Setting q̄1(θ) = P(θ|y) and q̄2(θ) = q̄mix(θ)
in Eq. (8.49), we have

ˆ︁ZM-IS =
1

N1 + N2

N1+N2∑︂
i=1

π(˜︁θi|y)

q̄mix(˜︁θi)
=

1
N1 + N2

N1+N2∑︂
i=1

π(˜︁θi|y)
N1

N1+N2
P(˜︁θi|y) + N2

N1+N2
q̄(˜︁θi)

, (8.77)

where ˜︁θi ∼ q̄mix(θ) = N1
N1+N2

P(θ|y) + N2
N1+N2

q̄(θ) [28]. This estimator cannot be directly
used since it requires the evaluation of P(θ|y) = 1

Zπ(θ|y). From an initial guess ˜︁Z(0), the
following iterative procedure can be used

ˆ︁Z(t) =
1

N1 + N2

N1+N2∑︂
i=1

ˆ︁Z(t−1)π(˜︁θi|y)
N1

N1+N2
π(˜︁θi|y) + N2

N1+N2
ˆ︁Z(t−1)q̄(˜︁θi)

, t ∈ N. (8.78)

Self-IS with mixture proposal (M-Self-IS). Setting q̄1(θ) = P(θ|y), q̄2(θ) = q̄(θ) and
q̄3(θ) = q̄mix in Eq. (8.50), we have

ˆ︁ZM-Self-IS =

∑︁N1+N2
i=1

π(˜︁θi |y)
q̄mix(˜︁θi)∑︁N1+N2

i=1
q̄(˜︁θi)

q̄mix(˜︁θi)
=

∑︁N1+N2
i=1

π(˜︁θi |y)
N1

N1+N2
P(˜︁θi)+ N2

N1+N2
q̄(˜︁θi)∑︁N1+N2

i=1
q̄(˜︁θi)

N1
N1+N2

P(˜︁θi |y)+ N2
N1+N2

q̄(˜︁θi)
, (8.79)

where ˜︁θi ∼ q̄mix =
N1

N1+N2
P(θ|y) + N2

N1+N2
q̄(θ) (drawn in a deterministic way). As above, this

estimator is not of direct use, so we need to iterate

ˆ︁Z(t) =

∑︁N1+N2
i=1

π(˜︁θi |y)
N1

N1+N2
π(˜︁θi)+ N2

N1+N2
ˆ︁Z(t−1)q̄(˜︁θi)∑︁N1+N2

i=1
q̄(˜︁θi)

N1
N1+N2

π(˜︁θi |y)+ N2
N1+N2

ˆ︁Z(t−1)q̄(˜︁θi)
, t ∈ N. (8.80)
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This iterative estimator is very similar to the iterative optimal bridge sampling estimator in
Eq. (8.76), but it uses both set of samples in numerator and denominator. This estimator is
also related to the reverse logistic regression method in [36] (for more details see [13, 9],
and the next section). Furthermore, the iterative estimator (8.80) is also discussed for the
case q̄(θ) = g(θ) in [79], in an attempt to exploit the advantages of the Naive Monte Carlo
and the harmonic mean estimators, while removing their drawbacks.

Remark 11. Both iterative versions (8.78)-(8.80) converge to the optimal bridge sam-
pling estimator (8.76). See [74], for a related discussion. As we show in the simulation
study, the speed of convergence of each iterative method is different. The iterative bridge
sampling estimator seems to be the quickest one.

Summary

Several techniques described in the last two subsections, including both umbrella and
bridge sampling, are encompassed by the generic formula

c1

c2
= Eξ̄[q1(θ)α(θ)]

/︂
Eχ̄[q2(θ)α(θ)] (8.81)

as shown in Table 8.8. The techniques differ also for which densities are drawn from and
which densities are just evaluated.

Table 8.8: Summary of the IS schemes (with one or two proposal pdfs), using Eq. (8.81).

c1
c2
= Eξ̄[q1(θ)α(θ)]

/︂
Eχ̄[q2(θ)α(θ)]

For estimating a generic ratio c1/c2
Name α(θ) ξ̄(θ) χ̄(θ) q1(θ) q2(θ) c1 c2 sampling from

Bridge Identity - Eq. (8.59) α(θ) q̄2(θ) q̄1(θ)

q1(θ) q2(θ) c1 c2

q̄1(θ), q̄2(θ)
Bridge Identity - Eq. (8.71) q3(θ)

q2(θ)q1(θ) q̄2(θ) q̄1(θ) q̄1(θ), q̄2(θ)
Identity - Eq. (8.49) 1

q2(θ) q̄2(θ) q̄1(θ) q̄2(θ)
Umbrella - Eq. (8.50) 1

q3(θ) q̄3(θ) q̄3(θ) q̄3(θ)
For estimating Z, with one proposal

Self-norm. IS - Eq. (8.55) 1
q3(θ) q̄3(θ) q̄3(θ) π(θ|y) f (θ)

Z 1
q̄3(θ)

IS vers-1 1/q̄(θ) q̄(θ) P(θ|y) π(θ|y) q̄(θ) q̄(θ)
RIS 1/π(θ|y) q̄(θ) P(θ|y) π(θ|y) q̄(θ) P(θ|y)

For estimating Z, with two proposals, P(θ|y) and q̄(θ)
Bridge Identity - Eq. (8.60) α(θ) q̄(θ) P(θ|y) π(θ|y) q̄(θ)

Z 1 P(θ|y), q̄(θ)Locally-Restricted IS IB(θ)/q̄(θ) q̄(θ) P(θ|y) π(θ|y) q̄(θ)
Locally-Restricted RIS IB(θ)/π(θ|y) q̄(θ) P(θ|y) π(θ|y) q̄(θ)
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8.4.3. IS based on multiple proposal densities

In this section we consider estimators of Z using samples drawn from more than two
proposal densities. These schemes are usually based on the so-called tempering and/or
annealing approach.

Reasons for tempering. The idea is again to consider densities that are in some sense
“in the middle” between the posterior P(θ|y) and an easier-to-work-with density (e.g. the
prior g(θ) or some other proposal density). These densities are usually scaled version
of the posterior. Generally, the scale parameter is called temperature.15 For this reason,
the resulting pdfs are usually named tempered posteriors and correspond to flatter, more
diffuse distributions than the standard posterior. The use of the tempered pdfs usually
improve the mixing of the MCMC algorithms and foster the exploration of the space Θ.
Generally, it helps the Monte Carlo methods (as MCMC and IS) to find the regions of
posterior high probability. The number of such middle densities is specified by the user,
and in some cases, it is equivalent to the selection of a temperature schedule for linking
the prior g(θ) and P(θ|y). This idea is shared by the several methods, such as path sam-
pling, power posterior methods and stepping-stone sampling described below.

First of all, we start with a general IS scheme considering different proposals q̄n(θ)’s.
Some of them could be tempered posteriors and the generation would be performed by an
MCMC method in this case.

Multiple Importance Sampling (MIS) estimators

Here, we consider to generate samples from different proposal densities, i.e.,

θn ∼ q̄n(θ), n = 1, ...,N. (8.82)

In this scenario, different proper importance weights can be used [28, 27, 26]. The most
efficient MIS scheme considers the following weights

wn =
π(θn|y)

1
N

∑︁N
i=1 q̄i(θn)

=
π(θn|y)
ψ(θn)

, (8.83)

where ψ(θn) = 1
N

∑︁N
i=1 q̄i(θn). Indeed, considering the set of samples {θn}

N
n=1 drawn in a

deterministic order, θn ∼ q̄n(θ), and given a sample θ∗ ∈ {θ1, ..., θN} uniformly chosen in

15The data tempering is also possible: the tempered posteriors contain less data than the complete poste-
rior.
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{θn}
N
n=1, then we can write θ∗ ∼ ψ(θn). The standard MIS estimator is

ˆ︁Z = 1
N

N∑︂
n=1

wn =
1
N

N∑︂
n=1

π(θn|y)
ψ(θn)

(8.84)

=
1
N

N∑︂
n=1

g(θn)ℓ(y|θn)
ψ(θn)

, (8.85)

=
1
N

N∑︂
n=1

ηnℓ(y|θn), θn ∼ q̄n(θ), n = 1, ...,N. (8.86)

where ηn =
g(θn)
ψ(θn) . The estimator is unbiased [28]. As in the standard IS scheme, an

alternative biased estimator is

ˆ︁Z = N∑︂
n=1

η̄nℓ(y|θn), θn ∼ q̄n(θ), n = 1, ...,N, (8.87)

where η̄n =
ηn∑︁N
i=1 ηi

, so that
∑︁N

i=1 η̄i = 1 and we have a convex combination of likelihood
values ℓ(y|θn)’s. It is a generalization of the estimator in Eq. (8.40) and recalled below in
Eq. (8.88).

Tempered posteriors as proposal densities

Let recall the IS vers-2 estimator of Z in Eq. (8.40), which involves a weighted sum of
likelihood evaluations at points {θi}

N
i=1 drawn from importance density q̄(θ) (but we can

evaluate only q(θ)) ∝ q̄(θ)),

ˆ︁Z = N∑︂
i=1

ρ̄iℓ(y|θi), ρ̄i =

g(θi)
q(θi)∑︁N

n=1
g(θn)
q(θn)

∝
g(θi)
q(θi)

, (8.88)

where
∑︁N

i=1 ρ̄i = 1. Let us consider

q̄(θ) = P(θ|y, β) ∝ q(θ) = π(θ|y, β) = g(θ)ℓ(y|θ)β,

with β ∈ [0, 1]. Namely, we use a tempered posterior as importance density. Note that
we can evaluate only the unnormalized density q(θ). The IS estimator version 2 can be
employed in this case, and we obtain ρ̄i ∝

g(θi)
g(θi)ℓ(y|θi)β

= 1
ℓ(y|θi)β

. The resulting IS estimator
version 2 is

ˆ︁Z = ∑︁N
i=1

1
ℓ(y|θi)β

ℓ(y|θi)∑︁N
i=1

1
ℓ(y|θi)β

(8.89)

=

∑︁N
i=1 ℓ(y|θi)1−β∑︁N
i=1 ℓ(y|θi)−β

{θi}
N
i=1 ∼ P(θ|y, β) (via MCMC). (8.90)

This method is denoted below as IS with a tempered posterior as proposal (IS-P). Table
8.9 shows that this technique includes different schemes for different values of β. Different
possible MIS schemes can be also considered, i.e., using Eq. (8.87) for instance [28, 26].
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Table 8.9: Different estimators of Z using q̄(θ) ∝ g(θ)ℓ(y|θ)β as importance density, with
β ∈ [0, 1].

Name Coefficient β Weights ρ̄i Estimator ˆ︁Z = ∑︁N
i=1 ρ̄iℓ(y|θi)

Naive Monte Carlo β = 0 1
N

1
N

∑︁N
i=1 ℓ(y|θi)

Harmonic Mean Estimator β = 1
1

ℓ(y|θi )∑︁
j

1
ℓ(y|θ j )

ˆ︁Z = 1
1
N

∑︁N
i=1

1
ℓ(y|θi )

Power posterior

as proposal pdf 0 < β < 1
1

ℓ(y|θi )β∑︁
j

1
ℓ(y|θ j )β

ˆ︁Z = ∑︁
i ℓ(y|θi)1−β∑︁
i ℓ(y|θi)−β

Remark 12. One could consider also to draw samples from N different tempered posteri-
ors, θn ∼ P(θ|y, βn) ∝ g(θ)ℓ(y|θ)βn , with n = 1, ...,N, and then apply deterministic mixture
idea in (8.87). However, in this case, we cannot evaluate properly the mixture

ψ(θn) =
1
N

N∑︂
i=1

P(θn|y, βi) =
1
N

N∑︂
i=1

1
Z(βi)

π(θn|y, βi).

Here, the issue is a not just a global unknown normalizing constant (as usual): in this
case, we do not know the weights of the mixture since all Z(β) =

∫︁
Θ

g(θ)ℓ(y|θ)βdθ are
unknown. This problem can be solved using the techniques described in the next sections.

Reverse logistic regression (RLR). In RLR, the idea is to apply IS with the mixture
ψ(θn) in the remark above. The normalizing constants Z(βi) are iteratively obtained by
maximizing of a suitable log-likelihood, built with the samples from each tempered pos-
terior P(θ|y, βn) [36, 56, 9].

In the next section, we describe an alternative to RLR for employing different tempered
posteriors as proposals.

Stepping-stone (SS) sampling

Consider again P(θ|y, β) ∝ g(θ)ℓ(y|θ)β and Z(β) =
∫︁
Θ

g(θ)ℓ(y|θ)βdθ. The goal is to esti-
mate Z = Z(1)

Z(0) , which can be expressed as the following product, with β0 = 0 and βK = 1,

Z =
Z(1)
Z(0)

=

K∏︂
k=1

Z(βk)
Z(βk−1)

, (8.91)

where βk are often chosen as βk =
k
K , k = 1, . . . ,K, i.e., with a uniform grid in [0, 1]. Note

that generally Z(0) = 1, since it is normalizing constant of the prior. The SS method is
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based on the following identity,

EP(θ|y,βk−1)

[︄
π(θ|y, βk)
π(θ|y, βk−1)

]︄
=

∫︂
Θ

π(θ|y, βk)
π(θ|y, βk−1)

P(θ|y, βk−1)dθ,

=
1

Z(βk−1)

∫︂
Θ

π(θ|y, βk)dθ =
Z(βk)

Z(βk−1)
.

Then, the idea of SS sampling is to estimate each ratio rk =
Z(βk)

Z(βk−1) by importance sampling
as

rk =
Z(βk)

Z(βk−1)
= EP(θ|y,βk−1)

[︄
π(θ|y, βk)
π(θ|y, βk−1)

]︄
(8.92)

= EP(θ|y,βk−1)

[︄
ℓ(y|θ)βk

ℓ(y|θ)βk−1

]︄
(8.93)

≈ˆ︁rk =
1
N

N∑︂
i=1

ℓ(y|θi,k−1)βk−βk−1 , {θi,k−1}
N
i=1 ∼ P(θ|y, βk−1). (8.94)

Multiplying all ratio estimates yields the final estimator of Z

ˆ︁Z = K∏︂
k=1

ˆ︁rk =

K∏︂
k=1

⎛⎜⎜⎜⎜⎜⎝ 1
N

N∑︂
i=1

ℓ(y|θi,k−1)βk−βk−1

⎞⎟⎟⎟⎟⎟⎠ , {θi,k−1}
N
i=1 ∼ P(θ|y, βk−1). (8.95)

For K = 1, we come back to the Naive MC estimator. The sampling procedure of the SS
method is graphically represented in Figure 8.2.

Remark 13. The SS estimator is unbiased, since it is a product of unbiased estimators.

The two following methods, path sampling and power posteriors, estimate log Z instead
of Z.

Figure 8.2: Sampling procedure in the SS method. Note that samples from P(θ|y) (βK = 1)
are not considered. It is relevant to compare this figure with Figures 8.4-8.5 in the next
section.

Path sampling (a.k.a., thermodynamic integration)

More specifically, the method of path sampling for estimating c1
c2

relies on the idea of
building and drawing samples from a sequence of distributions linking q̄1(θ) and q̄2(θ) (a
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continuous path). For the purpose of estimating only one constant, the marginal likelihood
Z, we set q̄2(θ) = g(θ) and q̄1(θ) = P(θ|y) and we link them by a univariate path with
parameter β. Let

π(θ|y, β), β ∈ [0, 1], (8.96)

denote a sequence of (probably unnormalized except for β = 0) densities such π(θ|y, β =
0) = g(θ) and π(θ|y, β = 1) = π(θ|y). More generally, we could consider π(θ|y, β = 0) =
q̄(θ) where q̄(θ) is a generic normalized proposal density, possibly closer to the posterior
than g(θ). The path sampling method for estimating the marginal likelihood is based on
expressing log Z as

log Z = Ep(θ,β|y)

[︄
U(θ, β)

p(β)

]︄
, with U(θ, β) =

∂

∂β
log π(θ|y, β), (8.97)

where the expectation is w.r.t. the joint p(θ, β|y) = 1
Z(β)π(θ|y, β)p(β), being Z(β) the nor-

malizing constant of π(θ|y, β) and p(β) represents a density for β ∈ [0, 1]. Indeed, we
have

Ep(θ,β|y)

[︄
U(θ, β)

p(β)

]︄
=

∫︂
Θ

∫︂ 1

0

1
p(β)

[︄
∂

∂β
log π(θ|y, β)

]︄
π(θ|y, β)

Z(β)
p(β)dθdβ,

=

∫︂
Θ

∫︂ 1

0

1
π(θ|y, β)

[︄
∂

∂β
π(θ|y, β)

]︄
π(θ|y, β)

Z(β)
dθdβ,

=

∫︂
Θ

∫︂ 1

0

1
Z(β)

∂

∂β
π(θ|y, β)dθdβ,

=

∫︂ 1

0

1
Z(β)

∂

∂β

(︄∫︂
Θ

π(θ|y, β)dθ
)︄

dβ,

=

∫︂ 1

0

1
Z(β)

∂

∂β
Z(β)dβ

=

∫︂ 1

0

∂

∂β
log Z(β)dβ = log Z(1) − log Z(0) = log Z, (8.98)

where we substituted Z(β = 1) = Z(1) = Z and Z(β = 0) = Z(0) = 1. Thus, using a
sample {θi, βi}

N
i=1 ∼ p(θ, β|y), we can write the path sampling estimator for log Z

ˆ︁log Z =
1
N

N∑︂
i=1

U(θi, βi)
p(βi)

, {θi, βi}
N
i=1 ∼ p(θ, β|y). (8.99)

The samples from p(θ, β|y) may be obtained by first drawing β′(βi) from p(β) and then
applying some MCMC steps to draw from P(θ|y, β′)∝ π(θ|y, β′) given β′. Therefore, in
path sampling, we have to choose (a) the path and (b) and the prior p(β). A discussion
regarding the optimal choices of the path and p(β), see [35]. The optimal path for linking
any two given densities is impractical as it depends on the normalizing constants being
estimated. The geometric path described below, although suboptimal, is generic and sim-
ple to implement.
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Geometric path. Often a geometric path is employed,

π(θ|y, β) = g(θ)1−βπ(θ|y)β

= g(θ)ℓ(y|θ)β, β ∈ [0, 1]. (8.100)

Note that π(θ|y, β) is the posterior with a powered, “less informative” -“wider” likelihood
(for this reason, π(θ|y, β) is often called a “power posterior”). In this case, we have

U(θ, β) =
∂

∂β
log π(θ|y, β) = log ℓ(y|θ),

so the path sampling identity becomes

log Z = Ep(θ,β|y)

[︄
log ℓ(y|θ)

p(β)

]︄
, (8.101)

which is also used in the power posterior method of [31], described in Section 8.4.3.

Connections among path sampling, bridge sampling and stepping-stones

The path sampling method can be motivated from bridge sampling by applying the bridge
sampling identity in (8.71) in a chain fashion. Assume we have K+1 densities P(θ|y, βk) =
π(θ|y, βk)/Z(βk), k = 0, . . . ,K from which we can draw samples, with endpoints P(θ|y, β0 =

0) = g(θ) and P(θ|y, βK = 1) = P(θ|y). We can express Z = Z(βK) = Z(1) as follows

Z =
K∏︂

k=1

Z(βk)
Z(βk−1)

=

K∏︂
k=1

EP(θ|y,βk−1)

[︄
π(θ|y,βk− 1

2
)

π(θ|y,βk)

]︄
EP(θ|y,βk)

[︄
π(θ|y,βk− 1

2
)

π(θ|y,βk)

]︄ . (8.102)

Note that we have applied the bridge sampling identity in Eq. (8.71) to each ratio Z(βk)
Z(βk−1) ,

using K − 1 middle densities π(θ|y, βk− 1
2
). We can approximate the k-th term by using

samples from P(θ|y, βk−1) and P(θ|y, βk), and take the product to obtain the final estimator
of Z. Taking the logarithm of the above expression, as K → ∞, results in the basic identity
of path sampling for estimating Z in Eq. (8.97) [35]. In this sense, path sampling can be
interpreted as a continuous application of bridge sampling steps. The difference with SS
method is that it employs another identity, in (8.92), for estimating the ratios Z(βk)

Z(βk−1) . Figure
8.3 summarizes the relationships among the identities (8.49)-(8.71) and their multi-stages
extensions: the SS method and path sampling scheme, respectively.
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Pre-umbrella identity in Eq. (8.49) SS method

Bridge identity in Eq. (8.71) Path Sampling
infinite stages

multi-stages

Figure 8.3: Relationships among the identities (8.49)-(8.71) and their multi-stages exten-
sions: the SS method and path sampling scheme, respectively.

Method of Power Posteriors

The previous expression (8.101) can also be converted into an integral in [0, 1] as follows

log Z = Ep(θ,β|y)

[︄
log ℓ(y|θ)

p(β)

]︄
,

=

∫︂ 1

0
dβ

∫︂
Θ

log ℓ(y|θ)
p(β)

π(θ|y, β)
Z(β)

p(β)dθ,

=

∫︂ 1

0
dβ

∫︂
Θ

log ℓ(y|θ)
π(θ|y, β)

Z(β)
dθ,

=

∫︂ 1

0
EP(θ|y,β)

[︁
log ℓ(y|θ)

]︁
dβ, (8.103)

where P(θ|y, β) = π(θ|y,β)
Z(β) is a power posterior. The power posterior method aims at es-

timating the integral above by applying a quadrature rule. For instance, choosing a dis-
cretization 0 = β0 < β1 < · · · < βK−1 < βK = 1, leads to approximations of order 0,

ˆ︁log Z =
K∑︂

k=1

(βk − βk−1)EP(θ|y,βk−1)
[︁
log ℓ(y|θ)

]︁
, (8.104)

or order 1 (trapezoidal rule),

ˆ︁log Z =
K∑︂

k=1

(βk − βk−1)
EP(θ|y,βk)

[︁
log ℓ(y|θ)

]︁
+ EP(θ|y,βk−1)

[︁
log ℓ(y|θ)

]︁
2

, (8.105)

where the expected values w.r.t. the power posteriors can be independently approximated
via MCMC,

EP(θ|y,βk)
[︁
log ℓ(y|θ)

]︁
≈

1
N

N∑︂
i=1

log ℓ(y|θi,k), {θi,k}
N
i=1 ∼ P(θ|y, βk), k = 0, . . . ,K.

(8.106)

Remark 14. The identity (8.103) of method of power posteriors is derived by the path
sampling identity with a geometric path, as shown in (8.100)-(8.101). In this sense, the
method of power posteriors is a special case of path sampling. However, unlike in path
sampling, the final approximation (8.105) is based on a deterministic quadrature.
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Remark 15. Note that the approximation in Eq. (8.105) is biased due to using a de-
terministic quadrature, unlike the path sampling approximation in Eq. (8.99) which is
unbiased.

Remark 16. The need of using several values βi (i.e., several tempered posteriors) seems
apparent in the estimator (8.99)-(8.105). For instance, in (8.105), the choice a small
value of K yields a poor approximation of the integral (8.103). This is not the case in the
SS method.

Extensions. Several improvements of the method of power posterior have been proposed
in the literature [30, 80]. In [30], the authors note that the derivative of the integrand in
(8.103) corresponds to

d
dβ
EP(θ|y,β)[log ℓ(y|θ)] = varP(θ|y,β)[log ℓ(y|θ)] (8.107)

so they propose to use this information to refine the trapezoidal rule in (8.105) by adding
additional terms

ˆ︁log Z =
K∑︂

k=1

(βk − βk−1)
EP(θ|y,βk)

[︁
log ℓ(y|θ)

]︁
+ EP(θ|y,βk−1)

[︁
log ℓ(y|θ)

]︁
2

− (8.108)

K∑︂
k=1

(βk − βk−1)2

12

[︂
varP(θ|y,βk)[log ℓ(y|θ)] − varP(θ|y,βk−1)[log ℓ(y|θ)]

]︂
, (8.109)

This improvement comes at no extra cost since the same MCMC samples, used to estimate
the expectations in (8.106), can be also used to estimate the variances in (8.109). They
also propose constructing the temperature ladder recursively, starting from β0 = 0 and
βK = 1, by leveraging the estimates of EP(θ|y,βk)

[︁
log ℓ(y|θ)

]︁
and varP(θ|y,βk)[log ℓ(y|θ)] (for

further details see [30, Sect. 2.2]). In [80], they propose the use of control variates, a
variance reduction technique, in order to improve the statistical efficiency of the estimator
(8.105). However, this can only be applied in settings where ∇θ log P(θ|y, β) is available.

On the selection of βk

The method of power posteriors and SS sampling require setting an increasing sequence
of β’s. Some strategies for selecting the sequence of values βk’s, with β0 = 0 and βK =

1, are discussed, e.g., in [31, 30, 106]. A uniform sequence βk =
k
K for k = 0, . . . ,K

can be considered, although [31] recommends putting more values near β = 0, since
it is where P(θ|y, β) is changing more rapidly. More generally, we can consider βk =

( k
K )1/α. For choice of α ∈ [0, 1], the values βk are evenly-spaced quantiles of a Beta(α,1),

concentrating more and more near β = 0 as α decreases to 0 [106].

The path sampling method requires defining a prior density p(β) from which samples
are drawn. It can be shown that, for any given path, the optimal choice of p(β) is a
generalized local Jeffreys prior [35, Sect. 4.1].
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Connection between stepping-stone and power posteriors methods

Taking the logarithm of the SS estimator (8.95), we obtain

log ˆ︁ZSS =

K∑︂
k=1

log

⎛⎜⎜⎜⎜⎜⎝ 1
N

N∑︂
i=1

ℓ(y|θi,k−1)βk−βk−1

⎞⎟⎟⎟⎟⎟⎠ .
Applying the Jensen inequality and property of the logarithm, we can write

log ˆ︁ZSS ≥

K∑︂
k=1

⎛⎜⎜⎜⎜⎜⎝ 1
N

N∑︂
i=1

log ℓ(y|θi,k−1)βk−βk−1

⎞⎟⎟⎟⎟⎟⎠ ,
≥

K∑︂
k=1

(βk − βk−1)

⎛⎜⎜⎜⎜⎜⎝ 1
N

N∑︂
i=1

log ℓ(y|θi,k−1)

⎞⎟⎟⎟⎟⎟⎠ .
The last expression is the estimator of the power posteriors method of order 0, i.e., re-
placing Eq. (8.106) into (8.104). If we denote here this estimator here as ˆ︁log ZPP, then we
have log ˆ︁ZSS ≥ˆ︁log ZPP. Recall also the SS estimator is unbiased.

8.5. Advanced schemes combining MCMC and IS

In the previous sections, we have already introduced several methods which require the
use of MCMC algorithms in order to draw from complex proposal densities. The RIS
estimator, path sampling, power posteriors and the SS sampling schemes are some ex-
amples. All these previous schemes could be assigned to the family of “MCMC-within-
IS” techniques. In this section, we describe more sophisticated schemes for estimating
the evidence, which combine MCMC and IS techniques: Annealed Importance Sam-
pling (An-IS) in Section 8.5.1, Sequential Monte Carlo (SMC) in Section 8.5.2, Multiple
Try Metropolis (MTM) in Section 8.5.3, and Layered Adaptive importance Sampling
(LAIS) in Section 8.5.4. An-IS and SMC can be also considered “MCMC-within-IS”
techniques. They provide alternative ways to employ tempered posteriors and are related
to SS method, described in the previous section. We also discuss the use of MCMC
transitions and resampling steps for design efficient AIS schemes. The MTM algorithm
described here is an MCMC method, which belongs to the family of “IS-within-MCMC”
techniques. Indeed, internal IS steps are used for proposing good candidates as new state
of the chain. LAIS is an AIS scheme driven by MCMC transitions. Since the the adap-
tation and sampling parts can be completely separated, LAIS can be considered as a “IS-
after-MCMC” technique.

8.5.1. MCMC-within-IS: weighted samples after MCMC iterations

In this section, we will see how to properly weight samples obtained by different MCMC
iterations. We denote as K(z|θ) the transition kernel which summarizes all the steps of the
employed MCMC algorithm. Note that generally K(z|θ) cannot be evaluated. However,

238



we can use MCMC kernels K(z|θ) in the same fashion as proposal densities, considering
the concept of the so-called proper weighting [54, 63].

Weighting a sample after one MCMC iteration

Let us consider the following procedure:

1. Draw θ0 ∼ q(θ) (where q(θ) is normalized, for simplicity).

2. Draw θ1 ∼ K(θ1|θ0), where the kernel K leaves invariant density η̄(θ) = 1
cη(θ), i.e.,∫︂

Θ

K(θ′|θ)η̄(θ)dθ = η̄(θ′). (8.110)

3. Assign to θ1 the weight

ρ(θ0, θ1) =
η(θ0)
q(θ0)

π(θ1|y)
η(θ1)

. (8.111)

This weight is proper in the sense that can be used for building unbiased estimator Z (or
other moments P(θ|y)), as described in the Liu’s definition [88, Section 14.2], [54, Section
2.5.4]. Indeed, we can write

E[ρ(θ0, θ1)] =
∫︂
Θ

∫︂
Θ

ρ(θ0, θ1)K(θ1|θ0)q(θ0)dθ0dθ1,

=

∫︂
Θ

∫︂
Θ

η(θ0)
q(θ0)

π(θ1)
η(θ1)

K(θ1|θ0)q(θ0)dθ0dθ1,

=

∫︂
Θ

π(θ1)
η(θ1)

[︄∫︂
Θ

η(θ0)K(θ1|θ0)dθ0

]︄
dθ1,

=

∫︂
Θ

π(θ1)
cη̄(θ1)

cη̄(θ1)dθ1 =

∫︂
Θ

π(θ1|y)dθ1 = Z. (8.112)

Note that if η(θ) ≡ π(θ|y) then ρ(θ1) = π(θ0 |y)
q(θ0) , i.e., the IS weights remain unchanged after

an MCMC iteration with invariant density π(θ|y). Hence, if we repeat the procedure above
N times generating {θ(n)

0 , θ(n)
1 }

N
n=1, we can build the following unbiased estimator of the Z,

ˆ︁Z = 1
N

N∑︂
n=1

ρ(θ(n)
0 , θ(n)

1 ) =
1
N

N∑︂
n=1

η(θ(n)
0 )

q(θ(n)
0 )

π(θ(n)
1 |y)

η(θ(n)
1 )

(8.113)

In the next section, we extend this idea where different MCMC updates are applied, each
one addressing a different invariant density.

Annealed Importance Sampling (An-IS)

In the previous section, we have considered the application of one MCMC kernel K(θ1|θ0)
(that could be formed by different MCMC steps). Below, we consider the application of
several MCMC kernels addressing different target pdfs, and show their consequence in the
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weighting strategy. We consider again a sequence of tempered versions of the posterior,
π1(θ|y), π2(θ|y), . . ., πL(θ|y) ≡ π(θ|y), where the L-th version, πL(θ|y), coincides with the
target function π(θ|y). One possibility is to considered πi(θ|y) =

[︁
π(θ|y)

]︁βi = g(θ)βiℓ(y|θ)βi

or tempered posteriors,

πi(θ|y) = g(θ)ℓ(y|θ)βi where 0 ≤ β1 ≤ β2 ≤ . . . ≤ βL = 1. (8.114)

as in path sampling and power posteriors. In any case, smaller β values correspond to
flatter distributions.16 The use of the tempered sequence of target pdfs usually improve
the mixing of the algorithm and foster the exploration of the space Θ. Since only the last
function is the true target, πL(θ|y) = π(θ|y), different schemes have been proposed for
suitable weighting the final samples.
Let us consider conditional L − 1 kernels Ki(z|θ) (with L ≥ 2), representing the prob-
ability of different MCMC updates of jumping from the state θ to the state z (note that
each Ki can summarize the application of several MCMC steps), each one leaving invari-
ant a different tempered target, Pi(θ|y) ∝ πi(θ|y). The Annealed Importance Sampling

(An-IS) is given in Table 8.10. Note that, when L = 2, we have ρ(n)
1 =

π1(θ(n)
0 |y)

q(θ(n)
0 )

π(θ(n)
1 |y)

π1(θ(n)
1 |y)

. If,

Table 8.10: Annealed Importance Sampling (An-IS)

1. Draw N samples θ(n)
0 ∼ P0(θ|y) (usually g(θ)) for n = 1, ...,N.

2. For k = 1, . . . , L − 1 :

(a) Draw θ(n)
k ∼ Kk(θ|θ

(n)
k−1) leaving invariant Pk(θ|y) for n = 1, ...,N, i.e., we

generate N samples using an MCMC with invariant distribution Pk(θ|y)
(with different starting points θ(n)

k−1).

(b) Compute the weight associated to the sample θ(n)
k , for n = 1, ...,N,

ρ(n)
k =

k∏︂
i=0

πi+1(θ(n)
i |y)

πi(θ
(n)
i |y)

= ρ(n)
k−1

πk+1(θ(n)
k |y)

πk(θ
(n)
k |y)

. (8.115)

3. Return the weighted sample {θ(n)
L−1, ρ

(n)
L−1}

N
n=1. The estimator of the marginal like-

lihood is ˆ︁Z = 1
N

N∑︂
n=1

ρ(n)
L−1.

Combinations of An-IS with path sampling and power posterior methods can
be also considered, employing the information of the rest of intermediate den-
sities.

π1 = π2 = . . . = πL−1 = η ≠ π, then the weight is ρL−1 =
η(θ(n)

0 )

P0(θ(n)
0 |y)

π(θ(n)
L−1 |y)

η(θ(n)
L−1)

.

16Another alternative is to use the so-called data tempering [17], for instance, setting πi(θ|y) ∝
p(θ|y1, . . . , yd+i), where d ≥ 1 and d + L = Dy (recall that y = [y1, . . . , yDy ] ∈ R

Dy ).
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The method above can be modified by incorporating an additional MCMC transition
θL ∼ KL(θ|θL−1), which leaves invariant PL(θ|y) = P(θ|y). However, since PL(θ|y) is
the true target pdf, as we have seen above the weight remains unchanged (see the case
η̄(θ) = P(θ|y) in the previous section). Hence, in this scenario, the output would be
{θ(n)

L , ρ(n)
L } = {θ

(n)
L , ρ(n)

L−1}, i.e., ρ(n)
L = ρ

(n)
L−1. This method has been proposed in [78] but simi-

larly schemes can be found in [17, 37].

Remark 17. The stepping-stones (SS) sampling method described in Section 8.4.3 is
strictly connected to an Ann-IS scheme. See Figures 8.2 and 8.4 for a comparison of
the sampling procedures.

Interpretation as Standard IS. For the sake of simplicity, here we consider reversible
kernels, i.e., each kernel satisfies the detailed balance condition

πi(θ|y)Ki(z|θ) = πi(z|y)Ki(θ|z) so that
Ki(z|θ)
Ki(θ|z)

=
πi(z|y)
πi(θ|y)

. (8.116)

We show that the weighting strategy suggested by An-IS can be interpreted as a standard
IS weighting considering the following extended target density, defined in the extended
space ΘL,

πg(θ0, θ1, . . . , θL−1|y) = π(θL−1|y)
L−1∏︂
k=1

Kk(θk−1|θk). (8.117)

Note that πg has the true target π as a marginal pdf. Let also consider an extended proposal
pdf defined as

qg(θ0, θ1, . . . , θL−1) = P0(θ0|y)
L−1∏︂
k=1

Kk(θk|θk−1). (8.118)

The standard IS weight of an extended sample [θ0, θ1, . . . , θL−1] in the extended space ΘL

is

w(θ0, θ1, . . . , θL−1) =
πg(θ0, θ1, . . . , θL−1|y)
qg(θ0, θ1, . . . , θL−1)

=
π(θL−1|y)

∏︁L−1
k=1 Kk(θk−1|θk)

P0(θ0|y)
∏︁L−1

k=1 Kk(θk|θk−1)
. (8.119)

Replacing the expression Ki(z|θ)
Ki(θ|z) =

πi(z|y)
πi(θ|y) in (8.119), we obtain the Ann-IS weights

w(θ0, θ1, . . . , θL−1) =
π(θL−1|y)
P0(θ0|y)

L−1∏︂
k=1

πk(θk−1|y)
πk(θk|y)

, (8.120)

=
π1(θ0|y)
P0(θ0|y)

L−1∏︂
k=1

πk+1(θk|y)
πk(θk|y)

=

L−1∏︂
k=0

πk+1(θk|y)
πk(θk|y)

= ρL−1, (8.121)

where we have used πL(θ|y) = π(θ|y) and just rearranged the numerator. The sampling
procedure in An-IS is graphically represented in Figure 8.4.
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Figure 8.4: Sampling procedure in the An-IS method.

8.5.2. Weighted samples after MCMC and resampling steps

In this section, we consider also the use of resampling steps jointly with MCMC transi-
tions. The resulting algorithm is quite sophisticated (formed by several components that
should by chosen by the user) but it is a very general technique, which includes the clas-
sical particle filters, several adaptive IS (AIS) schemes and the An-IS method as special
case [76].

Generic Sequential Monte Carlo

In this section, we describe a sequential IS scheme which encompasses the previous Ann-
IS algorithm as a special case. The method described here uses jointly MCMC transitions
and, additionally, resampling steps as well. It is called Sequential Monte Carlo (SMC),
since we have a sequence of target pdfs πk(θ|y), k = 1, . . . , L [76]. This sequence of
target densities can be defined by a state-space model as in a classical particle filtering
framework (truly sequential scenario, where the goal is to track dynamic parameters).
Alternatively, we can also consider a static scenario as in the previous sections, i.e., the
resulting algorithm is an iterative importance sampler where we consider a sequence of
tempered densities πk(θ|y) = g(θ)ℓ(y|θ)βk , where 0 ≤ β1 ≤ . . . ≤ βL = 1, as in Eq.(8.114),
so that πL(θ|y) = π(θ|y) [76]. Let us again define an extended proposal density in the
domain Θk,

˜︁qk(θ1, . . . , θk) = q1(θ1)
k∏︂

i=2

Fi(θi|θi−1) : Θk → R, (8.122)

where q1(θ1) is a marginal proposal and Fi(θi|θi−1) are generic forward transition pdfs, that
will be used as partial proposal pdfs. Extending the space from Θk to Θk+1 (increasing its
dimension), note that we can write the recursive equation

˜︁qk+1(θ1, . . . , θk, θk+1) = Fk+1(θk+1|θk)˜︁qk(θ1, . . . , θk) : Θk+1 → R.
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The marginal proposal pdfs are

qk(θk) =
∫︂
Θk−1

˜︁qk(θ1, . . . , θk)dθ1:k−1

=

∫︂
Θk−1

q1(θ1)
k∏︂

i=2

Fi(θi|θi−1)dθ1:k−1, (8.123)

=

∫︂
Θ

⎡⎢⎢⎢⎢⎢⎣∫︂
Θk−2

q1(θ1)
k∏︂

i=2

Fi(θi|θi−1)dθ1:k−2

⎤⎥⎥⎥⎥⎥⎦ Fk(θk|θk−1)dθk−1,

=

∫︂
Θ

qk−1(θk−1)Fk(θk|θk−1)dθk−1, (8.124)

Therefore, we would be interested in computing the marginal IS weights, wk =
πk(θk |y)
qk(θk) ,

for each k. However note that, in general, the marginal proposal pdfs qk(θk) cannot be
computed and then cannot be evaluated. A suitable alternative approach is described
next. Let us consider the extended target pdf defined as

˜︁πk(θ1, . . . , θk|y) = πk(θk|y)
k∏︂

i=2

Bi−1(θi−1|θi) : Θk → R, (8.125)

Bi−1(θi−1|θi) are arbitrary backward transition pdfs. Note that the space of {˜︁πk} increases as
k grows, and πk is always a marginal pdf of ˜︁πk. Moreover, writing the previous equation
for k + 1

˜︁πk+1(θ1, . . . , θk, θk+1|y) = πk+1(θk+1|y)
k+1∏︂
i=2

Bi−1(θi−1|θi),

and writing the ratio of both, we get˜︁πk+1(θ1, . . . , θk, θk+1|y)˜︁πk(θ1, . . . , θk|y)
=
πk+1(θk+1|y)
πk(θk|y)

Bk(θk|θk+1). (8.126)

Therefore, the IS weights in the extended space Θk are

wk =
˜︁πk(θ1, . . . , θk|y)˜︁qk(θ1, . . . , θk)

(8.127)

=
˜︁πk−1(θ1, . . . , θk−1|y)˜︁qk−1(θ1, . . . , θk−1)

πk(θk |y)
πk−1(θk−1 |y) Bk−1(θk−1|θk)

Fk(θk|θk−1)
, (8.128)

= wk−1
πk(θk|y)Bk−1(θk−1|θk)
πk−1(θk−1|y)Fk(θk|θk−1)

. (8.129)

where we have replaced wk−1 =
˜︁πk−1(θ1,...,θk−1 |y)˜︁qk−1(θ1,...,θk−1) . The recursive formula in Eq. (8.129) is

the key expression for several sequential IS techniques. The SMC scheme summarized in
Table 8.11 is a general framework which contains different algorithms as a special cases
[76]. In Table 8.11, we have used the notation θ1:k = [θ1, ..., θk].

Choice of the forward functions. One possible choice is to use independent proposal
pdfs, i.e., Fk(θk|θk−1) = Fk(θk) or random walk proposal Fk(θk|θk−1), where Fk repre-
sents standard distributions (e.g., Gaussian or t-Student). An alternative is to choose
Fk(θk|θk−1) = Kk(θk|θk−1), i.e., an MCMC kernel with invariant pdf Pk(θk|y).
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Table 8.11: Generic Sequential Monte Carlo (SMC)

1. Draw θ(n)
1 ∼ q1(θ), n = 1, . . . ,N.

2. For k = 2, . . . , L :

(a) Draw N samples θ(n)
k ∼ Fk(θ|θ

(n)
k−1).

(b) Compute the weights

w(n)
k = w(n)

k−1

πk(θ
(n)
k |y)Bk−1(θ(n)

k−1|θ
(n)
k )

πk−1(θ(n)
k−1|y)Fk(θk|θ

(n)
k−1)

, (8.130)

= w(n)
k−1γ

(n)
k , , k = 1, . . . , L, (8.131)

where we set γ(n)
k =

πk(θ(n)
k |y)Bk−1(θ(n)

k−1 |θ
(n)
k )

πk−1(θ(n)
k−1 |y)Fk(θk |θ

(n)
k−1)

.

(c) Normalize the weights w̄(n)
k =

w(n)
k∑︁N

j=1 w( j)
k

, for n = 1, ...,N.

(d) If ˆ︃ES S ≤ ϵN:
(with 0 ≤ ϵ ≤ 1 and ˆ︃ES S is a effective sample size measure [65], see section

8.5.2)

i. Resample N times {θ(1)
1:k, . . . , θ

(N)
1:k } according to {w̄(n)

k }
N
n=1, obtaining

{θ̄
(1)
1:k, . . . , θ̄

(N)
1:k }.

ii. Set θ(n)
1:k = θ̄

(n)
1:k, ˆ︁Zk =

1
N

∑︁N
n=1 w(n)

k and w(n)
k =

ˆ︁Zk for all n = 1, . . . ,N
[64, 63, 77, 72].

3. Return the cloud of weighted particles and

ˆ︁Z = ˆ︁ZL =
1
N

N∑︂
n=1

w(n)
L ,

if a proper weighting of the resampled particles is used (as suggested in the
step 2(d)-ii above). Otherwise, you can use another estimator ˆ︁ZL, as shown in
Section 8.5.2 and the Supplementary Material.

Choice of backward functions. It is possible to show that the optimal backward tran-
sitions {Bk}

L
k=1 are [76]

Bk−1(θk−1|θk) =
qk−1(θk−1)

qk(θk)
Fk(θk|θk−1). (8.132)

This choice reduces the variance of the weights [76]. However, generally, the marginal
proposal qk in Eq. (8.123) cannot be computed (are not available), other possible {Bk}

should be considered. For instance, with the choice

Bk−1(θk−1|θk) =
πk(θk−1|y)
πk(θk|y)

Fk(θk|θk−1), (8.133)
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we obtain

wk = wk−1

πk(θk|y)πk(θk−1 |y)
πk(θk |y) Fk(θk|θk−1)

πk−1(θk−1|y)Fk(θk|θk−1)
(8.134)

= wk−1
πk(θk−1|y)
πk−1(θk−1|y)

, (8.135)

which is exactly the update rule for the weights in An-IS.

Remark 18. With the choice of Bk−1(θk−1|θk) as in Eq. 8.133, and if Fk(θk|θk−1) =
Kk(θk|θk−1) is an MCMC kernel with invariant Pk(θk|y), then we come back to An-IS algo-
rithm [78, 17, 37], described in Table 8.10. Hence, the An-IS scheme is a special case of
SMC method.

Several other methods are contained as special cases of algorithm in Table 8.11, with
specific choice of {Bk}, {Kk} and {πk}, e.g., the Population Monte Carlo (PMC) method
[10], that is a well-known AIS scheme. The sampling procedure in SMC is graphically
represented in Figure 8.5.

Figure 8.5: Sampling procedure in SMC. In this figure, we have considered resampling
steps at each iteration (ϵ = 1).

Evidence computation in a sequential framework with resampling steps

The generic algorithm in Table 8.11 employs also resampling steps. Resampling con-
sists in drawing particles from the current cloud according to the normalized importance
weights w̄(n)

k , for n = 1, ....,N. The resampling steps are applied only in certain iterations
taking into account an ESS approximation, such as ˆ︃ES S = 1∑︁N

n=1(w̄(n)
k )2 , or ˆ︃ES S = 1

maxn w̄(n)
k

[49, 65]. Generally,if 1
N

ˆ︃ES S is smaller than a pre-established threshold ϵ ∈ [0, 1], all the
particles are resampled. Thus, the condition for the adaptive resampling can be expressed
as ˆ︃ESS < ϵN. When ϵ = 1, the resampling is applied at each iteration [24, 25]. If ϵ = 0,
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no resampling steps are applied, and we have a simple sequential importance sampling
(SIS) method. There are two possible estimators of Zk in a sequential scenario:

ˆ︁Z(1)
k =

1
N

N∑︂
n=1

w(n)
k =

1
N

N∑︂
n=1

w(n)
k−1γ

(n)
k =

1
N

N∑︂
n=1

⎡⎢⎢⎢⎢⎢⎢⎣ k∏︂
j=1

γ(n)
j

⎤⎥⎥⎥⎥⎥⎥⎦ , (8.136)

and ˆ︁Z(2)
k =

k∏︂
j=1

⎡⎢⎢⎢⎢⎢⎣ N∑︂
n=1

w̄(n)
j−1γ

(n)
j

⎤⎥⎥⎥⎥⎥⎦ . (8.137)

These two estimators are equivalent in SIS (ϵ = 0, i.e., SMC without resampling), i.e.,
they are the same estimator, ˆ︁Z(1)

k =
ˆ︁Z(2)

k . In SMC with ϵ > 0 and a proper weighting of
the resampled particles, as used in Table 8.11, the two estimators are equivalent as well
[64, 63, 72]. If the proper weighting of the resampled particles is not employed, ˆ︁Z(2)

k is the
only valid option. See Table 8.12 for a summary and the Supp. Material for more details.

Table 8.12: Possible estimators of the evidence in a sequential scenario.

Scenario Resampling Proper Weighting [64] ˆ︁Z(1)
k

ˆ︁Z(2)
k Equivalence

SMC - ϵ = 0 (SIS) x — ✓ ✓ ✓

SMC - ϵ > 0 ✓ x x ✓ x
SMC - ϵ > 0 ✓ ✓ ✓ ✓ ✓

Figure 8.6: Graphical summary of the methods using tempered posteriors.

8.5.3. IS-within-MCMC: Estimation based on Multiple Try MCMC schemes

The Multiple Try Metropolis (MTM) methods are advanced MCMC algorithms which
consider different candidates as possible new state of the chain [59, 70, 69]. More specifi-
cally, at each iteration different samples are generated and compared by using some proper
weights. Then one of them is selected and tested as possible future state. The main ad-
vantage of these algorithms is that they foster the exploration of a larger portion of the
sample space, decreasing the correlation among the states of the generated chain. Here,
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we consider the use of importance weights for comparing the different candidates, in or-
der to provide also an estimation of the marginal likelihood [70]. More specifically, we
consider the Independent Multiple Try Metropolis type 2 (IMTM-2) scheme [59] with
an adaptive proposal pdf. The algorithm is given in Table 8.13. The mean vector and
covariance matrix are adapted using the empirical estimators yielded by all the weighted
candidates drawn so far, i.e., {zn,τ,wn,τ} for all n = 1, ...,N and τ = 1, ...,T . Two pos-
sible estimators of the marginal likelihood can be constructed, one based on a standard
adaptive importance sampling argument ˆ︁Z(2) [7, 8] and other based on a group importance
sampling idea provided in [63].
For the sake of simplicity, we have described an independent MTM scheme, with the ad-
ditional adaptation of the proposal. Random walk proposal pdfs can be also employed in
an MTM algorithm [59]. In that case, the adaptation of the proposal could be not needed.
However, in this scenario, the MTM algorithm requires the sampling (and weighting) of
N − 1 additional auxiliary points. Hence, the total number of weighted samples at each
iterations are 2N − 1. These additional samples are just required for ensuring the ergodic-
ity of the chain (including them in the acceptance probability α), but are not included as
states of the Markov chain. But, for our purpose, they can be employed in the estimators
of Z, as we suggest for the N candidates, {zn,t,wn,t}, in Table 8.13. Note that the use of a
random walk proposal in an MTM scheme of type in Table 8.13, could be considered as
“MCMC-driven IS” method, similar to the method introduced in the next section.

8.5.4. IS-after-MCMC: Layered Adaptive Importance Sampling (LAIS)

The LAIS algorithm consider the use of N parallel (independent or interacting) MCMC
chains with invariant pdf P(θ|y) or a tempered version P(θ|β) [67, 7]. Each MCMC chain
can address a different tempered version P(θ|y, β) (or simply the posterior P(θ|y)) with-
out jeopardizing the consistency of final estimators. After T iterations of the N MCMC
schemes (upper layer), the resulting NT samples, {µn,t}, for n = 1, ...,N and t = 1, ...,T are
used as location parameters of NT proposal densities q(θ|µn,t,C). Then, these proposal
pdfs are employed within a MIS scheme (lower layer), weighting the generated samples
θn,t’s with the generic weight wn,t =

π(θn,t |y)
Φ(θn,t)

[28, 26]. In the numerator of these weights
in the lower layer, we have always the unnormalized posterior π(θn,t|y). The denominator
Φ(θn,t) is a mixture of (all or a subset of) proposal densities which specifies the type of
MIS scheme applied [28, 26]. The algorithm, with different possible choices of Φ(θn,t),
is shown in Table 8.14. The first choice in (8.142) is the most costly since we have to
evaluate all the proposal pdfs in all the generated samples θn,t’s, but provides the best
performance in terms of efficiency of the final estimator. The second and third choices
are temporal and spatial mixtures, respectively. The last choice corresponds to standard
importance weights given in Section 8.4.

Let assume Pn(θ|y) = P(θ|y) for all n in the upper layer. Considering also standard parallel
Metropolis-Hastings chains in the upper layer, the number of posterior evaluations in
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Table 8.13: Adaptive Independent Multiple Try Metropolis type 2 (AIMTM-2)

1. Choose the initial parameters µt, Ct of the proposal q, an initial state θ0 and a
first estimation of the marginal likelihood ˆ︁Z0.

2. For t = 1, ...,T :

(a) Draw z1,t, ...., zN,t ∼ q(z|µt,Ct).

(b) Compute the importance weights wn,t =
π(zn,t |y)

q(zn,t |µt ,Ct)
, for n = 1, ...,N.

(c) Normalize them w̄n,t =
wn,t

Nˆ︁Z′ where

ˆ︁Z′ = 1
N

N∑︂
i=1

wi,t, and set Rt = ˆ︁Z′. (8.138)

(d) Resample θ′ ∈ {z1,t, ...., zN,t} according to w̄n, with n = 1, ...,N.

(e) Set θt = θ
′ and ˆ︁Zt = ˆ︁Z′ with probability

α = min
⎡⎢⎢⎢⎢⎣1, ˆ︁Z′ˆ︁Zt−1

⎤⎥⎥⎥⎥⎦ (8.139)

otherwise set θt = θt−1 and ˆ︁Zt = ˆ︁Zt−1.

(f) Update µt, Ct computing the corresponding empirical estimators using
{zn,τ,wn,τ} for all n = 1, ...,N and τ = 1, ...,T .

3. Return the chain {θt}
T
t=1, {ˆ︁Zt}

T
t=1 and {Rt}

T
t=1. Two possible estimators of Z can be

constructed: ˆ︁Z(1) =
1
T

T∑︂
t=1

ˆ︁Zt, ˆ︁Z(2) =
1
T

T∑︂
t=1

Rt. (8.140)

LAIS is 2NT . Thus, if only one chain N = 1 is employed in the upper layer, the number
of posterior evaluations is 2T .
Special case with recycling samples. The method in [93] can be considered as a special
case of LAIS when N = 1, and {µt = θt} i.e., all the samples {θt}

T
t=1 are generated by

the unique MCMC chain with random walk proposal φ(θ|θt−1) = q(θ|θt−1) with invariant
density P(θ|y). In this scenario, the two layers of LAIS are collapsed in a unique layer,
so that {µt = θt}. Namely, no additional generation of samples are needed in the lower
layer, and the samples generated in the upper layer (via MCMC) are recycled. Hence, the
number of posterior evaluations is only T . The denominator for weights used in [93] is in
Eq. (8.143), i.e., a temporal mixture as in [21]. The resulting estimator is

ˆ︁Z = 1
T

T∑︂
t=1

π(θt|y)
1
T

∑︁T
k=1 φ(θk|θk−1)

, {θt}
T
t=1 ∼ P(θ|y) (via MCMC with a proposal φ(·|·)).
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Table 8.14: Layered Adaptive Importance Sampling (LAIS)

1. Generate NT samples, {µn,t}, using N parallel MCMC chains of length T , each
MCMC method using a proposal pdf φn(µ|µt−1), with invariant distributions a
power posterior Pn(θ|y) = P(θ|y, βn) (with βn > 0) or a posterior pdf with a
smaller number of data.

2. Draw NT samples θn,t ∼ q(θ|µn,t,C) where µn,t plays the role of the mean, and
C is a covariance matrix.

3. Assign to θn,t the weights

wn,t =
π(θn,t|y)
Φ(θn,t)

. (8.141)

There are different possible choices for Φ(θn,t), for instance:

Φ(θn,t) =
1

NT

T∑︂
k=1

N∑︂
i=1

qi,k(θn,t|µi,k,C), (8.142)

Φ(θn,t) =
1
T

T∑︂
k=1

q(θn,t|µn,k,C), (8.143)

Φ(θn,t) =
1
N

N∑︂
i=1

q(θn,t|µi,t,C), (8.144)

Φ(θn,t) = q(θn,t|µn,t,C), (8.145)

4. Return all the pairs {θn,t,wn,t}, and ˆ︁Z = 1
NT

∑︁T
t=1

∑︁N
n=1 wn,t.

Relationship with KDE method. LAIS can be interpreted as an extension of the KDE
method in Section 8.3, where the KDE function is also employed as a proposal density in
the MIS scheme. Namely, the points used in Eq. (8.26), in LAIS they are drawn from the
KDE function using the deterministic mixture procedure [28, 27, 26].
Compressed LAIS (CLAIS). Let us consider the T or N is large (i.e., either large chains
or several parallel chains; or both). Since NT is large, the computation of the denom-
inators Eqs. (8.142)- (8.143)- (8.144) can be expensive. A possible solution is to use
a partitioning or clustering procedure [62] with K << NT clusters considering the NT
samples, and then employ as denominator the function

Φ(θ) =
K∑︂

k=1

ākN(θ|µ̄k,Ck), (8.146)

where µ̄k represents the centroid of the k-th cluster, the normalized weight āk is propor-
tional to the number of elements in the k-th cluster (

∑︁K
k=1 āk = 1), and Ck = Σk + hI with

Σk the empirical covariance matrix of k-th cluster and h > 0.
Relationship with other methods using tempered posteriors. In the upper layer of
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LAIS, we can use non-tempered versions of the posterior, i.e., Pn(θ|y) = P(θ|y) for all n,
or tempered versions of the posterior Pn(θ|y) = P(θ|y, βn) = ℓ(y|θ)βng(θ). However, un-
like in SS and/or power posterior methods, these samples are employed only as location
parameters µn,t of the proposal pdfs qn,t(θ|µn,t,C), and they are not included in the final
estimators. Combining the tempered posteriors idea and the approach in [93], we could
recycle θn,t = µn,t and use qn,t(θ|µn,t) = φn,t(θ|µn,t) where we denote as φn,t the proposal
pdfs employed in the MCMC chains. Another difference is that, in LAIS, the use of an
“anti-tempered” posteriors with βn > 1 is allowed and can be shown that is beneficial
for the performance of the estimators (after the chains reach a good mixing) [66]. More
generally, one can consider a time-varying βn,t (where t is the iteration of the n-th chain).
In the first iterations, one could use βn,t < 1 for fostering the exploration of the state space
and helping the mixing of the chain. Then, in the last iterations, one could use βn,t > 1
which increases the efficiency of the resulting IS estimators [66].

8.6. Vertical likelihood representations

In this section, we introduce a different approach based on Lebesgue representations of the
integral expressing the marginal likelihood Z. First of all, we derive two one-dimensional
integral representations of Z, and then we describe how it is possible to use these alterna-
tive representations by applying one-dimensional quadratures. However, the application
of these quadrature rules is not straightforward. A possible final solution is the so-called
nested sampling method.

8.6.1. Lebesgue representations of the marginal likelihood

First one-dimensional representation

The Dx-dimensional integral Z =
∫︁
Θ
ℓ(y|θ)g(θ)dθ can be turned into a one-dimensional

integral using an extended space representation. Namely, we can write

Z =
∫︂
Θ

ℓ(y|θ)g(θ)dθ (8.147)

=

∫︂
Θ

g(θ)dθ
∫︂ ℓ(y|θ)

0
dλ (extended space representation) (8.148)

=

∫︂
Θ

g(θ)dθ
∫︂ ∞

0
I{0 < λ < ℓ(y|θ)}dλ (8.149)
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where I{0 < λ < ℓ(y|θ)} is an indicator function which is 1 if λ ∈ [0, ℓ(y|θ)] and 0
otherwise. Switching the integration order, we obtain

Z =
∫︂ ∞

0
dλ

∫︂
Θ

g(θ)I{0 < λ < ℓ(y|θ)}dθ (8.150)

=

∫︂ ∞

0
dλ

∫︂
ℓ(y|θ)>λ

g(θ)dθ (8.151)

=

∫︂ ∞

0
Z(λ)dλ =

∫︂ sup ℓ(y|θ)

0
Z(λ)dλ, (8.152)

where we have set

Z(λ) =
∫︂
ℓ(y|θ)>λ

g(θ)dθ. (8.153)

In Eq. (8.152), we have also assumed that ℓ(y|θ) is bounded so the limit of integration is
sup ℓ(y|θ).
Below, we define several variables and sampling procedures required for the proper un-
derstanding of the nested sampling algorithm.

The survival function Z(λ) and related sampling procedures

The function above Z(λ) : R+ → [0, 1] is the mass of the prior restricted to the set
{θ : ℓ(y|θ) > λ}. Note also that

Z(λ) = P (λ < ℓ(y|θ)) , where θ ∼ g(θ). (8.154)

Moreover, we have that Z(λ) ∈ [0, 1] with Z(0) = 1 and Z(λ′) = 0 for all λ′ ≥ sup ℓ(y|θ),
and it is also an non-increasing function. Therefore, Z(λ) is a survival function, i.e.,

F(λ) = 1 − Z(λ) = P (ℓ(y|θ) < λ) = P (Λ < λ) , (8.155)

is the cumulative distribution of the random variable Λ = ℓ(y|θ) with θ ∼ g(θ) [68, 88].

Sampling according to F(λ) = 1 − Z(λ). Since Λ = ℓ(y|θ) with θ ∼ g(θ), the following
procedure generates samples λn from dF(λ)

dλ :

1. Draw θn ∼ g(θ), for n = 1, ...,N.

2. Set λn = ℓ(y|θn), , for all n = 1, ...,N.

Recalling the inversion method [68, Chapter 2], note also that the corresponding values

bn = F(λn) ∼ U([0, 1]), (8.156)

i.e., they are uniformly distributed in [0, 1]. Since Z(λ) = 1 − F(λ), and since V = 1 − U
is also uniformly distributedU([0, 1]) if U ∼ U([0, 1]), then

an = Z(λn) ∼ U([0, 1]). (8.157)

In summary, finally we have that

if θn ∼ g(θ), and λn = ℓ(y|θn) ∼ F(λ) then an = Z(λn) ∼ U([0, 1]). (8.158)
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The truncated prior pdf g(θ|λ) and other sampling procedures

Note that Z(λ) is also the normalizing constant of the following truncated prior pdf

g(θ|λ) =
1

Z(λ)
I{ℓ(y|θ) > λ}g(θ), (8.159)

where g(θ|0) = g(θ) and g(θ|λ) for λ > 0. Two graphical examples of g(θ|λ) and Z(λ) are
given in Figure 8.7.

Prior
Likelihood
Z( )

(a)

Prior
Likelihood
Z( )

(b)

Figure 8.7: Two examples of the area below the truncated prior g(θ|λ), i.e., the function
Z(λ). Note that in figure (b) the value of λ is greater than in figure (a), so that the area
Z(λ) decreases. If λ is bigger than the maximum of the likelihood function then Z(λ) = 0.

Sampling from g(θ|λ) and F(λ|λ0). Given a fixed value λ0 ≥ 0, in order to generate
samples from g(θ|λ0) one alternative is to use an MCMC procedure. However, in this
case, the following acceptance-rejection procedure can be also employed [68]:

1. For n = 1, ...,N:

(a) Draw θ′ ∼ g(θ).

(b) if ℓ(y|θ′) > λ0 then set θn = θ
′ and λn = ℓ(y|θ′).

(c) if ℓ(y|θ′) ≤ λ0, then reject θ′ and repeat from step 1(a).

2. Return {θn}
N
n=1 and {λn}

N
n=1.

Observe that θn ∼ g(θ|λ0), for all n = 1, ...,N, and the probability of accepting a generated
sample θ′ is exactly Z(λ). The values λn = ℓ(y|θn) where θn ∼ g(θ|λ0), have the following
truncated cumulative distribution

F(λ|λ0) =
F(λ) − F(λ0)

1 − F(λ0)
, with λ ≥ λ0, (8.160)

i.e., we can write λn ∼ F(λ|λ0).
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Distribution of an = Z(λn) and ˜︁an =
an
a0

if λn ∼ F(λ|λ0)

Considering the values λn = ℓ(y|θn) where θn ∼ g(θ|λ0), then λn ∼ F(λ|λ0). Therefore,
considering the values a0 = Z(λ0) ≤ 1 and an = Z(λn), with a similar argument used above
in Eqs. (8.157)-(8.158) we can write

an ∼ U([0, a0]),

˜︁an =
an

a0
∼ U([0, 1]), ∀n = 1, ...,N.

In summary, with a0 = Z(λ0), we have that

if θn ∼ g(θ|λ0) and λn = ℓ(y|θn) ∼ F(λ|λ0), then Z(λn) ∼ U([0, a0]), (8.161)

and the ratio ˜︁an =
an
a0
∼ U([0, 1]).

Distributions ˜︁amax
Let us consider λ1, ...., λn ∼ F(λ|λ0) and the minimum and maximum values

λmin = min
n
λn, amax = Z(λmin), and ˜︁amax = amax

a0
=

Z(λmin)
Z(λ0)

. (8.162)

Let us recall ˜︁an =
an
a0
∼ U([0, 1]). Then, note that ˜︁amax is maximum of N uniform random

variables ˜︁a1, ...,˜︁aN ∼ U([0, 1]).

Then it is well-known that the cumulative distribution of the maximum value

˜︁amax = max
n

˜︁an ∼ B(N, 1),

is distributed according to a Beta distribution B(N, 1), i.e., Fmax(˜︁a) = ˜︁aN and density
fmax(˜︁a) = dFmax(˜︁a)

d˜︁a = N˜︁aN−1 [68, Section 2.3.6]. In summary, we have

˜︁amax = Z(λmin)
Z(λ0)

∼ B(N, 1), where λmin = min
n
λn, and λn ∼ F(λ|λ0). (8.163)

This result is important for deriving the standard version of the nested sampling method,
described in the next section. A summary of the relationships presented above is provided
in Table 8.15.

Second one-dimensional representation

Now let consider a specific area value a = Z(λ). The inverse function

Ψ(a) = Z−1(a) = sup{λ : Z(λ) > a}, (8.164)
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Table 8.15: Summary of the relationships among the random variables introduced above.

Sections Relationships

8.6.1 Z(λ) = P (λ < ℓ(y|θ)) , and F(λ) = 1 − Z(λ) = P (ℓ(y|θ) ≤ λ) , where θ ∼ g(θ).

8.6.1 If θn ∼ g(θ), we have λn = ℓ(y|θn) ∼ F(λ) and an = Z(λn) ∼ U([0, 1]).

8.6.1
8.6.1

If θn ∼ g(θ|λ0), we have λn = ℓ(y|θn) ∼ F(λ|λ0) and an = Z(λn) ∼ U([0, a0]), with a0 = Z(λ0).

Moreover, ˜︁an =
an
a0
∼ U([0, 1]).

8.6.1
If θn ∼ g(θ|λ0), we have λn = ℓ(y|θn) ∼ F(λ|λ0) and ˜︁amax = Z(λmin)

Z(λ0) ∼ B(N, 1), where λmin = min λn.

Note also that ˜︁amax = max˜︁an.

is also non-increasing. Note that Z(λ) > a if and only if λ < Ψ(a). Then, we can write

Z =
∫︂ ∞

0
Z(λ)dλ

=

∫︂ ∞

0
dλ

∫︂ 1

0
I{a < Z(λ)}da (again the extended space “trick”)

=

∫︂ 1

0
da

∫︂ ∞

0
I{u < Z(λ)}dλ (switching the integration order)

=

∫︂ 1

0
da

∫︂ ∞

0
I{λ < Ψ(a)}dλ (using Z(λ) > a ⇐⇒ λ < Ψ(a))

=

∫︂ 1

0
Ψ(a)da. (8.165)

Summary of the one-dimensional representations

Thus, finally we have obtained two one-dimensional integrals for expressing the Bayesian
evidence Z,

Z =
∫︂ sup ℓ(y|θ)

0
Z(λ)dλ =

∫︂ 1

0
Ψ(a)da. (8.166)

Now that we have expressed the quantity Z as an integral of a function over R, we could
think of applying simple quadrature: choose a grid of points in [0, sup ℓ(y|θ)] (λi > λi−1)
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or in [0, 1] (ai > ai−1), evaluate Z(λ) or Ψ(a) and use the quadrature formulas

ˆ︁Z = I∑︂
i=1

(λi − λi−1)Z(λi), or (8.167)

ˆ︁Z = I∑︂
i=1

(ai − ai−1)Ψ(ai). (8.168)

However, this simple approach is not desirable since (i) the functions Z(λ) and Ψ(a) are
intractable in most cases and (ii) they change much more rapidly over their domains than
does π(θ|y) = ℓ(y|θ)g(θ), hence the quadrature approximation can have very bad perfor-
mance, unless the grid of points is chosen with extreme care. Table 8.16 summarizes the
one-dimensional expression for log Z and Z contained in this work. Clearly, in all of them,
the integrand function depends, explicitly or implicitly, on the variable θ.

Table 8.16: One-dimensional integrals for log Z and Z. Note that, in all cases, the inte-
grand function contains the dependence on θ.

Method Expression Equations

Ê
path sampling log Z =

∫︁ 1
0

1
Z(β)

∂
∂β

(︂∫︁
Θ
π(θ|y, β)dθ

)︂
dβ (8.98)

power-posteriors log Z =
∫︁ 1

0 EP(θ|y,β)
[︁
log ℓ(y|θ)

]︁
dβ (8.103)

vertical representation-1 Z =
∫︁ sup ℓ(y|θ)

0 Z(λ)dλ (8.152)-(8.153)

vertical representation-2 Z =
∫︁ 1

0 Ψ(a)da (8.165)

8.6.2. Nested Sampling

Nested sampling is a technique for estimating the marginal likelihood that exploits the
second identity in (8.166) [95, 18, 84]. Nested Sampling estimates Z by a quadrature
using nodes (in decreasing order),

0 < a(I)
max < · · · < a(1)

max < 1

and the quadrature formula

ˆ︁Z = I∑︂
i=1

(a(i−1)
max − a(i)

max)Ψ(a(i)
max) =

I∑︂
i=1

(a(i−1)
max − a(i)

max)λ
(i)
min, (8.169)

with a(0)
max = 1. We have to specify the grid points a(i)

max’s (possibly well-located, with a
suitable strategy) and the corresponding values λ(i)

min = Ψ(a(i)
max). Recall that the function

Ψ(a), and its inverse a = Ψ−1(λ) = Z(λ), are generally intractable, so that it is not even
possible to evaluate Ψ(a) at a grid of chosen a(i)

max’s.
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Remark 19. The nested sampling algorithm works in the other way around: it suitably
selects the ordinates λ(i)

min’s and find some approximationsˆ︁ai’s of the corresponding values
a(i)
max = Z(λ(i)

min). This is possible since the distribution of a(i)
max is known (see Section 8.6.1).

Choice of λ(i)
min and a(i)

max in nested sampling

Nested sampling employs an iterative procedure in order to generate an increasing se-
quence of likelihood ordinates λ(i)

min, i = 1, ..., I, such that

λ(1)
min < λ

(2)
min < λ

(3)
min.... < λ

(I)
min. (8.170)

The details of the algorithm is given in Table 8.17 and it is based on the sampling of
the truncated prior pdf g(θ|λ(i−1)

min ) (see Sections from 8.6.1 to 8.6.1), where i denotes the
iteration index. The nested sampling procedure is explained below:

• At the first iteration (i = 1), we set λ(0)
min = 0 and a(0)

max = Z(λ(0)
min) = 1. Then, N

samples are drawn from the prior θn ∼ g(θ|λ(0)
min) = g(θ) obtaining a cloud P =

{θn}
N
n=1 and then set λn = ℓ(y|θn), i.e., {λn}

N
n=1 ∼ F(λ) as shown in Section 8.6.1.

Thus, the first ordinate is chosen as

λ(1)
min = min

n
λn = min

n
ℓ(y|θn) = min

θ∈P
ℓ(y|P).

Since {λn}
N
n=1 ∼ F(λ), using the result in Eq. (8.163), we have that

˜︁a(1)
max =

a(1)
max

a(0)
max

=
Z(λ(1)

min)

Z(λ(0)
min)
∼ B(N, 1).

Since a(0)
max = Z(λ(0)

min) = 1, then ˜︁a(1)
max = a(1)

max ∼ B(N, 1). The corresponding θ∗ =
arg min

θ∈P
ℓ(y|P) is also removed from P, i.e., P = P\{θ∗} (now |P| = N − 1).

• At a generic i-th iteration (i ≥ 2), a unique additional sample θ′ is drawn from the
truncated prior g(θ|λ(i−1)

min ) and added to the current cloud of samples, i.e., P = P∪θ′

(now again |P| = N). First of all, note that the value λ′ = λn = ℓ(y|θ′) is distributed
as F(λ|λ(i−1)

min ) (see Section 8.6.1). More precisely, note that all the N ordinate values

{λn}
N
n=1 = ℓ(y|P) = {λn = ℓ(y|θn) for all θn ∈ P}

are distributed as F(λ|λ(i−1)
min ), i.e., {λn}

N
n=1 ∼ F(λ|λ(i−1)

min ). This is due to how the
population P has been built in the previous iterations. Then, we choose the new
minimum value as

λ(i)
min = min

n
λn = min

θ∈P
ℓ(y|P).

Moreover, since λ(i)
min is the minimum value of {λ1, ..., λN} ∼ F(λ|λ(i−1)

min ), in Section
8.6.1 we have seen that

˜︁a(i)
max =

a(i)
max

a(i−1)
max

=
Z(λ(i)

min)

Z(λ(i−1)
min )

∼ B(N, 1), (8.171)
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where we have used Eq. (8.163). We remove again the corresponding sample
θ∗ = arg min

θ∈P
ℓ(y|P), i.e., we set P = P\{θ∗} and the procedure is repeated. Note

that we have also found the recursion among the following random variables,

a(i)
max =˜︁a(i)

maxa
(i−1)
max , (8.172)

for i = 1, ..., I and a(0)
max = 1.

• The random value ˜︁a(i)
max could be estimated and replaced with the expected value of

the Beta distribution B(N, 1), i.e.,

˜︁a(i)
max ≈ˆ︁a1 =

N
N + 1

≈ exp
(︄
−

1
N

)︄
. (8.173)

where E[B(N, 1)] = N
N+1 , and exp

(︂
− 1

N

)︂
becomes a very good approximation as N

grows. In that case, the recursion above becomes

a(i)
max ≈ exp

(︄
−

1
N

)︄
a(i−1)
max = exp

(︃
−

i
N

)︃
. (8.174)

Then, denotingˆ︁ai = exp
(︂
− i

N

)︂
, we can useˆ︁ai as an approximation of a(i)

max.

Remark 20. The intuition behind the iterative approach above is to accumulate more
ordinates λi close to the sup ℓ(y|θ). They are also more dense around sup ℓ(y|θ). Moreover,
using this scheme, we can employˆ︁ai = exp

(︂
− i

N

)︂
as an approximation of a(i)

max.

Remark 21. An implicit optimization of the likelihood function is performed in the nested
sampling algorithm. All population of λi ∈ P approaches the value sup ℓ(y|θ).

Further considerations

Perhaps, the most critical task of the nested sampling implementation consists in drawing
from the truncated priors. For this purpose, one can use a rejection sampling or an MCMC
scheme. In the first case, we sample from the prior and then accept only the samples θ′

such that ℓ(y|θ′) > λ. However, as λ grows, its performance deteriorates since the accep-
tance probability gets smaller and smaller. The MCMC algorithms could also have poor
performance due to the sample correlation, specially when the support of the constrained
prior is formed by disjoint regions or distant modes [18]. Moreover, in the derivation of
the standard nested sampling method we have considered different approximations. First
of all, for each likelihood value λi, its corresponding ai = Ψ

−1(λi) is approximated by re-
placing the expected value of a Beta random variable within a recursion involving ai (Eq.
(8.172)). Then this expected value is again approximated with an exponential function in
Eq. (8.173). This step could be avoided, keeping directly N

N+1 . The simplicity of the final
formulaˆ︁ai = exp

(︂
− i

N

)︂
is perhaps the reason of using the approximation N

N+1 ≈ exp
(︂
− 1

N

)︂
.

A further approximation E[a(i)
max] ≈ E[˜︁a(i)

max]E[a(i−1)
max ] is also implicitly applied in (8.174).

Additionally, if an MCMC method is run for sampling from the constrained prior, also the
likelihood values λi are in some sense approximated due to the possible burn-in period of
the chain.
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Table 8.17: The standard Nested Sampling procedure.

1. Choose N and setˆ︁a0 = 1.

2. Draw {θn}
N
n=1 ∼ g(θ) and define the set P = {θn}

N
n=1. Let us also define the

notation
ℓ(y|P) = {λn = ℓ(y|θn) for all θn ∈ P}, (8.175)

3. Set λ(1)
min = min

θ∈P
ℓ(y|P) and θ∗ = arg min

θ∈P
ℓ(y|P).

4. Set P = P\{θ∗}, i.e., eliminate θ∗ from P.

5. Find an approximationˆ︁a1 of a(1)
max = Z(λ(1)

min). One usual choice isˆ︁a1 = exp
(︂
− 1

N

)︂
.

6. For i = 2, .., I :

(a) Draw θ′ ∼ g(θ|λ(i−1)
min ) and add to the current cloud of samples, i.e., P =

P ∪ θ′.

(b) Set λ(i)
min = min

θ∈P
ℓ(y|P) and θ∗ = arg min

θ∈P
ℓ(y|P).

(c) Set P = P\{θ∗}.

(d) Find an approximationˆ︁ai of a(i)
max = Z(λ(i)

min). One usual choice is

ˆ︁ai = exp
(︃
−

i
N

)︃
, (8.176)

The rationale behind this choice is explained in the section above.

7. Return

ˆ︁Z = I∑︂
i=1

(ˆ︁ai−1 −ˆ︁ai)λ(i)
min =

I∑︂
i=1

(e−
i−1
N − e−

i
N )λ(i)

min. (8.177)

Generalized Importance Sampling based on vertical representations

Let us recall the estimator IS vers-2 with proposal density q̄(θ) ∝ q(θ),

ˆ︁Z = N∑︂
n=1

ρ̄nℓ(y|θn), {θn}
N
n=1 ∼ q̄(θ), (8.178)

where ρn =
g(θn)
q(θn) and ρ̄n =

ρn∑︁N
n=1 ρn

. In [84], the authors consider the use of the following
proposal pdf

q̄w(θ) =
g(θ)W(ℓ(y|θ))

Zw
∝ qw(θ) = g(θ)W(ℓ(y|θ)), (8.179)
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where the function W(λ) : R+ → R+ is defined by the user. Using q̄w(θ) leads to the
weights of the form

ρn =
g(θn)
qw(θn)

=
1

W(ℓ(y|θn))
, θn ∼ q̄w(θ). (8.180)

Note that choosing W(λ) = λ we have W(ℓ(y|θ)) = ℓ(y|θ), and q̄w(θ) = P(θ|y), recovering
the harmonic mean estimator. With W(λ) = λβ, we have W(ℓ(y|θ)) = ℓ(y|θ)β and q̄w(θ) =
g(θ)ℓ(y|θ)β

Z(β) , recovering the method in Section 8.4.3 that uses a power posterior as a proposal
pdf. Nested sampling seems that can be also included in this framework [84].

8.7. On the marginal likelihood approach and other strategies

In this section, we examine the marginal likelihood approach to Bayesian model selec-
tion and compare it to other strategies such as the well-known posterior predictive check
approach.

8.7.1. Dependence on the prior and related discussion

The marginal likelihood approach for model selection and hypothesis testing naturally
appears as a consequence of the application of Bayes’ theorem to derive posterior model
probabilities p(Mm|y) ∝ pmZm. Under the assumption that one ofMm is the true gener-
ating model, the Bayes factor will choose the correct model as the number of data grows,
Dy → ∞ [47]. We can also apply the posterior model probabilities p(Mm|y) to combine
inferences across models, a setting called Bayesian model averaging [46, 72].

Dependence on the prior

In Section 8.2.2, we have seen the marginal likelihood Z contains intrinsically a penal-
ization for the model complexity. This penalization is related to the choice of the prior
and its “overlap” with likelihood function. Indeed, Z =

∫︁
Θ
ℓ(y|θ)g(θ)dθ is by definition a

continuous mixture of the likelihood values weighted according to the prior. In this sense,
depending on the choice of the prior, the evidence Z can take any possible value in the
interval [ℓ(y|θmin), ℓ(y|θmax)] (see Section 8.2.2, for more details). Hence, the marginal
likelihood even with strong data (unlike the posterior density) is highly sensitivity to the
choice of prior density. See also the examples in the Supplementary Material.

Improper priors. The use of improper priors,
∫︁
Θ

g(θ)dθ = ∞, is allowed when
∫︁
Θ
ℓ(y|θ)g(θ)dθ <

∞, since the corresponding posteriors are proper. However, this is an issue for the model
selection with Z. Indeed, the prior g(θ) = ch(θ) is not completely specified, since c > 0 is
arbitrary. Some possible solutions are given in Section 8.7.2.
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Generally, the use of more diffuse (proper) priors provides smaller values of Z. There-
fore, different choices of the priors can yield different selected models. For this fact, some
authors criticize the use of evidence Z for model comparison.

Safe scenarios for fair comparisons

In a Bayesian framework, the best scenario is clearly when the practitioners and/or re-
searchers have strong beliefs that can be translated into informative priors. Hence, in this
setting, the priors truly encode some relevant information about the inference problem.
When this additional information is not available, different strategies could be consid-
ered. We consider as a safe scenario for comparing different models, a scenario where the
choice of the priors is virtually not favoring any of the models. Below and in Sections
8.7.2 and 8.7.4, we describe some interesting scenarios and some possible solutions for re-
ducing, in some way, the dependence of the model comparison on the choice of the priors.

Same priors. Generally, we are interested in comparing two or more models. The use of
the same (even improper) priors is possible when the models have the same parameters
(and hence also share the same support space). With this choice, the resulting compari-
son seems fair and reasonable. However, this scenario is very restricted in practice. An
example is when we have nested models. As noted in [47, Sect. 5.3], in the context of
testing hypothesis, some authors have considered improper priors on nuisance parameters
that appear on both null and alternative hypothesis. Since the nuisance parameters appear
on both models, the multiplicative constants cancel out in the Bayes factor.

Likelihood-based priors. When
∫︁
Θ
ℓ(y|θ)dθ < ∞, we can build a prior based on the

data and the observation model. For instance, we can choose glike(θ) =
ℓ(y|θ)∫︁
Θ
ℓ(y|θ)dθ , then the

marginal likelihood is

Z =
∫︂
Θ

ℓ(y|θ)glike(θ)dθ =

∫︁
Θ
ℓ2(y|θ)dθ∫︁
Θ
ℓ(y|θ)dθ

. (8.181)

This idea is connected to posterior predictive approach, described in Section 8.7.4. In-
deed, the marginal likelihood above can be written as Z = EP(θ|y)[ℓ(y|θ)] =

∫︁
Θ
ℓ(y|θ)P(θ|y)dθ

when g(θ) = 1. Less informative likelihood-based priors can be constructed using a tem-
pering effect with a parameter 0 < β ≤ 1 or considering only a subset of data ysub. For in-
stance, when

∫︁
Θ
ℓ(y|θ)βdθ < ∞ or

∫︁
Θ
ℓ(ysub|θ)dθ < ∞, then we can choose glike(θ) ∝ ℓ(y|θ)β

or glike(θ) ∝ ℓ(ysub|θ), the marginal likelihood is

Z =

∫︁
Θ
ℓ(y|θ)β+1dθ∫︁
Θ
ℓ(y|θ)βdθ

, or Z =

∫︁
Θ
ℓ(y|θ)ℓ(ysub|θ)dθ∫︁
Θ
ℓ(ysub|θ)dθ

. (8.182)

This is also the key idea underlying the partial and intrinsic Bayes factors described in the
next section.
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8.7.2. Bayes factors with improper priors

So far we have considered proper priors, i.e.,
∫︁
Θ

g(θ)dθ = 1. The use of improper priors
is common in Bayesian inference to represent weak prior information. Consider g(θ) ∝
h(θ) where h(θ) is a non-negative function whose integral over the state space does not
converge,

∫︁
Θ

g(θ)dθ =
∫︁
Θ

h(θ)dθ = ∞. In that case, g(θ) is not completely specified.
Indeed, we can have different definitions g(θ) = ch(θ) where c > 0 is (the inverse of)
the “normalizing” constant, not uniquely determinate since c formally does not exist.
Regarding the parameter inference and posterior definition, the use of improper priors
poses no problems as long as

∫︁
Θ
ℓ(y|θ)h(θ)dθ < ∞, indeed

P(θ|y) =
1
Z
π(θ|y) =

ℓ(y|θ)ch(θ)∫︁
Θ
ℓ(y|θ)ch(θ)dθ

=
ℓ(y|θ)h(θ)∫︁
Θ
ℓ(y|θ)h(θ)dθ

,

=
1
Zh
ℓ(y|θ)h(θ) (8.183)

where Z =
∫︁
Θ
ℓ(y|θ)g(θ)dθ, Zh =

∫︁
Θ
ℓ(y|θ)h(θ)dθ and Z = cZh. Note that the unspecified

constant c > 0 is canceled out, so that the posterior P(θ|y) is well-defined even with an
improper prior if

∫︁
Θ
ℓ(y|θ)h(θ)dθ < ∞. However, the issue is not solved when we compare

different models, since Z = cZh depends on c. For instance, the Bayes factors depend on
the undetermined constants c1, c2 > 0 [96],

BF(y) =
c1

c2

∫︁
Θ1
ℓ1(y|θ1)h1(θ1)dθ1∫︁

Θ2
ℓ2(y|θ2)h2(θ2)dθ2

=
Z1

Z2
=

c1Zh1

c2Zh2

, (8.184)

so that different choices of c1, c2 provide different preferable models. There exists various
approaches for dealing with this issue. Below we describe some relevant ones.

Partial Bayes Factors. The idea behind the partial Bayes factors consists of using a
subset of data to build proper priors and, jointly with the remaining data, they are used
to calculate the Bayes factors. This is related to the likelihood-based prior approach, de-
scribed above. The method starts by dividing the data in two subsets, y = (ytrain, ytest). The
first subset ytrain is used to obtain partial posterior distributions,

ḡm(θm|ytrain) =
cm

Z(m)
train

ℓm(ytrain|θm)hm(θm), (8.185)

using the improper priors. The partial posterior ḡm(θm|ytrain) is then employed as prior.
Note that

Z(m)
train = cm

∫︂
Θm

ℓm(ytrain|θm)hm(θm)dθm.

Recall that the complete posterior of m-th model is

Pm(θ|y) = Pm(θ|ytest, ytrain) =
cm

Zm
ℓm(y|θm)hm(θm), (8.186)

where
Zm = cm

∫︂
Θm

ℓm(y|θm)hm(θm)dθm.
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Note that Z(m)
train and Zm both depend on the unspecified constant cm. Considering the con-

ditional likelihood ℓm(ytest|θm, ytrain) of the remaining data ytest,17 we can study another
posterior of ytest,

P(m)
test(θ|ytest) =

1

Z(m)
test|train

ℓm(ytest|θm, ytrain)ḡm(θm|ytrain), (8.187)

where ḡm(θm|ytrain) in (8.185) plays the role of a prior pdf, and

Z(m)
test|train =

∫︂
Θm

ℓm(ytest|θm, ytrain)ḡm(θm|ytrain)dθm,

=

∫︂
Θm

ℓm(ytest|θm, ytrain)
cm

Z(m)
train

ℓm(ytrain|θm)hm(θm)dθm,

=
cm

Z(m)
train

∫︂
Θm

ℓm(ytest|θm, ytrain)ℓm(ytrain|θm)hm(θm)dθm,

=
cm

Z(m)
train

∫︂
Θm

ℓm(y|θm)hm(θm)dθm,

=
Zm

Z(m)
train

.

Thus, Z(m)
test|train does not depend on cm. Therefore, considering the partial posteriors ḡm(θm|ytrain)

as proper priors, we can define the following partial Bayes factor

BF(ytest|ytrain) =
Z(1)

test|train

Z(2)
test|train

=

Z1

Z(1)
train

Z2

Z(2)
train

,

=

Z1
Z2

Z(1)
train

Z(2)
train

=
BF(y)

BF(ytrain)
. (“Bayes law for Bayes Factors”). (8.188)

Therefore, one can approximate firstly BF(ytrain), secondly BF(y) and then compare the
model using the partial Bayes factor BF(ytest|ytrain).

Remark 22. The trick here consists in computing two normalizing constants for each
model, instead of only one. The first normalizing constant is used for building an auxiliary
proper prior, depending on ytrain. The difference with the likelihood-based prior approach
in previous section is that ytrain is used only once (in the auxiliary proper prior).

A training dataset ytrain is proper if
∫︁
Θm
ℓm(ytrain|θm)hm(θi)dθm < ∞ for all models, and it is

called minimal if is proper and no subset of ytrain is proper. If we use actually proper prior
densities, the minimal training dataset is the empty set and the fractional Bayes factor
reduces to the classical Bayes factor. However, the main drawback of the partial Bayes
factor approach is the dependence on the choice of ytrain (which could affect the selection
of the model). The authors suggest finding the minimal suitable training set ytrain, but

17In case of conditional independence of the data given θ, we have ℓm(ytest|θm, ytrain) = ℓm(ytest|θm).
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this task is not straightforward. Two alternatives in the literature have been proposed, the
fractional Bayes factors and the intrinsic Bayes factors.

Fractional Bayes Factors [81]. Instead of using a training data, it is possible to use
power posteriors, i.e.,

FBF(y) =
BF(y)

BF(y|β)
, (8.189)

where the denominator is

BF(y|β) =

∫︁
Θ1
ℓ1(y|θ1)βg1(θ1)dθ1∫︁

Θ2
ℓ2(y|θ2)βg2(θ2)dθ2

=
c1

∫︁
Θ1
ℓ1(y|θ1)βh1(θ1)dθ1

c2

∫︁
Θ2
ℓ2(y|θ2)βh2(θ2)dθ2

. (8.190)

with 0 < β < 1, and BF(y|1) = BF(y). Note that the value β = 0 is not admissible since∫︁
Θm

hm(θm)dθm = ∞ for m = 1, 2. Again, since both BF(y) and BF(y|β) depend on the
ratio c1

c2
, the fractional Bayes factor FBF(y) is independent on c1 and c2 by definition.

Intrinsic Bayes factors [4]. The partial Bayes factor (8.188) will depend on the choice
of (minimal) training set ytrain. These authors solve the problem of choosing the training
sample by averaging the partial Bayes factor over all possible minimal training sets. They
suggest using the arithmetic mean, leading to the arithmetic intrinsic Bayes factor, or the
geometric mean, leading to the geometric intrinsic Bayes factor.

8.7.3. Marginal likelihood as a prior predictive approach

Due to the definition of the marginal likelihood Z = Eg[ℓ(y|θ)] =
∫︁
Θ
ℓ(y|θ)g(θ)dθ is

also called or related to the so-called prior predictive approach. As in the Approximate
Bayesian Computation (ABC) [57], the idea is that we can generate artificial data ˜︁yi,m,
i = 1, ..., L from each m-th model with the following procedure: (a) draw θi,m from the
m-th prior, gm(θ) and ˜︁yi,m from the m-th likelihood ℓm(y|θi,m). Given each set of fake data
Sm = {˜︁yi,m}

L
i=1, we can use different classical hypothesis testing techniques for finding the

set Sm closest to the true data y (for instance, based on p-values). Another possibility, we
could approximate the value Zm = pm(y) applying kernel density estimation ˆ︁pm to each
set Sm.
In the next section, we describe the posterior predictive approach, which consider the ex-
pected value of likelihood evaluated in a generic ˜︁y with respect to (w.r.t.) the posterior
P(θ|y), instead of w.r.t. the prior g(θ). The posterior predictive idea can be considered
an alternative model selection approach w.r.t. the marginal likelihood approach, which
includes several well-known model selection schemes.

8.7.4. Other ways of model selection: the posterior predictive approach

The marginal likelihood approach is not the unique approach for model selection in
Bayesian statistics. Here, we discuss some alternatives which are based on the concept of
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prediction.
After fitting a Bayesian model, a popular approach for model checking (i.e. assessing
the adequacy of the model fit to the data) consists in measuring its predictive accuracy
[34, Chapter 6][83]. Hence, a key quantity in these approaches is the posterior predictive
distribution of generic different data ˜︁y given y,

p(˜︁y|y) = EP(θ|y)[ℓ(˜︁y|θ)] = ∫︂
Θ

ℓ(˜︁y|θ)P(θ|y)dθ. (8.191)

Considering ˜︁y = y, note that exists a clear connection with likelihood-based priors de-
scribed in Section 8.7.1.

Remark 23. The posterior predictive distribution in (8.191) is an expectation w.r.t. the
posterior, which is robust to the prior selection with informative data, unlike the marginal
likelihood. Therefore, this approach is less affected by the prior choice.

Note that we can consider posterior predictive distributions p(˜︁y|y) for vectors ˜︁y smaller
than y (i.e., with less components). The posterior predictive checking is based on the main
idea of considering some simulated data˜︁yi ∼ p(˜︁y|y), with i = 1, ..., L, and comparing with
the observed data y. After obtaining a set of fake data {˜︁yi}

L
i=1, we have to measure the

discrepancy between the true observed data y and the set {˜︁yi}
L
i=1. This comparison can be

made with test quantities and graphical checks (e.g., posterior predictive p-values).

Alternatively, different measures of predictive accuracy can be employed. An exam-
ple, is the expected log pointwise predictive density (ELPD) [102]. Let recall that y =
[y1, . . . , yDy] ∈ R

Dy , and define as ȳ ∈ R any alternative scalar data. Considering M alter-
native scalar data ȳi with density ptrue(ȳi), the ELPD is defined as

ELPD =
M∑︂

i=1

∫︂
R

log p(ȳi|y)ptrue(ȳi)dȳi

=

M∑︂
i=1

∫︂
R

log
[︄∫︂
Θ

ℓ(ȳi|θ)P(θ|y)dθ
]︄

ptrue(ȳi)dȳi. (8.192)

Note that ptrue(ȳi) is the density representing the true data generating process for ȳi, which
is clearly unknown. Therefore, some approximations are required. First all, we define an
over-estimation of the ELPD, considering the observed data in y = [y1, . . . , yDy] instead
new alternative data ȳi, so that M = Dy and

∫︁
R

log p(ȳi|y)ptrue(ȳi)dȳi ≈ log p(yi|y), i.e.,

ˆ︁ELPD =
Dy∑︂
i=1

log p(yi|y) =
Dy∑︂
i=1

log
[︄∫︂
Θ

ℓ(yi|θ)P(θ|y)dθ
]︄
. (8.193)

In practice, we need an additional approximation for computing p(yi|y) =
∫︁
Θ
ℓ(ȳi|θ)P(θ|y)dθ.

We can use MCMC samples from P(θ|y), i.e.,

ˆ︁ELPD =
Dy∑︂
i=1

log ˆ︁p(yi|y) =
Dy∑︂
i=1

log

⎡⎢⎢⎢⎢⎢⎣ 1
N

N∑︂
n=1

ℓ(yi|θn)

⎤⎥⎥⎥⎥⎥⎦ , with θn ∼ P(θ|y). (8.194)
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LOO-CV. However, we know that the approximation above overestimates ELPD. One
possibility is to use cross-validation (CV), such as the leave-one-out cross-validation
(LOO-CV). In LOO-CV, we consider p(yi|y−i) instead of p(yi|y) in Eq. (8.193), where
y−i is vector y leaving out the i-th data, yi. Hence,

ˆ︁ELPDLOO-CV =

Dy∑︂
i=1

log p(yi|y−i) =
Dy∑︂
i=1

log
[︄∫︂
Θ

ℓ(yi|θ)P(θ|y−i)dθ
]︄
. (8.195)

For approximating p(yi|y−i) =
∫︁
Θ
ℓ(yi|θ)P(θ|y−i)dθ, we draw again from the full posterior

by means of an MCMC technique, θn ∼ P(θ|y), and apply importance sampling [102],

p(yi|y−i) ≈ ˆ︁p(yi|y−i) =
N∑︂

n=1

w̄i,nℓ(yi|θn), θn ∼ P(θ|y), (8.196)

where w̄i,n =
wi,n∑︁N

k=1 wi,k
and, in the case the data are conditionally independent,

wi,n =
1

ℓ(yi|θn)
∝

P(θn|y−i)
P(θn|y)

.

Thus, replacing in (8.196), we obtain

p(yi|y−i) ≈ ˆ︁p(yi|y−i) =
1∑︁N

n=1
1

ℓ(yi |θn)

, θn ∼ P(θ|y), (8.197)

which resembles the harmonic mean estimator but with just one data point. However,
since the full posterior P(θn|y) has smaller variance of P(θn|y−i), the direct use of (8.197)
is quite unstable, since the IS weights can have high or infinite variance. See [102] for
stable computations of LOO-CV and using posterior simulations. Moreover, see also [83]
for a quantitative comparison of methods for estimating the predictive ability of a model.
The marginal likelihood can also be interpreted as a measure of predictive performance
[47, Sect. 3.2]. In [29], the authors show that the marginal likelihood is equivalent, in
some sense, to a leave-p-out cross-validation procedure. For further discussions about
model selection strategies, see [1, 82].

8.8. Numerical comparisons

In this section, we compare the performance of different marginal likelihood estimators in
different experiments. First of all, we consider 3 different illustrative scenarios in Section
8.8.1, 8.8.2 and 8.8.3 each one considering different challenges: different overlap between
prior and likelihood (changing the number of data, or the variance and mean of the prior),
multi-modality and different dimensions of the inference problem. The first experiment
also considers two different sub-scenarios. Additional theoretical results related to the
experiments in Sect. 8.8.1 are provided in the Supplementary Material.

The last two experiments involves a real data analysis. In Section 8.8.4, we test several
estimators in a nonlinear regression problem with real data (studied also in [23]), where
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the likelihood function has non-elliptical contours. Finally, in Section 8.8.5 we consider
another regression problem employing non-linear localized bases with real data of the
COVID-19 outbreak.

8.8.1. First experiment

First setting: Gaussians with same mean and different variances

In this example, our goal is to compare by numerical simulations different schemes for
estimating the normalizing constant of a Gaussian target π(θ) = exp(− 1

2θ
2). We know

the ground-truth Z =
∫︁ ∞
−∞
π(θ)dθ =

√
2π, so P(θ) = π(θ)

Z = N(θ|0, 1). Since this is a
data-independent example, π(θ) and P(θ) have no dependence on y. We compare several
estimators enumerated below, considering one or two proposals.

One proposal estimators (IS and RIS). First of all, we recall that the IS vers-1 esti-
mator with importance density q̄(θ) and the RIS estimator with auxiliary density f (θ) are

ˆ︁ZIS =
1
N

N∑︂
i=1

π(zi)
q̄(zi)

, zi ∼ q̄(θ), ˆ︁ZRIS =
1

1
N

∑︁N
i=1

f (θi)
π(θi)

, θi ∼ P(θ).

For a fair comparison, we consider

q̄(θ) = f (θ) = N(θ|0, h2) =
1

√
2πh2

exp
(︄
−

1
2h2 θ

2
)︄
.

where h > 0 is the standard deviation. We desire to study the performance of the two
estimators as h varies. Moreover, a theoretical comparison of IS and RIS estimators is
given in the Supplementary Material.

Estimators using with two proposals. The IS and RIS estimators use a single set of
samples from q̄(θ) or P(θ), respectively. Now, we consider the comparison, in terms of
MSE, against several estimators that use sets of samples from both densities, q̄(θ) and
P(θ), at the same time. Let {zi}

M
i=1 and {θ j}

N
j=1 denote sets of iid samples from q̄(θ) and

P(θ), respectively. When M = N = 500, the set {{zi}
M
i=1, {θ j}

N
j=1} can be considered as a

unique set of samples drawn from the mixture 1
2 P(θ) + 1

2 q̄(θ) [28]. For a fair comparison,
these estimators use M

2 samples from q̄(θ) and N
2 samples from P(θ).

Ideal and realistic scenarios. Furthermore, we consider two scenarios, corresponding to
whether we can evaluate P(θ) (ideal and impossible scenario) or we evaluate π(θ) ∝ P(θ)
(realistic scenario). Note that the first scenario is simply for illustration purposes.

Jointly with IS and RIS estimator, we test several other estimators of Z, introduced in
Section 8.4.2, that use two sets of samples simultaneously.

• Opt-BS: The optimal bridge sampling estimator with α(θ) = (1
2 P(θ) + 1

2 q̄(θ))−1.

266



• Mix-IS: IS vers-1 with the mixture 1
2 P(θ) + 1

2 q̄(θ), instead of q̄(θ), as proposal.

• Mix-self IS: The self-IS estimator, with f (θ) = q̄(θ), and the mixture 1
2 P(θ) + 1

2 q̄(θ)
as the proposal.

Moreover, we consider another one proposal estimator, described in Section 8.4.1:

• Opt-self IS: The optimal self-IS estimator, with f (θ) = q̄(θ). Note that this estima-
tor use samples from a density to q̄opt(θ) ∝ |P(θ)− q̄(θ)|. We include it as a reference,
for its optimality, and since q̄opt(θ) involves both, P(θ) and q̄(θ).

Remark 24. Clearly, in the realistic scenario, all of the schemes above must replaced for
their iterative versions, since we cannot evaluate P(θ) but only π(θ) ∝ P(θ).

Results in ideal scenario. Figures 8.8(a)-(b) show the MSE of the estimators versus
h (which is the standard deviation of q̄(θ)) in the ideal scenario. IS vers-1 can have very
high MSE when h < 1, i.e., q̄(θ) has smaller variance then the P(θ). Whereas, IS vers-1
is quite robust when h > 1. The MSE of RIS has the opposite behavior of IS vers-1. This
is because RIS needs that q̄(θ) has lighter tails than P(θ). In this example, optimal bridge
sampling seems to provide performance in-between the IS and RIS estimators. The MSE
of Opt-BS is closer to RIS for h < 1, whereas Opt-BS becomes closer to IS for h > 1.
Conversely, the MSE of Opt BS is not smaller than that of IS or RIS for any h in this
example. Finally, Mix-IS and Mix-self-IS provide the best performance, even better than
the optimal self-IS estimator. But this is due to we are in an ideal, unrealistic scenario.

Results in the realistic scenario. Since Z is unknown we cannot evaluate P(θ) but only
π(θ) ∝ P(θ). Only IS and RIS can be truly applied. The rest of above estimators must
employ an iterative procedure (see Section 8.4.1 and Section 8.4.2). The iterative versions
of these estimators evaluate 1

2π(θ)/ˆ︁Z(t) + 1
2 q̄(θ), where ˆ︁Z(t) is the current approximation.

In Figure 8.9, we show these three estimators after T = 5 and T = 15 iterations. Inter-
estingly, note that they all converge to the results of Opt-BS estimator. This means that
the iterative versions of Mix-IS and Mix-self-IS are two alternative of Opt-BS in practice,
and the performance obtained in ideal scenario are unachievable. However, the iterative
version of Opt-BS seems to have the fastest convergence (to the results of the ideal Opt-
BS), w.r.t. the iterative versions of Mix-IS and Mix-self-IS.
We also include a two-stage version of the Opt-selfIS estimator (see Section 8.4.1). This
estimator employs N

4 to obtain an approximation ˆ︁Z via standard IS, and then draws 3
4 N

samples from a density proportional to |π(θ)/ˆ︁Z − q̄(θ)|. This two-stage Opt-selfIS de-
pends on the quality of the initial approximation of ˆ︁Z. Since this initial approximation is
provided by IS, and since IS is problematic when h < 1, the two-stage self-IS does not
perform better than Opt-BS for h < 1.
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(a) (b)

Figure 8.8: Numerical comparison with estimators using samples from q̄(θ) and P(θ),
and optimal self-IS. The figure shows the MSE of each method (averaged over 2000
simulations) as a function of h.

(a) T=5 (b) T=15

Figure 8.9: Comparison of iterative version of estimators with a very far starting value,ˆ︁Z(0) = 5000, with T = 5 and T = 15. Note that the two-stage self-IS is not iterative (see
Section 8.4.1).

Second setting: Gaussians with same variance and different means

In this setting, we consider again P(θ) ∝ π(θ) = exp
(︂
− 1

2θ
2
)︂
,i.e., P(θ) = π(θ)

Z = N(θ|0, 1),
but the proposal is q̄(θ) = N(θ|µ, 1) for µ ≥ 0. Namely, as µ grows, q̄(θ) and P(θ) are more
distant. A theoretical comparison of IS and RIS estimators is given in the Supplementary
Material, also for this setting.

Similarly, we compare the MSE as function of µ of different estimators of Z: (a) IS vers-1,
(b) RIS, (c) optimal BS (Opt-BS), (d) a suboptimal self-IS estimator with f (θ) = q̄(θ) and
using q̄(θ) = N(µ2 , 1) as proposal, and (e) the Opt-self IS estimator with f (θ) = q̄(θ) and
proposal q̄opt(θ) ∝ |P(θ) − q̄(θ)|. Each estimator is computed using 500 samples in total
and the results are averaged over 2000 independent simulations.
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Results of the second setting. Unlike in the first setting, here we consider only the ideal
scenario (i.e., without iterative procedures). However, note that the suboptimal self-IS
scheme would not require an iterative version. The results are shown in Figure 8.10. The
MSE of both IS and RIS diverge as eµ

2
. Opt-BS shows better performance than IS vers-1

and RIS. The suboptimal self-IS estimator performs similarly to the Opt-BS, but both are
worse than the Opt-self IS estimator. In this example, the estimators that use a middle
density (as Opt-BS and the self-IS estimators) are less affected by the problem of P(θ)
and q̄(θ) becoming further apart. As in the previous setting, we expect that the iterative
versions of Opt-BS converges to the results of the ideal Opt-BS, provided in Figure 8.10.
Recall that, for approximating the Opt-self IS, we require a two-stage procedure. How-
ever, a procedure with just two stages could be not enough, as we showed in the previous
setting. Hence, an iterative application of the two-stage procedure could be employed
(becoming actually an adaptive importance sampler).

Figure 8.10: Numerical comparison of IS, RIS, Opt-BS, suboptimal self-IS and Opt self-
IS. The figure shows the MSE of each method (averaged over 2000 simulations) as a
function of µ. Greater µ means P(θ) and q̄(θ) are further apart.

8.8.2. Second experiment: Gaussian likelihood and uniform prior

Let us consider the following one-dimensional example. More specifically, we consider
independent data y = [y1, . . . , yDy] generated according to a Gaussian observation model,

ℓ(y|θ) =
Dy∏︂
i=1

ℓ(yi|θ) =
1

(
√

2πσ)Dy
exp

{︄
−

Dy

2σ2 [(θ − ȳ) + sy]
}︄
,

where σ = 3, ȳ and sy denote the sample mean and sample variance of y, respectively.
We consider a uniform prior g(θ) = 1

2∆ , θ ∈ [−∆,∆] with ∆ > 0 being the prior width. In
this setting, the marginal likelihood Z can be obtained in closed-form as a function of ∆
and n (considering the evaluation of the error function erf(x)). The posterior is a truncated
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Gaussian P(θ|y) ∝ N(θ|ȳ, σ
2

Dy
), θ ∈ [−∆,∆]. Let β ∈ [0, 1] denote an inverse temperature,

the power posterior is

P(θ|y, β) ∝ N
(︄
θ
⃓⃓⃓⃓
ȳ,
σ2

Dyβ

)︄
, restricted to θ ∈ [−∆,∆]. (8.198)

For any β, we can sample P(θ|y, β) ∝ ℓ(y|θ)βg(θ) with rejection sampling by drawing from
N(θ|ȳ, σ2

Dyβ
) and discarding the samples that fall outside [−∆,∆].

Scenario 1: ∆ = 10 and Dy = 10. We start by setting ∆ = 10 and generating Dy = 10
data points from N(0, σ2) with σ = 3. The value of the marginal likelihood is log Z =
−25.2853. We aim to compare the performances of several methods in estimating log Z:
(a) Naive Monte Carlo (NMC), (b) Harmonic mean (HM), (c) IS with a tempered pos-
terior as proposal (IS-P), (d) stepping stone sampling (SS), (e) power posterior method
(PP), and (f) path sampling (PS).

Remark 25. Estimating log Z, instead of directly Z, helps the methods of PP and PS, with
respect to NMC, HM, IS-P and SS (making their results worse).

We establish a total budget of N = 103 likelihood evaluations. For SS and PP, we set K+1
values of β, from β0 = 0 to βK = 1, chosen (i) uniformly, i.e., βk =

k
K for k = 1, . . . ,K,

or (ii) concentrated around β = 0, i.e., βk =
(︂

k
K

)︂1/α
with α = 0.25. Hence the uniform

case is obtained when α = 1. Note that SS draws samples from K distributions, while PP
draw samples from K + 1 distributions. For fair comparison, we sample ⌊N

K ⌋ times from
each P(θ|y, βk), for k = 0, . . . ,K − 1, in SS, and ⌊ N

K+1⌋ times from of each P(θ|y, βk), for
k = 0, . . . ,K, in PP. For IS-P we test β1 = 0.5 and β2 = 0.54 and draw N samples from
each of the P(θ|y, β1) and P(θ|y, β2). For PS, we sample N pairs (β′, θ′) as follows: we
first sample β′ from aU(0, 1) and then sample θ′ from the corresponding power posterior
P(θ|y, β′). Naive Monte Carlo uses N independent samples from prior and HM uses N
independent samples from the posterior.

Results scenario 1. In Figure 8.11(a), we show 500 independent estimations from each
method. We observe that NMC works very well in this scenario since the prior acts as a
good proposal. SS with K = 2 provides also good performance, since half the samples
come from the prior with this choice of K. The value of α seems to be not important for
SS in this case. PS performs as well as NMC and SS, but shows a slightly bigger dis-
persion. HM tends to overestimate the marginal likelihood, which is a well-known issue.
The estimation provided by IS-P depends on the choice of β. For β1 = 0.5, the power
posterior is closer to the posterior so its behavior is similar to HM. For β2 = 0.0625 the
power posterior is close to the prior, and IS-P tends to underestimate Z. Recall that IS-P
has a bias since it is a special case of IS vers-2. PP performs poorly with K = 2, due to
the discretization error in (8.103), which improves when considering the value K = 35.
The choice α = 0.25, w.r.t. α = 1, improves the performance in PP.
In Figure 8.11(b), we show the mean absolute error (MAE) in estimating log Z of SS
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and PP as a function of K. We depict two curves for each method, corresponding to the
choices α = 1 and α = 0.25. We can observe that the errors obtained in SS and PP when
α = 0.25 are smaller than when α = 1 for any K. This is in line with the recommendations
provided in their original works. We note that the error of SS slightly deteriorates as K
grows: for K > 2, less and less samples are drawn from the prior, which is a good proposal
in this scenario (with ∆ = 10 and Dy = 10). The performance of PP improves drastically
as K grows, since larger K means that the trapezoidal rule is more accurate in approximat-
ing (8.103). SS and PP, for α = 1 and α = 0.25, approach the same limit when K grows,
achieving an error which is always greater than the one obtained by NMC, in this scenario.

Scenario 2: ∆ = 1000 and Dy = 100. Now, we replicate the previous experiment in-
creasing the number of data, Dy = 100, and the width of the prior, ∆ = 1000. The joint
effect of increasing Dy and ∆ makes the likelihood become extremely concentrated w.r.t.
the prior, hence decreasing the value of the marginal likelihood, being log Z = −267.6471.
Moreover, this high discrepancy between prior and posterior is reflected in the power pos-
teriors P(θ|y, β), which will be very similar to the posterior except for very small values
of β. We compare all the methods described before with a total budget of N = 103 likeli-
hood evaluations. Additionally, we also test a PS where β′ ∼ B(0.25, 1), i.e., from a beta
distribution which provides more β′ values closer to 0.

Results scenario 2. In Figure 8.12(a), we can see that, unlike in the previous scenario,
the NMC tends to underestimate the marginal likelihood, since the likelihood is much
more concentrated than the prior. The HM and the two implementations of IS-P provide
similar results, overestimating Z: in this case, the posterior is so different from the prior
that P(θ|y, 0.5) and P(θ|y, 0.06) are very similar to the posterior. PS with β′ ∼ [0, 1] tends
to overestimate Z: since the β′’s are drawn uniformly in [0, 1], many samples (β′, θ′) are
drawn in high-valued likelihood zones. Indeed, at least the bias is reduced when we test
PS with β′ ∼ B(0.25, 1). We also show the results of one implementation of SS (with
K = 10 and α = 0.25) and PP (with K = 70 and α = 0.25). Both greatly outperform the
rest of estimators in this scenario, providing accurate estimations. In Figure 8.12(b), we
show again the MAE of SS and PP as a function of K for two values α = 1 and α = 0.25.
The error of PP, with either α = 1 or α = 0.25, decreases as K grows, although it decreases
more rapidly when considering α = 0.25. The error of SS with α = 0.25 decreases as K
grows, but increases with K when α = 1. Again, PP requires the use bigger values of K
with respect to SS. In both methods, the choice of α < 1, i.e., concentrating β’s near β = 0
where P(θ|y, β) is usually changing rapidly, shows to improve the overall performance.

8.8.3. Third experiment: posterior as mixture of two components

We consider a posterior which is a mixture of two Dθ-dimensional Gaussian densities.
It is a conjugate model where the likelihood is Gaussian and the prior is a mixture of
two Gaussian. Given the observation vector y, we consider a Dθ-dimensional Gaussian
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(a) (b)

Figure 8.11: Simulations when Dy = 10 and ∆ = 10: (a) Estimates of log Z in 500
independent simulations, (b) MAEs of SS and PP as a function of K for two values of α.

(a) (b)

Figure 8.12: Simulations when Dy = 100 and ∆ = 1000: (a) Estimates of log Z in 500
independent simulations, (b) MAEs of SS and PP as a function of K for two values of α.

likelihood function

ℓ(y|θ) = N(y|θ,Λ), (8.199)

with covariance Λ, and a Dθ-dimensional Gaussian mixture prior

g(θ) = αpriorN(θ|µ(1)
pr ,Σ

(1)
pr ) + (1 − αprior)N(θ|µ(2)

pr ,Σ
(2)
pr ), (8.200)

with αprior ∈ [0, 1], µ(i)
pr and Σ(i)

pr being the prior means and covariances of each compo-
nent of the mixture, respectively. Then, the posterior is also a mixture of two Gaussian
densities

P(θ|y) = αpostN(θ|µ(1)
post,Σ

(1)
post) + (1 − αpost)N(θ|µ(2)

post,Σ
(2)
post), (8.201)

where the parameters αpost ∈ [0, 1], µ(i)
post and Σ(i)

post can be obtained in closed-form from
αprior, µ

(i)
pr , Σ

(i)
pr , Λ and y. Thus, having the analytical expression of the posterior in closed-

form allows to compute exactly the marginal likelihood Z (recall Z = π(θ|y)
P(θ|y) for any θ).
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In this case, we can also draw samples directly from the posterior. We can interpret this
scenario as the use of an ideal MCMC scenario, where the performance is extremely good.
We compare different estimators of Z changing the Euclidean distance between the means
of posterior mixture components,

dist = ||µ(1)
post − µ

(2)
post||2, (8.202)

in Dθ = 1 and Dθ = 5. This distance can be controlled by changing the distance between
the prior modes. More specifically, we choose Λ = 50ID, Σ(1)

pr = Σ
(2)
pr = 30ID, where ID

denotes the D-dimensional identity matrix. The data is a single observation y = −0.51D,
where 1D a D-dimensional vector of 1’s. For the prior means we chose µ(1)

pr = −µ
(2)
pr = L1D,

so
⃦⃦⃦
µ(1)

pr − µ
(2)
pr

⃦⃦⃦
2
= 2L

√
Dθ. We can change the distance between the modes of the prior,

and hence between the modes of the posterior, by varying L ∈ R+. Specifically, we select
L ∈ {1, 6, 11, 16, 21, 26, 31, 36, 41, 46, 51} and compare: (i) the Naive-MC estimator, (ii)
the HM estimator, (iii) Laplace-Metropolis estimator, (iv) RIS, and (v) CLAIS. The bud-
get is 104 posterior evaluations. In RIS, we set f (θ) to be the mixture in Eq. (8.146), that
results after applying a clustering algorithm (e.g., k-means algorithm) to the 104 posterior
samples. In CLAIS, we use an analogous mixture obtained from 5 ·103 posterior samples,
and then use it to draw other 5 · 103 samples in the lower layer (hence the total number of
posterior evaluations is 104). For RIS and CLAIS, we set the number of clusters to C = 4.
RIS and CLAIS also need setting the bandwidth parameter h (see Eq. (8.146)). We find
that the choices h = 2 for RIS and h = 10 for CLAIS show the average performance of
both. We test the techniques in dimension Dθ = 1 and Dθ = 5. We compute the rela-
tive Mean Absolute Error (MAE) in the estimation of Z, averaged over 200 independent
simulations.

The results are depicted in Figure 8.13. They show that RIS and the CLAIS achieve
the best overall performances. Their relative error remain small and rather constant for
all distances considered, for Dθ = 1 and Dθ = 5. The RIS estimator performs as well as
CLAIS in both Dθ = 1 and Dθ = 5, and even better for small distances in Dθ = 1. For the
smallest distance, the lowest relative error corresponds to the Naive MC estimator, since
prior and posterior are very similar in that case, although it rapidly gets outperformed
by RIS and CLAIS. The Laplace estimator provides poor results as dist grows, since
the posterior becomes bimodal. As one could expect, the estimators that make use of
the posterior sample to adapt its importance density, i.e., RIS and CLAIS, achieve best
performances, being almost independent to increasing the distance between the modes.
The HM estimator confirms its reputation of relative bad estimator.

8.8.4. Experiment with biochemical oxygen demand data

We consider a numerical experiment studied also in [23], that is a nonlinear regression
problem modeling data on the biochemical oxygen demand (BOD) in terms of time in-
stants. The outcome variable Yi = BOD (mg/L) is modeled in terms of ti = time (days)
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Figure 8.13: Relative MAE versus dist in dimension Dθ = 1 and dimension Dθ = 5.

as

Yi = θ1(1 − e−θ2ti) + ϵi, i = 1, . . . , 6, (8.203)

where the ϵi’s are independent N(0, σ2) errors, hence Yi ∼ N(θ1(1 − e−θ2ti), σ2). The data
{yi}

6
i=1, measured at locations {ti}

6
i=1, are shown in Table 8.18 below.

Table 8.18: Data of the numerical experiment in Section 8.8.4.

ti (days) yi (mg/L)
1 8.3
2 10.3
3 19.0
4 16.0
5 15.6
7 19.8

The goal is to compute the normalizing constant of the posterior of θ = [θ1, θ2] given
the data y = {(ti, yi)}6i=1. Following [23], we consider uniform priors for θ1 ∼ U([0, 60]),
and θ2 ∼ U([0, 6]), i.e., g1(θ1) = 1

60 for θ1 ∈ [0, 60], and g2(θ2) = 1
6 , with θ2 ∈ [0, 6].

Moreover, we consider an improper prior for σ, g3(σ) ∝ 1
σ

. However, we will integrate
out the variable σ. Indeed, the two-dimensional target π(θ|y) = π(θ1, θ2|y) results after
integrating out σ by marginalizing

π(θ1, θ2, σ|y) = ℓ(y|θ1, θ2, σ)g1(θ1)g2(θ2)g3(σ),

w.r.t. σ, namely we obtain

π(θ|y) =
∫︂

π(θ1, θ2, σ|y)dσ = ℓ (y|θ1, θ2) g1(θ1)g2(θ2) (8.204)

=
1
60

1
6

1
π3

8{︂∑︁6
i=1[yi − θ1(1 − exp(−θ2ti))]2

}︂3 , [θ1, θ2] ∈ [0, 60] × [0, 6], (8.205)
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for which we want to compute its normalizing constant Z =
∫︁
π(θ|y)dθ. The derivation is

given in the Supplementary Material. The true value (ground-truth) is log Z = −16.208,
considering the data in Table 8.18.

Scenario 1. As in [23], we compare the relative MAE,
E
[︂
|ˆ︁Z−Z|

]︂
Z , obtained by different meth-

ods: (
¯
a) the naive Monte Carlo estimator; (b) a modified version of the Laplace method

(more sophisticated) given in [23]; (c) the Laplace-Metropolis estimator in Sect. 8.3.1
(using sample mean and sample covariance considering MCMC samples from P(θ|y));
(d) the HM estimator of Eq. 8.46; (f) the RIS estimator where f (θ) = N(θ|µ,Σ), where
µ and Σ are the mean and covariance of the MCMC samples from P(θ|y) (it is denoted as
RIS in Table 8.19); (g) another RIS scheme where f (θ) is obtained by a clusterized KDE
with C = 4 clusters and h = 0 (in a similar fashion of Eq. (8.146)); and, finally, a CLAIS
scheme with C ∈ {1, 2}, h = 0 i.e., as in Eq. (8.146).

Table 8.19: Relative MAE, and its corresponding standard error, in estimating the
marginal likelihood by seven methods

Methods Naive Laplace (soph) Laplace HM RIS RIS-kde CLAIS CLAIS
RE 0.057 0.181 0.553 0.823 0.265 0.140 0.084 0.082

std err 0.001 0.013 0.003 0.018 0.006 0.004 0.015 0.014

comments — see [23] — — — C = 4 C = 1 C = 2

All estimators consider 10000 posterior evaluations. To obtain the samples from the pos-
terior, we run T = 10000 iterations of a Metropolis-Hastings algorithm, using the prior as
an independent proposal pdf. The IS estimator employs 5000 posterior samples to build
the normal approximation to the posterior, from which it draws 5000 additional samples.
Similarly, since CLAIS draws additional samples from q̄(θ) in the lower layer, in order to
provide a fair comparison, we consider N = 1 (i.e. one chain), with T ′ = T/2 = 5000
iterations and sample 5000 additional samples in the lower layer. We averaged the relative
MAE over 1000 independent runs. Our results are shown in Table 8.19.

In this example, and with these priors, the results show that the best performing es-
timator in this case is the Naive Monte Carlo, since prior and likelihood has an ample
overlapping region of probability mass. However, the naive Monte Carlo scheme is gen-
erally inefficient when there is a small overlap between likelihood and prior. Note also
that IS and CLAIS provide good performance. RIS-kde performs better than RIS since
the choice of f (θ) in the former is probably narrower than in RIS. The worst performance
is provided by the HM estimator.

Scenario 2. Now, we consider the following estimators: (a) the Chib’s estimator in Eq.
(8.30), (b) RIS with f (θ) equal to the clusterized KDE in (8.146) (called RIS-kde in the
previous scenario), and ((c) CLAIS with clusterized KDE in (8.146). We study the ef-
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fect of the choice of C and h in their performance. We test different numbers of clusters
C ∈ {1, 2, 4, 10} and different values of h = {0, 1, 2, 3, 4, 5}.
As above, we consider a fair application of CLAIS (using the same budget of posterior
evaluations as in the other schemes). Moreover, in Chib’s we need to choose the point
θ∗. We considered two scenarios: (i) using θ∗ = [19, 1] that is intentionally located very
close to the posterior mode; (ii) using random θ∗ drawn from the priors. The first sce-
nario clearly yields more accurate results than the second one, which we refer as a “fair”
scenario (since, generally, we do not have information about the posterior modes). In
summary, we compute the relative MAE of ˆ︁Zchib, ˆ︁Zchib-f (where the “f” stands for “fair”),ˆ︁ZRIS and ˆ︁ZCLAIS. We compute the relative median absolute error of 1000 independent runs.
Figure 8.14 shows the results of the experiment. CLAIS and RIS provide results, for all
C and h, similar to both Chib and Chib-f. As expected, the error of ˆ︁Zchib is lower thanˆ︁Zchib-f. In CLAIS, we note that, for C = 10, we should not take h too small to avoid the
proposal becoming problematic (i.e., narrower than the posterior). Generally, as C in-
creases, h should not be too small since the proposal may not have fatter tails than P(θ|y).
The performance of RIS is best when h = 0, and gets worse as h increases, as expected,
since f (θ) may become wider than the posterior. We expect that the results of RIS with
h = 0 would improve further as C increases since the C-KDE pdf, in Eq. (8.146), will
have lighter tails than the posterior. The Chib’s estimator provides also robust and good
results. Overall, for the choices of C and h considered, CLAIS and RIS (with f (θ) being
the clusterized KDE) provide robust results comparable to Chib’s estimator. These results
are also in line with the theoretical considerations given in the Suppl. Material regarding
RIS and IS.

8.8.5. Experiment with COVID-19 data

Let us consider data y = [y1, . . . , yDy]
⊤ representing the number of daily deaths caused by

SAR-CoV-2 in Italy from 18 February 2020 to 6 July 2020. Let ti denote the i-th day, we
model the each observation as

yi = f (ti) + ei, i = 1, . . . ,Dy = 140,

where f is the function that we aim to approximate and ei’s are Gaussian perturbations.
We consider the approximation of f at some t as a weighted sum of M localized basis
functions,

f (t) =
M∑︂

m=1

ρmψ(t|µm, h, ν),

where ψ(t|µm, h) is m-th basis centered at µm with bandwidth h. Let also be ν an index
denoting the type of basis. We consider M ∈ {1, ....,Dy}, then M ≤ Dy. When M = Dy,
the model becomes a Relevance Vector Machine (RVM), and the interpolation of all data
points (maximum overfitting, with zero fitting error) is possible [71].
We consider 4 different types of basis (i.e., ν = 1, ..., 4): Gaussian (ν = 1), Laplacian
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Figure 8.14: Relative median absolute error of RIS and CLAIS versus h for C ∈ {1, 2, 4, 10}. The

horizontal lines correspond to Chib’s estimator (dashed) and its fair application (solid).

(ν = 2), Rectangular (ν = 3) and Triangular-Pyramidal (ν = 4). Given ν and M, we
select the locations {µm}

M
m=1 as a uniform grid in the interval [1,Dy] (recall that Dy = 140).

Hence, knowing ν and M, the locations {µm}
M
m=1 are given.

Likelihood and prior of ρ. Let Ψ be a Dy × M matrix with elements [Ψ]i,m = ψ(ti|µm, h)
for i = 1, . . . ,Dy and m = 1, . . . ,M, and let ρ = [ρ1, . . . , ρM]⊤ be the vector of coeffi-
cients, where M is the total number of bases. Then, the observation equation in vector
form becomes

y = Ψρ + e,

where e is a Dy × 1 vector of noise. We assume normality e ∼ N(0, σ2
eIDy), where IDy

is the Dy × Dy identity matrix. Therefore, the likelihood function is ℓ(y|ρ, h, σe, ν,M) =
N(y|Ψρ, σ2

eIN). We also consider a Gaussian prior density over the vector of coefficients
ρ, i.e., g(ρ|λ) = N(ρ|0,Σρ). where Σρ = λIM and λ > 0. Given ν, M, h and σe. Thus, the
complete set of parameters is {ρ, ν,M, h, λ, σe}.

Posteriors and marginalization. With our choice of g(ρ|λ), the posterior of ρ|λ, h, σe

is also Gaussian,

P(ρ|y, λ, h, σe, ν,M) =
ℓ(y|ρ, h, σe, ν,M)g(ρ|λ)

p(y|λ, h, σe, ν,M)
= N(ρ|µρ|y,Σρ|y),
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and a likelihood marginalized w.r.t. ρ is available in closed-form,

p(y|λ, h, σe, ν,M) = N(y|0,ΨΣρΨ⊤ + σ2
eIN). (8.206)

For further details see [71]. Now, we consider priors over h, λ, σe, and study the following
posterior

P(λ, h, σe|y, ν,M) =
1

p(y|ν,M)
p(y|λ, h, σe, ν,M)gλ(λ)gh(h)gσ(σe),

where gλ(λ), gh(h), gσ(σe) are folded-Gaussian pdfs defined on R+ = (0,∞) with loca-
tion and scale parameters {0, 100}, {0, 400} and {1.5, 9}, respectively. Finally, we want to
compute the marginal likelihood of this posterior, i.e.,

p(y|ν,M) =
∫︂
R3
+

p(y|λ, h, σe, ν,M)gλ(λ)gh(h)gσ(σe)dλdhdσe. (8.207)

Furthermore, assuming a uniform probability mass 1
Dy

as prior over M, we can also
marginalize out M,

p(M|y, ν) ∝
1

Dy
p(y|ν,M) and p(y|ν) =

1
Dy

Dy∑︂
M=1

p(y|ν,M), for ν = 1, ..., 4.

(8.208)

Considering also a uniform prior over ν, we can obtain p(ν|y) ∝ 1
4 p(y|ν).

For approximating p(y|ν,M), for m = 1, . . . ,Dy, we first apply a Naive Monte Carlo
(NMC) method with N = 104 samples. Secondly, we run an MTM algorithm for obtain-
ing the estimator ˆ︁Z(2) (see Table 8.13) and a Markov chain of vectors θt = [λt, ht, σe,t] for
t = 1, . . . ,T . This generated chain {θt}

T
t=1 can be also used for obtaining other estimators

(e.g., the HM estimator). We consider the pairs T = 50, N′ = 1000, in the MTM scheme.
Therefore, ˆ︁Z(2) employs N′T = 5 · 104 samples.
Goal. Our purpose is: (a) to make inference regarding the parameters of the model
{λ, h, σe}, (b) approximate Z = p(y|ν,M), (c) study the posterior p(M|y, ν), and (d) obtain
the MAP value, M∗

ν , for ν = 1, ..., 4. We also study the marginal posterior p(ν|y) of each
of the four candidate bases.
Results. We run once NMC and MTM for all M = 1, ...,Dy = 140 different models and
approximate the posterior p(M|y, ν) for each value of M. For illustrative reasons, in Fig-
ure 8.15, we show the posterior probabilities of M belonging to the intervals [4 ˜︁M−3, 4 ˜︁M],
where ˜︁M is an auxiliary index ˜︁M = 1, ..., 140

4 = 35. Thus, the first value, ˜︁M = 1 of the
curves in Figure 8.15, represents the probability of M ∈ {1, 2, 3, 4}, the second value rep-
resents the probability of M ∈ {5, 6, 7, 8}, and so on until the last value, ˜︁M = 35, which
represents the probability of M ∈ {137, 138, 139, 140}. We can observe that, with both
techniques, we obtain that ˜︁M = 2 is the most probable interval, with a probability gener-
ally closer to 0.2, hence M∗

ν ∈ {5, 6, 7, 8}. Recall that we have 35 possible intervals (values
of ˜︁M), so when we compare with a uniform distribution 1

35 = 0.0286, the value 0.2 is quite
high. For ν = 2, 3, the corresponding probabilities are greater than 0.2, reaching 0.35 with
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NMC in ν = 2. In Figure 8.16, we can observe that, with M = 8 bases, we are already
able to obtain a very good fitting to the data.

Thus, a first conclusion is that the results obtained with models such as RVMs and
Gaussian Processes (GPs) (both having M = 140 [71]) can be approximated in a very
good way with a much more scalable model, as our model here with M ∈ {5, 6, 7, 8} [71].
Regarding the marginal posterior p(ν|y), we can observe the results in Table 8.20. The
basis ν = 3 is discarded since is clearly not appropriate, as also shown graphically by
Figure 8.16. With the results provided by NMC, we prefer slightly the Laplacian basis
whereas, with the results of MTM, we have almost p(ν = 1|y) ≈ p(ν = 2|y). These
considerations are reasonable after having a look to Figure 8.16. As future work, it would
be interesting to consider the locations of the bases µm, for m = 1, . . . ,M, as additional
parameters to be learnt.

Table 8.20: The approximate marginal posterior p(ν|y) with different techniques.

Method Number of used samples p(ν = 1|y) p(ν = 2|y) p(ν = 3|y) p(ν = 4|y)
NMC 104 0.3091 0.3307 0.0813 0.2790
MTM 5 · 104 0.3155 0.3100 0.0884 0.2861
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Figure 8.15: Posterior probabilities of the intervals [4 ˜︁M − 3, 4 ˜︁M] with ˜︁M = 1, ..., 35, obtained adding 4
consecutive values of p(M|y, ν) with M ∈ {4 ˜︁M − 3, 4 ˜︁M − 2, 4 ˜︁M − 1, 4 ˜︁M} (and p(M|y, ν) is approximated by
NMC or MTM). Each figure corresponds to a different type of basis, ν = 1, 2, 3, 4.

8.9. Final discussion

In this work, we have provided an exhaustive review of the techniques for marginal like-
lihood computation with the purpose of model selection and hypothesis testing. Methods
for approximating ratios of normalizing constants have been also described. The relation-
ships among all of them have been widely described in the text, for instance in Sections
8.4.2 and 8.4.3, by means of several summary tables (see, as examples, Tables 8.5, 8.8,
and 8.16) and Figures from 8.1 to 8.6. The careful choice of the prior and the careful use
of the improper priors in the Bayesian setting have been discussed. A brief description of
alternative model selection strategies based on the posterior predictive approach, has been
also provided.
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Figure 8.16: Best fit with 8 bases with different types of basis, ν = 1, 2, 3, 4. The circles represent the
analyzed data and the squares show the positions of the bases.

Most of the presented computational techniques are based on the importance sampling
(IS) approach, but also require the use of MCMC algorithms. Table 8.21 summarizes
some methods for estimating Z, which involve the generation of the posterior P(θ|y)
(without using other tempered versions). This table is devoted to the interested read-
ers which desire to obtain samples {θn}

N
n=1 by an MCMC method with invariant pdf P(θ|y)

(without either any tempering or sequence of densities) and, at the same time, also desire
to approximate Z. Clearly, this table provides only a subset of all the possible techniques.
They can be considered the simplest schemes, in the sense that they do not use any tem-
pering strategy or sequence of densities. We also recall that AIC and DIC are commonly
used for model comparison, although they do not directly target the actual marginal like-
lihood. Table 8.22 enumerates all the schemes that require the sampling and evaluation of
tempered posteriors. For LAIS, the use of tempered posteriors is not strictly required. In
PS, one could select a path that does not involve tempered posteriors. The schemes which
provides unbiased estimators of Z or log Z are given in Table 8.23.
We also provide some final advice for practical use. First of all, if informative priors are
not available, a very careful choice of the priors must be considered, as remarked in Sec-
tions 8.7.1 and 8.7.2, or alternatively a predictive posterior approach should be applied
(see Section 8.7.4). From a computational point of view, our suggestions are listed below:

• The use of Naive Monte Carlo (NMC) should be always considered, at least as a
first attempt. Moreover, the HM estimator is surely the worst estimator of Z, but
it could be applied for obtaining an upper bound for Z, although it can be very
imprecise/loose.
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• The application of an MTM method is a good choice within the MCMC schemes.
In fact, as shown in Figure 8.17, it also provides two estimators of Z, as well as a
set of samples. These samples can be employed in other estimators, including Chib,
RIS and LAIS, for instance.

• Regarding the more general task of estimating ratio of constants, In [13], the authors
show that (given two unnormalized pdfs) the optimal umbrella estimator provides
the best performance theoretically in estimating the ratio of their normalizing con-
stants. However, the optimal umbrella sampling estimator is difficult and costly
to implement (due to the fact sampling from the optimal umbrella proposal is not
straightforward), so its best performance may not be achieved in practice.

• The Chib’s method is a good alternative, that provide very good performance as
we can observe in Section 8.8.4 and also in [58, 32]. Moreover, the Chib’s method
is also related to bridge sampling as discussed in Section 8.4.2. However, since it
requires internal information regarding the MCMC employed (proposal, acceptance
function etc.), it cannot be considered for a possible post-processing scheme after
obtaining a Markov chain from a black-box MCMC algorithm. This could be easily
done with the HM estimator or LAIS, for instance.

• LAIS can be considered a scheme in between the NMC and HM. NMC draw sam-
ples from the prior, which makes it rather inefficient in some setting. The HM
estimator uses posterior samples but it is very unstable. LAIS uses the posterior
samples to build a suitable normalized proposal, so it benefits from localizing sam-
ples in regions of high posterior probability (like the HM), while preserving the
properties of standard IS (like the Naive MC). In this sense, bridge sampling, the
SS method, path sampling, and the rest of techniques based on tempered posteriors,
are also schemes in between the NMC and HM.

• The methods based on tempered posteriors provide very good performance but the
choice of the temperature parameters βk is important. In our opinion, among SS, PS,
PP, An-IS, and SMC, the more robust to the choice of the βk’s is the SS method (that
is, perhaps, also the simplest one). Moreover, The SS method does not require the
use of several tempered posteriors, unlike PS and PP. The LAIS technique can also
be employed in the upper layer. Since the samples in the upper layer are only used
as means of other proposal pdfs and, in the lower layer, the true posterior P(θ|y) is
always evaluated, LAIS is also quite robust to the choice of βk. More comparisons
among SS, An-IS, and SMC are required, since these methods are also very related
as depicted in Figures 8.2, 8.4, 8.5 and 8.6.

• The nested sampling technique has gained attention and is largely applied in the
literature. The derivation is complex and several approximations are considered,
as discussed in Section 8.6.2. The sampling from the truncated priors is the key
point and it is not straightforward [18]. In this sense, its success in the literature is
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surprising. However, the nested sampling includes an implicit optimization of the
likelihood. We believe that is an important feature, since the knowledge of high
probabilities of the likelihood is a crucial point also to the rest of computational
schemes.

Table 8.21: Schemes for estimating Z, involving MCMC samples from P(θ|y).

Method Section
Need of

Comments
drawing additional samples

Below: methods for post-processing after generating N MCMC samples from P(θ|y).

Laplace 8.3.1 —– use MCMC for estimating ˆ︁θMAP

BIC 8.3.2 —– use MCMC for estimating ˆ︁θMLE

KDE 8.3.3 —– use MCMC for generating samples

Bridge 8.4.2 ✓
additional samples are required;

see Eq. (8.61)
RIS 8.4 —– the HM estimator is a special case

MTM 8.5.3 —– provides two estimators of Z
LAIS 8.5.4 ✓ with P(θ|y) in the upper-layer

Below: methods that require internal information of the MCMC scheme.

Chib’s method 8.3.4 ✓
additional samples are required

if the proposal is not independent
MTM 8.5.3 —– provides two estimators of Z

Below: for model selection but do not approximate the marginal likelihood

AIC 8.3.2 —– use MCMC for estimating ˆ︁θMLE

DIC 8.3.2 —– use MCMC for estimating cp and θ̄

Table 8.22: Methods using tempered posteriors.

Method Section Use of tempering strictly required

IS-P 8.4.3 without tempering, it is HM
Stepping Stones (SS) 8.4.3 ✓

Path Sampling (PS) 8.4.3 other paths (without tempering) can be used
Method of Power Posteriors (PP) 8.4.3 ✓

Annealed Importance Sampling (An-IS) 8.5.1 ✓

Sequential Monte Carlo (SMC) 8.5.2 ✓

Layered Adaptive Importance Sampling (LAIS) 8.5.4 —
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Table 8.23: Methods providing unbiased estimators of Z or log Z.

Method Section
Unbiased estimators of Z:

IS vers-1 8.4
Stepping Stones (SS) 8.4.3

Annealed Importance Sampling (An-IS) 8.5.1
Sequential Monte Carlo (SMC) 8.5.2

Layered Adaptive Importance Sampling (LAIS) 8.5.4
Unbiased estimators of log Z:

Path Sampling (PS) 8.4.3

Figure 8.17: The application of the MTM algorithm as MCMC provides the generated
samples {θ1, ...θT } and also two possible estimators of Z. The generated samples can
employed in other schemes including RIS, LAIS and Bridge sampling. Moreover, con-
sidering the proposal and the acceptance function α of the MTM, the Chib’s method can
be also applied. Indeed, the MTM yields a reversible chain (i.e., fulfills the balance con-
dition).

Appendix

Table of other reviews

The related literature is rather vast. In this section, we provide a brief summary that
intends to be illustrative rather than exhaustive, by means of Table 8.24. The most rel-
evant (in our opinion) and related surveys are compared according to the topics, mate-
rial and schemes described in lthe work. The proportion of covering and overlapping
with this work is roughly classified as “partial” ◇, “complete”

√
, “remarkable” or “more

exhaustive” work with ⋆. From Table 8.24, we can also notice the completeness of
this work. We take into account also the completeness and the depth of details pro-
vided in the different derivations. The Christian Robert’s blog deserves a special mention
(https://xianblog.wordpress.com), since Professor C. Robert has devoted several
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entries of his blog with very interesting comments regarding the marginal likelihood esti-
mation and related topics.
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Table 8.24: Covering of the considered topics of other surveys or works (◇: partial,
√

: complete, ⋆: remarkable or more exhaustive). We take into account also the
completeness and the depth of details provided in the different derivations. To be more precise, in the case of Section 4.1, we have also considered the subsections.

Surveys Families 1–2
IS Advanced schemes Vertical likelihood

Improper
1 prop. 2 prop. Multiple MCMC within IS MTM AIS 5.1 5.2 5.3

Gelfand and Dey (1994)[33]
✓ ◇

Kass and Raftery (1995)[47]

Raftery (1995)[39, Ch. 10] ◇ ✓ ◇

Meng and Wong (1996)[74] ◇ ⋆ ◇

DiCiccio et al (1997)[23] ⋆ ✓ ✓

Chen and Shao (1997)[13]
◇ ◇ ✓ ✓

Chen et al (2012)[14, Ch. 5]

Gelman and Meng (1997)[35] ✓ ⋆ ⋆

Bos (2002)[5] ✓ ✓

Vyshemirsky and Girolami (2007)[103] ◇ ◇ ◇

Marin and Robert (2009)[58] ◇ ✓ ◇

Robert and Wraith (2009)[89] ✓ ✓ ✓

Friel and Wyse (2012)[32] ◇ ◇ ◇ ✓ ✓

Ardia et al (2012)[2] ◇ ◇ ✓

Polson and Scott (2014)[84] ◇ ◇ ✓ ⋆ ⋆

Schöniger et al (2014)[92] ✓ ✓ ◇

Knuth et al (2015)[48] ◇ ◇ ✓ ✓ ✓

Liu et al (2016)[55] ◇ ◇ ✓ ⋆

Zhao and Severini (2017)[107] ⋆ ✓ ✓

Martino (2018)[59] ◇ ⋆

Bugallo et al (2017)[7]
◇ ⋆

Bugallo et al (2015)[8]

Oaks et al (2019)[86] ◇ ✓ ◇ ◇ ◇

O’Hagan (1995)[81]
⋆

Berger and Pericchi (1996)[4]
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9. CONCLUSIONS

To conclude this thesis, we give a summary of the main contributions and discuss po-
tential lines of further research. This thesis has investigated Monte Carlo algorithms for
the application of Bayesian inference. The proposed algorithms address the challenges
arising in real applications such as highly-concentrated posteriors, multimodality, and
posteriors that are very costly to evaluate or come in the form of noisy realizations. We
have also addressed the design of efficient proposal distributions. In addition to this, this
thesis has made contribution to Bayesian model selection, providing a review of Monte
Carlo approaches for marginal likelihood computation, and discussing the prior sensitiv-
ity of marginal likelihoods and the use of improper priors.

In order to foster the exploration of the state space, in Chapter 2 and Chapter 3 we have
introduced methodologies that make use of population MCMC algorithms, whether in-
dependent, interacting or combinations of both. Additionally, the algorithms of Chapter
3 apply multiple importance sampling to the states produced by the population MCMC
algorithms (i.e. they are adaptive importance sampling algorithms), which increases even
more the exploration and robustness of the final estimators.

In the works presented in Chapter 4, Chapter 5 and Chapter 6, we have considered the
use of surrogate models of the posterior, built with nonparametric techniques. The use
of surrogate models has been motivated in different, but related ways, since the ultimate
goal is to improve the efficiency over default Monte Carlo algorithms. In Chapter 4, the
posterior has been assumed to be very costly to evaluate so a surrogate built from a small
number of posterior evaluations is used instead. Then, we have proposed applying in-
tensive Monte Carlo, and Gaussian quadratures, to integrals of the surrogate. In Chapter
5, we have considered employing the surrogate as proposal in an adaptive IS algorithm
in order to build a really efficient proposal distribution. In Chapter 6, we have provided
an unifying view of Monte Carlo algorithms employing surrogates, also in the context of
only having access to noisy evaluations of the posterior. Additionally, in Chapter 7 we
have studied the setting of noisy IS and obtained expressions for optimal proposals.

Finally, Chapter 8 has addressed the topic of Bayesian model selection. Chapter 8 has
provided a comprehensive review of computational approaches for marginal likelihood
computation, with special focus on the approaches based on IS.

9.1. Further work

We have identified several lines of further research, which can be summarized as follows.
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1. Investigate the trade-off between exploration and exploitation in some of the schemes
proposed in this thesis. In the LAIS framework, how many posterior evaluations
should we devote to both upper and lower layers. In PMHC, we can formally in-
vestigate the trade-off between the number of vertical and horizontal iterations.

2. Although using nonparametric approximations within Monte Carlo has a long his-
tory, there is still current development. Namely, the incorporation of surrogate mod-
els to reduce the number of posterior evaluations, as well as for the construction
more efficient proposal mechanisms, is still motivating new research as proves the
recent works [1, 3].

3. In the relation to previous point, a possible research line can be the combination
of ideas from two groups of algorithms identified in Chapter 6, namely iterative
refinement and exact. For instance, a biased algorithm can target a surrogate and
only apply correction steps when the surrogate is a really bad approximation of
the posterior. This would obtain an algorithm that is less costly than a purely ex-
act algorithm and whose bias is decreased faster at the initial iterations, when the
surrogate is a crude approximation of the posterior.

4. Although we already discussed the possibility of using more than layer in RADIS,
presented in Chapter 5, we can formaly investigate using an adaptive sequence of
surrogates with increasing accuracy and cost. This would help both the sampling
of the final surrogate thanks to the sequential approach, and also would allow us to
reduce costs by stopping in the level where the surrogate is a good enough approx-
imation of the posterior.

5. Instead of running Monte Carlo directly on the posterior, when the posterior is very
costly to evaluate it is more appropriate to devote a small number of evaluations to
obtain a surrogate model and then obtain a quadrature rule, as presented in Chapter
4. The selection of the nodes is an important consideration that affect the speed of
convergence in terms of posterior evaluations. Active learning of the nodes can have
a enormous impact on the precision of the quadratures. Provided that specific basis
functions produce surrogates with a probabilistic interpretation, the large amount
of research from the Bayesian optimization literature can be used for designing
much more efficient algorithms. However, proving the convergence of this adaptive
Bayesian quadratures could be hard in general, as exposed in [4].

6. In order to extend the use of nonparametric approximations of the posterior to set-
tings where the dimensionality of the parameter space is high, we can employ deep
models, such as deep Gaussian Processes [2].
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