4,723 research outputs found

    Wavelet-based filtration procedure for denoising the predicted CO2 waveforms in smart home within the Internet of Things

    Get PDF
    The operating cost minimization of smart homes can be achieved with the optimization of the management of the building's technical functions by determination of the current occupancy status of the individual monitored spaces of a smart home. To respect the privacy of the smart home residents, indirect methods (without using cameras and microphones) are possible for occupancy recognition of space in smart homes. This article describes a newly proposed indirect method to increase the accuracy of the occupancy recognition of monitored spaces of smart homes. The proposed procedure uses the prediction of the course of CO2 concentration from operationally measured quantities (temperature indoor and relative humidity indoor) using artificial neural networks with a multilayer perceptron algorithm. The mathematical wavelet transformation method is used for additive noise canceling from the predicted course of the CO2 concentration signal with an objective increase accuracy of the prediction. The calculated accuracy of CO2 concentration waveform prediction in the additive noise-canceling application was higher than 98% in selected experiments.Web of Science203art. no. 62

    Machine Learning in Wireless Sensor Networks for Smart Cities:A Survey

    Get PDF
    Artificial intelligence (AI) and machine learning (ML) techniques have huge potential to efficiently manage the automated operation of the internet of things (IoT) nodes deployed in smart cities. In smart cities, the major IoT applications are smart traffic monitoring, smart waste management, smart buildings and patient healthcare monitoring. The small size IoT nodes based on low power Bluetooth (IEEE 802.15.1) standard and wireless sensor networks (WSN) (IEEE 802.15.4) standard are generally used for transmission of data to a remote location using gateways. The WSN based IoT (WSN-IoT) design problems include network coverage and connectivity issues, energy consumption, bandwidth requirement, network lifetime maximization, communication protocols and state of the art infrastructure. In this paper, the authors propose machine learning methods as an optimization tool for regular WSN-IoT nodes deployed in smart city applications. As per the author’s knowledge, this is the first in-depth literature survey of all ML techniques in the field of low power consumption WSN-IoT for smart cities. The results of this unique survey article show that the supervised learning algorithms have been most widely used (61%) as compared to reinforcement learning (27%) and unsupervised learning (12%) for smart city applications

    Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants

    Get PDF
    Within the field of soft computing, intelligent optimization modelling techniques include various major techniques in artificial intelligence. These techniques pretend to generate new business knowledge transforming sets of "raw data" into business value. One of the principal applications of these techniques is related to the design of predictive analytics for the improvement of advanced CBM (condition-based maintenance) strategies and energy production forecasting. These advanced techniques can be used to transform control system data, operational data and maintenance event data to failure diagnostic and prognostic knowledge and, ultimately, to derive expected energy generation. One of the systems where these techniques can be applied with massive potential impact are the legacy monitoring systems existing in solar PV energy generation plants. These systems produce a great amount of data over time, while at the same time they demand an important e ort in order to increase their performance through the use of more accurate predictive analytics to reduce production losses having a direct impact on ROI. How to choose the most suitable techniques to apply is one of the problems to address. This paper presents a review and a comparative analysis of six intelligent optimization modelling techniques, which have been applied on a PV plant case study, using the energy production forecast as the decision variable. The methodology proposed not only pretends to elicit the most accurate solution but also validates the results, in comparison with the di erent outputs for the di erent techniques

    Design and Development of an AIoT Architecture for Introducing a Vessel ETA Cognitive Service in a Legacy Port Management Solution

    Full text link
    [EN] Current Internet of Things (IoT) stacks are frequently focused on handling an increasing volume of data that require a sophisticated interpretation through analytics to improve decision making and thus generate business value. In this paper, a cognitive IoT architecture based on FIWARE IoT principles is presented. The architecture incorporates a new cognitive component that enables the incorporation of intelligent services to the FIWARE framework, allowing to modernize IoT infrastructures with Artificial Intelligence (AI) technologies. This allows to extend the effective life of the legacy system, using existing assets and reducing costs. Using the architecture, a cognitive service capable of predicting with high accuracy the vessel port arrival is developed and integrated in a legacy sea traffic management solution. The cognitive service uses automatic identification system (AIS) and maritime oceanographic data to predict time of arrival of ships. The validation has been carried out using the port of Valencia. The results indicate that the incorporation of AI into the legacy system allows to predict the arrival time with higher accuracy, thus improving the efficiency of port operations. Moreover, the architecture is generic, allowing an easy integration of the cognitive services in other domains.Funding This work has been developed under the framework of the COSIBAS project (funded by CDTI research and innovation programme under grant agreement No.EXP 00110912/INNO-20181033) and the EIFFEL project (funded by European Unions Horizon 2020 research and innovation programme under grant agreement No 101003518).Valero López, CI.; Ivancos Pla, E.; Vañó García, R.; Garro, E.; Boronat, F.; Palau Salvador, CE. (2021). Design and Development of an AIoT Architecture for Introducing a Vessel ETA Cognitive Service in a Legacy Port Management Solution. Sensors. 21(23):1-15. https://doi.org/10.3390/s21238133115212

    Machine learning for IoT-based smart farming

    Get PDF
    Agriculture balances food requirements for mankind, and the supply of essential raw materials for many industries is the fundamental occupation in India. Smart farming allows analyzing the growth of crops and the parameters which influence crop growth and supports farmers in their activities, it is more profitable and reduces irrigation wastages. The proposed model is a smart farming system that analyzes the influence of parameters on crop growth and predicts the soil condition using a machine learning algorithm. Temperature, Ph, humidity, gas, and water level are the few most essential parameters to determine the quantity of water required and to find hazardous gas in any agriculture field. This system comprises temperature, pH, humidity, smoke detector, and water level sensor, deployed in an agricultural field, sends data through a microprocessor, developing an IoT device with cloud. In this study, we present a model that predicts soil series with regard to land type and, in accordance with the prediction, suggests appropriate crops. For soil land classification and crop prediction application is developed using KNN algorithms. Three steps are necessary for its implementation: the first is data collecting using sensors placed in an agricultural field, the second is data cleaning and storage, and the third is predictive processing utilizing the ML technique. The results obtained through the algorithms are sent to the cloud, which helps in decision-making in advance

    Application of IoT Framework for Prediction of Heart Disease using Machine Learning

    Get PDF
    Prognosis of illnesses is a difficult problem these days throughout the globe. Elder people of twenty years and over are taken into consideration to be laid low with this sickness now a days. For example, human beings having  HbA1c level more than 6.5% are diagnosed as infected with diabetic diseases. This paper uses IoT to evaluate threat factors which have been similar to heart diseases which are not treated properly. Diagnosis, prevention of heart disease may be done by use of machine learning (ML). There has been an extensive disconnect among Machine Learning architects, health care researchers, patients and physicians in their technology. This paper intends to perform an in-intensity evaluation on Machine Learning to make us of new advance technologies. Latest advances within the development of IoT implanted devices and other medicine delivery gadgets, disease diagnostic methods and other medical research have considerably helped human beings diagnosed heart diseases. New soft computing models can be helpful for remedy of various heart diseases. The Food and Drug Administration (FDA) employs several particularly creative thoughts to get their capsules to the client. Artificial Neural Community offers a first-rate chance to deal with heart diseases with advance IoT and cloud applications

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems
    corecore