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Abstract: Artificial intelligence (AI) and machine learning (ML) techniques have huge potential
to efficiently manage the automated operation of the internet of things (IoT) nodes deployed in
smart cities. In smart cities, the major IoT applications are smart traffic monitoring, smart waste
management, smart buildings and patient healthcare monitoring. The small size IoT nodes based on
low power Bluetooth (IEEE 802.15.1) standard and wireless sensor networks (WSN) (IEEE 802.15.4)
standard are generally used for transmission of data to a remote location using gateways. The WSN
based IoT (WSN-IoT) design problems include network coverage and connectivity issues, energy
consumption, bandwidth requirement, network lifetime maximization, communication protocols
and state of the art infrastructure. In this paper, the authors propose machine learning methods as
an optimization tool for regular WSN-IoT nodes deployed in smart city applications. As per the
author’s knowledge, this is the first in-depth literature survey of all ML techniques in the field of low
power consumption WSN-IoT for smart cities. The results of this unique survey article show that the
supervised learning algorithms have been most widely used (61%) as compared to reinforcement
learning (27%) and unsupervised learning (12%) for smart city applications.

Keywords: Internet of Things (IoT); sensor nodes; WSN-IoT; artificial intelligence; reinforcement
learning; smart city

1. Introduction

A smart city is an urban area that uses remote sensors and the Internet of Things
(IoT) enabling technologies to collect data from different locations and uses to enhance the
quality of life of the people. The low power, low data rate wireless sensor networks (WSN)
are used for monitoring and control applications in smart cities. The WSN nodes are used
as the underlying technology infrastructure in the IoT. In the IoT, the “things” refer to the
tiny embedded physical sensing devices (i.e., WSN nodes) connected to the internet to
perform a specific application. Currently, a new revolutionary technique known as artificial
intelligence (AI) and machine learning (ML) is evolving as the future of fully automated
IoT applications. Machine learning is a part of AI, in which, the computer algorithms learn
by themselves by improving from past experiences. A detailed survey of ML algorithms
was performed in [1] until the year 2013. As the ML and IoT, technologies are emerging
rapidly, therefore, the authors extend their survey work also. The IoT applications in
smart cities are smart traffic monitoring [2], smart grids [3], smart waste management [4],
smart agriculture [5], smart medical healthcare [6], etc. Table 1 provides a full form of all
important abbreviations used in this paper.
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Table 1. List of abbreviations in alphabetical order.

Acronym Description

5G 5th Generation Cellular Networks
6G 6th Generation Cellular Networks

AMQP Advanced Message Queuing Protocol
ANN Artificial Neural networks
BLE Bluetooth Low Energy

CoAP Constrained Application Protocol
DDS Data Distribution Service
DL Deep Learning
DT Decision Tree
IoT Internet of Things

k-NN K Nearest Neighborhood
LDA Linear Discriminant Analysis

LoRaWAN Long Ranged Wide Area Network
LTE Long Term Evolution

MAC Medium Access Control
MLMDP Machine LearningMarkov Decision Process

MLP Multi-Layer Perceptron
MQTT Message Query Telemetry Transport
NB-IoT Narrowband IoT

PCA Principle Component Analysis
QoS Quality of Service
RL Reinforcement Learning

RFID Radio frequency Identification
SARSA State-Action-Reward-State-Acton

SVM Support Vector Machines
TCP Transmission Control Protocol
UDP User Datagram protocol

WSN-IoT WSN based IoT
WSN Wireless Sensor Networks

The major problems in WSN based IoT (WSN-IoT) are fully autonomous operation,
maximum network lifetime, energy efficiency, quality of service (QoS), cross-layer optimiza-
tion, high bandwidth requirement, sensor data analysis, cloud computing, communication
protocol design, etc. Currently, the industrial IoT (IIoT) or industry 4.0 is the biggest
revolution for smart industries, smart manufacturing sector, automobile sector, smart cities
and medical healthcare sector. Worldwide, various major companies like Microsoft, Google
and Amazon are working on the development of AI and ML-based algorithms in advanced
IoT applications for smart cities.

Machine learning can be applied in WSN-IoT for dynamic updating of routing tables
in WSNs, node localization in mobile WSN-IoT nodes, identification and separation of
faulty nodes for network optimization and prediction of the amount of energy harvesting
in energy harvesting WSN (EH-WSN). Through this paper, the authors have tried to answer
the following research questions: Why machine learning methods are used in WSN-IoT?
What is its superiority of using ML over traditional optimization methods in WSN-IoT?
Why is the smart city a typical use case of IoT applications?

IoT offers new opportunities for smart cities to use data to manage traffic, reduce
pollution and make better use of infrastructure. The following are the advantages of using
machine learning in traditional WSN-IoT:

• WSNs are generally deployed in a dynamically changing environment. Therefore,
self-adaption to the new environment is expected from a fully automated IoT scenario.

• Unknown parameter monitoring requires automatic adjustment of network topology
and configurations, e.g., temperature measurement in a glacier or volcano monitoring.

• Lack of accurate mathematical models of the unknown parameters in WSN-IoT.
• WSN-IoT deals with a large amount of sensor data, therefore the correlation between

different data set may be of critical concern.
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• Integration of WSN in IoT using cloud-based services for better monitoring and con-
trol.

• Future predictions and possible actions in WSN-IoT.
• The IoT generates a large amount of data from millions of sensor nodes. Machine

learning is powered by data and generates useful information from previous data.
Machine learning uses past IoT data to identify hidden patterns and builds models
that help predict future behavior and events.

As WSN-IoT are resource-limited (finite bandwidth and power availability) therefore,
there are some limitations for running ML-based inferences on IoT nodes also such as:

• A large number of computations are required to process the more amount of data,
hence computation complexity increases.

• Additional power consumption.
• Training of WSN-IoT nodes for various ML algorithms requires complex operations

and multi-domain skilled programmers.

The following are the contributions of this survey article in the field of WSN-IoT:

• In this paper, ML techniques are proposed as an optimized solution for traditional
WSN-IoT problems in smart cities.

• Design guidelines of the WSN-IoT framework using AI and ML have been proposed.
• An in-depth literature survey of WSN-IoT in smart cities is presented in detail for ML

engineers and data scientists.

This paper is organized as follows: Section 2 provides operation of WSN-IoT in smart
cities, Section 3 provides machine learning for WSN-IoT, Section 4 provides open research
issues in WSN-IoT, which can be solved by machine learning techniques, Section 5 provides
a literature survey of machine learning in WSN, Section 6 provides a summary of ML
techniques in WSN-IoT, Section 7 provides the survey report and, finally, Section 8 provides
the conclusion and future work.

2. Wireless Sensor Networks Based Internet of Things (WSN-IoT)

The operation of WSN-IoT in a smart city is shown in Figure 1. Here, the WSN nodes
are deployed in smart city applications such as smart traffic monitoring, smart grids in
buildings, remote health care monitoring, smart agriculture and industrial applications.

The function of an IoT-WSN node deployed in a smart city is to continuously monitor
and control any physical quantity like temperature, humidity, pressure, acceleration, etc.
The main function of these sensor nodes is to sense the data and send it to the main WSN-
IoT gateway node. From the gateway node, the data is sent to the cloud server. At the IoT
cloud, cloud computing takes place. The IoT cloud is directly connected to remote servers,
user mobile phones, computers, mobile phone towers, etc. The IoT and machine learning
tasks require a large amount of data processing and memory requirements. Therefore, the
IoT cloud server is designed as a high processing, high-performance computer with huge
storage capacity. However, the WSN end nodes have small computing capabilities with
limited processing, small storage and finite non-rechargeable battery power supply.

The WSN-IoT end nodes based on the IEEE 802.15.4 standard have the maximum
data rate of 250 kbps only. In WSN-IoT, the end nodes are powered by two AA-size bat-
teries (1.5 volts, 1000 mAh), and the gateway is connected to the mains power supply.
Furthermore, if the WSN-IoT nodes are powered by renewable energy harvesting power
supplies [7], then machine learning algorithms can also be utilized to predict the future
available energy in IoT-WSNs. In the battery management system, machine learning tech-
niques can be used for tracking maximum power point technique (MPPT) algorithms [8,9].
As these WSN sensor nodes generate a lot of sensor data, therefore, machine learning
algorithms can also be applied to them for data analysis, data prediction and other suit-
able tasks.
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In smart cities, the WSN-IoT networks contain the connectivity technologies/protocols
as shown in Table 2. Table 2 shows IoT communication technologies such as Bluetooth [10],
based on IEEE 802.15.1 standards [11], RFID [12], IEEE 802.16 [13], ZigBee [14] based
on IEEE 802.15.4 [15], Wi-Fi [16], based on IEEE 802.11 [17], LoRa-WAN [18] based on
IEEE 802.11 series [19], 4G/5G cellular networks [20], based on WiMAX standard IEEE
802.16e [21] and 5G based on IEEE 1941 [22,23], respectively.

At the WSN-IoT node device level, the machine learning algorithms can be applied
from the cloud for its autonomous operation. The IoT device sends the sensor data to the
cloud server. From the IoT cloud, the user can monitor and control the application using
a mobile phone, laptop or desktop PC and personal digital assistant. Currently, many
popular cloud service companies provide free, but the limited amount of sensor data to
be stored in their cloud storage. For example, Microsoft Azure IoT, Amazon web service
(AWS), Google cloud platform, Cisco IoT cloud connect, IBM Watson IoT and Thing speak
IoT by Mathworks Incorporation, USA. Table 3 shows open system interconnect (OSI)
model layer data communication network protocols of an upper higher level separately.
Some very popular higher-level IoT protocols are message query telemetry transport
(MQTT) protocol [24], advanced message queuing protocol (AMQP) [25], constrained
application protocol (CoAP) [26] and data distribution service (DDS) protocol [27]. These
IoT protocols are based on the IEEE P1451-99 [28] standard for harmonization of internet
of things (IoT) devices and systems. In smart city IoT applications, these protocols are
used with TCP, UDP and cloud-based services. In WSN, a smart transducer interface
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protocol [29] is used for sensor management. It is based on an IEEE standard called the
P21451 interoperability interface standard [30].

Table 2. WSN-IoT technologies for smart cities.

S. No. IoT Technologies IEEE
Standards

Power/Energy
Consumption Data Rate Frequency Band

Typical
Distance

Range

Smart City
Applications

Services

1 Bluetooth Low
Energy (BLE) [10]

IEEE 802.15.1
[11] Lowest Medium

24 Mbps 2.4 GHz Small (<5 m)
Smart Home
Automation,
Smart Grids

2
Radio Frequency

Identification
(RFID) [12]

IEEE 802.15
[13] Low Small

500 kbps 915 MHz 10 m

RFID Fast-Tags,
Company

Gates
Entry/Exit

3 ZigBee [14] IEEE 802.15.4
[15] Low Small

(250 kbps) 2.4 GHz 100 m Temperature
Measurement

4 Wi-Fi [16] IEEE 802.11
[17] High 100 Mbps 2.4 GHz 1 km

Laptop/Mobile
Phone, Internet

Service

5
Long Ranged Wide

Area Network
(LoRaWAN) [18]

IEEE 802.11 ah
[19] Low 50 kbps

868 MHz
(Europe),

15 MHz (America)
923 MHz (Asia)

10 km

Connecting
Low Power
devices in

WAN

6
Cellular Mobile
Communication

(4G/5G) [20]

IEEE 802.16e
WiMax (4G)

[19]
IEEE 1914 New

Radio (5G)
[21–23]

High 4G-100 Mbps,
5G-1 Gbps 450 MHz–6 GHz 100 km

Remote
monitoring
and control
using Smart

Phones

Table 3. Higher-level communication protocols in WSN-IoT.

S. No. Communication Protocols IEEE Standard Remarks

1. Message Query Telemetry Transport (MQTT)
protocol [24] IEEE P1451-99 [28] Works with TCP for Data Security,

Load Balancing

2. Advanced Message Queuing Protocol
(AMQP) [25] IEEE P1451-99 [28] Works with TCP for Smart

Electronics Gadgets, QoS

3. Constrained Application Protocol
(CoAP) [26] IEEE P1451-99 [28] For Cloud Services

4. Data Distribution Service (DDS) protocol [27] IEEE P1451-99 [28]
Works with UDP for Data

Delivery, Machine to Machine
Communication

5. Smart Transducer Interface protocol [29] IEEE P21451 [30]
interoperability interfaces

Sensor Connectivity,
interoperable communication

3. Preliminaries in Machine Learning for WSN-IoT

Machine learning is the field of artificial intelligence (AI) that provides systems the
ability to automatically learn and improve from previous experience without being explic-
itly programmed. It aims to develop new computer programs, which can access data and
use it to learn for themselves. Machine learning (ML) for WSNs means learning sensor
nodes and networks from their past experiences and making predictions based on them.
The main application of machine learning is at the IoT cloud for data analysis, device
management, network management, network security and authentication services. At the
user end, intelligent control techniques can be developed, in which human interaction is
not required for example driverless cars, driverless trains, etc.
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From the machine learning point of view, the data flow in WSN-IoT is shown in
Figure 2. Here, the following are the steps for data flow: (1) sensor data acquisition, (2) data
communication between end node to the gateway node, (3) data aggregation at the gateway,
(4) data ingestion, storage and retrieval at the cloud, (5) data analysis, (6) sensor nodes
connectivity (7) and data security tasks. In simple words, the ML techniques can be applied
in WSN-IoT for localization, coverage, connectivity problems, MAC and routing layer
issues, data aggregation, fault detection, event monitoring, energy harvesting, QoS and
network security issues. Figure 3 shows a general flowchart for the machine learning,
machine testing and WSN action process in the WSN-IoT scenario.
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3.1. Training Process

Here, first of all, data is acquired from a particular application. The features are
extracted from this raw data. For example, if the data is image data then the colors,
pixels, brightness and contrast of all images database are extracted. Then the features are
classified according to the requirement of the machine learning process. Now some training
examples are applied to the basic initial algorithms for their learning or improvement.
Thus, algorithms are trained and optimized according to the data patterns.

3.2. Testing Process

Now the next step is to deploy this trained WSN in any real-life application. In real life,
the unknown data is taken as input and the features are extracted from it. These extracted
features are applied to an already trained algorithm. The output of the trained algorithm is
classified as data predictions.

3.3. WSN Actions

Finally, based on predicted output data the necessary actions by the WSN are decided.

4. Open Research Problems in WSN-IoT Which Can Be Solved by Machine
Learning Techniques

The following are the currently open research issues in WSN-IoT, which can be solved
by ML techniques.

4.1. IoT Node Localization

In a WSN scenario, the current location identification of a sensor node is called node
localization. In mobile WSN nodes, path planning is a very important step. Node local-
ization is considered a classification problem because all the nodes are divided (classified)
into range-based and range-free nodes. Several ML algorithms like, SVM, K-NN and
RL-based techniques (Q-learning, SARSA) are used in WSN-IoT for node localization as a
classification problem [31].

4.2. IoT Node Coverage and Connectivity

In a WSN scenario, the sensing coverage is the field of interest (FOI), in which at least
one sensor node covers all the points. Therefore, the optimal placement of sensor nodes is
a design issue. To maximize the WSN lifetime, the connectivity should be proper between
the neighbor nodes [32].

4.3. Routing Layer Issues

The processing for sending the data packets from one node to another via intermediate
nodes is called routing. In the routing process, long routing tables are maintained by the
gateway nodes, which consists of the source and destination address of all the packets
in the network. In WSN, the sensed data is sent towards the main gateway node by the
end nodes. If the routing path is very long then unnecessary energy is wasted in a WSN
network. Therefore, smart routing algorithms need to be designed carefully to find the
optimal routes between end node and gateway nodes. Several machine learning techniques
such as decision tree, random forest, ANN, SVM and Bayesian learning are used to find
the optimal path in WSNs [33].

4.4. MAC Layer Issues

The MAC layer controls the medium accessing technique in WSN. The sensor MAC
(SMAC) protocol is generally used in WSN. Reinforcement learning (RL) based algorithms
are used for MAC protocol design in WSN. The RL-MAC techniques control the sleep,
wake, transmission and reception in sensor networks [34].
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4.5. Sensor Data Aggregation

In a smart city, thousands of small sensor nodes are deployed to measure the same
physical quantity, e.g., temperature, humidity, light, carbon dioxide (CO2) gases, etc.
Several sensors may report the same information to the gateway. This large amount of data
is difficult to handle by the gateway. Therefore, sensor data aggregation is important in
WSNs for smart city applications. Data aggregation means collecting and summarizing
useful information from multiple sources. In this process, the data redundancy and data
accuracy are improved. Data aggregation saves the power consumption of WSN nodes and
hence improves the network lifetime also. Machine learning is useful for data aggregation.
The cluster aggregates the data from the cluster head and transmits it to the base station. ML
techniques based on artificial neural networks (ANN) and quality (Q)-learning algorithms
are useful for data aggregation tasks in WSN-IoT [35].

4.6. Event Monitoring and Target Detection

In a smart city application, the WSNs are deployed for event monitoring and target
detection such as intrusion detection and traffic monitoring. In WSN, node failure, target
recovery and tracking latency from sensing nodes are required. Various ML techniques
like Bayesian, Q learning and genetic algorithms are used for event monitoring and target
tracking in WSNs. Applying, ML techniques in WSNs can be useful to detect an event or
target from the complex image sensor data [36].

4.7. Energy Harvesting

Energy harvesting is the process of extracting environmental energy from the sun,
wind, tides, radio waves, etc., and converts it into the corresponding electrical energy. The
broad objective of energy harvesting is to save our limited available fossil fuels (coal, oil
and gases). However, in the smart city application, energy harvesting can also be used
for achieving maximum network lifetime in rechargeable battery-based WSN-IoT nodes.
Furthermore, the ML techniques are used in energy harvesting WSN-IoT for future available
energy prediction tasks. The ML algorithms like regression technique and reinforcement
learning techniques (Q-learning) are suitable for energy harvesting applications. Generally,
solar energy, radio frequency (RF) waves and wind energy are used with rechargeable
battery-based WSNs. Harvested energy prediction, battery power management are the
tasks that can be optimized by using the ML algorithms in traditional WSN-IoT [37].

4.8. Node Query Processing

In WSNs, the end nodes, cluster heads and gateway nodes perform various types
of queries such as sensor data aggregation, routing paths, synchronization and control
operations, packet delivery with each other, etc. The k-nearest neighborhood (k-NN) based
ML techniques are used for sensor data queries in WSN.

Table 4 shows some WSN-IoT research issues with ML-based solutions [38].

Table 4. WSN-IoT research issue with ML-based solution.

S. No. WSN-IoT Research Issue Machine Learning
Technique Solution/Remarks

1 IoT Node Localization [31] K-NN, Reinforcement
Learning (RL) Efficient Distance Estimation, Range Estimation

2 IoT Node Coverage and
Connectivity [32]

Decision trees, ANN,
Evolutionary Computation

Classification of Connected and Failed Nodes in
the sensor network, Identification nodes with
poor and good connectivity

3 Routing Layer Issues [33] Decision Tree, Random Forest Prediction of optimal routing path depending
upon data traffic.
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Table 4. Cont.

S. No. WSN-IoT Research Issue Machine Learning
Technique Solution/Remarks

4 MAC Layer Issues [34] SVM, Decision Tree, ANN Efficient channel assignment

5 Sensor data aggregation [35] k-means, SVM, Reinforcement Decide optimal cluster head in WSN nodes,
Dynamic configuration of WSN nodes

6 Event Monitoring and Target
Detection [36]

PCA, Deep Learning,
Evolutionary Computing,
Bayesian Learning

Efficient event monitoring and multiple target
tracking

7 Energy Harvesting [37] SVM, Deep Learning,
Evolutionary Computing

To predict the amount of battery energy required
to maximize network lifetime, Prediction of
energy harvesting availability in the future.

8 Node Query processing [38] k-NN Node Beacon sending, Handshake for data
transfer

5. Literature Survey of Machine Learning in WSN-IoT

Our literature survey of machine learning algorithms for WSN-IoT is shown in
Figure 4. Our literature survey is divided into the following categories:

1. Supervised Learning,
2. Unsupervised learning,
3. Reinforcement learning.
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5.1. Literature Survey of Supervised Machine Learning for WSN–IoT

In supervisor learning, data are labeled. In other words, we provide an input data
variable (x) to the system. The system predicts output data (y) depending upon the type
of input and system function. The objective of supervised learning is to approximate the
mapping function so that when a new unknown input data is applied then, the output (y)
can be predicted [39,40].

y = f (x) (1)

In this section, we will discuss various supervised learning algorithm, which can be
applied in WSN-IoT applications. The supervised learning algorithms are used in WSN for
target tracking, localization of Nodes, event monitoring, data security, fault detection, etc.
There are two types of supervisor learning as regression and classification.

5.1.1. Regression

In regression, the output variable (y) has some continuous numerical value like
rupees, height, weight, etc. Regression is applied to solve various issues in WSNs such as
localization, connectivity problem, data aggregation and energy harvesting [41].

5.1.2. Classification

In classification, the output variable(y) is a category of objects like the type of colors
(e.g., red or yellow), type of diseases (e.g., fever or fracture), etc. There are the following
types of classification problems as k-NN, decision tree, ANN, Bayesian learning, etc [42].

(A). K-nearest neighborhood (k-NN) [43]: This is an instance-based supervised learn-
ing algorithm. Here, all training instances are stored in a master database. When a new
instance query (xq) arrives then this new query is compared with the stored database and
classified results are derived. In the k-NN algorithm the distance between each data points
is calculated by using the Euclidian distance formula

d(q, p) =
√
(q1 − p1)

2 + (q2 − p2)
2 + . . . + (qn − pn)

2

Or

d(q, p) =

√
n
∑

i=1
(qi − pi)

2
(2)

where q and p are data points and d is the distance between them. In [44] data streaming in
IoT using the k-NN algorithm is proposed. The KNN algorithm is also used for the early
detection of agriculture pests, diseases, sensor node failure and fault detection issues [45].

(B). Decision tree (DT) [46]: In the DT algorithm, the main task is to calculate the
attribute of the root node from each level. This process is called attribute selection. There
are two methods for attribute selection as information gain and Gini index. The average
amount of information is called entropy and is given as

Entropy = −
n

∑
i=1

pi ∗ log(pi) (3)

Gini index is a metric to measure how often a randomly chosen element would be
incorrectly identified.

Gini Index = 1−
n

∑
i=1

p2
i (4)

where pi is the probability of occurrence of an ith event, n is the number of training examples.
It is a classification method for predicting labels of data by iterating the input data through
a learning tree. During this process, the feature properties are compared relative to decision
conditions to reach a specific category. In WSNs, decision tree (DT) algorithms like ID3
are used to identify the link reliability, mean time to failure (MTTF) and mean time to
repair (MTTR). Figure 5 shows an example of the DT algorithm, in which the decisions
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are taken by a WSN node system for different conditions. Here, if the 1st condition of
WSN node battery voltage is greater than 2.7 volts (i.e., Vbattery > 2.7 volts) is not true, then
all decision flows towards the left-hand side of the tree. On the left-hand side, the 2nd
condition to be checked is supply availability. On the other hand, if the 1st condition (i.e.,
Vbattery > 2.7 volts) is true, then all decisions flow towards the right-hand side of the tree.
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(C). Artificial neural networks (ANNs) [47–49]: ANN is inspired by the human brain
architecture learning mechanism. The basic unit of AAN is perceptron, which is equivalent
to a neuron in the human brain as shown in Figure 6. Backpropagation is most the common
learning algorithm in ANN. An activation function is any step function, a cosine function or
a sigmoid function, etc. The error (E) in backpropagation is calculated until the convergence
meets as

E =
n

∑
i=1

1
2
(Tk −Ok)

2 (5)

where Tk is the target value, Ok is the actual output value and (n) is the number of training
examples. In backpropagation algorithms, the learning is determined by the sum of
weighted links between the inputs layer, middle layer and output layer.

Finally, the weights (w) are updated using the rule as:

w(new) = w(old) + ∆w (6)
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(D). Support Vector Machine (SVM) [50,51]: SVM is the most popular algorithm,
which can be used for both classification and regression of data. Generally, it is used for
classification in the WSN-IoT scenario. In SVM, we plotted each data value as a point in an
n-dimensional X-Y plane as shown in Figure 7.
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Figure 7. Data classification using SVM.

The SVM algorithm is based on the primal optimization problem as

Minimize ||w||2
such that, yi(w.xi + b)− 1 ≥ 0

and, yi(w.xi + b) + 1 ≥ 0
f or i = 1, 2, 3 . . . n

(7)

where, w is the width between two support vectors planes, (xi) is the data point value, (yi)
is the assigned label to each data point respectively, (b) is the distance of hyperplane from
the origin and (n) is the total number of training examples. In WSN, the SVM technique is
used for the localization of mobile sensor nodes.

(E). Bayesian Learning [52–54]: Bayesian learning is an important statistical technique
to calculate the conditional probability of an event. Bayesian learning is based on the very
popular Bayes’ theorem for conditional probability as:

P(A|B) = P(B|A)× P(A)

P(B)
(8)

where, P(A) is called the probability of occurrence of event A, P(B) is called the probability
of occurrence of event B, P(A|B) is called conditional probability of occurrence of event A if
B is given and P(B|A) is called conditional probability of occurrence of event B if A is given
earlier. In WSN, it is used for calibration, clustering and detecting outlier (i.e., outsider or
different types) nodes in a group of several nodes deployment.

5.2. Literature Survey of Unsupervised Machine Learning for WSN–IoT

In unsupervised machine learning, only the input data variable (x) is known to the
machine. The output data variable (y) is not known to the machine or system. The objective
of unsupervised ML is to know the probability distribution model of input data [55].
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Clustering Technique

In this method, the inherent groups in the data are identified, such as a particular type
of customer database that purchases a specific type of goods from specified stores in smart
cities. Figure 8 shows three clusters of class red, green and blue [56–58]. To make a cluster
between data points of two vectors X and Y the Euclidian distance (d) is calculated as:

d(X, Y) =

√
n

∑
i=1

(Xi −Yi)
2 (9)

The k-means clustering [59–61], PCA [62–64] and ANN [65,66] algorithm are most
widely used for clustering in WSN-IoT.
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5.3. Literature Survey of Reinforcement Learning (RL) for WSN–IoT

In the reinforcement learning algorithm, there are two main components called the
agent and the environment as shown in Figure 9 [67,68]. The agent refers to the WSN-IoT
node and the environment refers to the type of application deployment, e.g., temperature
monitoring, pollution monitoring, smart agriculture monitoring, etc [69]. The WSN-IoT
node agent performs the actions (At) of sensing and actuation at time state (t). The ap-
plication environment changes its state (St) and provides a reward (Rt) to the agent as
shown in Figure 9. There are many types of reinforcement learning algorithms given as (A)
Q-learning [70,71], (B) SARSA [72], temporal difference (TD) [73] and deep Q learning [74].
The Q value is defined as a sum of discounted rewards starting from the state (sk), taking
action (ak) following any policy (π) as:

Qπ(s, a) = E

[
N−1

∑
k=0

γk r(sk, ak)

]
(10)

where, E = expectation, s = state, a = action, k = numerical integer value (0 to N-1),
γ = discount rate and r = rewards value.
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6. Summary of Literature Survey of ML Techniques for WSN-IoT

Finally, this section provides a summary of all machine learning (ML) techniques
proposed as an optimized solution for WSN-IoT problems. In a smart city, the major
challenges are as follows: smart education, smart classrooms, smart traffic monitoring,
rain water harvesting, smart grids in smart buildings smart healthcare in hospitals, smart
agriculture, industrial IoT (or Industry 4.0), smart waste management, smart governance,
smart environment monitoring, etc. Now, we will map each problem of smart cities with the
solution provided by machine learning algorithms in WSN-IoT. The WSN node localization
problem is considered as a classification or multivariate regression task in the ML domain.
Therefore, SVM classification [50] or SVM regression model [51] algorithms are applied as
a solution for the node localization problems in WSN-IoT.

The security issues are tackled by correlation techniques and handled by using the
Bayesian learning technique as [52–54]. Cluster head selection tasks in WSN-IoT are consid-
ered clustering tasks in the ML domain. The k-NN [59–61], PCA [62–64] and ANN [65,66]
have been used for clustering. WSN node energy management is considered a prediction
problem in the ML domain. The Q-Learning [71,72] has been applied to predict the en-
ergy issues. Similarly, in energy harvesting based WSN (EH-WSN) predicts future energy
availability using reinforcement learning algorithms like Q-Learning [73], SARSA [74] and
deep Q-learning [75] have been applied. Event monitoring and fault detection problems
are considered as classification models. These are solved by SVM [76,77] and rule-based
Learning [78–81] algorithms.

The routing of data packets in WSN-IoT is considered a classification problem in
the domain of machine learning. The routing optimization algorithms such as genetic
algorithms [82] and classification algorithms such as Markov decision process (MDP) in
decision tree [83], random forest [84] and Q-learning (QELAR) [85] have been used.

At the MAC layer, the packet scheduling task is considered a regression task in the
machine learning context. Therefore, SVM [86], deep neural networks [87] have been
applied at the MAC layer. The QoS (latency, bandwidth and coverage) in IoT is considered
a prediction problem in IoT. Therefore, Q-Learning, ANN [88] and SVM [89] have been
used as the solution. Spectrum sharing in WSN-IoT is a self-learning problem, which can be
solved by a deep reinforcement learning [90,91] technique. Data aggregation is a technique
in which redundant information is removed before processing by the server. Data aggrega-
tion is treated as a regression problem and is solved by SVM [92] and reinforcement [93]
respectively. Table 5 shows the summary of the literature survey of ML techniques for
WSN-IoT.
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Table 5. Summary of literature survey of ML techniques for WSN-IoT.

S. No. Smart City Applications WSN-IoT Issues in
Smart Cities

Addressed ML Algorithms as
Solutions by Researchers

Worldwide
Our Remarks

1 Smart traffic Monitoring WSN Node Localization SVM Classification [50] and
SVM regression model [51]

Localization is considered as
Classification and Multivariate
Regression task in ML context.

2 Rain Water Harvesting Security Issues in WSN Bayesian Learning [52–54]
Security is dealt with

Correlation, Encoding,
Decoding task in ML

3 Smart Grids in Smart
Buildings

Node Clustering, Cluster
Head Selection, Data Pattern

Analysis

k-NN [59–61], PCA [62–64]
and ANN [65,66] Classification problem

4 Smart Healthcare in Hospitals WSN Node Energy
Management Q-Learning [71,72]

Energy Management is
considered a Prediction task in

ML

5 Smart Agriculture Energy Harvesting Q-Learning [73], SARSA [74]
and Deep Q-Learning [75]

The Energy Harvesting
process is considered a
Prediction task in ML

6 Industrial IoT (Industry 4.0) Event/Condition Monitoring,
Object/Fault Detection,

SVM [76,77] and Rule based
Learning [78–81]

Event detection is handled by
Classification techniques in the

ML domain

7 Smart Waste Management Routing of data packets

Genetic algorithms [82], MDP
in Decision Tree [83], Random

Forest [84] and Q-Learning
(QELAR) [85]

Route optimization, Routing
as a Classification problem

in ML.

8 Smart Governance Scheduling and Heterogeneity
at MAC Layer

SVM [86] and Deep Neural
Networks [87]

Scheduling and Heterogeneity
problems are Regression tasks

in ML

9 Quality of Life of People QoS (Latency, Bandwidth,
Coverage, Link Quality) in IoT

Q-Learning and ANN [88],
SVM [89]

QoS in IoT is solved by
Prediction, Classification tasks.

10
Energy Efficient Street

Lighting, Smart environment
monitoring

Spectrum Sharing Deep Reinforcement
Learning [90,91]

Spectrum sharing is
Self-learning, rewards system

tasks in ML.

11
Pandemic medical treatment
(e.g., COVID-19 or Corona

Virus)
Data Aggrigation SVM [92] and

Reinforcement [93]

Data Aggregation is treated as
a Regression task in the

ML context.

The ML and WSN-IoT pair can act as a boon for the medical healthcare sector in
smart hospitals in smart cities. For example, as per a world health organization (WHO)
report [94], an international pandemic called corona virus disease (COVID-19) caused
the death of 716,075 people worldwide until the end of the year 2020. In smart hospitals,
the advanced ML techniques with efficiently deployed WSN-IoT can be applied for the
treatment of infected patients placed in quarantine. The sensors attached to biomedical
instruments can send patient’s data over the internet to the doctors for medical diagnosis.
Thus, doctors need not go near to the patients and hence avoid/reduce the virus spread in
the smart cities and society.

7. Our Survey Report of ML Techniques in WSN-IoT

We performed this survey task by visiting various websites, journals, magazines and
research papers for machine learning in WSN-IoT for smart cities. By surveying on the
internet for ML techniques addressing WSN-IoT problems, we included many papers
available as shown in Table 6 from the year 2010 to 2021. Table 7 shows category-wise ML
algorithms addressing WSN-IoT issues with percentage contribution. Figure 10 shows the
graphical representation of major ML algorithms in WSN-IoT.
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Table 6. WSN-IoT technology-wise research papers included in this survey.

S. No. WSN-IoT Problem No. of Research Papers Included

1 Routing 45
2 Switching 34
3 Data Aggregation 24
4 Energy Harvesting 12
5 Node Localization 15
6 Security 52
7 QoS 37
8 Event Detection 36
9 Fault Detection 56

10 Congestion Control 18
11 Anomaly Detection 117
12 Connectivity 27

Table 7. ML algorithms for WSN-IoT.

S. No. ML Algorithms for WSN-IoT Percentage (%)

1 Reinforcement 12%
2 Q-Learning 15%
3 SVM 18%
4 ANN 14%
5 Bayesian 9%
6 Rule-based 8%
7 Decision Tree 4%
8 Random Forest 2%
9 k-NN 6%
10 k-means 8%
11 PCA 4%Electronics 2021, 10, x FOR PEER REVIEW 18 of 24 

 

 

 
Figure 10. WSN-IoT technology-wise research papers considered in this survey. 

Figure 11 shows a quick look and easy to understand graphical representation of ma-
jor ML algorithms used in WSN-IoT. 

 
Figure 11. Graphical representation of major ML algorithms used in WSN-IoT. 

Figure 10. WSN-IoT technology-wise research papers considered in this survey.



Electronics 2021, 10, 1012 17 of 22

Figure 11 shows a quick look and easy to understand graphical representation of
major ML algorithms used in WSN-IoT.
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Table 8 shows the dominance of ML techniques in WSN-IoT problems. Figure 12
shows a quick graphical representation of dominance of RL, supervised and unsupervised
learning algorithms in WSN-IoT.

Table 8. Conclusion of usage of ML techniques in WSN-IoT problems.

S. No. ML Technique in WSN-IoT Dominance

1. Reinforcement Learning 27%
2. Supervised Learning 61%
3. Unsupervised Learning 12%
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8. Conclusions and Future Work 
In this paper, we outlined various machine learning algorithms in WSN-IoT for smart 

city applications. In this paper, we performed a detailed survey of ML techniques in WSN-
IoT for the smart city challenges. From this survey, it was concluded that the supervised 
learning algorithms have been used with the highest amount, i.e., 61% as compared to RL 
at 27% and unsupervised at 12% only. The ML algorithms are so versatile and powerful 
that a single type of ML algorithm can be used for multiple tasks in WSN-IoT in smart 
cities. For example, the powerful SVM algorithm can be used for classification and for 
regression tasks in WSN-IoT. In the future, a more powerful and complex algorithm will 
emerge, which minimizes human intervention. The futuristic IoT-based solution for smart 
cities will include machine learning techniques. For example, the heart stroke rehabilita-
tion system [95] in smart health care using LDA, MLP and SVM algorithms. Next-gener-
ation smart cities will have ultra-dense cellular IoT networks using high-performance ma-
chine learning algorithms [96–100]. 

Funding: This research receives no external funding. 

Acknowledgments: The authors are thankful to Electrical Engineering Department, Jamia Millia 
Islamia (a central govt. university), New Delhi, India, for the necessary support and guidance for 
this research work. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 12. Graphical representation of RL, supervised and unsupervised learning algorithms in
WSN-IoT.



Electronics 2021, 10, 1012 18 of 22

8. Conclusions and Future Work

In this paper, we outlined various machine learning algorithms in WSN-IoT for smart
city applications. In this paper, we performed a detailed survey of ML techniques in WSN-
IoT for the smart city challenges. From this survey, it was concluded that the supervised
learning algorithms have been used with the highest amount, i.e., 61% as compared to RL
at 27% and unsupervised at 12% only. The ML algorithms are so versatile and powerful
that a single type of ML algorithm can be used for multiple tasks in WSN-IoT in smart
cities. For example, the powerful SVM algorithm can be used for classification and for
regression tasks in WSN-IoT. In the future, a more powerful and complex algorithm will
emerge, which minimizes human intervention. The futuristic IoT-based solution for smart
cities will include machine learning techniques. For example, the heart stroke rehabilitation
system [95] in smart health care using LDA, MLP and SVM algorithms. Next-generation
smart cities will have ultra-dense cellular IoT networks using high-performance machine
learning algorithms [96–100].
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