1,965 research outputs found

    Designing labeled graph classifiers by exploiting the R\'enyi entropy of the dissimilarity representation

    Full text link
    Representing patterns as labeled graphs is becoming increasingly common in the broad field of computational intelligence. Accordingly, a wide repertoire of pattern recognition tools, such as classifiers and knowledge discovery procedures, are nowadays available and tested for various datasets of labeled graphs. However, the design of effective learning procedures operating in the space of labeled graphs is still a challenging problem, especially from the computational complexity viewpoint. In this paper, we present a major improvement of a general-purpose classifier for graphs, which is conceived on an interplay between dissimilarity representation, clustering, information-theoretic techniques, and evolutionary optimization algorithms. The improvement focuses on a specific key subroutine devised to compress the input data. We prove different theorems which are fundamental to the setting of the parameters controlling such a compression operation. We demonstrate the effectiveness of the resulting classifier by benchmarking the developed variants on well-known datasets of labeled graphs, considering as distinct performance indicators the classification accuracy, computing time, and parsimony in terms of structural complexity of the synthesized classification models. The results show state-of-the-art standards in terms of test set accuracy and a considerable speed-up for what concerns the computing time.Comment: Revised versio

    A novel ensemble clustering for operational transients classification with application to a nuclear power plant turbine

    Get PDF
    International audienceThe objective of the present work is to develop a novel approach for combining in an ensemble multiple base clusterings of operational transients of industrial equipment, when the number of clusters in the final consensus clustering is unknown. A measure of pairwise similarity is used to quantify the co-association matrix that describes the similarity among the different base clusterings. Then, a Spectral Clustering technique of literature, embedding the unsupervised K-Means algorithm, is applied to the co-association matrix for finding the optimum number of clusters of the final consensus clustering, based on Silhouette validity index calculation. The proposed approach is developed with reference to an artificial case study, properly designed to mimic the signal trend behavior of a Nuclear Power Plant (NPP) turbine during shutdown. The results of the artificial case have been compared with those achieved by a state-of-art approach, known as Cluster-based Similarity Partitioning and Serial Graph Partitioning and Fill-reducing Matrix Ordering Algorithms (CSPA-METIS). The comparison shows that the proposed approach is able to identify a final consensus clustering that classifies the transients with better accuracy and robustness compared to the CSPA-METIS approach. The approach is, then, validated on an industrial case concerning 149 shutdown transients of a NPP turbine

    Fast Machine Learning Algorithms for Massive Datasets with Applications in the Biomedical Domain

    Get PDF
    The continuous increase in the size of datasets introduces computational challenges for machine learning algorithms. In this dissertation, we cover the machine learning algorithms and applications in large-scale data analysis in manufacturing and healthcare. We begin with introducing a multilevel framework to scale the support vector machine (SVM), a popular supervised learning algorithm with a few tunable hyperparameters and highly accurate prediction. The computational complexity of nonlinear SVM is prohibitive on large-scale datasets compared to the linear SVM, which is more scalable for massive datasets. The nonlinear SVM has shown to produce significantly higher classification quality on complex and highly imbalanced datasets. However, a higher classification quality requires a computationally expensive quadratic programming solver and extra kernel parameters for model selection. We introduce a generalized fast multilevel framework for regular, weighted, and instance weighted SVM that achieves similar or better classification quality compared to the state-of-the-art SVM libraries such as LIBSVM. Our framework improves the runtime more than two orders of magnitude for some of the well-known benchmark datasets. We cover multiple versions of our proposed framework and its implementation in detail. The framework is implemented using PETSc library which allows easy integration with scientific computing tasks. Next, we propose an adaptive multilevel learning framework for SVM to reduce the variance between prediction qualities across the levels, improve the overall prediction accuracy, and boost the runtime. We implement multi-threaded support to speed up the parameter fitting runtime that results in more than an order of magnitude speed-up. We design an early stopping criteria to reduce the extra computational cost when we achieve expected prediction quality. This approach provides significant speed-up, especially for massive datasets. Finally, we propose an efficient low dimensional feature extraction over massive knowledge networks. Knowledge networks are becoming more popular in the biomedical domain for knowledge representation. Each layer in knowledge networks can store the information from one or multiple sources of data. The relationships between concepts or between layers represent valuable information. The proposed feature engineering approach provides an efficient and highly accurate prediction of the relationship between biomedical concepts on massive datasets. Our proposed approach utilizes semantics and probabilities to reduce the potential search space for the exploration and learning of machine learning algorithms. The calculation of probabilities is highly scalable with the size of the knowledge network. The number of features is fixed and equivalent to the number of relationships or classes in the data. A comprehensive comparison of well-known classifiers such as random forest, SVM, and deep learning over various features extracted from the same dataset, provides an overview for performance and computational trade-offs. Our source code, documentation and parameters will be available at https://github.com/esadr/

    Sentiment Analysis for Social Media

    Get PDF
    Sentiment analysis is a branch of natural language processing concerned with the study of the intensity of the emotions expressed in a piece of text. The automated analysis of the multitude of messages delivered through social media is one of the hottest research fields, both in academy and in industry, due to its extremely high potential applicability in many different domains. This Special Issue describes both technological contributions to the field, mostly based on deep learning techniques, and specific applications in areas like health insurance, gender classification, recommender systems, and cyber aggression detection

    Exploiting Latent Features of Text and Graphs

    Get PDF
    As the size and scope of online data continues to grow, new machine learning techniques become necessary to best capitalize on the wealth of available information. However, the models that help convert data into knowledge require nontrivial processes to make sense of large collections of text and massive online graphs. In both scenarios, modern machine learning pipelines produce embeddings --- semantically rich vectors of latent features --- to convert human constructs for machine understanding. In this dissertation we focus on information available within biomedical science, including human-written abstracts of scientific papers, as well as machine-generated graphs of biomedical entity relationships. We present the Moliere system, and our method for identifying new discoveries through the use of natural language processing and graph mining algorithms. We propose heuristically-based ranking criteria to augment Moliere, and leverage this ranking to identify a new gene-treatment target for HIV-associated Neurodegenerative Disorders. We additionally focus on the latent features of graphs, and propose a new bipartite graph embedding technique. Using our graph embedding, we advance the state-of-the-art in hypergraph partitioning quality. Having newfound intuition of graph embeddings, we present Agatha, a deep-learning approach to hypothesis generation. This system learns a data-driven ranking criteria derived from the embeddings of our large proposed biomedical semantic graph. To produce human-readable results, we additionally propose CBAG, a technique for conditional biomedical abstract generation
    • …
    corecore