84 research outputs found

    Emerging research directions in computer science : contributions from the young informatics faculty in Karlsruhe

    Get PDF
    In order to build better human-friendly human-computer interfaces, such interfaces need to be enabled with capabilities to perceive the user, his location, identity, activities and in particular his interaction with others and the machine. Only with these perception capabilities can smart systems ( for example human-friendly robots or smart environments) become posssible. In my research I\u27m thus focusing on the development of novel techniques for the visual perception of humans and their activities, in order to facilitate perceptive multimodal interfaces, humanoid robots and smart environments. My work includes research on person tracking, person identication, recognition of pointing gestures, estimation of head orientation and focus of attention, as well as audio-visual scene and activity analysis. Application areas are humanfriendly humanoid robots, smart environments, content-based image and video analysis, as well as safety- and security-related applications. This article gives a brief overview of my ongoing research activities in these areas

    GPU devices for safety-critical systems: a survey

    Get PDF
    Graphics Processing Unit (GPU) devices and their associated software programming languages and frameworks can deliver the computing performance required to facilitate the development of next-generation high-performance safety-critical systems such as autonomous driving systems. However, the integration of complex, parallel, and computationally demanding software functions with different safety-criticality levels on GPU devices with shared hardware resources contributes to several safety certification challenges. This survey categorizes and provides an overview of research contributions that address GPU devices’ random hardware failures, systematic failures, and independence of execution.This work has been partially supported by the European Research Council with Horizon 2020 (grant agreements No. 772773 and 871465), the Spanish Ministry of Science and Innovation under grant PID2019-107255GB, the HiPEAC Network of Excellence and the Basque Government under grant KK-2019-00035. The Spanish Ministry of Economy and Competitiveness has also partially supported Leonidas Kosmidis with a Juan de la Cierva Incorporación postdoctoral fellowship (FJCI-2020- 045931-I).Peer ReviewedPostprint (author's final draft

    On the Secure and Resilient Design of Connected Vehicles: Methods and Guidelines

    Get PDF
    Vehicles have come a long way from being purely mechanical systems to systems that consist of an internal network of more than 100 microcontrollers and systems that communicate with external entities, such as other vehicles, road infrastructure, the manufacturer’s cloud and external applications. This combination of resource constraints, safety-criticality, large attack surface and the fact that millions of people own and use them each day, makes securing vehicles particularly challenging as security practices and methods need to be tailored to meet these requirements.This thesis investigates how security demands should be structured to ease discussions and collaboration between the involved parties and how requirements engineering can be accelerated by introducing generic security requirements. Practitioners are also assisted in choosing appropriate techniques for securing vehicles by identifying and categorising security and resilience techniques suitable for automotive systems. Furthermore, three specific mechanisms for securing automotive systems and providing resilience are designed and evaluated. The first part focuses on cyber security requirements and the identification of suitable techniques based on three different approaches, namely (i) providing a mapping to security levels based on a review of existing security standards and recommendations; (ii) proposing a taxonomy for resilience techniques based on a literature review; and (iii) combining security and resilience techniques to protect automotive assets that have been subject to attacks. The second part presents the design and evaluation of three techniques. First, an extension for an existing freshness mechanism to protect the in-vehicle communication against replay attacks is presented and evaluated. Second, a trust model for Vehicle-to-Vehicle communication is developed with respect to cyber resilience to allow a vehicle to include trust in neighbouring vehicles in its decision-making processes. Third, a framework is presented that enables vehicle manufacturers to protect their fleet by detecting anomalies and security attacks using vehicle trust and the available data in the cloud

    Considerations in Assuring Safety of Increasingly Autonomous Systems

    Get PDF
    Recent technological advances have accelerated the development and application of increasingly autonomous (IA) systems in civil and military aviation. IA systems can provide automation of complex mission tasks-ranging across reduced crew operations, air-traffic management, and unmanned, autonomous aircraft-with most applications calling for collaboration and teaming among humans and IA agents. IA systems are expected to provide benefits in terms of safety, reliability, efficiency, affordability, and previously unattainable mission capability. There is also a potential for improving safety by removal of human errors. There are, however, several challenges in the safety assurance of these systems due to the highly adaptive and non-deterministic behavior of these systems, and vulnerabilities due to potential divergence of airplane state awareness between the IA system and humans. These systems must deal with external sensors and actuators, and they must respond in time commensurate with the activities of the system in its environment. One of the main challenges is that safety assurance, currently relying upon authority transfer from an autonomous function to a human to mitigate safety concerns, will need to address their mitigation by automation in a collaborative dynamic context. These challenges have a fundamental, multidimensional impact on the safety assurance methods, system architecture, and V&V capabilities to be employed. The goal of this report is to identify relevant issues to be addressed in these areas, the potential gaps in the current safety assurance techniques, and critical questions that would need to be answered to assure safety of IA systems. We focus on a scenario of reduced crew operation when an IA system is employed which reduces, changes or eliminates a human's role in transition from two-pilot operations

    Horizon 2020-funded security research projects with dual-use potential: An overview (2014-2018)

    Get PDF
    The analysis carried out in this report facilitates the identification of dual-use research topics and projects funded under Horizon 2020 that have a dual-use civilian/military potential, the results of which could be applied both by security and defence stakeholders (including industry). In this way, it could support the future security and defence research programmes in their attempt of avoiding duplication of investments and promoting synergies.JRC.E.7-Knowledge for Security and Migratio

    Driving Into the Twenty-First Century: Technology Solutions to Transportation Problems Symposium, IISTPS Report S-99-I

    Get PDF
    Driving Into the Twenty-First Century: Technology Solutions to Transportation Problems is the transcript of a symposium held on November 16, 1998. The symposium was sponsored by the Norman Y. Mineta International Institute for Surface Transportation Policy Studies, the Silicon Valley Manufacturing Group, Hewlett-Packard and Lockheed Martin. Numerous industry leaders and innovators were invited to participate in the open forum, and several vendors of electric and alternative power vehicles were on hand for participants to view and test drive. Topics of discussion included new technologies which will make commute times more pleasant for the 21st century worker. These possibilities include high-tech user-friendly highways, electronic toll collections, quicker response times for emergency vehicles, and the Intelligent Vehicles of tomorrow will help ease time spent in traffic thus making commute time less stressful, and perhaps even productive

    Proceedings of the Twenty-Third Annual Software Engineering Workshop

    Get PDF
    The Twenty-third Annual Software Engineering Workshop (SEW) provided 20 presentations designed to further the goals of the Software Engineering Laboratory (SEL) of the NASA-GSFC. The presentations were selected on their creativity. The sessions which were held on 2-3 of December 1998, centered on the SEL, Experimentation, Inspections, Fault Prediction, Verification and Validation, and Embedded Systems and Safety-Critical Systems

    Technology 2004, Vol. 2

    Get PDF
    Proceedings from symposia of the Technology 2004 Conference, November 8-10, 1994, Washington, DC. Volume 2 features papers on computers and software, virtual reality simulation, environmental technology, video and imaging, medical technology and life sciences, robotics and artificial intelligence, and electronics
    corecore