108 research outputs found

    GPU Resource Optimization and Scheduling for Shared Execution Environments

    Get PDF
    General purpose graphics processing units have become a computing workhorse for a variety of data- and compute-intensive applications, from large supercomputing systems for massive data analytics to small, mobile embedded devices for autonomous vehicles. Making effective and efficient use of these processors traditionally relies on extensive programmer expertise to design and develop kernel methods which simultaneously trade off task decomposition and resource exploitation. Often, new architecture designs force code refinements in order to continue to achieve optimal performance. At the same time, not all applications require full utilization of the system to achieve that optimal performance. In this case, the increased capability of new architectures introduces an ever-widening gap between the level of resources necessary for optimal performance and the level necessary to maintain system efficiency. The ability to schedule and execute multiple independent tasks on a GPU, known generally as concurrent kernel execution, enables application programmers and system developers to balance application performance and system efficiency. Various approaches to develop both coarse- and fine-grained scheduling mechanisms to achieve a high degree of resource utilization and improved application performance have been studied. Most of these works focus on mechanisms for the management of compute resources, while a small percentage consider the data transfer channels. In this dissertation, we propose a pragmatic approach to scheduling and managing both types of resources – data transfer and compute – that is transparent to an application programmer and capable of providing near-optimal system performance. Furthermore, the approaches described herein rely on reinforcement learning methods, which enable the scheduling solutions to be flexible to a variety of factors, such as transient application behaviors, changing system designs, and tunable objective functions. Finally, we describe a framework for the practical implementation of learned scheduling policies to achieve high resource utilization and efficient system performance

    Supporting efficient overlapping of host-device operations for heterogeneous programming with CtrlEvents

    Get PDF
    Producción CientíficaHeterogeneous systems with several kinds of devices, such as multi-core CPUs, GPUs, FPGAs, among others, are now commonplace. Exploiting all these devices with device-oriented programming models, such as CUDA or OpenCL, requires expertise and knowledge about the underlying hardware to tailor the application to each specific device, thus degrading performance portability. Higher-level proposals simplify the programming of these devices, but their current implementations do not have an efficient support to solve problems that include frequent bursts of computation and communication, or input/output operations. In this work we present CtrlEvents, a new heterogeneous runtime solution which automatically overlaps computation and communication whenever possible, simplifying and improving the efficiency of data-dependency analysis and the coordination of both device computations and host tasks that include generic I/O operations. Our solution outperforms other state-of-the-art implementations for most situations, presenting a good balance between portability, programmability and efficiency.Ministerio de Ciencia e Innovación - FEDER (TIN2017-88614-R)Junta de Castilla y León (VA226P20)Ministerio de Ciencia e Innovación - AEI and European Union NextGenerationEU/PRTR (TED2021–130367B–I00 and MCIN/AEI/10.13039/501100011033

    Vectorizing unstructured mesh computations for many-core architectures.

    Get PDF
    Achieving optimal performance on the latest multi-core and many-core architectures increasingly depends on making efficient use of the hardware's vector units. This paper presents results on achieving high performance through vectorization on CPUs and the Xeon-Phi on a key class of irregular applications: unstructured mesh computations. Using single instruction multiple thread (SIMT) and single instruction multiple data (SIMD) programming models, we show how unstructured mesh computations map to OpenCL or vector intrinsics through the use of code generation techniques in the OP2 Domain Specific Library and explore how irregular memory accesses and race conditions can be organized on different hardware. We benchmark Intel Xeon CPUs and the Xeon-Phi, using a tsunami simulation and a representative CFD benchmark. Results are compared with previous work on CPUs and NVIDIA GPUs to provide a comparison of achievable performance on current many-core systems. We show that auto-vectorization and the OpenCL SIMT model do not map efficiently to CPU vector units because of vectorization issues and threading overheads. In contrast, using SIMD vector intrinsics imposes some restrictions and requires more involved programming techniques but results in efficient code and near-optimal performance, two times faster than non-vectorized code. We observe that the Xeon-Phi does not provide good performance for these applications but is still comparable with a pair of mid-range Xeon chips

    Towards Performance Portable Programming for Distributed Heterogeneous Systems

    Full text link
    Hardware heterogeneity is here to stay for high-performance computing. Large-scale systems are currently equipped with multiple GPU accelerators per compute node and are expected to incorporate more specialized hardware in the future. This shift in the computing ecosystem offers many opportunities for performance improvement; however, it also increases the complexity of programming for such architectures. This work introduces a runtime framework that enables effortless programming for heterogeneous systems while efficiently utilizing hardware resources. The framework is integrated within a distributed and scalable runtime system to facilitate performance portability across heterogeneous nodes. Along with the design, this paper describes the implementation and optimizations performed, achieving up to 300% improvement in a shared memory benchmark and up to 10 times in distributed device communication. Preliminary results indicate that our software incurs low overhead and achieves 40% improvement in a distributed Jacobi proxy application while hiding the idiosyncrasies of the hardware

    Sur la conception de solveurs linéaires hybrides pour les architectures parallèles modernes

    Get PDF
    In the context of this thesis, our focus is on numerical linear algebra, more precisely on solution of large sparse systems of linear equations. We focus on designing efficient parallel implementations of MaPHyS, an hybrid linear solver based on domain decomposition techniques. First we investigate the MPI+threads approach. In MaPHyS, the first level of parallelism arises from the independent treatment of the various subdomains. The second level is exploited thanks to the use of multi-threaded dense and sparse linear algebra kernels involved at the subdomain level. Such an hybrid implementation of an hybrid linear solver suitably matches the hierarchical structure of modern supercomputers and enables a trade-off between the numerical and parallel performances of the solver. We demonstrate the flexibility of our parallel implementation on a set of test examples. Secondly, we follow a more disruptive approach where the algorithms are described as sets of tasks with data inter-dependencies that leads to a directed acyclic graph (DAG) representation. The tasks are handled by a runtime system. We illustrate how a first task-based parallel implementation can be obtained by composing task-based parallel libraries within MPI processes throught a preliminary prototype implementation of our hybrid solver. We then show how a task-based approach fully abstracting the hardware architecture can successfully exploit a wide range of modern hardware architectures. We implemented a full task-based Conjugate Gradient algorithm and showed that the proposed approach leads to very high performance on multi-GPU, multicore and heterogeneous architectures.Dans le contexte de cette thèse, nous nous focalisons sur des algorithmes pour l’algèbre linéaire numérique, plus précisément sur la résolution de grands systèmes linéaires creux. Nous mettons au point des méthodes de parallélisation pour le solveur linéaire hybride MaPHyS. Premièrement nous considerons l'aproche MPI+threads. Dans MaPHyS, le premier niveau de parallélisme consiste au traitement indépendant des sous-domaines. Le second niveau est exploité grâce à l’utilisation de noyaux multithreadés denses et creux au sein des sous-domaines. Une telle implémentation correspond bien à la structure hiérarchique des supercalculateurs modernes et permet un compromis entre les performances numériques et parallèles du solveur. Nous démontrons la flexibilité de notre implémentation parallèle sur un ensemble de cas tests. Deuxièmement nous considérons un approche plus innovante, où les algorithmes sont décrits comme des ensembles de tâches avec des inter-dépendances, i.e., un graphe de tâches orienté sans cycle (DAG). Nous illustrons d’abord comment une première parallélisation à base de tâches peut être obtenue en composant des librairies à base de tâches au sein des processus MPI illustrer par un prototype d’implémentation préliminaire de notre solveur hybride. Nous montrons ensuite comment une approche à base de tâches abstrayant entièrement le matériel peut exploiter avec succès une large gamme d’architectures matérielles. À cet effet, nous avons implanté une version à base de tâches de l’algorithme du Gradient Conjugué et nous montrons que l’approche proposée permet d’atteindre une très haute performance sur des architectures multi-GPU, multicoeur ainsi qu’hétérogène

    Achieving High Performance on Supercomputers with a Sequential Task-based Programming Model

    Get PDF
    International audienceThe emergence of accelerators as standard computing resources on supercomputers and the subsequent architectural complexity increase revived the need for high-level parallel programming paradigms. Sequential task-based programming model has been shown to efficiently meet this challenge on a single multicore node possibly enhanced with accelerators, which motivated its support in the OpenMP 4.0 standard. In this paper, we show that this paradigm can also be employed to achieve high performance on modern supercomputers composed of multiple such nodes, with extremely limited changes in the user code. To prove this claim, we have extended the StarPU runtime system with an advanced inter-node data management layer that supports this model by posting communications automatically. We illustrate our discussion with the task-based tile Cholesky algorithm that we implemented on top of this new runtime system layer. We show that it enables very high productivity while achieving a performance competitive with both the pure Message Passing Interface (MPI)-based ScaLAPACK Cholesky reference implementation and the DPLASMA Cholesky code, which implements another (non-sequential) task-based programming paradigm

    Optimización del rendimiento y la eficiencia energética en sistemas masivamente paralelos

    Get PDF
    RESUMEN Los sistemas heterogéneos son cada vez más relevantes, debido a sus capacidades de rendimiento y eficiencia energética, estando presentes en todo tipo de plataformas de cómputo, desde dispositivos embebidos y servidores, hasta nodos HPC de grandes centros de datos. Su complejidad hace que sean habitualmente usados bajo el paradigma de tareas y el modelo de programación host-device. Esto penaliza fuertemente el aprovechamiento de los aceleradores y el consumo energético del sistema, además de dificultar la adaptación de las aplicaciones. La co-ejecución permite que todos los dispositivos cooperen para computar el mismo problema, consumiendo menos tiempo y energía. No obstante, los programadores deben encargarse de toda la gestión de los dispositivos, la distribución de la carga y la portabilidad del código entre sistemas, complicando notablemente su programación. Esta tesis ofrece contribuciones para mejorar el rendimiento y la eficiencia energética en estos sistemas masivamente paralelos. Se realizan propuestas que abordan objetivos generalmente contrapuestos: se mejora la usabilidad y la programabilidad, a la vez que se garantiza una mayor abstracción y extensibilidad del sistema, y al mismo tiempo se aumenta el rendimiento, la escalabilidad y la eficiencia energética. Para ello, se proponen dos motores de ejecución con enfoques completamente distintos. EngineCL, centrado en OpenCL y con una API de alto nivel, favorece la máxima compatibilidad entre todo tipo de dispositivos y proporciona un sistema modular extensible. Su versatilidad permite adaptarlo a entornos para los que no fue concebido, como aplicaciones con ejecuciones restringidas por tiempo o simuladores HPC de dinámica molecular, como el utilizado en un centro de investigación internacional. Considerando las tendencias industriales y enfatizando la aplicabilidad profesional, CoexecutorRuntime proporciona un sistema flexible centrado en C++/SYCL que dota de soporte a la co-ejecución a la tecnología oneAPI. Este runtime acerca a los programadores al dominio del problema, posibilitando la explotación de estrategias dinámicas adaptativas que mejoran la eficiencia en todo tipo de aplicaciones.ABSTRACT Heterogeneous systems are becoming increasingly relevant, due to their performance and energy efficiency capabilities, being present in all types of computing platforms, from embedded devices and servers to HPC nodes in large data centers. Their complexity implies that they are usually used under the task paradigm and the host-device programming model. This strongly penalizes accelerator utilization and system energy consumption, as well as making it difficult to adapt applications. Co-execution allows all devices to simultaneously compute the same problem, cooperating to consume less time and energy. However, programmers must handle all device management, workload distribution and code portability between systems, significantly complicating their programming. This thesis offers contributions to improve performance and energy efficiency in these massively parallel systems. The proposals address the following generally conflicting objectives: usability and programmability are improved, while ensuring enhanced system abstraction and extensibility, and at the same time performance, scalability and energy efficiency are increased. To achieve this, two runtime systems with completely different approaches are proposed. EngineCL, focused on OpenCL and with a high-level API, provides an extensible modular system and favors maximum compatibility between all types of devices. Its versatility allows it to be adapted to environments for which it was not originally designed, including applications with time-constrained executions or molecular dynamics HPC simulators, such as the one used in an international research center. Considering industrial trends and emphasizing professional applicability, CoexecutorRuntime provides a flexible C++/SYCL-based system that provides co-execution support for oneAPI technology. This runtime brings programmers closer to the problem domain, enabling the exploitation of dynamic adaptive strategies that improve efficiency in all types of applications.Funding: This PhD has been supported by the Spanish Ministry of Education (FPU16/03299 grant), the Spanish Science and Technology Commission under contracts TIN2016-76635-C2-2-R and PID2019-105660RB-C22. This work has also been partially supported by the Mont-Blanc 3: European Scalable and Power Efficient HPC Platform based on Low-Power Embedded Technology project (G.A. No. 671697) from the European Union’s Horizon 2020 Research and Innovation Programme (H2020 Programme). Some activities have also been funded by the Spanish Science and Technology Commission under contract TIN2016-81840-REDT (CAPAP-H6 network). The Integration II: Hybrid programming models of Chapter 4 has been partially performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. In particular, the author gratefully acknowledges the support of the SPMT Department of the High Performance Computing Center Stuttgart (HLRS)

    Bridging the gap between OpenMP and task-based runtime systems for the fast multipole method

    Get PDF
    International audienceWith the advent of complex modern architectures, the low-level paradigms long considered sufficient to build High Performance Computing (HPC) numerical codes have met their limits. Achieving efficiency, ensuring portability, while preserving programming tractability on such hardware prompted the HPC community to design new, higher level paradigms while relying on runtime systems to maintain performance. However, the common weakness of these projects is to deeply tie applications to specific expert-only runtime system APIs. The OpenMP specification, which aims at providing common parallel programming means for shared-memory platforms, appears as a good candidate to address this issue thanks to the latest task-based constructs introduced in its revision 4.0. The goal of this paper is to assess the effectiveness and limits of this support for designing a high-performance numerical library, ScalFMM, implementing the fast multipole method (FMM) that we have deeply redesigned with respect to the most advanced features provided by OpenMP 4. We show that OpenMP 4 allows for significant performance improvements over previous OpenMP revisions on recent multicore processors and that extensions to the 4.0 standard allow for strongly improving the performance, bridging the gap with the very high performance that was so far reserved to expert-only runtime system APIs
    • …
    corecore