8,259 research outputs found

    A machine learning-based framework for preventing video freezes in HTTP adaptive streaming

    Get PDF
    HTTP Adaptive Streaming (HAS) represents the dominant technology to deliver videos over the Internet, due to its ability to adapt the video quality to the available bandwidth. Despite that, HAS clients can still suffer from freezes in the video playout, the main factor influencing users' Quality of Experience (QoE). To reduce video freezes, we propose a network-based framework, where a network controller prioritizes the delivery of particular video segments to prevent freezes at the clients. This framework is based on OpenFlow, a widely adopted protocol to implement the software-defined networking principle. The main element of the controller is a Machine Learning (ML) engine based on the random undersampling boosting algorithm and fuzzy logic, which can detect when a client is close to a freeze and drive the network prioritization to avoid it. This decision is based on measurements collected from the network nodes only, without any knowledge on the streamed videos or on the clients' characteristics. In this paper, we detail the design of the proposed ML-based framework and compare its performance with other benchmarking HAS solutions, under various video streaming scenarios. Particularly, we show through extensive experimentation that the proposed approach can reduce video freezes and freeze time with about 65% and 45% respectively, when compared to benchmarking algorithms. These results represent a major improvement for the QoE of the users watching multimedia content online

    Optimized Adaptive Streaming Representations based on System Dynamics

    Get PDF
    Adaptive streaming addresses the increasing and heterogenous demand of multimedia content over the Internet by offering several encoded versions for each video sequence. Each version (or representation) has a different resolution and bit rate, aimed at a specific set of users, like TV or mobile phone clients. While most existing works on adaptive streaming deal with effective playout-control strategies at the client side, we take in this paper a providers' perspective and propose solutions to improve user satisfaction by optimizing the encoding rates of the video sequences. We formulate an integer linear program that maximizes users' average satisfaction, taking into account the network dynamics, the video content information, and the user population characteristics. The solution of the optimization is a set of encoding parameters that permit to create different streams to robustly satisfy users' requests over time. We simulate multiple adaptive streaming sessions characterized by realistic network connections models, where the proposed solution outperforms commonly used vendor recommendations, in terms of user satisfaction but also in terms of fairness and outage probability. The simulation results further show that video content information as well as network constraints and users' statistics play a crucial role in selecting proper encoding parameters to provide fairness a mong users and to reduce network resource usage. We finally propose a few practical guidelines that can be used to choose the encoding parameters based on the user base characteristics, the network capacity and the type of video content

    Improving Adaptive Video Streaming through Machine Learning

    Get PDF
    While the internet video is gaining increasing popularity and soaring to dominate the network traffic, extensive study is being carried out on how to achieve higher Quality of Experience (QoE) in its content delivery. Associated with the HTTP chunk-based streaming protocol, the Adaptive Bitrate (ABR) algorithms have recently emerged to cope with the diverse and fluctuating network conditions by dynamically adjusting bitrates for future chunks. This inevitably involves predicting the future throughput of a video session. Predicting parameters being part of the ABR design, we propose to follow the data-driven approach to learn the best setting of these parameters from the study of the backlogged throughput traces of previous video sessions. To further improved the quality of the prediction, we propose to follow the Decision Tree approach to properly classify the logged sessions according to those critical features that affect the network conditions, e.g. Internet Service Provider (ISP), geographical location etc. Given that the splitting criterion will have to be defined together with the selection among ABR parameter values, existing Decision Tree solutions cannot be directly applied. In this thesis, some existing Decision Tree algorithm has been properly tailored to help learning the best parameter values and the performance of the ABRs with the learnt parameter values is evaluated in comparison with the existing results in the literature. The experiment shows that this approach can improve the performance of an ABR algorithm by up to 8.59%, with 98.38% of the testing sessions performing better than having a fixed parameter value, and only 0.8% performing worse

    A Survey of Machine Learning Techniques for Video Quality Prediction from Quality of Delivery Metrics

    Get PDF
    A growing number of video streaming networks are incorporating machine learning (ML) applications. The growth of video streaming services places enormous pressure on network and video content providers who need to proactively maintain high levels of video quality. ML has been applied to predict the quality of video streams. Quality of delivery (QoD) measurements, which capture the end-to-end performances of network services, have been leveraged in video quality prediction. The drive for end-to-end encryption, for privacy and digital rights management, has brought about a lack of visibility for operators who desire insights from video quality metrics. In response, numerous solutions have been proposed to tackle the challenge of video quality prediction from QoD-derived metrics. This survey provides a review of studies that focus on ML techniques for predicting the QoD metrics in video streaming services. In the context of video quality measurements, we focus on QoD metrics, which are not tied to a particular type of video streaming service. Unlike previous reviews in the area, this contribution considers papers published between 2016 and 2021. Approaches for predicting QoD for video are grouped under the following headings: (1) video quality prediction under QoD impairments, (2) prediction of video quality from encrypted video streaming traffic, (3) predicting the video quality in HAS applications, (4) predicting the video quality in SDN applications, (5) predicting the video quality in wireless settings, and (6) predicting the video quality in WebRTC applications. Throughout the survey, some research challenges and directions in this area are discussed, including (1) machine learning over deep learning; (2) adaptive deep learning for improved video delivery; (3) computational cost and interpretability; (4) self-healing networks and failure recovery. The survey findings reveal that traditional ML algorithms are the most widely adopted models for solving video quality prediction problems. This family of algorithms has a lot of potential because they are well understood, easy to deploy, and have lower computational requirements than deep learning techniques

    Power-Constrained Fuzzy Logic Control of Video Streaming over a Wireless Interconnect

    Get PDF
    Wireless communication of video, with Bluetooth as an example, represents a compromise between channel conditions, display and decode deadlines, and energy constraints. This paper proposes fuzzy logic control (FLC) of automatic repeat request (ARQ) as a way of reconciling these factors, with a 40% saving in power in the worst channel conditions from economizing on transmissions when channel errors occur. Whatever the channel conditions are, FLC is shown to outperform the default Bluetooth scheme and an alternative Bluetooth-adaptive ARQ scheme in terms of reduced packet loss and delay, as well as improved video quality

    Improving the transfer of machine learning-based video QoE estimation across diverse networks

    Get PDF
    With video streaming traffic generally being encrypted end-to-end, there is a lot of interest from network operators to find novel ways to evaluate streaming performance at the application layer. Machine learning (ML) has been extensively used to develop solutions that infer application-level Key Performance Indicators (KPI) and/or Quality of Experience (QoE) from the patterns in encrypted traffic. Having such insights provides the means for more user-centric traffic management and enables the mitigation of QoE degradations, thus potentially preventing customer churn. The ML–based QoE/KPI estimation solutions proposed in literature are typically trained on a limited set of network scenarios and it is often unclear how the obtained models perform if applied in a previously unseen setting (e.g., if the model is applied at the premises of a different network operator). In this paper, we address this gap by cross-evaluating the performance of QoE/KPI estimation models trained on 4 separate datasets generated from streaming 48000 video streaming sessions. The paper evaluates a set of methods for improving the performance of models when applied in a different network. Analyzed methods require no or considerably less application-level ground-truth data collected in the new setting, thus significantly reducing the extensiveness of required data collection

    モバイルネットワークにおけるTCPスループット予測と適応レート制御に関する研究

    Get PDF
    早大学位記番号:新8115早稲田大
    corecore