3,675 research outputs found

    Improvements to services at the European Nucleotide Archive

    Get PDF
    The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) is Europe’s primary nucleotide sequence archival resource, safeguarding open nucleotide data access, engaging in worldwide collaborative data exchange and integrating with the scientific publication process. ENA has made significant contributions to the collaborative nucleotide archival arena as an active proponent of extending the traditional collaboration to cover capillary and next-generation sequencing information. We have continued to co-develop data and metadata representation formats with our collaborators for both data exchange and public data dissemination. In addition to the DDBJ/EMBL/GenBank feature table format, we share metadata formats for capillary and next-generation sequencing traces and are using and contributing to the NCBI SRA Toolkit for the long-term storage of the next-generation sequence traces. During the course of 2009, ENA has significantly improved sequence submission, search and access functionalities provided at EMBL–EBI. In this article, we briefly describe the content and scope of our archive and introduce major improvements to our services

    Petabyte-scale innovations at the European Nucleotide Archive

    Get PDF
    Dramatic increases in the throughput of nucleotide sequencing machines, and the promise of ever greater performance, have thrust bioinformatics into the era of petabyte-scale data sets. Sequence repositories, which provide the feed for these data sets into the worldwide computational infrastructure, are challenged by the impact of these data volumes. The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/embl), comprising the EMBL Nucleotide Sequence Database and the Ensembl Trace Archive, has identified challenges in the storage, movement, analysis, interpretation and visualization of petabyte-scale data sets. We present here our new repository for next generation sequence data, a brief summary of contents of the ENA and provide details of major developments to submission pipelines, high-throughput rule-based validation infrastructure and data integration approaches

    The European Nucleotide Archive

    Get PDF
    The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) is Europe’s primary nucleotide-sequence repository. The ENA consists of three main databases: the Sequence Read Archive (SRA), the Trace Archive and EMBL-Bank. The objective of ENA is to support and promote the use of nucleotide sequencing as an experimental research platform by providing data submission, archive, search and download services. In this article, we outline these services and describe major changes and improvements introduced during 2010. These include extended EMBL-Bank and SRA-data submission services, extended ENA Browser functionality, support for submitting data to the European Genome-phenome Archive (EGA) through SRA, and the launch of a new sequence similarity search service

    Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe

    Get PDF
    Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery1,2, spreading efficiently via low-dose fecal-oral transmission3,4. Historically, S. sonnei has been predominantly responsible for dysentery in developed countries, but is now emerging as a problem in the developing world, apparently replacing the more diverse S. flexneri in areas undergoing economic development and improvements in water quality4-6. Classical approaches have shown S. sonnei is genetically conserved and clonal7. We report here whole-genome sequencing of 132 globally-distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and has diversified into several distinct lineages with unique characteristics. Our analysis suggests the majority of this diversification occurred in Europe, followed by more recent establishment of local pathogen populations in other continents predominantly due to the pandemic spread of a single, rapidly-evolving, multidrug resistant lineage

    Whole genome sequence analysis indicates recent diversification of mammal-associated Campylobacter fetus and implicates a genetic factor associated with H2S production

    Get PDF
    cknowledgements We like to thank Emma Yee (U.S. Department of Agriculture) for the generation of sequence data, we thank James Bono (U.S. Department of Agriculture) for the generation of PacBio RS reads and thank Dr. Brian Brooks and Dr. John Devenish (Canadian Food Inspection Agency) for providing C. fetus strains and for critical review of this manuscript. Funding Publication charges for this article have been funded by Utrecht University, the Netherlands.Peer reviewedPublisher PD

    Major submissions tool developments at the European nucleotide archive

    Get PDF
    The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena), Europe's primary nucleotide sequence resource, captures and presents globally comprehensive nucleic acid sequence and associated information. Covering the spectrum from raw data to assembled and functionally annotated genomes, the ENA has witnessed a dramatic growth resulting from advances in sequencing technology and ever broadening application of the methodology. During 2011, we have continued to operate and extend the broad range of ENA services. In particular, we have released major new functionality in our interactive web submission system, Webin, through developments in template-based submissions for annotated sequences and support for raw next-generation sequence read submissions

    An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion.

    Get PDF
    Background: Plasmodium cynomolgi, a non-human primate malaria parasite species, has been an important model parasite since its discovery in 1907. Similarities in the biology of P. cynomolgi to the closely related, but less tractable, human malaria parasite P. vivax make it the model parasite of choice for liver biology and vaccine studies pertinent to P. vivax malaria. Molecular and genome-scale studies of P. cynomolgi have relied on the current reference genome sequence, which remains highly fragmented with 1,649 unassigned scaffolds and little representation of the subtelomeres. Methods: Using long-read sequence data (Pacific Biosciences SMRT technology), we assembled and annotated a new reference genome sequence, PcyM, sourced from an Indian rhesus monkey. We compare the newly assembled genome sequence with those of several other Plasmodium species, including a re-annotated P. coatneyi assembly. Results: The new PcyM genome assembly is of significantly higher quality than the existing reference, comprising only 56 pieces, no gaps and an improved average gene length. Detailed manual curation has ensured a comprehensive annotation of the genome with 6,632 genes, nearly 1,000 more than previously attributed to P. cynomolgi. The new assembly also has an improved representation of the subtelomeric regions, which account for nearly 40% of the sequence. Within the subtelomeres, we identified more than 1300 Plasmodium interspersed repeat (pir) genes, as well as a striking expansion of 36 methyltransferase pseudogenes that originated from a single copy on chromosome 9. Conclusions: The manually curated PcyM reference genome sequence is an important new resource for the malaria research community. The high quality and contiguity of the data have enabled the discovery of a novel expansion of methyltransferase in the subtelomeres, and illustrates the new comparative genomics capabilities that are being unlocked by complete reference genomes

    The International Nucleotide Sequence Database Collaboration

    Get PDF
    Under the International Nucleotide Sequence Database Collaboration (INSDC; http://www.insdc.org), globally comprehensive public domain nucleotide sequence is captured, preserved and presented. The partners of this long-standing collaboration work closely together to provide data formats and conventions that enable consistent data submission to their databases and support regular data exchange around the globe. Clearly defined policy and governance in relation to free access to data and relationships with journal publishers have positioned INSDC databases as a key provider of the scientific record and a core foundation for the global bioinformatics data infrastructure. While growth in sequence data volumes comes no longer as a surprise to INSDC partners, the uptake of next-generation sequencing technology by mainstream science that we have witnessed in recent years brings a step-change to growth, necessarily making a clear mark on INSDC strategy. In this article, we introduce the INSDC, outline data growth patterns and comment on the challenges of increased growth

    InterPro in 2011: new developments in the family and domain prediction database

    Get PDF
    InterPro (http://www.ebi.ac.uk/interpro/) is a database that integrates diverse information about protein families, domains and functional sites, and makes it freely available to the public via Web-based interfaces and services. Central to the database are diagnostic models, known as signatures, against which protein sequences can be searched to determine their potential function. InterPro has utility in the large-scale analysis of whole genomes and meta-genomes, as well as in characterizing individual protein sequences. Herein we give an overview of new developments in the database and its associated software since 2009, including updates to database content, curation processes and Web and programmatic interface
    corecore