453 research outputs found

    Energy efficient navigational methods for autonomous underwater gliders in surface denied regions

    Get PDF
    Autonomous underwater gliders routinely perform long duration profiling missions while characterizing the chemical, physical and biological properties of the water column. These measurements have opened up new ways of observing the ocean’s processes and their interactions with the atmosphere across time and length scales which were not previously possible. Extending these observations to ice-covered regions is of importance due to their role in ocean circulation patterns, increased economic interest in these areas and a general sparsity of observations. This thesis develops an energy optimal depth controller, a terrain aided navigation method and a magnetic measurement method for an autonomous underwater glider. A review of existing methods suitable for navigation in underwater environments as well as the state of the art in magnetic measurement and calibration techniques is also presented. The energy optimal depth controller is developed and implemented based on an integral state feedback controller. A second order linear time invariant system is identified from field data and used to compute the state feedback controller gains through an augmented linear quadratic regulator. The resulting gains and state feedback controller methodology are verified through field trials and found to control the depth of the vehicle while losing less than one percent of the vehicle’s propulsive load to control inputs or lift induced drag. The terrain aided navigation method is developed based on a jittered bootstrap algorithm which is a type of particle filter that makes use of the vehicle’s deadreckoned navigation solution, onboard altimeter and a local digital parameter model (DPM). An evaluation is performed through post-processing offline location estimates from field trials which took place in Holyrood Arm, Newfoundland, overlapping a previously collected DPM. During the post-processing of these trials, the number of particles, jittering variance and DPM grid cell size were varied. Online open loop field trials were performed through integrating a new single board computer. In these trials the localization error remained bounded and improved on the dead reckoning error, validating the filter despite the large dead-reckoned errors, single beam altitude measurements, and short test duration. Terrain aided navigation methods perform poorly in regions of flat terrain or in deep water where the seafloor is beyond the range of the altimeter. Magnetic measurements of the Earth’s main field have been proposed previously to augment terrain aided navigation algorithms in these regions. To this end a low power magnetic instrumentation suite for an underwater glider has been developed. Two calibration methodologies were also developed and compared against regional digital models of the magnetic field. The calibration methods include one for which the actuators in the vehicle were kept in fixed locations and a second for which the calibration coefficients were parameterized for the actuator locations. Both methods were found to agree with the low frequency content in the a-priori regional magnetic anomaly grids

    Fusion of Imaging and Inertial Sensors for Navigation

    Get PDF
    The motivation of this research is to address the limitations of satellite-based navigation by fusing imaging and inertial systems. The research begins by rigorously describing the imaging and navigation problem and developing practical models of the sensors, then presenting a transformation technique to detect features within an image. Given a set of features, a statistical feature projection technique is developed which utilizes inertial measurements to predict vectors in the feature space between images. This coupling of the imaging and inertial sensors at a deep level is then used to aid the statistical feature matching function. The feature matches and inertial measurements are then used to estimate the navigation trajectory using an extended Kalman filter. After accomplishing a proper calibration, the image-aided inertial navigation algorithm is then tested using a combination of simulation and ground tests using both tactical and consumer- grade inertial sensors. While limitations of the Kalman filter are identified, the experimental results demonstrate a navigation performance improvement of at least two orders of magnitude over the respective inertial-only solutions

    Robust Modular Feature-Based Terrain-Aided Visual Navigation and Mapping

    Get PDF
    The visual feature-based Terrain-Aided Navigation (TAN) system presented in this thesis addresses the problem of constraining inertial drift introduced into the location estimate of Unmanned Aerial Vehicles (UAVs) in GPS-denied environment. The presented TAN system utilises salient visual features representing semantic or human-interpretable objects (roads, forest and water boundaries) from onboard aerial imagery and associates them to a database of reference features created a-priori, through application of the same feature detection algorithms to satellite imagery. Correlation of the detected features with the reference features via a series of the robust data association steps allows a localisation solution to be achieved with a finite absolute bound precision defined by the certainty of the reference dataset. The feature-based Visual Navigation System (VNS) presented in this thesis was originally developed for a navigation application using simulated multi-year satellite image datasets. The extension of the system application into the mapping domain, in turn, has been based on the real (not simulated) flight data and imagery. In the mapping study the full potential of the system, being a versatile tool for enhancing the accuracy of the information derived from the aerial imagery has been demonstrated. Not only have the visual features, such as road networks, shorelines and water bodies, been used to obtain a position ’fix’, they have also been used in reverse for accurate mapping of vehicles detected on the roads into an inertial space with improved precision. Combined correction of the geo-coding errors and improved aircraft localisation formed a robust solution to the defense mapping application. A system of the proposed design will provide a complete independent navigation solution to an autonomous UAV and additionally give it object tracking capability

    Reliable localization methods for intelligent vehicles based on environment perception

    Get PDF
    Mención Internacional en el título de doctorIn the near past, we would see autonomous vehicles and Intelligent Transport Systems (ITS) as a potential future of transportation. Today, thanks to all the technological advances in recent years, the feasibility of such systems is no longer a question. Some of these autonomous driving technologies are already sharing our roads, and even commercial vehicles are including more Advanced Driver-Assistance Systems (ADAS) over the years. As a result, transportation is becoming more efficient and the roads are considerably safer. One of the fundamental pillars of an autonomous system is self-localization. An accurate and reliable estimation of the vehicle’s pose in the world is essential to navigation. Within the context of outdoor vehicles, the Global Navigation Satellite System (GNSS) is the predominant localization system. However, these systems are far from perfect, and their performance is degraded in environments with limited satellite visibility. Additionally, their dependence on the environment can make them unreliable if it were to change. Accordingly, the goal of this thesis is to exploit the perception of the environment to enhance localization systems in intelligent vehicles, with special attention to their reliability. To this end, this thesis presents several contributions: First, a study on exploiting 3D semantic information in LiDAR odometry is presented, providing interesting insights regarding the contribution to the odometry output of each type of element in the scene. The experimental results have been obtained using a public dataset and validated on a real-world platform. Second, a method to estimate the localization error using landmark detections is proposed, which is later on exploited by a landmark placement optimization algorithm. This method, which has been validated in a simulation environment, is able to determine a set of landmarks so the localization error never exceeds a predefined limit. Finally, a cooperative localization algorithm based on a Genetic Particle Filter is proposed to utilize vehicle detections in order to enhance the estimation provided by GNSS systems. Multiple experiments are carried out in different simulation environments to validate the proposed method.En un pasado no muy lejano, los vehículos autónomos y los Sistemas Inteligentes del Transporte (ITS) se veían como un futuro para el transporte con gran potencial. Hoy, gracias a todos los avances tecnológicos de los últimos años, la viabilidad de estos sistemas ha dejado de ser una incógnita. Algunas de estas tecnologías de conducción autónoma ya están compartiendo nuestras carreteras, e incluso los vehículos comerciales cada vez incluyen más Sistemas Avanzados de Asistencia a la Conducción (ADAS) con el paso de los años. Como resultado, el transporte es cada vez más eficiente y las carreteras son considerablemente más seguras. Uno de los pilares fundamentales de un sistema autónomo es la autolocalización. Una estimación precisa y fiable de la posición del vehículo en el mundo es esencial para la navegación. En el contexto de los vehículos circulando en exteriores, el Sistema Global de Navegación por Satélite (GNSS) es el sistema de localización predominante. Sin embargo, estos sistemas están lejos de ser perfectos, y su rendimiento se degrada en entornos donde la visibilidad de los satélites es limitada. Además, los cambios en el entorno pueden provocar cambios en la estimación, lo que los hace poco fiables en ciertas situaciones. Por ello, el objetivo de esta tesis es utilizar la percepción del entorno para mejorar los sistemas de localización en vehículos inteligentes, con una especial atención a la fiabilidad de estos sistemas. Para ello, esta tesis presenta varias aportaciones: En primer lugar, se presenta un estudio sobre cómo aprovechar la información semántica 3D en la odometría LiDAR, generando una base de conocimiento sobre la contribución de cada tipo de elemento del entorno a la salida de la odometría. Los resultados experimentales se han obtenido utilizando una base de datos pública y se han validado en una plataforma de conducción del mundo real. En segundo lugar, se propone un método para estimar el error de localización utilizando detecciones de puntos de referencia, que posteriormente es explotado por un algoritmo de optimización de posicionamiento de puntos de referencia. Este método, que ha sido validado en un entorno de simulación, es capaz de determinar un conjunto de puntos de referencia para el cual el error de localización nunca supere un límite previamente fijado. Por último, se propone un algoritmo de localización cooperativa basado en un Filtro Genético de Partículas para utilizar las detecciones de vehículos con el fin de mejorar la estimación proporcionada por los sistemas GNSS. El método propuesto ha sido validado mediante múltiples experimentos en diferentes entornos de simulación.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridSecretario: Joshué Manuel Pérez Rastelli.- Secretario: Jorge Villagrá Serrano.- Vocal: Enrique David Martí Muño

    UAV or Drones for Remote Sensing Applications in GPS/GNSS Enabled and GPS/GNSS Denied Environments

    Get PDF
    The design of novel UAV systems and the use of UAV platforms integrated with robotic sensing and imaging techniques, as well as the development of processing workflows and the capacity of ultra-high temporal and spatial resolution data, have enabled a rapid uptake of UAVs and drones across several industries and application domains.This book provides a forum for high-quality peer-reviewed papers that broaden awareness and understanding of single- and multiple-UAV developments for remote sensing applications, and associated developments in sensor technology, data processing and communications, and UAV system design and sensing capabilities in GPS-enabled and, more broadly, Global Navigation Satellite System (GNSS)-enabled and GPS/GNSS-denied environments.Contributions include:UAV-based photogrammetry, laser scanning, multispectral imaging, hyperspectral imaging, and thermal imaging;UAV sensor applications; spatial ecology; pest detection; reef; forestry; volcanology; precision agriculture wildlife species tracking; search and rescue; target tracking; atmosphere monitoring; chemical, biological, and natural disaster phenomena; fire prevention, flood prevention; volcanic monitoring; pollution monitoring; microclimates; and land use;Wildlife and target detection and recognition from UAV imagery using deep learning and machine learning techniques;UAV-based change detection

    GPS-denied multi-agent localization and terrain classification for autonomous parafoil systems

    Full text link
    Guided airdrop parafoil systems depend on GPS for localization and landing. In some scenarios, GPS may be unreliable (jammed, spoofed, or disabled), or unavailable (indoor, or extraterrestrial environments). In the context of guided parafoils, landing locations for each system must be pre-programmed manually with global coordinates, which may be inaccurate or outdated, and offer no in-flight adaptability. Parafoil systems in particular have constrained motion, communication, and on-board computation and storage capabilities, and must operate in harsh conditions. These constraints necessitate a comprehensive approach to address the fundamental limitations of these systems when GPS cannot be used reliably. A novel and minimalist approach to visual navigation and multi-agent communication using semantic machine learning classification and geometric constraints is introduced. This approach enables localization and landing site identification for multiple communicating parafoil systems deployed in GPS-denied environments

    GPS-denied multi-agent localization and terrain classification for autonomous parafoil systems

    Full text link
    Guided airdrop parafoil systems depend on GPS for localization and landing. In some scenarios, GPS may be unreliable (jammed, spoofed, or disabled), or unavailable (indoor, or extraterrestrial environments). In the context of guided parafoils, landing locations for each system must be pre-programmed manually with global coordinates, which may be inaccurate or outdated, and offer no in-flight adaptability. Parafoil systems in particular have constrained motion, communication, and on-board computation and storage capabilities, and must operate in harsh conditions. These constraints necessitate a comprehensive approach to address the fundamental limitations of these systems when GPS cannot be used reliably. A novel and minimalist approach to visual navigation and multi-agent communication using semantic machine learning classification and geometric constraints is introduced. This approach enables localization and landing site identification for multiple communicating parafoil systems deployed in GPS-denied environments

    Advances in Sonar Technology

    Get PDF
    The demand to explore the largest and also one of the richest parts of our planet, the advances in signal processing promoted by an exponential growth in computation power and a thorough study of sound propagation in the underwater realm, have lead to remarkable advances in sonar technology in the last years.The work on hand is a sum of knowledge of several authors who contributed in various aspects of sonar technology. This book intends to give a broad overview of the advances in sonar technology of the last years that resulted from the research effort of the authors in both sonar systems and their applications. It is intended for scientist and engineers from a variety of backgrounds and even those that never had contact with sonar technology before will find an easy introduction with the topics and principles exposed here
    • …
    corecore