127 research outputs found

    Understanding and Leveraging Virtualization Technology in Commodity Computing Systems

    Get PDF
    Commodity computing platforms are imperfect, requiring various enhancements for performance and security purposes. In the past decade, virtualization technology has emerged as a promising trend for commodity computing platforms, ushering many opportunities to optimize the allocation of hardware resources. However, many abstractions offered by virtualization not only make enhancements more challenging, but also complicate the proper understanding of virtualized systems. The current understanding and analysis of these abstractions are far from being satisfactory. This dissertation aims to tackle this problem from a holistic view, by systematically studying the system behaviors. The focus of our work lies in performance implication and security vulnerabilities of a virtualized system.;We start with the first abstraction---an intensive memory multiplexing for I/O of Virtual Machines (VMs)---and present a new technique, called Batmem, to effectively reduce the memory multiplexing overhead of VMs and emulated devices by optimizing the operations of the conventional emulated Memory Mapped I/O in hypervisors. Then we analyze another particular abstraction---a nested file system---and attempt to both quantify and understand the crucial aspects of performance in a variety of settings. Our investigation demonstrates that the choice of a file system at both the guest and hypervisor levels has significant impact upon I/O performance.;Finally, leveraging utilities to manage VM disk images, we present a new patch management framework, called Shadow Patching, to achieve effective software updates. This framework allows system administrators to still take the offline patching approach but retain most of the benefits of live patching by using commonly available virtualization techniques. to demonstrate the effectiveness of the approach, we conduct a series of experiments applying a wide variety of software patches. Our results show that our framework incurs only small overhead in running systems, but can significantly reduce maintenance window

    Planning Live-Migrations to Prepare Servers for Maintenance

    Get PDF
    International audienceIn a virtualized data center, server maintenance is a common but still critical operation. A prerequisite is indeed to relocate elsewhere the Virtual Machines (VMs) running on the production servers to prepare them for the maintenance. When the maintenance focuses several servers, this may lead to a costly relocation of several VMs so the migration plan must be chose wisely. This however implies to master numerous human, technical, and economical aspects that play a role in the design of a quality migration plan. In this paper, we study migration plans that can be decided by an operator to prepare for an hardware upgrade or a server refresh on multiple servers. We exhibit performance bottleneck and pitfalls that reduce the plan efficiency. We then discuss and validate possible improvements deduced from the knowledge of the environment peculiarities

    A Comparison of wide area network performance using virtualized and non-virtualized client architectures

    Get PDF
    The goal of this thesis is to determine if there is a significant performance difference between two network computer architecture models. The study will measure latency and throughput for both client-server and virtualized client architectures. In the client server environment, the client computer performs a significant portion of the work and frequently requires downloading uploading files to and from a remote location. Virtual client architecture turns the client machine into a terminal, sending only keystrokes and mouse clicks and receiving only display pixel or sound changes. I accomplished the goal of comparing these architectures by comparing completion times for ping reply, file download, a small set of common work tasks, and a moderately large SQL database query. I compared these tasks using simulated wide area network, local area network, and virtual client network architectures. The study limits the architecture to one where the virtual client and server are in the same data center

    Data Center Server Virtualization Solution Using Microsoft Hyper-V

    Get PDF
    Cloud Computing has helped businesses scale within minutes and take their services to their customers much faster. Virtualization is considered the core-computing layer of a cloud setup. All the problems a traditional data center environment like space, power, resilience, centralized data management, and rapid deployment of servers as per business need have been solved with the introduction of Hyper-V (a server virtualization solution from Microsoft). Now companies can deploy multiple servers and applications with just a click and they can also centrally manage the data storage. This paper focuses on the difference between VMware and Hyper virtualization platforms and building a virtualized infrastructure solution using Hyper

    Use of a virtualization in the transition of a telecommunication networks toward 5G

    Get PDF
    We are in the front of the next big step of a new generation of the telecommunications networks, called 5G. The 5G in still in the preparation, but the actual wide spread use is nearby. The move toward 5G is not possible without use of a cloud and a virtualization. In the paper we are dealing with the issues how to incorporate existing fixed networks to the mobile 5G network and how to use a virtualization technology when moving to 5G. From the example of a real telecommunication system we defined issues, dilemmas and suggestions when moving toward 5G networks using virtualization

    LibrettOS: A Dynamically Adaptable Multiserver-Library OS

    Full text link
    We present LibrettOS, an OS design that fuses two paradigms to simultaneously address issues of isolation, performance, compatibility, failure recoverability, and run-time upgrades. LibrettOS acts as a microkernel OS that runs servers in an isolated manner. LibrettOS can also act as a library OS when, for better performance, selected applications are granted exclusive access to virtual hardware resources such as storage and networking. Furthermore, applications can switch between the two OS modes with no interruption at run-time. LibrettOS has a uniquely distinguishing advantage in that, the two paradigms seamlessly coexist in the same OS, enabling users to simultaneously exploit their respective strengths (i.e., greater isolation, high performance). Systems code, such as device drivers, network stacks, and file systems remain identical in the two modes, enabling dynamic mode switching and reducing development and maintenance costs. To illustrate these design principles, we implemented a prototype of LibrettOS using rump kernels, allowing us to reuse existent, hardened NetBSD device drivers and a large ecosystem of POSIX/BSD-compatible applications. We use hardware (VM) virtualization to strongly isolate different rump kernel instances from each other. Because the original rumprun unikernel targeted a much simpler model for uniprocessor systems, we redesigned it to support multicore systems. Unlike kernel-bypass libraries such as DPDK, applications need not be modified to benefit from direct hardware access. LibrettOS also supports indirect access through a network server that we have developed. Applications remain uninterrupted even when network components fail or need to be upgraded. Finally, to efficiently use hardware resources, applications can dynamically switch between the indirect and direct modes based on their I/O load at run-time. [full abstract is in the paper]Comment: 16th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments (VEE '20), March 17, 2020, Lausanne, Switzerlan

    Energy Saving and Virtualization Technologies in Switching

    Get PDF
    Switching is the key functionality for many devices like electronic Router and Switch, optical Router, Network on Chips (NoCs) and so on. Basically, switching is responsible for moving data unit from one port/location to another (or multiple) port(s)/location(s). In past years, the high capacity, low delay were the main concerns when designing high-end switching unit. As new demands, requests and technologies emerge, flexibility and low power cost switching design become to weight the same as throughput and delay. On one hand, highly flexible (i.e, programming ability) switching can cope with variable needs stem from new applications (i.e, VoIP) and popular user behavior (i.e, p2p downloading); on the other hand, reduce the energy and power dissipation for switching could not only save bills and build echo system but also expand components life time. Many research efforts have been devoted to increase switching flexibility and reduce its power cost. In this thesis work, we consider to exploit virtualization as the main technique to build flexible software router in the first part, then in the second part we draw our attention on energy saving in NoC (i.e, a switching fabric designed to handle the on chip data transmission) and software router. In the first part of the thesis, we consider the virtualization inside Software Routers (SRs). SR, i.e, routers running in commodity Personal Computers (PCs), become an appealing solution compared to traditional Proprietary Routing Devices (PRD) for various reasons such as cost (the multi-vendor hardware used by SRs can be cheap, while the equipment needed by PRDs is more expensive and their training cost is higher), openness (SRs can make use of a large number of open source networking applications, while PRDs are more closed) and flexibility. The forwarding performance provided by SRs has been an obstacle to their deployment in real networks. For this reason, we proposed to aggregate multiple routing units that form an powerful SR known as the Multistage Software Router (MSR) to overcome the performance limitation for a single SR. Our results show that the throughput can increase almost linearly as the number of the internal routing devices. But some other features related to flexibility (such as power saving, programmability, router migration or easy management) have been investigated less than performance previously. We noticed that virtualization techniques become reality thanks to the quick development of the PC architectures, which are now able to easily support several logical PCs running in parallel on the same hardware. Virtualization could provide many flexible features like hardware and software decoupling, encapsulation of virtual machine state, failure recovery and security, to name a few. Virtualization permits to build multiple SRs inside one physical host and a multistage architecture exploiting only logical devices. By doing so, physical resources can be used in a more efficient way, energy savings features (switching on and off device when needed) can be introduced and logical resources could be rented on-demand instead of being owned. Since virtualization techniques are still difficult to deploy, several challenges need to be faced when trying to integrate them into routers. The main aim of the first part in this thesis is to find out the feasibility of the virtualization approach, to build and test virtualized SR (VSR), to implement the MSR exploiting logical, i.e. virtualized, resources, to analyze virtualized routing performance and to propose improvement techniques to VSR and virtual MSR (VMSR). More specifically, we considered different virtualization solutions like VMware, XEN, KVM to build VSR and VMSR, being VMware a closed source solution but with higher performance and XEN/KVM open source solutions. Firstly we built and tested each single component of our multistage architecture (i.e, back-end router, load balancer )inside the virtual infrastructure, then and we extended the performance experiments with more complex scenarios like multiple Back-end Router (BR) or Load Balancer (LB) which cooperate to route packets. Our results show that virtualization could introduce 40~\% performance penalty compare with the hardware only solution. Keep the performance limitation in mind, we developed the whole VMSR and we obtained low throughput with 64B packet flow as expected. To increase the VMSR throughput, two directions could be considered, the first one is to improve the single component ( i.e, VSR) performance and the other is to work from the topology (i.e, best allocation of the VMs into the hardware ) point of view. For the first method, we considered to tune the VSR inside the KVM and we studied closely such as Linux driver, scheduler, interconnect methodology which could impact the performance significantly with proper configuration; then we proposed two ways for the VMs allocation into physical servers to enhance the VMSR performance. Our results show that with good tuning and allocation of VMs, we could minimize the virtualization penalty and get reasonable throughput for running SRs inside virtual infrastructure and add flexibility functionalities into SRs easily. In the second part of the thesis, we consider the energy efficient switching design problem and we focus on two main architecture, the NoC and MSR. As many research works suggest, the energy cost in the Communication Technologies ( ICT ) is constantly increasing. Among the main ICT sectors, a large portion of the energy consumption is contributed by the telecommunication infrastructure and their devices, i.e, router, switch, cell phone, ip TV settle box, storage home gateway etc. More in detail, the linecards, links, System on Chip (SoC) including the transmitter/receiver on these variate devices are the main power consuming units. We firstly present the work on the power reduction of the data transmission in SoC, which is carried out by the NoC. NoC is an approach to design the communication subsystem between different Processing Units (PEs) in a SoC. PEs could be different elements such as CPU, memory, digital signal/analog signal processor etc. Different PEs performs specific tasks depending on the applications running on the chip. Different tasks need to exchange data information among each other, thus flits ( chopped packet with limited header information ) are generated by PEs. The flits are injected into the NoC by the proper interface and routed until reach the destination PEs. For the whole procedure, the NoC behaves as a packet switch network. Studies show that in general the information processing in the PEs only consume 60~\% energy while the remaining 40~\% are consumed by the NoC. More importantly, as the current network designing principle, the NoC capacity is devised to handle the peak load. This is a clear sign for energy saving when the network load is low. In our work, we considered to exploit Dynamic Voltage and Frequency Scaling (DVFS) technique, which can jointly decrease or increase the system voltage and frequency when necessary, i.e, decrease the voltage and frequency at low load scenario to save energy and reduce power dissipation. More precisely, we studied two different NoC architectures for energy saving, namely single plane chip and multi-plane chip architecture. In both cases we have a very strict constraint to be that all the links and transmitter/receivers on the same plane work at the same frequency/voltage to avoid synchronization problem. This is the main difference with many existing works in the literature which usually assume different links can work at different frequency, that is hard to be implemented in reality. For the single plane NoC, we exploited different routing schemas combined with DVFS to reduce the power for the whole chip. Our results haven been compared with the optimal value obtained by modeling the power saving formally as a quadratic programming problem. Results suggest that just by using simple load balancing routing algorithm, we can save considerable energy for the single chip NoC architecture. Furthermore, we noticed that in the single plane NoC architecture, the bottleneck link could limit the DVFS effectiveness. Then we discovered that multiplane NoC architecture is fairly easy to be implemented and it could help with the energy saving. Thus we focus on the multiplane architecture and we found out that DVFS could be more efficient when we concentrate more traffic into one plane and send the remaining flows to other planes. We compared load concentration and load balancing with different power modeling and all simulation results show that load concentration is better compared with load balancing for multiplan NoC architecture. Finally, we also present one of the the energy efficient MSR design technique, which permits the MSR to follow the day-night traffic pattern more efficiently with our on-line energy saving algorithm

    Similitude: Interfacing a Traffic Simulator and Network Simulator with Emulated Android Clients

    Get PDF
    Mobile phone apps are increasingly part and parcel of today's intelligent transportation systems (ITS). Evaluating these apps at scale requires modeling of phones and networks, along with vehicles, people and roads. In this paper, we present Similitude, a system comprising a traffic simulator, network simulator, and cluster of Android emulators that has applications in mobile app development as well as modern transport simulation. Apps with their wireless network stack are run on an Android emulator, with network packet delivery modeled in detail via a network simulator. Each phone's location and human interaction elements are obtained through interfacing with a microscopic traffic simulator running driver and pedestrian behavioral models. A prototype of the system is shown to scale well up to 300 simultaneous connected Android emulators, with individual system components scaling upwards of thousands of agents. An ITS app that does road space rationing is used as the case study demonstrating a potential use case of Similitude

    Virtual Organization Clusters: Self-Provisioned Clouds on the Grid

    Get PDF
    Virtual Organization Clusters (VOCs) provide a novel architecture for overlaying dedicated cluster systems on existing grid infrastructures. VOCs provide customized, homogeneous execution environments on a per-Virtual Organization basis, without the cost of physical cluster construction or the overhead of per-job containers. Administrative access and overlay network capabilities are granted to Virtual Organizations (VOs) that choose to implement VOC technology, while the system remains completely transparent to end users and non-participating VOs. Unlike alternative systems that require explicit leases, VOCs are autonomically self-provisioned according to configurable usage policies. As a grid computing architecture, VOCs are designed to be technology agnostic and are implementable by any combination of software and services that follows the Virtual Organization Cluster Model. As demonstrated through simulation testing and evaluation of an implemented prototype, VOCs are a viable mechanism for increasing end-user job compatibility on grid sites. On existing production grids, where jobs are frequently submitted to a small subset of sites and thus experience high queuing delays relative to average job length, the grid-wide addition of VOCs does not adversely affect mean job sojourn time. By load-balancing jobs among grid sites, VOCs can reduce the total amount of queuing on a grid to a level sufficient to counteract the performance overhead introduced by virtualization
    • …
    corecore