View metadata, citation and similar papers at core.ac.uk

-
brought to you by .{ CORE

provided by DSpace@MIT

Similitude: Interfacing a traffic simulator and
network simulator with emulated Android clients

Seth N. Hetu
Dept. of EECS
Massachusetts Institute of Technology
Cambridge, MA 02139
Email: sethhetu@csail.mit.edu

Abstract—Mobile phone apps are increasingly part and parcel
of today’s intelligent transportation systems (ITS). Evaluating
these apps at scale requires modeling of phones and networks,
along with vehicles, people and roads. In this paper, we present
Similitude, a system comprising a traffic simulator, network
simulator, and cluster of Android emulators that has applica-
tions in mobile app development as well as modern transport
simulation. Apps with their wireless network stack are run on
an Android emulator, with network packet delivery modeled
in detail via a network simulator. Each phone’s location and
human interaction elements are obtained through interfacing with
a microscopic traffic simulator running driver and pedestrian
behavioral models. A prototype of the system is shown to scale
well up to 300 simultaneous connected Android emulators, with
individual system components scaling upwards of thousands of
agents. An ITS app that does road space rationing is used as the
case study demonstrating a potential use case of Similitude.

I. INTRODUCTION

Modern mobile phone application (app) developers are
increasingly able to rely on GPS location services to develop
rich client experiences. At the same time, transport system
designers have used mobile apps for a variety of ITS purposes,
such as traffic routing! and bus prediction®. Both parties can
benefit from computer simulation: app developers can test
their applications at a city scale with credible location and
network data, and calibrated models of drivers, passengers and
pedestrians. Similarly, transport system designers can estimate
the impact of phone apps on transport system parameters such
as roadway capacity and travel time improvements.

With this in mind, we present Similitude?, a system that
combines the SimMobility agent-based microscopic traffic
simulator with Android virtual machine emulation in QEMU
and ns-3, a network simulator. This paper deals with the
technical details of the combined system’s construction, as
well as the performance, scalability, and limitations of the
system and a case study of its use with the RoadRunner app,
a distributed road-space rationing program compatible with
Android [1].

Similitude’s distinguishing quality is its focus on valid
simulation combined with flexible emulation. Consider the

Thttp://googlemobile.blogspot.com/2011/03/youve-got-better-things-to-do-
than-wait.html

Zhttp://www.sbstransit.com.sg/iRIS/overview.aspx

3The name draws from simulation of a multitude of people, as well as
having verisimilitude due to relying on validated simulation models.

Vahid Saber Hamishagi
Future Urban Mobility
SMART
Singapore, 138602
Email: vahid@smart.mit.edu

Li-Shivan Peh
Dept. of EECS
Massachusetts Institute of Technology
Cambridge, MA 02139
Email: peh@csail.mit.edu

developer of a GPS guidance app who wants to add route
guidance based on roadway congestion. Similitude can model
the sending of guidance information over LTE, as well as the
driver’s response to new route information. This in turn will
affect other drivers’ behaviors, which can have a cascading
effect as the size of the study area grows. With Similitude, the
app can be modified, tested, and then shipped with accurate
knowledge of its expected effect on both individual drivers and
the road network at large. Once apps are released to users, local
transport authorities may wish to perform additional studies,
such as determining the quality-of-service repercussions of
upgrading from 3G to LTE or exploring the potential for
vehicle-to-vehicle collaboration through local WiFi. Similitude
can switch the simulated network protocol easily, and unlike
traditional simulation it does not require fully re-implementing
the apps’ logic in a simulator module.

The remainder of the paper is organized as follows. Section
II covers related work. Section III describes the system design
and its implementation for a specific case study. Section IV
provides a performance and scalability analysis of the system
and its components. Finally, Section V concludes the paper.

II. RELATED WORK

Our work draws from existing research in vehicle and
transit simulation, wireless and network simulation, massive
mobile phone emulation, as well as the combination of simu-
lators with emulators. Clearly, one of our requirements when
selecting component simulators is that they are open-source,
enabling the integration necessary for Similitude. We will now
cover related work in each of these areas in turn

Traffic simulation. Our work requires an agent-based,
microscopic traffic simulator. The former refers to a technique
of encapsulating driver behavior into independent units called
agents, which provides the flexibility necessary for transparent
integration with Similitude. The latter refers to the typically
short update times of individual simulation components, which
is necessary for accurately representing network response time
data. In addition, the simulator used must be scalable. SUMO
is one such simulator, well-known for its rich tool set and
extensible API, written in the Java programming language
[2]. Similarly, MATSim is a fast, agent-based traffic simulator
that is open source [3]. However, as it is mesoscopic, its
time resolution is not suitable for our purpose. The simulator
we chose for Similitude integration was SimMobility, a new

https://core.ac.uk/display/78067511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

microscopic traffic simulator based on MITSIMLab [4] which
incorporates agent-based simulation and multi-modal route
choice [5]. In addition to being an agent-based simulator,
SimMobility was written with multi-threaded performance in
mind, and runs at a time resolution of 100 ms increments.

Network simulation. Regarding network simulators, we
required a scalable, open source simulator that could model a
variety of networking standards. After careful consideration,
we chose to use ns-3, due to its modular structure, wide range
of supported protocols, and reasonable performance [6]. The
field of network simulation is well-established, so many other
network simulators would also be suitable, such as OpNet[7],
OmNet++[8], and others.

Network + Traffic simulation. Tellingly, many new stud-
ies focus on integration rather than extension. NCTUns is one
such simulator; it allows the running of apps to generate real
network traffic. Only GNU/Linux apps are supported, but the
simulator makes use of the actual operating system’s TCP/IP
protocol stack, as a short circuit around traditional network
simulation [9]. Similarly, [10] uses a coupled traffic simulator
(SUMO) and network simulator (JiIST/SWANS) to evaluate
inter-vehicle communication techniques as well as providing a
hybrid real-world test bed. Similitude distinguishes itself from
these systems by focusing on mobile phone application emula-
tion; this allows developers to capture more detailed emergent
phenomena such as congestion mitigation via distributed road-
space rationing.

Phone emulation. We require an open source emulator
that can multiplex Android operating system instances per
server node. Simulating large numbers of mobile phones has
received some attention recently, mostly in the interest of
quality assurance testing. [11] performs automated analysis of
sensitive data leakage in Android apps. The authors mention
running multiple apps in parallel, but do not explore the
performance implications of parallel execution. [12] forgoes
parallelization altogether, gaining performance by switching
between Xen virtualization and full-system emulation based on
certain criteria. Although novel, this approach is not suitable
for Similitude, as we require the accuracy of full-system
emulation for all agent interactions. By far the most prominent
work on emulator scalability is the MegaDroid project at
Sandia National Laboratories. MegaDroid provides a simple
interface to manage large numbers of QEMU snapshot-based
instances, along with supplemental tools to aid setting up a
software-defined network that it can communicate with from
any single node. Initial tests with MegaDroid scaled up to
300,000 simultaneous Android instances [13]. We use an open
source, minimalist variant of MegaDroid called “minimega”
that was developed by the same authors.

Finally, there is some existing work that attempts to unify
simulators and emulators. An example is [14], which pairs
the S3FNet network simulator with a version of the OpenVZ
emulator modified to support virtualized time; in addition,
timestamps on network packets are modified to ensure con-
sistency. The goal is to study distributed attacks on smart
(networked) power meters. This approach is limited by the
simple nature of power meter applications; Android apps are
far more complicated and cannot be controlled solely through
network traffic manipulation. In addition, the relationship
between simulator and emulator is tightly coupled such that

TABLE 1. COMPONENT FEATURE SPACE

Component Primary Use Additional Features
SimMobility * Driver locations ¢ Cars, buses, pedestrians
¢ Coordinates ¢ Behavior models: route choice,
human behavior and car following, etc.
app interactions Scales to city-sized populations
QEMU ¢ Emulates Android * VM snapshots
» Hardware-assisted virtualization
¢ Runs Android APKs as-is
minimega « Start, stop, control ¢ Auto-discovery of minimega
VMs in batches instances
* Automates networking | ¢ Seamless interaction with
and VLANs dnsmasq, Open vSwitch
* Remote viewing through noVNC
ns-3 ¢ Network data * Supports Wi-Fi, WIMAX,
movement LTE, 802.11p
¢ Modular, extensible

adding in another simulator (in our case, a traffic simulator)
is not a clear-cut process. Another approach sometimes used
is called “hardware-in-the-loop” simulation, in which physical
units are integrated into a running simulation [15]. Although
prohibitive for large-scale Android deployments, the ability to
replace several emulators with actual devices has merit for
comparative studies; thus, Similitude supports physical devices
in addition to emulators.

III. SYSTEM DESIGN AND IMPLEMENTATION
A. Components and Organization

Similitude comprises three primary interacting compo-
nents: the SimMobility short-term simulator, the Android emu-
lators, and the network simulator ns-3. The SimMobility short-
term simulator was used to centralize all additional communi-
cation, and acted as a server both to the emulators and ns-3.
Android devices were emulated using QEMU, a well-known
open-source machine emulator that gains added performance
from virtualization technologies such as Intel VT and AMD-V.
Each device was a snapshot of Android 4.2 (Jelly Bean) from
the Android-x86 project*. The minimega management tool was
used to provide easier management of virtual machines and
networking between them. Minimega’s primary feature is the
ability to push commands to ranges of virtual machines with
minimal required configuration. Finally, ns-3 was optionally
used to provide accurate network performance estimates for
all agent-to-agent messages. If ns-3 was omitted, SimMobility
would simply forward messages to their destination agents as
soon as they were received from the sender. Table I lists these
components and any additional relevant features.

Connecting SimMobility to the Android instances was
straightforward. First, a proxy agent was created in Sim-
Mobility for each emulated Android instance. These proxies
expose enough external information for any other SimMobil-
ity agent to interact with them seamlessly. In addition, the
proxies synchronize state with the Android clients every time
step, ensuring that the location of each agent (and all other
properties) are always up-to-date. Large numbers of clients are
problematic for certain cluster configurations due to the hard
limit on the maximum number of simultaneously open files in
Linux (1024). To work around this, we provide a simple relay
script which multiplexes messages between clients on the same
cluster node, allowing our system to scale past this limit.

“http://www.android-x86.org

Once connected, Android instances proceed in lock-step
through the entire simulation run. Unlike some techniques, we
require minimal changes to the Android application itself in
order to ensure valid results. This typically performs better than
adding time synchronization code to existing emulators, and
allows us to maintain a generic interface —real-world phones
running the same app binary can interface with Similitude.
The extent of these changes is described in the following
section. Generally speaking, inter-app communication need not
be modified, as SimMobility will simply relay these messages
through ns-3.

B. Android App Modifications

All apps require some rudimentary modifications to
work with Similitude. To ease integration efforts, we pro-
vide a simmobility4android (sm4and) Java library, which
is outlined in Figure 1. Integration proceeds as fol-
lows. First, all timing functions must be replaced with
the software timer equivalent in sm4and. For example,
we call SimMobilityBroker.postDelayed instead of
Handler.postDelayed to post a message after a time
offset; this correctly uses the software timer, which is kept
in sync with SimMobility as described previously. Second,
one must use the sm4and location updates instead of the
typical Android LocationManager. All code that requests
the current location or location update notifications must do so
through the SimMobilityBroker. Third, some apps will
have a small number of custom messages required for their
operation. For example, an app tracking carbon emissions may
request the grade of the current roadway, which is not normally
sent to emulated entities. The sm4and library provides a simple
interface for defining new message types, and SimMobility
itself is extensible on the server side. Finally, all apps will
require some custom workarounds for inconsistencies that arise
during emulation. For example, the ethO network interface
that Android-x86 instantiates takes longer than expected to
acquire a DHCP lease. The app used in our case study was
modified to avoid connecting to the SimMobility server until a
short, fixed delay had elapsed; such a solution may be gener-
ally applicable and incorporated into sm4and in the future. At
present, the nature of these modifications is such that they must
be done manually. However, many of them may be automated
in future releases of sm4and, as we have intentionally kept
API calls parallel to Android’s when possible.

IV. PERFORMANCE ANALYSIS

We performed several tests of the individual components in
order to determine their scalability. Following that, we profiled
the combined system’s performance, and performed an analysis
of the types of setups that scaled the most effectively. We end
off with a case study of an ITS app.

A. Experiment Setup

All tests were performed on a randomized virtual road
network covering an area 6km by 2.5km. This road network
was generated using the SUMO? abstract network generator,
with the following command:

3Simulation of Urban MObility, http://sumo-sim.org

netgenerate —-—-rand -o out.xml
—--rand.iterations=200 --random -L 2

In studies featuring driver agents, one of two sample sets was
used. The random sample set was used to stress the simulators
(SimMobility and ns-3) in isolation. It contained up to 100,000
randomly selected agents from the list of all possible origin to
destination pairs, with subsequent agents on the same origin
offset by 1s to prevent overlap. The longest sample set was
used to test setups with Android emulators. It contained the
four longest origin/destionation trips (diagonals) repeated and
offset by Is to prevent overlap, up to a total of 300 agents. This
was designed to keep as many connected clients in the system
for as long as possible; the random sample set featured a
number of short trips that would artificially limit the maximum
simultaneously connected clients.

Experiments were carried out on a cluster of Intel Xeon
X5650 nodes running Ubuntu 13.10 (Linux kernel 3.11). Each
node contained 2 sockets with 6 physical CPU cores each at
2.67 GHz and 48 GB of RAM. Hyperthreading was enabled,
leading to 2 logical cores per physical, or a total of 24 proces-
sors per node. Nodes existed on the same switch and exhibited
low latencies; typical ping values were <5 ms. When used,
SimMobility was compiled in Release mode with agent update
output disabled. Where Android interactivity was required, we
used RoadRunner, a distributed road-space rationing applica-
tion, as our representative application. RoadRunner is designed
to eliminate traffic bottlenecks by “rationing” commonly con-
gested areas through the use of tokens. Tokens are exchanged
via phone-to-phone communication (802.11p), which falls
back to LTE requests to a cloud server if no clients are in
range. Any vehicle that does not accrue the requisite tokens for
a specific rationed area (a “Region” in RoadRunner’s parlance)
must re-route or incur a penalty token. By restricting the initial
token set, traffic planners can disincentivise overcrowding and
improve average vehicle speed. RoadRunner has been tested
in limited real-world deployments; its need for detailed traffic
and communication information at runtime makes it an ideal
candidate application.

B. Individual Components

The performance of each of the simulators (SimMobility
and ns-3) in isolation was stressed with a number of agents
from the random sample set. Samples of 1,000 up to 100,000
agents were chosen and run for 30 minutes of simulation time.
The total elapsed time was measured using the Linux “time”
command. For each scenario, the simulation was run five times
in succession. Traces from SimMobility were used to generate
demand in ns-3.

The average elapsed times are shown in Figure 2. Given ns-
3’s poor scalability, its results above 20,000 connected agents
are not shown. For the sake of comparison, ns-3 took 10
hours to complete the 100,000 agent simulation. With the
exception of low agent counts, SimMobility outperformed ns-3
in single-threaded mode, and improved in performance as the
number of threads increased. The poor performance of ns-3 is
compounded by its inability to be run on more than 1 thread.
Although work such as [16] has attempted to address this, it
might be worthwhile in the future for Similitude to switch
to a simulator with multi-threaded performance as a primary
feature.

simmobility4android|

+addCustomMessageType(msgType:String,msg:Message,
handler:MsgHandler): void

+sendBroadcastPacket (myId:String, packet:byte[]): void +data:

SimMobilityBroker = - <<sends/receives>> S MsgHandler <t—
+activate(): void < ' — = Message << — 7 +handle(msg:Message, conn:Connector)
+postDelayed(r:Runnable,delayMs:long) ->+mngype: String

+senderId: String
+destId: String - <
Json

ReadyHandler —

+forwardMessageToServer(msg:Message): void

+handle(msg:ReadyMessage, conn:Connector)

+logRemote(logMsg:String): void

— ReadyMessage |< - -

Connector TimeHandler
+connect (host:String,port:int): void — TimeMessage — J+handle(msg: TimeMessage, conn:Connector)
+addMessage(msg:String): void 1 - - -

<

+sendAll(): void

1
+handleMessage(data:String) — LocationMessage [< |
1

<<handles>>

LocationSpoofer

LocationHandler -

+setlLocation(lat:double,lng:double) [= — ="' ="'="= - — o +handle(msg:LocationMessage, conn:Connector)

<<calls>>

Fig. 1. UML diagram of sm4and library

2500
1

simulator [thread count]

—=— ns-3[1]

simmob [1]
simmob [2]
—e— simmob [4]
—=— simmob [16]

2000

4 | -
/ A

1500
-

simulation time (s)

1000
1

500
1

0 20 40 60 80 100

agents (k)

Fig. 2. Performance of SimMobility and ns-3

—A— net_100
—e— net_1
—=— no_net

=z
(=3
E &1
k!
2
8
o 4
T T T T T T
0 20 40 60 80 100
VMs (agents)
Fig. 3. Performance of Android emulators

The scalability of the QEMU instances themselves was
estimated with agents from the longest sample set. For each
agent, a full trace of messages received was re-run through the

Android application in offline mode. All agents were located
on the same node, and the agent count was increased to
stress the system. Following this, the same scenario was re-
run, but with a trace of the sent messages pushed to another
node over TCP. No synchronization or communication took
place; the remote server simply read and then dropped every
message, and the local Android instances sourced the replies
from the full message trace rather than the server. These
two scenarios —called no_net and net_I respectively— were
designed to test the scalability of the QEMU instances and
the clients in general rather than the absolute performance. A
third scenario, net_100, multiplied the amount of data sent
by each agent each time tick by 100. This was intended
to approximate the increased amount of communication that
larger agent populations would typically generate.

Figure 3 depicts these results. All three sample sets incur
minimal overhead for each additional emulator up to 30, at
which point each new emulator incurs a fixed additional cost.
The highest agent count (100) is far above the node’s core
count (24), indicating that QEMU, as configured by minimega,
scales quite well. The cost of net_I over no_net is roughly
the same as the cost of ner_I00 over net_I, although such
differences start to exacerbate as large numbers of agents
compete for network hardware. Thus, we observe that the ideal
number of agents (VMs) per core should not exceed 1.5 to 2.0
times the number of cores.

C. Combined System

The performance of the combined system was measured
across a variety of agent and node counts. Up to 288 agents
were chosen from the longest sample set; the simulation was
run until all agents exited (approximately 9 minutes). In order
to remain as consistent as possible, the Linux nanoscale timer
was used to trim the first and last 100s of simulation time from
the total execution time.

Figures 4 and 5 depict the results with ns-3 disabled and
enabled, respectively. In both cases, as the total number of
agents in the system increases, better performance is achieved
by increasing the number of nodes. The time saved by using
multiple nodes is partly offset by the cost of communicating
with a single SimMobility broker. For agent counts less than

150
1

Nodes

simulation time (s)

1 node

2 nodes
3 nodes
4 nodes
5 nodes
6 nodes

100
1

RES R

T T T T T T
0 50 100 150 200 250

agents (total)

Fig. 4. Scalability (Android + SimMobility)

150
1

Nodes

1 node

2 nodes
3 nodes
4 nodes
5 nodes
6 nodes

simulation time (s)

100
1

Ftteos

T T T T T T
0 50 100 150 200 250

agents (total)

Fig. 5. Scalability (Android + SimMobility + ns-3)

300, ns-3 support does not negatively impact similitude’s
performance. From our earlier profile of ns-3 alone, we expect
ns-3 to become the primary performance bottleneck for deploy-
ments greater than 1000 agents. At some point, multiplexing
too many agents per node will cause the performance to drop,
apparent in the non-linear sloping of each line in Figure 4. This
limit is roughly equal to the processor count, or 24 agents-per-
node. Figure 5 indicates that ns-3 has no significant effect on
total execution time.

Expanding on this, Table II presents the simulation length
divided by the total number of agents in the simulation, to
arrive at the cost per agent in each scenario. The lowest cost
is achieved with 6 cores and 48 agents per node.

TABLE II. COST PER AGENT (S)
agents nodes
per node 1 2 3 4 5 6

12 | 7.08 | 3.78 | 2.86 | 2.28 190 | 1.62
24 | 424 | 233 1.78 1.35 1.18 1.03
36 | 3.48 1.97 1.42 1.18 1.06 | 0.95
48 | 3.38 1.90 1.38 1.18 1.04 | 0.92

Scenario

similitude+ns3
similitude-ns3
similitude—cloud
android
ns-3
simmob

300
1

Ftredd

250
1

simulation time (s)
150
1

50 100 150 200 250

agents

Fig. 6. Best-Case Performance Comparison

Finally, Figure 6 puts the relative costs of each component
and combination in perspective. The cost of SimMobility alone
(simmob) and ns-3 alone (ns-3) is minimal and does not vary
much for small agent counts. The cost of Android alone
(android) was calculated by dividing the agent count by the
total number of available nodes (6) and then interpolating
from the two nearest data points in net_I. It scales well,
and scalability can easily be improved by adding more nodes.
Android combined with SimMobility but not ns-3 (similitude-
ns3) incurs a higher cost as more agents are simulated. The
main reason for this degradation, as discussed earlier, is
the increased time spent synchronizing messages sent from
SimMobility to the Android clients. The cost of all three com-
ponents (similitude+ns3) does not differ significantly from the
cost with ns-3 disabled. This is also likely susceptible to some
amount of false synchronization. Finally, the similitude-ns3
experiments were re-run with cloud token requests disabled
(similitude-cloud). This approximates the performance gain of
rewriting external cloud applications as Sim Mobility modules.
Similitude also supports using existing cloud applications as-
is, but this introduces significant overhead. Cloud applications
are typically small and easy to encapsulate as Sim Mobility
modules; thus, similitude-cloud represents a realistic best-case
performance of similitude.

D. Performance versus Physical Phones

An attempt was made to put the performance of similitude
in context with respect to physical Android devices. Ten
Samsung Galaxy Notes (1.5 GHz dual-core Snapdragon S3
with 1GB RAM) and ten Samsung Galaxy S4s (1.9 GHz quad-
core Krait 300 with 2GB RAM) were run in several configu-
rations with network access provided either over local Wi-Fi
or through USB reverse tethering. Figure 7 depicts the results.
A baseline was obtained by running 10 virtualized clients on a
single Intel Xeon X5650 node (which can comfortably support
more than 20 VMs without performance impact as shown in
Figure 3). These clients suffered a performance penalty from
virtualization, but had the benefit of access to the same switch
as the Sim Mobility server. The note and s4 categories refer to
the Galaxy Notes and the Galaxy S4s, respectively. Similarly,

250

Scenario

- - - baseline
o B note-wifi
& 1| @ note-usb
B s4-wifi
0O s4-usb
o
3
O
[0}
£
= o
s
o _|
n
o note s4 s4 note s4 s4
vms/reals realqg
Fig. 7. Performance comparison of physical and virtualized phones

phones in the wifi category accessed the network over local Wi-
Fi, while those in the usb category used USB reverse-tethering.
Two scenarios were tested, in addition to the baseline. The
real;y scenario featured 10 physical devices (either Notes or
S4s), while the vms/reals scenario featured 5 physical devices
and 5 virtualized (minimega) clients.

Several interesting trends stand out. First, moving from
5 virtual and 5 physical to 10 physical clients worsened
performance within each category. This phenomenon is far
more pronounced for phones using Wi-Fi, which might mean
that physical clients are bound by network latency rather
than the performance of the phones themselves. Second, USB
reverse tethering is always faster than Wi-Fi, and in the case
of the Galaxy S4s, it is actually faster than the baseline in
the vms/reals scenario. The real;;, scenario performs worse
than the baseline, probably due to the overhead of switching
10 phones on a single USB controller. Third, the Notes
unexpectedly outperform the S4s on Wi-Fi with real. This
was possibly due to firmware differences in the Notes (running
Cyanogenmod) and the S4s (running a stock kernel), but was
not relevant to the current study, as we are concerned only with
the best possible performance. In summation, we observed that
the virtualized clients perform comparably to physical Android
phones. Future work could explore the potential benefit of
physical nodes with lower-latency access to the Sim Mobility
server, such as Android devices with built-in ethernet adapters.

E. Potential Transit Design Implications

To put Similitude in perspective, Figure 8 presents results
from an early study of the RoadRunner app, where a token
set is used to limit road usage on a crowded roadway in
Singapore. Loop detector counts were used to estimate network
demand over the course of a full day of simulation time. For the
baseline case, no congestion control algorithm was employed,
causing average vehicle speed to drop off sharply during peak
periods. The cloud-only case used LTE to coordinate token
exchange; this required all messages to go through a central
communication channel, but it was nonetheless effective at
improving average speed. The v2v-wifi and v2v-DSRC cases

o _|
© ~v— V2V-DSRC
—A— V2V-WiFi
8 4 —»— Cloud-only
—t+— Baseline
< _|
[Te]
<
€
< o _J
- n
[0}
[
Q
o o |
c
©
[}
€
o _|
<
©o _|
<
< |
<

time of day

Fig. 8. Mean speed in simulation with 100 tokens. (Note. Adapted from [1].)

featured direct token exchange between vehicles, and were the
most effective at smoothing average speed.

V. CONCLUSION

We presented Similitude, a system comprised of the Sim-
Mobility traffic simulator coupled with Android emulators and
an optional network simulator (ns-3). This system was de-
signed to meet the emerging needs of traffic systems designers
and mobile app developers when faced with pervasive apps
with ever-increasing connectivity. We profile the individual
components of Similitude, showing that all components can
scale to the 288 connected clients that our current cluster
supports. Beyond that limit, SimMobility was shown to scale
well up to 100,000 agents, gaining performance through multi-
threading. The Android emulators performed well in isolation,
scaling quite well up to 1.0 to 1.5 times the CPU count.
The current bottleneck is with ns-3, which was shown to
exhibit poor scalability and performance above 20,000 agents.
Combined, Similitude exhibited acceptable performance by
distributing the Android emulators across multiple nodes.

ACKNOWLEDGMENT

The authors would like to thank Jason Gao at MIT for
providing the RoadRunner app. In addition, we would like
to thank David Fritz and Evan Tobac of Sandia National
Laboratories for their initial help interfacing SimMobility and
minimega.

REFERENCES

[1] J. Gao and L. S. Peh, “Roadrunner: Infrastructure-less vehicular conges-
tion control,” in 21st World Conference, Intelligent Transport Systems,
2014.

[2] D. Krajzewicz, G. Hertkorn, and P. Wagner, “An example of micro-

scopic car models validation using the open source traffic simulation
sumo,” in 5th International Conference on ITS, 2002, pp. 23-26.

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. A. Waraich, D. Charypar, M. Balmer, K. W. Axhausen, R. A.
Waraich, R. A. Waraich, K. W. Axhausen, and K. W. Axhausen,
Performance improvements for large scale traffic simulation in matsim.
ETH, Eidgenossische Technische Hochschule Ziirich, IVT, Institut fiir
Verkehrsplanung und Transportsysteme, 2009.

Q. Yang and H. N. Koutsopoulos, “A microscopic traffic simulator
for evaluation of dynamic traffic management systems,” Transportation
Research Part C: Emerging Technologies, vol. 4, no. 3, pp. 113 — 129,
1996.

K. Basak, S. Hetu, Z. Li, C. Lima Azevedo, H. Loganathan, T. Toledo,
R. Xu, Y. Xu, L.-S. Peh, and M. Ben-Akiva, “Modeling reaction time
within a traffic simulation model,” in Intelligent Transportation Systems
- (ITSC), 2013 16th International IEEE Conference on, Oct 2013, pp.
302-309.

E. Weingartner, H. vom Lehn, and K. Wehrle, “A performance com-
parison of recent network simulators,” in Communications, 2009. ICC
'09. IEEE International Conference on, June 2009, pp. 1-5.

S. Mittal, “Opnet: An integrated design paradigm for simulations,”
Software Engineering: An International Journal (SELJ), vol. 2, no. 2,
pp. 57-67, 2012.

A. Varga et al., “The omnet++ discrete event simulation system,” in
Proceedings of the European Simulation Multiconference (ESM2001),
vol. 9. sn, 2001, p. 185.

S.-Y. Wang and C.-C. Lin, “Nctuns 6.0: A simulator for advanced wire-
less vehicular network research,” in Vehicular Technology Conference
(VIC 2010-Spring), 2010 IEEE 71st, May 2010, pp. 1-2.

B. Schunemann, K. Massow, and I. Radusch, “A novel approach
for realistic emulation of vehicle-2-x communication applications,” in
Vehicular Technology Conference, 2008. VIC Spring 2008. IEEE, May
2008, pp. 2709-2713.

V. Rastogi, Y. Chen, and W. Enck, “Appsplayground: Automatic secu-
rity analysis of smartphone applications,” in Proceedings of the Third
ACM Conference on Data and Application Security and Privacy, ser.
CODASPY ’13. New York, NY, USA: ACM, 2013, pp. 209-220.

A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand, “Practical
taint-based protection using demand emulation,” in Proceedings of the
1st ACM SIGOPS/EuroSys European Conference on Computer Systems
2006, ser. EuroSys '06. New York, NY, USA: ACM, 2006, pp. 29-41.

Sandia Labs News Releases, “Sandia builds self-contained,
android-based network to study cyber disruptions and help
secure hand-held devices,” October 2012. [Online]. Available:
https://share.sandia.gov/news/resources/news_releases/sandia-builds-

self-contained-android-based-network-to-study-cyber-disruptions-and-
help-secure-hand-held-devices

D. Jin, Y. Zheng, H. Zhu, D. Nicol, and L. Winterrowd, “Virtual
time integration of emulation and parallel simulation,” in Principles
of Advanced and Distributed Simulation (PADS), 2012 ACM/IEEE/SCS
26th Workshop on, 2012, pp. 201-210.

W. Dong, “A time management optimization framework for large-
scale distributed hardware-in-the-loop simulation,” in Proceedings of
the 2013 ACM SIGSIM Conference on Principles of Advanced Discrete
Simulation, ser. SIGSIM-PADS ’13. New York, NY, USA: ACM, 2013,
pp. 265-276.

G. Seguin, “Multi-core parallelism for ns-3 simulator,” 2009. [Online].
Available: http://guillaume.segu.in/papers/ns3-multithreading.pdf

