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ABSTRACT PAGE 

Commodity computing platforms are imperfect, requiring various enhancements for performance 
and security purposes. In the past decade, virtualization technology has emerged as a promising 
trend for commodity computing platforms, ushering many opportunities to optimize the allocation 
of hardware resources. However, many abstractions offered by virtualization not only make en­
hancements more challenging, but also complicate the proper understanding of virtualized systems. 
The current understanding and analysis of these abstractions are far from being satisfactory. This 
dissertation aims to tackle this problem from a holistic view, by systematically studying the system 
behaviors. The focus of our work lies in performance implication and security vulnerabilities of a 
virtualized system. 

We start with the first abstraction-an intensive memory multiplexing for 1/0 of Virtual Machines 
(VMs)-and present a new technique, called Batmem, to effectively reduce the memory multi­
plexing overhead of VMs and emulated devices by optimizing the operations of the conventional 
emulated Memory Mapped 1/0 in hypervisors. Then we analyze another particular abstraction-a 
nested file system-and attempt to both quantify and understand the crucial aspects of performance 
in a variety of settings. Our investigation demonstrates that the choice of a file system at both the 
guest and hypervisor levels has significant impact upon 110 performance. 

Finally, leveraging utilities to manage VM disk images, we present a new patch management frame­
work, called Shadow Patching, to achieve effective software updates. This framework allows system 
administrators to still take the offline patching approach but retain most of the benefits of live patch­
ing by using commonly available virtualization techniques. To demonstrate the effectiveness of the 
approach, we conduct a series of experiments applying a wide variety of software patches. Our re­
sults show that our framework incurs only small overhead in running systems, but can significantly 
reduce maintenance window. 
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Chapter 1 

Introduction 

Innovations in Virtualization Technology (VT) have significantly improved the utilization of hard-

ware resources and have also enabled a wide array of products and services being offered. As a 

platform-virtualization software solution, hypervisor, known as a virtual machine monitor, has been 

widely used for supporting a diverse set of hardware devices and monitoring information between 

a host machine and multiple guest operating systems (OSes). For high-end systems, virtualization 

is attractive for server consolidation due to its strong resource and fault isolation guarantees. For 

example, in cloud computing environment, cloud vendors can quickly provide ready-to-use infras­

tructures, platforms, and software to customers in a low-cost virtualized environment. For low-end 

systems, such as mobile netbooks, laptops, or client desktops, virtualization provides a high-level 

OS interface for application programming via traditional real-time APis, allowing programs to be 

performed on different OS platforms. However, virtualization is a double-edged sword. Along with 

many benefits that it brings, virtualized systems are also more complex, and thus, more difficult to 

understand, measure, and manage. This is often caused by layers of abstraction that virtualization 

introduces. 

Unfortunately, current understanding and analysis of this abstraction are far from being sat-
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isfactory. Current techniques, such as NormanSandbox [19], Anubis [2], Ether [46], and Para­

norama [89], dynamically analyze the behavior of virtualized systems by monitoring system calls 

or API calls when malicious programs are performed. However, these analyzes have serious limi­

tations: I) they do not provide a performance implication of a virtualized system in a fine-grained 

manner under various configurations. 2) they do not uncover the hidden behavior of particular com­

ponents inside a virtualized system. and 3) they do not reason the inner-working mechanism of 

hypervisor that causes abnormal behaviors on different running virtualized systems. Some research 

efforts [75, 41, 58] have been made to consider some of these limitations or to analyze a particular 

abstraction. However, none of them specifically addresses the problem of abstraction from a holistic 

view, and thus cannot provide a full understanding of the behavior of virtualized systems. 

In this dissertation, we aim to tackle this problem of the abstraction from a holistic view, by 

systematically considering its challenges and goals, and thus fully understand the behavior of a 

virtualized system. Then, we propose a research direction to effectively leverage VT to minimize 

the maintenance window time for updating software in virtualized enterprise environments. 

1.1 Challenges 

Understanding and analyzing the abstraction offered by virtualization is a very challenging task. To 

determine an efficient approach for the analysis, we have to address the following two challenges: 

various configuration and fine-grained behavior. 

• Various Configurations: We can see that virtualization is an ideal solution for high-end 

computing platforms due to its capability to leverage services. However, virtualization can 
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also be well employed in low-end systems. As a result, to conduct a thorough investigation 

on various host systems, not only a virtualization platform, but also emulated components 

are carefully selected, making it difficult to effectively differentiate the behavior of virtual­

ized systems. Here, to facilitate the investigation, we focus on a memory multiplexing of 

virtualized systems and examine its behavior on both high-end and low-end host systems. 

• Fine-grained Behavior: Virtualization provides a capability to monitor the behavior of a reg­

ular program or a particular 1/0, which usually interacts with the system environment through 

system calls or API calls. However, system call monitoring is too fine-grained, resulting in 

much induced overhead. Therefore, to fully understand the system behavior at one particular 

type of abstraction-the nested file system-without imposing much overhead, our analysis 

needs to be conducted at user and kernel levels of both host and VM systems. 

1.2 Goals 

To fully understand the system behavior and performance implication in virtualized environment, 

our analysis should meet the following goals: 

• Addressing Challenges: The challenges we discussed above are noteworthy in terms of vir­

tualized system behavior analysis. A lack of addressing any of them may cause incomplete­

ness or inaccuracy of the analysis, and the value of its experimental results will be greatly 

diminished. 

• Reasoning Inner-working: Based on observed behaviors, it should be able to interpret at 

different levels of details, such as what exactly this behavior is and how this behavior happens. 
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For example in nested file systems, we want to know the dependency between using files and 

using physical disks to represent logical block devices at the guest VM. 

• Maintaining Efficiency: In many cases, an effective analysis of system behavior strongly 

depends on various configuration, resulting in various running time and precision for experi­

mentation. Therefore, it is very important to employ effective analysis methods that balance 

between accuracy and complexity. 

1.3 Dissertation Summary 

In order to effectively leverage VT, it is important for system designers to fully understand the 

behavior of virtualized systems. However, the current understanding and analysis of abstractions 

brought by VT are far from being satisfactory. In this dissertation, we first focus on a holistic view 

of the virtualized system behavior analysis and present the two projects on (I) memory optimization 

and (2) performance implications of nested file systems. Furthermore, we leverage storage utility in 

a virtualized environment to perform the third project of (3) a new patch management framework. 

The summaries of these projects are described as follows. 

1.3.1 Batmem: A Memory Optimization Mechanism 

Utilizing the popular VT, users can benefit from server consolidation on high-end systems and ftexi-

ble programming interfaces on low-end systems. In these virtualization environments, the intensive 

memory multiplexing for 1/0 of VMs significantly degrades system performance. In this project, we 

present a new technique, called Batmem, to effectively reduce the memory multiplexing overhead 
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of VMs and emulated devices by optimizing the operations of the conventional emulated Memory 

Mapped I/0 in Virtual Machine Monitor (VMM)Ihypervisor. To demonstrate the feasibility of Bat­

mem, we conduct a detailed taxonomy of the memory optimization on selected virtual devices. We 

evaluate the effectiveness of Batmem in Windows and Linux systems. Our experimental results 

show that: {l) For high-end systems, Batmem operates as a component of the hypervisor and sig­

nificantly improves the performance of the virtual environment. (2) For low-end systems, Batmem 

could be exploited as a component of the VM-based malware/rootkit (VMBR) and cloak malicious 

activities from users' awareness. 

1.3.2 Performance Implications of Nested File System 

Virtualization allows computing resources to be utilized much more efficiently than those in tradi­

tional systems, and it is a strong driving force behind commoditizing computing infrastructure for 

providing cloud services. Unfortunately, the multiple layers of abstraction that virtualization intro­

duces also complicate the proper understanding, accurate measurement, and effective management 

of such an environment. In this project, we focus on one particular layer: storage virtualization, 

which enables a host system to map a guest VM's file system to almost any storage media. A fiat 

file in the host file system is commonly used for this purpose. However, as we will show, when one 

file system (guest) runs on top of another file system (host), their nested interactions can have unex­

pected and significant performance implications (as much as 67% degradation). From performing 

experiments on 42 different combinations of guest and host file systems, we give advice on how to 

and how not to nest file systems. 
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1.3.3 Shadow Patching: Minimizing Maintenance Window 

Keeping software up-to-date is a fact of life in any IT environment. Although sophisticated live 

patching techniques have been available for many years, conventional offline methods are almost 

always used in practice. This is due to online methods being usually very OS or application spe­

cific and cannot be applied as generally as offline methods. In this project, we present a patch 

management framework that allows system administrators to still use the offline patching methods 

while retaining most of the benefits of live patching by leveraging commonly available virtualization 

techniques. To demonstrate the effectiveness of the approach, we conduct a series of experiments 

applying a wide variety of software patches. Our results show that our framework incurs only small 

overheads in running systems but can significantly reduce maintenance window. 

1.4 Dissertation Organization 

The remainder of this dissertation is structured as follows. In Chapter 2, we present Batmem as an 

effective memory optimization mechanism for hypervisor. In Chapter 3, we detail our investigation 

of nested file systems to explore their dependency at different levels of details. In Chapter 4, we 

present Shadow Patching as a novel and effective software updating mechanism for virtualized cloud 

environments. Finally, in Chapter 5, we conclude and discuss challenges of potential future work. 



Chapter 2 

Batmem: A Memory Optimization 

Mechanism 

2.1 Introduction 

In high-end systems, virtualization allows its main memory to be shared and to be monitored be­

tween VMs [85, 69, ~7]. The bottleneck of virtualized systems lies in VM multiplexing, which is 

dependent on system capacity features, including memory slot availability, additional power con­

sumption, and the memory-sharing mechanism of hypervisor. Here the memory-sharing mechanism 

is known as page sharing, memory compression, or memory 1/0 multiplexing. Thus, the memory 

usage inside VMs and the memory-sharing mechanism in VM multiplexing are critical to a host's 

performance. As a result, commodity hypervisors require an effective memory-sharing mechanism 

between VMs and their host, such as optimizing frequent paging and memory that is mapped for 

virtual 1/0 devices. 

However, due to the small capacity of a low-end system, multiple VMs cannot be installed on 

a single host. Thus, in terms of performance, memory sharing is not a critical issue for low-end 

7 
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systems. Nevertheless, in terms of security, malware may exploit virtualization techniques includ­

ing memory sharing to completely control VMs on low-end systems. SubVirt [60], BluePill [77], 

and Cloaker [45] are typical examples of Virtual Machine Based Rootkit (VMBR) that attempt to 

append a thin hypervisor as a middleware between a running OS and hardware devices. The suc­

cess of VMBR relies on two factors: compromising devices and hiding malicious behaviors. More 

specifically, VMBR requires virtual devices to intercept the 110 operations of a victim OS, and then 

VMBR must cloak its malicious behaviors, which could include system modification violation or 

performance degradation. Therefore, reducing the overhead in memory multiplexing of VMs will 

not only improve the performance of high-end systems, but also help us understand the possibility 

of cloaking malicious VMBR behaviors in low-end systems. 

We present Batmem, an effective technique to improve the performance of the Memory Mapped 

110 (MMIO)--a conventional memory exchange mechanism-by reducing the overhead and redun­

dant memory regions during the multiplexing of VMs. The key component of Batmem is a dynamic 

circular buffer that coalesces memory partitions to be written into the reserved memory areas of 

virtual devices. We also employ a compression algorithm to reduce the allocated memory regions 

used in such 110 writing. For either high-end or low-end systems, Batmem is applied on virtual 

devices, such as the Video Graphics Array (VGA), Network Interface Controller (NIC), and Uni­

versal Host Controller Interface (UHCI). In particular, for high-end systems, we use selective micro 

benchmarks to evaluate system performance at the device level. For low-end systems, Batmem 

functions as a VMBR component. To validate its effectiveness in concealing VMBR activities from 

users' observations, we evaluate the performance of selected user applications while maintaining 
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two malicious services: keylogger and data transmission. 

With VT support, we implement Batmem as a prototype based on Kernel Virtual Machine 

(KVM) [61] and conduct experiments on emulated devices for both Windows and Linux systems. 

Even though other open-source hypervisors such as Xen [36] or lguest [13] support fault contain­

ment and performance isolation by partitioning physical memory among multiple VMs and allows 

unmodified guest OSes to run on a VT-x supported host, its particular domain-based architecture 

makes it impossible to compare with other light-weight hypervisor architectures, in terms of driver 

domain model and performance. In contrast, KVM inherits lguest's flexibility and turns a Linux ker­

nel into an in-kernel hypervisor, in which OSes can directly run on the hardware and take advantage 

ofVT-x. 

2.2 Virtual Device Taxonomy 

We first categorize virtual device emulations by analyzing three devices - Video Graphic Adapter, 

Network Interface Card, and Universal Host Controller Interface- and discuss possibilities for op­

timizing MMIO on such devices. Then, we classify end-user behavior regarding such optimization. 

2.2.1 Virtual devices and MMIO optimization 

Video Graphic Adapter (VGA): The complexity of VGA architecture highly depends on the 

various modes and modification capabilities of VGA hardware. In a virtual environment, its per­

formance can be easily degraded due to instruction translations by the VGA emulator. The VGA 

emulator translates guest instructions into load/store instructions on the host. Identifying emulated 
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instructions that are directed to VGA hardware is difficult because the emulated VGA module may 

replace the load/store instruction with a branch to support the general-purpose functionalities of 

graphical operations. Consequently, the performance of the emulator module is adversely affected. 

To improve the performance of the emulated VGA, then, we should optimize the emulator module 

by improving either the speed of store/load instructions mapped to main memory or the accuracy 

of differentiating such instructions with in-line code generations. Because in-line code generations 

depend on hardware specifications, our work focuses on memory-mapped operations. 

Network Interface Card (NIC): NIC information exchange requires two important communica­

tion features: highly sustained throughput and low latency. An emulated NIC is supported in two 

modes: bridge and virtual host. The bridge mode is more flexible and functional than the virtual 

host mode in that a VM is considered as an independent system on a LAN. Thus, our work focuses 

on the bridge mode. Moreover, virtual NIC functions are built as NIC modules. To allow the NIC 

to function effectively, VMM needs to make a trade-off between the flexibility and complexity of 

such modules. Recent research found that the majority of overhead is due to a non-optimization 

of the 110 exchange between a host and VMM [54]. More specifically, in each VMM-host context 

switch, the overhead is caused by asynchronous data mapping between the processor and memory 

address spaces of the virtual NIC. Therefore, to reduce the overhead of the virtual NIC, we consider 

optimizing its memory-mapping mechanism. 

Universal Host Controller Interface (UHCI): In the USB architecture, UHCI consists of two 

main functions: building a data structure for device-to-application communication and providing 
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a register-level hardware interface for a compatible software driver. In virtual systems, UHCI and 

USB drivers are emulated as a host USB to take control of real USB devices attached to the host. 

The host USB emulates the USB buses and devices connected to them so that external USB devices 

appear and function properly under the guest OS. To monitor data transmissions between USB de­

vices and an application, the host USB also emulates a root hub. In general, USB data transmissions 

are conducted in one of four modes: isochronous, interrupt, control, and bulk. The bulk mode is 

more commonly used to transfer a large amount of data under relaxed latency requirements than 

the others. Therefore, we focus on the bulk mode and consider optimizing its data transmission on 

UHCI. 

MMIO optimization: MMIO uses the same address bus to address both memory and UO devices, 

and the CPU instructions used to access the memory are also used for accessing UO devices. In 

virtual systems, VMM emulates a context switch module to enable a guest OS using MMIO. When 

a device driver on the guest OS requires an MMIO on a particular emulated device, it issues a 

writing request and sends it to the context switch module. Then, according to the received writing 

request, the context switch module and the virtual CPU establish MMIO on the main memory and 

the device. In general, this MMIO establishment is monitored by a mapping module in VMM. 

Fortunately, the mapping module is accessible and can be modified as a regular kernel module. 

Therefore, we consider improving MMIO by optimizing such a mapping module. Moreover, not 

only VGA and NIC, but also UHCI and other emulated devices are considered as generic PCI 

devices in virtual systems, thereby enabling them to participate in the memory-mapping process. 

Page protection-based solutions decrease virtuaVreal timing characteristic differences but induce 
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virtualization overhead. Thus, we attempt to reduce such overhead by solving the MMIO latency 

problem. 

2.2.2 User behavior classification 

In accordance with user-perceived performance, we classify user behaviors into three different 

groups: screen-based, net-based, and file system-based. Note that the performance metrics are 

chosen according to their acceptable validity and reliability in previous studies [49, 70]. 

• Screen-based behavior is a variation of the end-user screen interaction, which is described by 

an instantly estimated frame-per-second (FPS) metric. The higher the FPS values, the closer 

the matching between a real VGA and an emulated VGA. 

• Net-based behavior is a variation of the end-user network activity. We use performance met­

rics such as virtual capacity and packet delay of a NIC to quantify the variation. Here virtual 

capacity is defined as the maximum data transfer rate over the virtual NIC, specifically be­

tween the guest OS and outside networks. 

• File system-based behavior affects user interactions on virtual file systems, such as emulated 

USB storage. The 110 activities of end-users will be affected by the bandwidth of file systems. 

2.3 System Design and Implementation 

In this section, we first detail the system design of Batmem. In particular, Batmem improves the 

speed of MMIO write by using (I) a dynamic circular buffer to group write requests and (2) a 
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compression to minimize written memory partitions into the reserved memory. Then, we describe 

its implementation and related malicious services on KVM. 

2.3.1 System design 

In our design, Batmem participates in writing MMIO with other virtual components, such as the 

main memory, devices, and context switch. As shown in Figure 2.1, a virtual CPU (VCPU) takes 

control of reading data from the device and writing MMIO data to memory. Batmem intercepts 

such an exchange by monitoring virtual device status (1) and 110 device operations (2) to control 

the MMIO writing on the reserved memory area. The context switch, known as a switching mod-

ule, controls 110 requests sent from guest OS device drivers to virtual devices (3). With VCPU, the 

switching module conducts the MMIO writing to virtual memory (4). To allow Batmem to prop-

erly participate in the MMIO writing, we need to establish a connection between Batmem and the 

switching module (5). This connection registers Batmem into a contact list of the switching module, 

making Batmem capable of monitoring 110 requests. These 110 requests are issued from the guest 

OS device driver controller, passing through the context switch in each MMIO session. 
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In each MMIO session, the issued MMIO requests are executed by 110 instructions at the switch­

ing module and VCPU. Such requests hold the address and size of the shared page of memory for 

each MMIO writing. When the Batmem/switching module connection is established, Batmem ex­

changes with the switching module to obtain information about the MMIO session, including the 

addresses belonging to MMIO page and reserved memory partitions. Each partition holds informa­

tion about its size, address, and status (registered or unregistered). The registered partition intro­

duces an occupied memory area, which is allocated and used by Batmem. The unregistered partition 

presents an extensible unoccupied memory area. The unregistered partitions are extended and used 

when current allocated memory partitions for Batmem are overrun by numerous arrivals of writing 

requests. Through Batmem, these partitions are registered or unregistered with the switching mod­

ule. Note that such partitions are associated with another assigned memory area known as a hatched 

buffer. To increase the MMIO writing speed from the reserved memory for a device to the main 

memory, we create the hatched buffer as a dynamic circular buffer to store all MMIO partitions as a 

batch for each writing session. 

The dynamic circular buffer structure is built on an ordinary circular buffer to prevent buffer un-

derruns when devices perform numerous write-backs to the main memory. As shown in Figure 2.2-

A, the dynamic circular buffer is a list of memory regions, where each element can be freed or 

ready to be filled upon receiving a writing request. To batch MMIO partitions, each buffer element 

needs to record the physical address and size of the mapped memory. Upon receiving notification 

from the switching module at session completion, Batmem informs the dynamic circular buffer to 

group all current partitions in the buffer. Instead of sequentially writing into the reserved memory, 
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Figure 2.2: (A) Regular MMIO partitions written into reserved memory; (B) Batmem enhances writing speed 
by using dynamic circular buffer with compression 

which is time consuming and may slow other devices's 1/0 on the main memory, Batmem simply 

completes an MMIO by copying the available buffer to the reserved memory. Since the buffer to be 

copied is in a mapped memory area that lies on the same main memory area, this copying is obvi-

ously much less expensive than the regular sequential MMIO writing. In order to eliminate buffer 

underruns when the requests of other devices fall behind, Batmem adjusts the size of the dynamic 

circular buffer by appending a number of free elements. Note that although a circular buffer has 

been widely used in sharing memory mechanisms, our improvement goes beyond the design of data 

structure by dynamically associating its functionalities with a memory compression in each writing 

session. 

To reduce the memory footprint in the reserved memory, as shown in Figure 2.2-B, Batmem em-

ploys RLE to compress the batched memory regions in the dynamic circular buffer. Because such 

a compression is useful only when the compression ratio is high, we need to determine the regions 

to compress. At the beginning, instead of compressing an entire region, we just compress the first 

half of a region. Batmem defines a threshold to compare with the compression ratio of the first half 
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region's. If the measured compression ratio is higher than the given threshold, the compression is 

effective. The rest of the region is compressed and then is written into the reserved memory. Other­

wise, the entire uncompressed hatched region is committed to writing into the reserved memory as 

usual. 

In the reserved memory, Batmem marks the compressed regions to differentiate them from 

others. When a read request from the VM accesses a compressed region, Batmem automatically 

decompresses and returns the region. Note that a compressed region and its mark remain intact until 

it is discarded or overwritten by new regions. 

Batmem groups and compresses MMIO partitions without affecting the MMIO session. After 

the partitions to be grouped are successfully registered, the switching module notifies both Batmem 

and the devices to activate the MMIO hatching. Using the device status provided by the switching 

module, Batmem can differentiate the device and its registered memory partitions from other devices 

that are not actively executed. Note that when VMM is initialized, to monitor the virtualized main 

memory, VCPU needs to map all first pages of device memory structures to the main memory. Since 

the regular size of the mapped memory is given and specified by VMM, Batmem maps the offset of 

this dynamic circular buffer to the first page of the main memory to easily locate the buffer in each 

MMIO session. 

2.3.2 Implementation 

We implement Batmem on KVM, an open-source based VMM/hypervisor, which operates as a 

subsystem leveraging the virtualization extension. The recent KVM version works as a Linux kernel 

module running under a VT-x supported host. As a benefit of the Linux kernel architecture, KVM 
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switch (ioctl) 

case BATCHINGJREG: 

bkvm_reg(kvm, &partition, reg_flag, ... ); 

case BATCHING_UNREG: 

bkvm_unreg(kvm, &partition, unreg_flag, ... ); 

Figure 2.3: Partition Memory Registration 
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can perform or schedule the OS as a Linux process. For high-end systems, Batmem is added into 

KVM as a module that maintains a capability to monitor multiple running VMs. For low-end 

systems, Batmem is implemented as a VMBR component that attempts to conceal the presence of 

running malicious services from the end-user. The implementation on KVM includes two main 

parts: Batmem and malicious services. 

A. Batmem: Batmem takes advantage of the standard ioctl () functions under the Linux kernel 

to allocate, register, and unregister memory partitions. Such functions are immediately initialized 

with the KVM core module when the host is started. To protect allocated partitions from other 

processes that do not involve the MMIO writing session, the KVM core must be secure before and 

after each use. To secure the KVM core and schedule legitimate processes, we use a semaphore. As 

shown in Figure 2.3, we monitor a memory partition by using flag and side values that represent 

the results and side effects of the current hatching process. The results consist of the registered 

partition information, including device identifications, the reserved memory size, and the circular 

dynamic buffer address. The side effects are considered to be either memory allocation latencies or 
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buffer overrun circumstances. For the dynamic circular buffer, we start with a default size of 100 

elements. If the number of partitions being used reaches the current buffer size, the buffer size is 

incremented by 10 elements. We choose these numbers to strike a balance between system memory 

usage and buffer overrun circumstances. 

We need to minimize the overhead produced by compression/decompression operations. The 

overhead is measured in terms of the execution times of various functions involved in MMIO/Batmem, 

where we enable each function in isolation and evaluate its execution time. Figure 2.4 shows the av-

erage of total overhead imposed by major Batmem/MMIO operations, corresponding to the different 

compression ratio thresholds. As expected, the overhead grows with the increase of the compression 

threshold value. The overhead growth is primarily due to the increased number of batched regions 

that are available for compression. More specifically, we conduct multiple experiments using dif-

ferent compression ratio values as integers in a given range with an estimated error of the standard 

deviation. In each experiment, we maintain consistent batched memory regions as input for the 

compression. As a result, the ratio threshold of 5% is selected as the default value, with which the 

compression/decompression module only adds 1-1.5% overhead to the entire system. 



CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM 19 

For VGA and Rtl8193 NIC, we intercept their original registration functions to monitor both de­

vice information and writing processes. The interception directly points original registrations to our 

new registration routines. Therefore, we can perform batching on the mapped memory partitions of 

these devices upon receipt of their statuses. Since Batmem conducts the batching, this interception 

makes our new routines transparent to the guest OS device drivers. 

For UHCI, we modify its registration and create its reserved memory for MMIO. To have the 

KVM UHCI function as a regular PCI device, we modify UHCI registration based on the core 

registration of a standard PCI device. However, on the KVM, UHCI is emulated without a reserved 

memory area. We create a reserved memory for UHCI on the main memory and add it to the contact 

list of the switching module. To allow UHCI to operate MMIO, we modify the UHCI initialization 

by directly assigning the destinations of its 110 operations to the new reserved memory. Note that 

such modifications do not affect the fundamental UHCI architecture. 

B. Malicious services: We implement two malicious services as parts of VMBR: key logger and 

data transmission between malware. 

First, using the kernel keylogger concept [25], we implement the keylogger to compromise 

both the data buffers and 1/0 functions of the emulated keyboard controller. Since the emulated 

keyboard controller is operated as a kernel module within KVM, we need to recompile KVM with 

the keylogger to activate the service. To hijack a keystroke data buffer, the keylogger first checks 

the buffer availability, then performs its own read/write functions to copy the keystroke data to its 

buffer. The checking is executed via generated interrupts at an emulated serial port of KVM. We 

implement a small module to store the copied keystroke data as readable log files under the host. 
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Although the key logger is not fully functional, such as encrypting keystroke data or sending it out to 

networks, we believe that its interception precisely represents a regular VMBR's keylogger service. 

Second, to illustrate a data exchange between two pieces of mal ware, we implement a data trans­

mission service for exchanging data between the user level of the guest OS and the kernel level of 

the host. The exchanged data is guest OS sensitive information, such as a Windows registry structure 

or a Linux file system map. An inside-the-guest mal ware functions at the user level of the guest OS. 

Another out-of-the-box malware operates at the kernel level of the host, more specifically, inside 

KVM. These two pieces of malware attempt to periodically send and receive data to each other by 

using implicit communication methods, such as interrupts, ports, or devices. The inside-the-guest 

malware cannot modify device drivers, and using interrupt-based or port-based communications is 

more challenging than a device-based method. We implement a simple protocol based on TCPIIP 

that allows both malware to send and receive data packets via an emulated NIC. The emulated NIC 

is initialized when the system is started with activated network services. VMBR can immediately 

perform this data transmission service afterwards. 

2.4 Experimentation 

We use benchmarks and sample payloads to evaluate the effectiveness of Batmem. First, for high­

end systems, we conduct experiments with KVM/Batmem for three types of guest OSes: Windows 

XP, Ubuntu 7.10 Linux Kernel (LK) 2.6.21, and Fedora 8 LK 2.6.22. Each type has two guest 

OSes, for a total of six guest OSes. We run these guest OSes on a Tank GT20 server that includes 

a quad-core 2.0 GHz Intel Xeon processor and 4 GB RAM. Each guest OS uses 512 MB shared 
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memory. We use benchmarks to examine the operations of intercepted devices. Second, for low-

end systems, our evaluation includes two parts: analyzing the modules of Batmem based on their 

sizes and complexities, and measuring the varied run-time application behaviors when malicious 

services are activated. The running host consists of Intel 2.0 GHz and 1 GB memory, in which a 

shared 512 MB is for a guest OS. 

2.4.1 High-end Systems 

We use selected device level benchmarks to verify the effectiveness of Batmem on NIC, VGA, 

and UHCI. Our experiments are conducted in two scenarios: with and without Batmem. Each ex-

perimental result is an average of eight independent measurements along with an error estimate 

specified by the sample standard deviation. Due to the different running services involved and dif-

ferences between UDP and TCP in terms of reliability and weight, we use I perf [ 18] to measure the 

two parameters of virtual NIC, i.e., virtual capacity and UDP packet delay, which correspond to the 
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net-based behaviors. The measurements are conducted under different benchmark configurations. 

We cluster the performance results into different groups based on the running OS. 

Figure 2.5 shows that Batmem works more effectively in Linux than in Windows. The results 

show that Batmem increases the virtual capacity of Windows by only 0.05%. However, these virtual 

capacity values are varied in Linux. In the LK 2.6.22, the virtual capacity is significantly improved 

by 490%, but only by 16.5% in the LK 2.6.21. These improvements are due to MMIO partitions, 

which belong to MMIO requests of the virtual NIC and are completely grouped by Batmem. Such 

grouping increases the data written into the main memory, and thus increases the virtual capacity. 

Note that without Batmem, the virtual capacity of the vanilla LK 2.6.22 is even less than that of 

the LK 2.6.21. The reason is that the vanilla LK 2.6.22 system applies some modifications on 

the TCP congestion control of the LK 2.6.21. On one hand, the beneficial modifications consist 

of merging sampling RTT, recomputing RTT updates, and resizing option fields with flag bits. In 

particular, the TCP socket buffer is required to consider invalid zero timestamps in communication 

with the RTT sampler upon the ACKed TCP retransmission request, and hence slightly affects 

its data transfer rate [14]. On the other hand, these modifications increase the number of MMIO 

requests and reduce the amount of data written into the main memory for each request. The reduced 

amount of written data lowers the virtual capacity. Therefore, we believe that these modifications 

of the TCP congestion control significantly improve the virtual capacity in the LK 2.6.22 when 

Batmem is active. 

Figure 2.6 shows the effectiveness of Batmem in reducing UDP packet delays. The UDP pack­

ets are transmitted between the guest OS and the host through the virtual NIC. We conduct the 
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I Mem cache ON I Mem cache OFF I 
WinXP 37.07 ±7.7 33.41 ±3.5 

WinXP+Batmem 45.17 ±6.15 44.81 ±8.65 

Table 2.1: VGA bandwidth (frames/s, larger is better) 
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experiments with different amounts of transferred data. Our experimental results demonstrate that 

Batmem helps Windows reduce the UDP packet delay up to 83%. In Linux systems, we observe 

that Batmem also reduces the UDP packet delay in the LK 2.6.21 by 45%, but by just 13% in 

the LK 2.6.22. As expected, in all the systems, Batmem works less effectively with the increase 

of transferred data because the NIC device driver progressively issues MMIO requests under such 

an increase. More specifically, the more MMIO requests are issued, the more partitions are re-

allocated. Consequently, Batmem induces more overhead to group the partitions. 

We use 3DBench [23] to measure the VGA memory bandwidth in Windows, which corresponds 
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Write Read 

Sequential Random Sequential Random 

WinXP 156 ±5.2 126 ±0.5 122 ± 3.2 170 ± 0.6 

WinXP+Batmem 480 ±6.1 351 ±0.4 391 ± 4.6 242 ± 0.7 

Table 2.2: UHCI bandwidth under Windows (KB/s, NTFS, larger is better) 

Sequential per character Random Sequential create Random create 

Output Input Seeks Create Read Create Read 

LK2.6.21 3155± 4.3 2007± 2.8 132.5± 1.1 232± 2.4 477± 6.3 348± 1.0 475± 2.0 

LK2.6.2l+Batmem 3560± 5.6 2309± 3.1 150.9± 2.0 252± 2.0 508± 7.2 374± 7.2 505± 4.1 

LK2.6.22 4010± 4.1 3832± 7.2 177.1± 6.5 438±1.4 1055±5.4 717± 7.2 1041± 6.6 

LK2.6.22+Batmem 9309± 4.5 7924± 6.5 469.2± 4.2 885± 2.0 2143± 9.2 1453± 7 2141±5.1 

Table 2.3: UHCI bandwidth under Linux (K.B/s, file size= 128MB, chunk size=4K.B, ext3, larger is better) 

to the screen-based behavior. The benchmark intensively executes 3D routines that require aggres­

sive 110 data exchanges on the VGA card. These data exchanges depend on three major factors, 

including processor speed, VGA bus size, and memory cache. Since the processor speed and the 

VGA bus size cannot be changed, to observe the variations of the VGA bandwidth, we conduct 

experiments in two cases, with and without memory cache. As shown in Table 2.1, for 60-100 sec­

onds, Batmem helps the Windows system increase the actual VGA bandwidth, represented by FPS, 

in both cases by 20-33%. 

We use the SiSoftware [22] in Windows and Bonnie++ [6] in Linux to measure the UHCI 110 

performance, which corresponds to the file system based behavior. To avoid a sensitivity of the 

file system workload that may affect the overall performance of 110, we consistently maintain a 



CHAPTER2. BATMEM:AMEMORYOPTIM~ATION~CHAN~M 25 

data file for such measurements. Table 2.2 shows the improvement of read/write in Windows when 

Batmem is active. In particular, Batmem increases the 110 speed up to 220% in the sequential mode 

and 170% in the random mode. In Linux, to measure the operations of read, seek, and delete, we 

create a 128 MB file, clear the cache, and assign a 4 KB chunk for each operation. For writes, 

we create an empty file and keep writing 4 KB data chunks to the file until the file size reaches 

128MB. As shown in Table 2.3, Batmem takes advantage of the asynchronous write in the Ext3 

file system when the number of MMIO sessions is increased, and thus increases the amount of 

exchanged data for a period of time. Moreover, Batmem increases the 110 speeds from 7% to 15% 

in the LK 2.6.21 and from 95% to 164% in the LK 2.6.22, respectively. The accelerations for the 

LK 2.6.22 are significant when Batmem is active. This is because patches are applied on the LK 

2.6.22 to optimize inode read/write functions of the Ext3 file system, thereby increasing the speed 

of 110 requests. In fact, the improvement of the 110 request speed enhances the host/virtual 110 

context switch. Consequently, Batmem can accelerate the MMIO writing and increase the UHCI 

110 bandwidth. 

We also conduct experiments to evaluate memory saving on the system. Our results show that 

the compression component can save up to 5% of memory. Since the saving is not significant, we 

plan to employ more effective compression algorithms for greater improvement in the future. 
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2.4.2 Low-end Systems 

2.4.2.1 Module examinations 

We examine our implemented modules on VMBR, including Batmem, malicious services, and the 

VMBR installation procedure, in terms of their size and complexity features. These modules must 

limit their sizes and complexities to hide themselves on systems. Since our VMBR is built on KVM, 

whose original size is given, our focus is on these new modules. 

First, the Batmem module includes ( 1) vector structures, which form the dynamic circular buffer, 

(2) shared libraries, which consist of memory interactions with devices, and (3) a compression 

buffer, which supports memory compression. ven without applying source code optimization meth­

ods, as shown in Table 2.4, we observe that the module size of Batmem remains almost the same 

after the compilation (12 KB of source code and 13 KB of binary code). The slight difference 

between the two numbers is due to the use of the KVM shared memory library. 

Second, of the malicious services, the key logger implementation is more complex than the data 

transmission service. As a Linux kernel module, the key logger uses low level kernel 1/0 functions to 

lock, read, and write the keyboard data. For data transmission, the inside-the-guest module benefits 

from high level functions to maintain its communication, while the out-of-the-box module uses 

primitive kernel read/write functions. Therefore, the binary size of the data transmission module 

is significantly expanded compared to the keylogger module. This comparison clearly shows the 

advantage of using low level library functions for malicious module implementations. 

Third, we consider the VMBR installation as a procedure, instead of a part of the malicious 

module. This procedure functions as a script, which includes essential initializations on KVM and 
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Malicious Services Installation 
Batmem 

Key logger Data transmission procedure 

Code 12,038 7,415 3,624 2,617 

Module 13,332 9,194 8,936 -

Table 2.4: VMBR module size (Bytes) 

devices, to instantly invoke KVM when the host is started. More specifically, since we only insert 

and activate this procedure script at the end of the boot sequence, the fundamental structure of the 

host boot sequence is not changed. In some cases, users may recognize a variation of the guest OS 

screen resolution because the emulated VGA is not automatically detected. However, this gap can 

be resolved if attackers retrieve accurate hardware VGA device information to properly configure 

the guest OS resolution. 

2.4.2.2 User Level Experimentation 

We run the selected user-level applications on guest OSes under two different conditions: with and 

without malicious services. The performance metric we used is application response time. As one 

of the most popular Internet applications, web browsers are sensitive to response time. Our selected 

applications include Internet Explorer in Windows and Firefox in Linux. We differentiate the re­

sponse times in two cases, with and without Batmem, on compromised systems running malicious 

services. Note that we do not change the configuration of the web browsers during the experiments, 

and all web browser caches are cleared before each test to avoid possible side effects. 

In our experiments with malicious services, malware is executed either separately as a single 
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service or simultaneously as a dual one (Dual). For the keylogger (KL), we use AutoHotkey [3] 

and Autokey [4] to generate keystroke patterns. For data transmission (DT), a connection is au-

tomatically established to exchange files between two malicious components. We conduct these 

experiments in two scenarios, without and with Batmem. Each experimental result is compared 

with the response time of a vanilla system (i.e., the base value n. The lowest T is 18.44 seconds 

in LK 2.6.21 and the largest Tis 23.62 seconds in Windows. 

• Without Batmem: Through web browsers, we access a local website, download, and store 

a given data file into a USB drive. As shown in Figure 2.7, running malicious services sig-

nificantly increases the user-perceived response times. For example, with a dual service, 

compared to the corresponding T, the response time is increased by 38.47% in Windows and 

35.76% in Linux. 

• With Batmem: We repeat the previous tests. As expected, Batmem effectively reduces 
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VMBR overhead in both Windows and Linux. Thus, the user-perceived response times of 

the web browsers are greatly decreased, which is evidently shown in Figure 2. 7. For Win­

dows systems, the reduction is around 60%, while for Linux systems, the reduction is up to 

80%. 

Overall, our results clearly demonstrate the capability of Batmem in concealing VMBR's activ­

ities from user awareness. The overhead reduction by Batmem in Windows is not as much as that 

in Linux systems. We believe that this is due mainly to non-optimization of device context switches 

and 110 system calls in Windows systems. 

2.5 Discussion 

The dynamic circular buffer and memory compression techniques of Batmem can be applied to 

other hypervisors because they do not depend on a particular hypervisor architecture. Batmem only 

attempts to improve the speed of MMIO write by monitoring 110 functions on selected devices. 

More specifically, while the context switch and reserved memory areas are two primary components 

of the hypervisor, Batmem only optimizes their memory 110 exchanges and does not modify their 

fundamental operations. Therefore, the operations of these original components are not affected by 

Batmem. 

For memory compression, the actual benefit is determined by a tradeoff between its overhead 

and compression ratio. While the chosen compression ratio threshold of 5% is not reasonably high, 

we believe that it is appropriate because the total system overhead is only increased by 1-1.5%. As 

expected, the compression behavior highly depends on the chosen algorithm. Although the applied 
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RLE is less effective than WKdm and/or Lempel-Ziv in terms of compression ratio [87], we also 

believe that the prototype of Batmem shows the potential of using such a simple technique to reduce 

memory redundancy in a virtual support system. 

2.6 Summary 

We have presented the design and implementation of Batmem, a technique that significantly reduces 

the overhead of the conventional memory exchange mechanism MMIO. To demonstrate its feasibil­

ity, we build Batmem in KVM and conduct experimentation in both high-end and low-end systems. 

For the high-end systems, we evaluate the performance improvement of virtual devices. For the 

low-end systems, Batmem functions as a VMBR component. Our experimental results on Windows 

and Linux show significant performance improvements with the use of Batmem in device-level 

benchmarks and user-level applications. 
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Chapter 3 

Performance Implications of Nested File 

Systems 

3.1 Introduction 

Virtualization has significantly improved hardware utilization, thus, allowing IT services providers 

to offer a wide range of application, platform and infrastructure solutions through low-cost, com-

moditized hardware (e.g., Cloud [I, 10, 30]). However, virtualization is a double-edged sword. 

Along with many benefits it brings, virtualized systems are also more complex, and thus, more 
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difficult to understand, measure, and manage. This is often caused by layers of abstraction that 

virtualization introduces. One particular type of abstraction, which we use often in our virtualized 

environment but have not yet fully understood, is the nesting of file systems in the guest and host 

systems. 

In a typical virtualized environment, a host maps regular files as virtual block devices to VMs. 

Completely unaware of this, a VM would format the block device with a file system that it thinks 

is the most suitable for its particular workload. Now, we have two file systems - a host file system 

and a guest file system - both of which are completely unaware of the existence of the other layer. 

Figure 3.1 illustrates such a scenario. The fact that there is one file system below another compli­

cates an already delicate situation, where file systems make certain assumptions, based on which, 

optimizations are made. When some of these assumptions are no longer true, these optimizations 

will no longer improve performance, and sometimes, will even hurt performance. For example, in 

the guest file system, optimizations such as placing frequently used files on outer disk cylinders for 

higher 110 throughput (e.g., NTFS), de-fragmenting files (e.g., QCoW [20]), and ensuring meta-data 

and data locality, can cause some unexpected effects when the real block allocation and placement 

decisions are done at a lower level (i.e., in the host). 

An alternative to using files as virtual block devices is to give VMs direct access to physical disks 

or logical volumes. However, there are several benefits in mapping virtual block devices as files in 

host systems. First, using files allows storage space overcommit when they are thinly provisioned. 

Second, snapshotting a VM image using copy-on-write (e.g., using QCoW) is simpler at the file level 

than at the block level. Third, managing and maintaining VM images and snapshots as files is also 
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easier and more intuitive as we can leverage many existing file-based storage management tools. 

Moreover, the use of nested virtualization [ 17, 39], where VMs can act as hypervisors to create 

their own VMs, has recently been demonstrated to be practical in multiple types of hypervisors. 

As this technique encourages more layers of file systems stacking on top of one another, it would 

be even more important to better understand the interactions across layers and their performance 

implications. 

In most cases, a file system is chosen over other file systems primarily based on the expected 

workload. However, we believe, in a virtualized environment, the guest file system should be chosen 

based on not only the workload but also the underlying host file system. To validate this, we conduct 

an extensive set of experiments using various combinations of guest and host file systems including 

Ext2, Ext3, Ext4, ReiserFS, XFS, and JFS. It is well understood that file systems have different 

performance characteristics under different workloads. Therefore, instead of comparing different 

file systems, we compare the same guest file system among different host file systems, and vice 

versa. From our experiments, we observe significant 110 performance differences. An improper 

combination of guest and host file systems can be disastrous to performance, but with an appropriate 

combination, the overhead can be negligible. 

The main contributions of this work are summarized as follows. 

• A quantitative study of the interactions between guest and host file systems. We demonstrate 

that the virtualization abstraction at the file system level can be more detrimental to the 1/0 

performance than it is generally believed. 

• A detailed block-level analysis of different combinations of guest/host file systems. We un-
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cover the reasons behind UO performance variations in different file system combinations 

and suggest various tuning techniques to enable more efficient interactions between guest and 

host file systems to achieve better UO performance. 

From our experiments, we have made the following interesting observations: ( 1) for write­

dominated workloads, joumaling in the host file system could cause significant performance degra­

dations, (2) for read-dominated workloads, nested file systems could even improve performance, 

and (3) nested file systems are not suitable for workloads that are sensitive to UO latency. We 

believe that more work is needed to study performance implications of file systems in virtualized 

environments. Our work takes a first step in this direction, and we hope that these findings can help 

file system designers to build more adaptive file systems for virtualized environments. 

3.2 Background 

Virtualizing UO, especially storage, has been proven to be much more difficult than virtualizing 

CPU and memory. Achieving bare-metal performance from virtualized storage devices has been 

the goal of many past works. One approach is to use para-virtualized UO device drivers [76], 

in which, a guest OS is aware of running inside of a virtualized environment, and thus, uses a 

special device driver that explicitly cooperates with the hypervisor to improve UO performance. 

Examples include KVM's VirtiO driver [76], Xen's para-virtualized driver [33], and VMware's 

guest tools [27]. Additionally, Jujjuri et al. [57] proposed to move the para-virtualization interface 

up the stack to the file system level. 

The use of para-virtualized UO device drivers is almost a de-facto standard to achieve any rea-
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sonable 1/0 performance, however, Yassour et al. [88] explored an alternative solution that gives 

guest direct access to physical devices to achieve near-native hardware performance. In this chap­

ter, we instead focus on the scenario where virtual disks are mapped to files rather than physical 

disks or volumes. As we will show, when configured correctly, the additional layers of abstraction 

introduce only limited overhead. On the other hand, having these abstractions can greatly ease the 

management of VM images. 

Similar to nesting of file systems, 1/0 schedulers are also often used in a nested fashion, which 

can result in suboptimal 1/0 scheduling decisions. Boutcher and Chandra [ 41] explored different 

combinations of 110 schedulers in guest and host systems. They demonstrated that the worst case 

combination provides only 40% throughput of the best case. In our experiments, we use the best 

combination of 110 schedulers found in their paper but try different file system combinations, with 

the focus on performance variations caused only by file system artifacts. Whereas, for performance 

purposes, there is no benefit to performing additional 110 scheduling in the host, it has a significant 

impact on inter-application 110 isolation and fairness as shown in [58]. Many other works [43, 

47, 68, 78] have also studied the impact of nested 110 schedulers on performance, fairness, and 

isolation, and these are orthogonal to our work in the file system space. 

When a virtual disk is mapped to an image file, the data layout of the image file can signifi-

cantly affect its performance. QCOW2 [20], VirtualBox VDI [24], and VMware VMDK [28] are 

some popular image formats. However, as Tang [84] pointed out, these formats unnecessarily mix 

the function of storage space allocation with the function of tracking dirty blocks. Tang presented an 

FVD image format to address this issue and demonstrated significant performance improvements 
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for certain workloads. Various techniques [40, 55, 83] to dynamically change the data layout of 

image files, depending on the usage patterns, have also been proposed. Suzuki et al. [83] demon­

strated that by co-locating data blocked used at boot time, a virtual machine can boot much faster. 

Bhadkamkar et al. [40] and Huang et al. [55] exploited data replication techniques to decrease the 

distance between temporally related data blocks to improve 110 performance. Sivathanu et al. [81] 

studied the performance effect of the image file placed at different locations of a disk. 

110 performance in storage virtualization can be impacted by many factors, such as device driver, 

110 scheduler, and image format. To the best of our knowledge, this is the first work that studies the 

impact of the choice of file systems in guest and host systems in a virtualization environment. 

3.3 Macro-benchmark Results 

To better understand the performance implications caused by guest I host file system interactions, 

we take a systematic approach in our experimental evaluation. First, we exercise macro-benchmarks 

to understand the potential performance impact of nested file systems on realistic workloads, from 

which, we were able to observe significant performance impact. In Section 3.4, we use micro­

benchmarks coupled with low-level 110 tracing mechanisms to investigate the underlying cause. 

3.3.1 Experimental Setup 

As there is no single "most common" or "best" file system to use in the hypervisor or guest VMs, 

we conduct our experiments using all possible combinations of popular file systems on Linux (i.e., 

Ext2, Ext3, Ext4, ReiserFS, XFS, and JFS) in both the hypervisor and guest VMs, as shown in 



CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 37 

~uest 

Figure 3.2: Setup for macro-level experimentation 

Hardware Software 

Pentium D 3.4GHz, 2GB RAM Ubuntu 10.04 (2.6.32-33) 

Host 80GB WD 7200 RPM SATA (sda) qemu-kvm 0.12.3 

lTB WD 7200 RPM SATA (sdb) libvirt 0.9.0 

Guest Qemu 0.9, 512MB RAM Ubuntu 10.04 (2.6.32-33) 

Table 3.1: Testbed Setup 

Figure 3.2. A single x86 64-bit machine is used to run KVM [61] at the hypervisor level, and 

QEMU [38] is used to run guest VMs1. To reflect typical enterprise setting, each guest VM is 

allocated a single dedicated processor core. More hardware and software configuration settings are 

listed in Table 3.1. 

The entire host OS is installed on a single disk (sda) while another single disk (sdb) is used for 

experiments. We create multiple equal-sized partitions from sdb, each corresponding to a different 

host file system. Each partition is then formatted using the default parameters of the host file sys-

tern's mkf s* command and is mounted using the default parameters of mount. In the newly created 

1 Similar performance variations are observed in the experiments with other hypervisors including Xen and VMWare, 

which are shown in 3.6. 



CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 38 

Host file system 
'> Guest file system . ' ' 

Devices #Blocks Speed(MB/s) Type 
Device #Blocks Type 

x106 

x106 

sdb2 60.00 127.64 Ext2 
'' I vdc2 9.27 Ext2 

·sdb3 60.00· 127.71 Ext3 
vdc3 9.26 Ext3 

sdb4 60.00 126.16 Ext4 
vdc4 9.27 Ext4 

sdb5 60.00 125.86 ReiserFS 
vdc5 9.28 Rei serFS 

sdb6 60.00 123.47 XFS 
vdc6 9.27 XFS 

sdb7 60.00 122.23 JFS 
vdc7 9.08 JFS 

sdb8 60.00 121.35 Block Device 

Table 3.2: Physical and logical disk partitions 

host file system, we create a flat file and expose this flat file as the logical block device to the guest 

VM, which in tum, further partitions the block device, having each corresponding to a different 

guest file system. By default, virtio [76] is used as the block device driver for the guest VM and 

we consider write-through as a caching mode for all backend storages. The end result is the guest 

VM having access to all combinations of guest and host file systems. Table 3.2 shows an example 

of our setup: a file created on /dev/sdb3, which is formatted as Ext3, is exposed as a logical block 

device vdc to the guest VM, which further partitions vdc into vdc2, vdc3, vdc4, etc. for different 

guest file systems. Note that all disk partitions of the hypervisor (sdb*) and the guest (vdc•) are 

properly aligned using fdisk to avoid most of the block layer interference caused by misalignment 

problems. 
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In addition to the six host file systems, we also create a raw disk partition that is directly exposed 

to the guest VM and is labeled as Block Device (BD) in Table 3.2. This allows a guest file system to 

sit directly on top of a physical disk partition without the extra host file system layer. This special 

case is used as our baseline to demonstrate how large (or how small) of an overhead the host file 

system layer induces. However, there are some side effects to this particular setup, and namely, 

the file systems being created on outer disk cylinders will have higher 1/0 throughput than those 

created on inner cylinders. Fortunately, as each disk partition created at the hypervisor level is 

60GB, only a portion of the entire disk is utilized and thus limits this effect. Table 3.2 also shows 

the results of running hdparm on each disk partition. The largest throughput difference between any 

two partitions is only about 5%, which is fairly negligible. 

The choice of 1/0 scheduler at host and guest levels can significantly impact performance [41, 

56, 78, 79]. As file system is the primary focus of this work, we used CFQ scheduler in the host and 

Deadline scheduler in the guest as these schedulers were shown to be the top performers in their 

respective domains by Boutcher and Chandra [41]. 

3.3.2 Benchmarks 

We use Filebench [8] to generate macro-benchmarks of different 1/0 transaction characteristics 

controlled by predefined parameters, such as the number of files to be used, average file size, and 

1/0 buffer size. Since Filebench supports a synchronization between threads to simulate concurrent 

and sequential 1/0s, we use this tool to create four server workloads: a file server, a web server, a 

mail server, and a database server. The specific parameters of each workload are listed in Table 3.3, 

showing that the experimental working set size is configured to be much larger than the size of the 
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Services #Files #Threads File size 110 size 

File server 50,000 50 128KB 16KB-1MB 

Web server 50,000 100 16KB 512KB 

Mail server 50,000 16 8-16KB 16KB 

DB server 8 200 1GB 2KB 

Table 3.3: Parameters for Filebench workloads 

page cache in the VM. The detailed description of these workloads is as follows. 

• File server: Emulates a NFS file service. File operations are a mixture of create, delete, 

append, read, write, and attribute on files of various sizes. 

• Web server: Emulates a web service. File operations are dominated by reads: open, read, 

and close. Writing to the web log file is emulated by having one append operation per open. 

• Mail server: Emulates an e-mail service. File operations are within a single directory con­

sisting of 110 sequences such as open/read/close, open/append/close, and delete. 

• Database server: Emulates the 110 characteristic of Oracle 9i. File operations are mostly 

read and write on small files. To simulate database logging, a stream of synchronous 

writes is used. 

3.3.3 Macro-benchmark Results 

Our main objective is to understand how much of a performance impact nested file systems have 

on different types of workloads, and whether or not the impact can be lessened or avoided. As 
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mentioned before, we use all combinations of six popular file systems in both the hypervisor and 

guest VMs. For comparison purpose, we also include one additional combination, in which the 

hypervisor exposes a physical partition to guest VMs as a virtual block device. This results in 42 

(6 x 7) different combinations of storage I file system configurations. 

The performance results are shown in Figures 3.3, 3.4, 3.7, and 3.8, in terms of 110 throughput 

and 110 latency, respectively. Each sub-figure consists of a left and a right side. The left side 
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shows the performance results when the guest file systems are provisioned directly on top of raw 

disk partitions in the hypervisor. These are expressed in absolute numbers (i.e., MB per second for 

throughput or millisecond for latency) and are used as our baseline. The right side shows the relative 

performance (to the baseline numbers) of the guest tile systems when they are provisioned as files 

in the host tile system. In these figures, each column group represents a different storage option in 

the hypervisor, and each column within the group represents a different storage option in the guest 
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File server Web server Mail server Database 

Guest File Systems Worst Best Worst Best Worst Best Worst Best 

Ext2 79 91 82 100 56 72 84 106 

Ext3 47 97 79 93 45 56 81 104 

Ext4 67 96 83 91 36 51 41 104 

ReiserFS 76 91 90 101 42 53 33 94 

XFS 79 93 88 98 55 68 69 102 

JFS 69 88 79 103 52 70 64 88 

Table 3.4: Best and worst case 1/0 throughput (relative to baseline) of each guest file system across different 
host file systems(%). 

VM. 

3.3.3.1 Throughput 

The baseline numbers (leftmost column group) show the intrinsic characteristics of various file sys-

terns under different types of workloads. These characteristics indicate that some file systems are 

more efficient on large files than small files, while some file systems are more efficient at reading 

than writing. As an example, when ReiserFS runs on top of BD, its throughput under the web server 

workload (27 .2 MB/s) is much higher than that under the mail server workload ( 1.4MB/s). These 

properties of file systems are well understood, and how one would choose which file system to use 

is a straight-forward function of the expected 110 workload. However, in a virtualized environ-

ment where nested file systems are often used, the decision becomes more difficult. Based on the 

experimental results, we make the following observations: 
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Figure 3.5: Coefficient of variance of guest file systems' throughput under Filebench workloads across dif­
ferent host file systems. 
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Figure 3.6: Total I/0 transaction size of Filebench workloads 

• A guest file system's performance varies significantly under different host file systems. 

Figure 3.4 shows an example of the database workload. When ReiserFS runs on top of Ext2, 

its throughput is reduced by 67% compared to its baseline number. However, when it runs on 

top of JFS, its 110 performance is not impacted at all. We use coefficient of variance to quan-

tify how differently a guest file system' performance is affected by different host file systems, 

which is shown in Figure 3.5. For each workload, a variance number is calculated based 
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on relative performance values of a guest file system when it runs on top of different host 

file systems. Our results show that the throughput of ReiserFS experiences a large variation 

( 45%) under the database workload, while that of Ext4 varies insignificantly ( 4%) under the 

web server workload. The large variance numbers indicate that having the right guest/host file 

system combination is critical to performance, and having a wrong combination can result in 

serious performance degradation. For instance, under the database workload, ReiserFS/Ext2 

is a right combination, but ReiserFS/JFS is a wrong combination. 
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• A host file system impacts different guest file systems' performance differently. Similar 

to the previous observation, a host file system can have a different impact on different guest 

file systems' performance. Figure 3.3 shows an example of the file server workload. When 

Ext2 runs on top of Ext3, its throughput is slightly degraded by about 10%. However, when 

Ext3 runs on top of Ext3, the throughput is reduced by 40%. Based on results of coefficient 

of variance of guest file systems' throughputs shown in Figure 3.5, we observe that this bi-

directional dependency between guest and host file systems again stresses the importance of 
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File server Web server Mail server Database 

Guest File Systems Best Worst Best Worst Best Worst Best Worst 

Ext2 137 180 89 Ill 141 182 150 162 

Ext3 133 227 164 319 176 222 133 197 

Ext4 121 167 185 251 188 267 149 241 

ReiserFS Ill 152 164 185 185 228 137 263 

XFS 123 151 108 167 147 191 126 153 

JFS 123 154 107 133 136 186 198 232 

Table 3.5: Best and worst case 110 latency {relative to baseline) of each guest file system across different 
host file systems (% ). 

choosing the right guest/host file system combination. 

• A right guest file system/host file system combination can produce minimal performance 

degradation. Also based on results shown in Figure 3.5, one can also observe how badly 

performance can be impacted when a wrong combination of guest/host file system is chosen. 

However, it is possible to find a guest file system whose performance loss is the lowest. For 

example, the results of the mail server workload show that once Ext2 runs on top of Ext2, its 

throughput degradation is the lowest (by 46% ). 

• The performance of nested file systems is affected much more by write than read op-

erations. As one can see in Figure 3.4, all the combinations of nested file systems perform 

poorly for the mail server workload, unlike the other three workloads. We study the detailed 

disk traces from these workloads by examining request queuing time, request merging, re-
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quest size, etc., and find that the mail server workload is only significantly different from the 

others in having a much higher proportion of writes than reads, as shown in Figure 3.6. We 

will use micro-benchmarks in Section 3.4 to describe the reasons behind this behavior. 

3.3.3.2 Latency 

The latency results are illustrated in Figures 3.7 and 3.8. Similar to UO throughput, latency is also 

deteriorated when guest file systems are provisioned on top of host file systems rather than raw 

partitions. Whereas the impact to throughput can be minimized (for some workloads) by choosing 

the right combinations of guest/host file system, latency is much more sensitive to nesting of file 

systems. In comparison to the baseline, the latency of each guest file system varies in a certain range 

when it runs on top of different host file systems. Even for the lowest cases, latency is increased by 

5-15% across the board (e.g., Ext2 guest file system under the web server workload). Coefficient 

of variance for latency, as shown in Figure 3.9, is similar to that of throughput shown in Figure 3.5. 
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However, for latency sensitive workloads, like the database workload, such a significant increase in 

110 response time could be unacceptable. 

3.4 Micro-benchmarks Results 

We first study nested file systems using a micro-level benchmark FlO [9]. Based on the experimental 

results, we further conduct an analysis at the block layer on the guest VM and the hypervisor, 

respectively, using an 110 tracing mechanism [5]. 

3.4.1 Benchmark 

We use FlO as a micro-level benchmark to examine disk 1/0 workloads. As a highly configurable 

benchmark, FlO defines a test case based on different 110 transaction characteristics, such as total 

110 size, block size, number of 110 parallelism, and 110 mode. Here our focus is on the performance 

variation of primitive 110 operations, such as read and write. With the combination of these 110 

operations and two 110 pattens, random and sequential, we design four test cases: random read, 

random write, sequential read, and sequential write. The specific 1/0 characteristics of these test 

cases are listed in Table 3.6. 

3.4.2 Experimental Results 

On the same testbed, the experiments are conducted with many small files, which create a 5GB 

of total data footprint for each workload. Figures 3.10 and 3.11 show the performance in both 

sequential and random IIOs. Based on the experimental results, we make two observations: 
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• The performance of those workloads that are dominated by read operations is largely 

unaffected by nested file systems. The performance impact is weakly dependent on guest/host 

file systems. More interestingly, for sequential reads, in a few scenarios, a nested file system 

can even improve 110 performance (e.g., by 34% for Ext3/JFS). 

• The performance of those workloads that are dominated by write operations is heavily 

affected by nested file systems. The performance impact varies in both random and sequen-

tial writes, with higher variations in sequential writes. In particular, a host file system like 
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XFS can degrade the performance by 40% for both random and sequential writes. As a re-

suit, it is important to understand the root cause of this performance impact, especially on the 

sequential write dominated workload. 

To interpret these observations, our analysis will focus on sequential workloads and the perfor-

mance implication across certain guest/host file system combinations. For this set of experiments 

with micro-benchmark, due to space constraints, we only concentrate on deciphering the 1/0 be-

havior of these representative file system combinations. Although only a few combinations are 
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I Description Parameters 

Total 1/0 size 5GB 

1/0 parallelism 255 

Block size SKB 

1/0 pattern Random/Sequential 

1/0 mode Native asynchronous 1/0 

Table 3.6: FlO benchmark parameters 

considered, principles used here are applicable to other combinations as well. 

For sequential read workloads, we attempt to uncover the reasons behind the significant perfor­

mance improvement on the right guest/host file system combinations. We select the combinations of 

Ext3/JFS and Ext3/BD for analysis. For sequential write workloads, we try to understand the root 

cause of the significant performance variations in the scenarios of ( 1) different guest file systems 

running on the same host file system and (2) the same guest file system operating on different host 

file systems. We analyze three guest file system/host file system combinations: Ext3/ReiserFS, 

JFS/ReiserFS, and JFS/XFS. Here Ext3/ReiserFS and JFS/ReiserFS are used to examine how dif­

ferent guest file systems can affect performance differently on the same host file system, while 

JFS/ReiserFS and JFS/XFS are used to examine how different host file systems can affect perfor­

mance differently on the same guest file system. 
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3.4.3 1/0 Analysis 
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To understand the underlying cause of the performance impact due to nesting of file systems, we 

use blktrace to record 110 activities at both the guest and hypervisor levels. The resulting trace files 

are stored on another device, thus increasing only 3-4% CPU utilization. Therefore, the interference 

with our benchmarks from such an 110 recoding is negligible. Blktrace keeps detailed account of 

each 110 request from start to finish as it goes through various 110 states (e.g., put the request onto 

an 110 queue, merge with an existing request, and wait on the 110 queue). The 110 states that are of 

interest to us in this study are described as follows. 

• Q: a new 110 request is queued by an application. 

• 1: the 110 request is inserted into an 110 scheduler queue. 

• 0: the 110 request is being served by the device. 

• C: the 110 request has completed by the device. 

Blktrace records the timestamp when an UO request enters a new state, so it is trivial to calculate 

the amount of time the request spends in each state (i.e., Q21, 120, and 02C). Here Q21 is the time 

it takes to insert/merge a request onto a request queue. 120 is the time it takes to idle on the request 

queue waiting for merging opportunities. 02C is the time it takes for the device to serve the request. 

The sum of Q21, 120, and 02C is the total processing time of an 110 request, which we denote as 

Q2C. 
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3.4.3.1 Sequential Read Workload 
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As mentioned in the experimental setup, the logical block device of the guest VM can be represented 

as either a flat file or a physical raw disk partition at the hypervisor level. However, the different 

representation of the guest VM's block device directly affects the number of I/0 requests served 

at the hypervisor level. For the selected combinations of Ext3/JFS and Ext3/BD, as Figure 3.12 

shows, the number of I/0 requests served at the hypervisor's block layer is significantly lower than 

that at the guest's block layer. More specifically, if JFS is used as a host file system, it greatly 

reduces the number of queued I/0 requests sent from the guest level, resulting in much fewer I/0 

requests served at the hypervisor level than those at the guest level. If a raw disk partition is used 

instead, although there is no reduction on the number of queued I/0 requests, the hypervisor level's 

block layer also lowers the number of served I/0 requests by merging queued I/0 requests. 

There are two root causes for these I/0 behaviors: (I) the file prefetching technique at the hy-

pervisor level, known as readahead, and (2) the merging activities at the hypervisor level introduced 

by the I/0 scheduler. The detailed descriptions of these root causes are given below. 
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First, there are frequent accesses to both files' content and metadata in a sequential read dom­

inated workload. To expedite this process, readahead 110 requests are issued at the kernel level of 

both the guest and the hypervisor. Basically, readahead 110 requests populate the page cache with 

data already read from the block device, so that subsequent reads from the accessed files do not 

block on other 110 requests. As a result, it decreases the number of accesses to the block device. 

In particular, at the hypervisor level, a host file system issues readahead requests and attempts to 

minimize the frequent accesses on the flat file by caching the subsequently accessed contents and 

metadata in the physical memory. Therefore, the IIOs served at the hypervisor level are much fewer 

than those at the guest level. 

However, when accessing a raw disk partition, there is no readahead. Thus, for sequential 

workloads, a host file system outperforms a raw disk partition due to more effective caching. This 

discrepancy of data caching at the hypervisor level is clearly shown in Figure 3.13. 

Second, to optimize 1/0 requests being served on the block device, the hypervisor's block layer 

attempts to reduce the number of accesses into the block device by sorting and merging queued 110 

requests. However, when many 110 requests are sorted and merged, they need to stay longer in the 

queue than normal. For JFS (host file system), as shown in Figure 3.12, due to the effective caching, 

much fewer 1/0 requests are sent to the disk, and thus much fewer sorting/merging activities occur 

at the 1/0 queue. However, when a raw partition is used, much more 110 requests need to be 

sorted/merged. The sorting/merging activities cause a higher idle time (120) for 110 requests being 

served on the block device than those on the JFS (host file system). This behavior is depicted in 

Figure 3.14 (hypervisor level). 
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Figure 3.13: Cache hit ratio under sequential read workload. 

Remark: When a flat file is used as a guest VM's logical block device, sequential read dom-

inated workloads can take advantage of the readahead at the hypervisor, achieving effective data 

caching. In contrast, when a disk partition is used, there is no readahead and data caching. There-

fore, for all file systems, to gain high 1/0 performance, we recommend cloud administrators to select 

a flat file over raw partitions for services dominated by sequential reads. 

3.4.3.2 Sequential Write Workload 

Our investigation uncovers the root causes of the nested file systems' performance dependency 

under a sequential write workload in two cases: (A) two file system combinations hold the same 

host file system, and (B) two combinations hold the same guest file system. The analysis detailed 

below focuses on two principal factors: sensitivity of an 1/0 scheduler and effectiveness of block 

allocation mechanisms. 
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A. Different guests (Ext3, JFS) on the same host (ReiserFS): As shown in Figure 3.11, we can 

see that the performance of sequential 1/0s of Ext3/ReiserFS is much worse than that of Ext3/BD, 

while the 1/0 performance of JFS/ReiserFS is much better than JFS/BD. At the guest level, we 

analyze the performance dependency of Ext3 and JFS based on the comparison of their 1/0 charac-

teristics. The details of this comparison are shown in Figure 3 .16. 

Figure 3.16 (A) shows that most 1/0s issued from Ext3 and sent to the block layer are well 

merged at the guest level's 110 scheduler. The effective merging of 1/0s significantly reduces the 
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Figure 3.16: 110 characteristics at guest level of JFS/ReiserFS 

number of UOs to be served on Ext3 (guest). Meanwhile, Figure 3.16 (B) shows that 99% 1/0s of 

Ext3 are in small size (8K) and those of JFS is 68%. Apparently, merging multiple small size UOs 
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incurs additional overhead. This is because the small requests have to be waited longer in the queue 

in order to be merged, thus, increasing their idle times. This behavior is illustrated in Figure 3.16 

(C). 

To understand the root cause of merging happened on Ext3 and JFS (guest), we perform a deep 

analysis by monitoring every issued UO activities at the guest level. What we found is that the 

block allocation mechanism causes this performance variation. To minimize disk seeks, Ext3 issues 

UOs to allocate blocks of data on disk close to each other. The data includes regular data file, its 

metadata, and journal logs of metadata. This allocation scheme makes most UOs be back merged. 

A back merge behavior denotes that a new request sequentially falls behind an exiting request on 

an order of the start sector, as they are logically adjacent. Note that two UOs are logically adjacent 

when the end sector of one UO is logically located next to the begin sector of the other UO. As we 

can see, clustering adjacent UOs facilitates the data access. However, it requires the issued UOs to 

be waited longer in the queue for being processed. 

JFS is more efficient than Ext3 in joumaling. For regular data file written into disk, both Ext3 

and JFS effectively coalescence multiple write operations to reduce the number of UO committed 

into disk. However, for metadata and journal logs, instead of independently committing every single 

concurrent log entry as Ext3, JFS requires multiple concurrent log entries to be coalesced as one 

commit. For this reason, as shown in Figure 3.15, JFS has less UOs spent for joumaling, resulting 

in less performance degradation. 

Remarks: The efficiency provided by the UO scheduler's optimization is no longer valid for all 

nested file systems. Since file systems allocate blocks on disk differently, nested file systems have 
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different impacts on performance when one particular UO scheduler is used. Therefore, a nested file 

system should be chosen based on the effectiveness of underlying UO scheduler's operations on its 
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block allocation scheme. 

B. Same guest (JFS) on different hosts (ReiserFS, XFS): Based on results of sequential writes 

shown in Figure 3.11, JFS (guest) performs better on ReiserFS than on XFS. We analyze 110 ac­

tivities of these host file systems to uncover differences of their block allocation mechanisms. The 

detailed analysis is given below. 

The analysis of 110 activities reveals that the 110 scheduler processes Rei serFS' IIOs similarly 

to those of XFS. As shown in Figure 3.17 (A), the number of host file systems' IIOs to be queued 

and served are fairly similar in ReiserFS and XFS. However, Figure 3.17 (B) denotes that XFS' IIOs 

are executed slower than those of ReiserFS. A further analysis is needed to explain this behavior. 

In general, file systems allocate blocks on disk differently, thus, resulting in a different execution 

time for IIOs. For this reason, we perform an analysis on the disk seeks. Based on the results shown 

in Figure 3.17 (C), we find that long distance disk seeks on XFS cause high overhead and reduce 

its 110 performance. Note that in Figure 3.17 (C), the x-axis is represented as a normalized seek 

distance and 1 denotes the longest seek distance of the disk head, from one end to the other end of 

the partition. 

With respect to the case of one host file system allocates disk blocks more effectively than 

another under the same workload, we analyze the mechanisms to allocate disk blocks of ReiserFS 

and XFS and find that XFS induces an overhead because of a multiple journal logging. The detailed 

explanations are as follows: 

A multiple logging mechanism of metadata also incurs an overhead on XFS. Basically, XFS is 

able to record multiple separate changes occurred on the metadata of a single file and store them 
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Figure 3.18: Extra data written into disk under the same workload from JFS (guest). 

into journal logs. This technique effectively avoids such changes to be flushed into disk before 

another new change will be logged. However, every change of metadata can be range from 256 

Bytes to 2 KB in size, while the default size of the log buffer is only 32 KB. Under an intensive 

write dominated workload, this small log buffer causes multiple changes of the file metadata to be 

frequently logged. As shown in Figure 3.18, this repeatedly logging produces extra data written into 

disk, thus, resulting in a performance loss. 

Remarks: (l) An effective block allocation of one particular file system no longer guarantees a 

high performance when it runs on top of another file system. (2) Under an intensive write dominated 

workload, an update of journal logs on disk should be carefully considered to avoid performance 

degradation. Especially for XFS, the majority of its performance loss is attributed to not only a 

placement of journal logs, but also a technique to handle updates of these logs. 
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3.4.4 Disk Image Formats 

63 

The logical block devices of a guest VM can be represented in other formats under the flat files, such 

as Qcow2, Raw non-preallocated or raw preallocated. As a native disk image file format, a Qcow2 

file grows as needed. The more features provided by the Qcow2 over the Raw include base images, 

snapshots, compression, and encryption. In contrast, a Raw disk image needs to be allocated in the 
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full size beforehand. If a Raw sparse disk image is based on a regular sparse file, a Raw one is based 

on a non-sparse file whose empty data blocks are filled up by null, making its actual size on the 

disk generally smaller than its logical size. Since this Raw format is an exact bit-for-bit copy of a 

block device, its structure contains files and folders of stored data, and other components of a block 

device, such as a boot sector and file allocation tables. 

To examine 110 behaviors when different disk image formats are used, we conduct a set of 
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experiments where the disk image is formatted as Qcow2, Raw sparse, and Raw respectively. Based 

on FlO benchmark parameters used for previous experiments, we create a workload. This workload 

simultaneously performs sequential reads/writes and creates a 5GB of data footprint. In total we test 

36 different combinations of guest file system/host file system. Based on the experimental results 

shown in Figure 3.19 and Figure 3.20, we make two important observations: 

A. Performance discrepancy between Qcow2 and Raw disk images: With the copy-on-write 

strategy on a fixed size block device, a Qcow2 disk image only reflects changes made on the under­

lying disk. Thus, it enables to efficiently maintain a small size of disk image. However, managing 

a small size of disk image also induces overhead, which produces negative impacts on the 1/0 per­

formance. Unlike Qcow2, a Raw sparse disk image does not need to minimize its actual size on 

the block device. This is because blocks marked as null on the file image are simply filled up by 

data. Thus, it increases the actual size of the disk image on the block device. As a result, using Raw 

sparse image can achieve higher 110 performance for sequential workloads in nested file systems 

than using Qcow2. 

B. Trade-otT between performance and other storage features: Qcow2 disk images offer more 

features than Raw and Raw sparse disk images. However, based on the experimental results with 

different guest/host file system combinations, administrators of cloud storage systems should make 

a trade-off between performance and management when choosing disk format. For example, in a 

virtualization system that requires high 1/0 performance, the administrator should select Raw sparse 

rather than Qcow2 to format disk images. However, if the system requires a guarantee on reliability 



CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 66 

160 
Journal log - • Metadata al 

:E 120 -"' .., 
80 "' "'C 

e 
40 .., 

>< w 
0 

Ext2 Ext3ReiserFS XFS JFS 

Figure 3.21: (hypervisor level) Extra data written into disk under a write-dominated workload from guest 
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or security, instead of performance, for its services, the disk image should be formatted as Qcow2. 

3.5 Discussion 

Despite various practical benefits in using nested file systems in a virtualized environment, our 

experiments have shown the associated performance overhead to be significant if not configured 

properly. Here we offer five advice on choosing the right guest/host file system configurations to 

minimize performance degradation, or in some cases, even improve performance. 

Advice 1 For workloads that are read-dominated (both sequential and random), using nested file 

systems has minimal impact on l/0 throughput, independent of guest and host file systems. For 

workloads that have a significant amount of sequential reads, nested file systems can even improve 

throughput due to the readahead mechanism at the host level. 
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Advice 2 On the other hand, for workloads that are write-dominated, one should avoid using 

nested file systems in general due to (1) one more layer to pass through and (2) additional metadata 

update operations. If one must use nested file systems, joumaled file systems in the host should be 

avoided. Joumaling of both metadata and data can cause significant performance degradation, and 

therefore, is not practical to use for most workloads, and if only metadata is joumaled, a crash can 

corrupt a VM image file easily, thus, giving no benefit to metadata-only joumaling mode in the host. 

As shown in Figure 3.21, the additional metadata writes to the journal log can result in significantly 

more 110 traffic. Performance is even more impacted if the location of the log is placed far away 

from either the metadata or the data locations. 

Advice 3 For workloads that are sensitive to 110 latency, one should also avoid using nested file 

systems. As shown in Figures 3.7 and 3.8, even in the best case scenarios, nested file systems could 

increase 110 latency by 10-30% due to having an additional layer of file system to traverse and one 

more 110 queue to wait for. 

Advice 4 In a nested file system, data and metadata placement decisions are made twice, first in 

the guest file system and then in the host file system. Guest file system uses various temporal and 

spatial heuristics to place related metadata and data blocks close to each other. However, when 

these placement decisions reach the host file system, it can no longer differentiate between data and 

metadata and treats everything as data. As a result, the secondary data placement decisions made 

by a host file system are both unnecessary and less efficient than those made by a guest file system. 

Ideally, the host file system should simply act as a pass-through layer such as VirtFS [57]. 
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Advice 5 In our experiments, we used the default set of formatting and mounting parameters in 

all the file systems. However, just like in a non-virtualized environment, these parameters can be 

tuned to improve performance. There are more benefits in tuning the host file system's parameters 

than guest's as it is ultimately the layer that communicates with the storage device. 

One should tune its parameters in such a way that the host file system most resembles a "dumb" 

disk. For example, when a disk is instructed to read a small disk block, it will actually read the 

entire track or cylinder and keep them in its internal cache to minimize mechanical movement for 

future UO requests. A host file system can emulate this behavior by using larger block sizes. 

Metadata operations at host file system is another source of overhead. When a VM image file 

is accessed or modified, its metadata often has to be modified, thus, causing additional UO load. 

Parameters such as noatime and nodiratime can be used to avoid updating the last access time 

without losing any useful information. However, when the image file is modified, there is no option 

to avoid updating the metadata. As the image file will stay constant in size and ownership, the only 

field in the metadata that needs to be updated is the last modified time, which for an image file is just 

pure overhead. Perhaps this can be implemented as a file system mount option. Note thatjoumaling, 

as mentioned previously, in the metadata-only mode has very little usage in the host level. 

Lastly, using more advanced file system features to configure block groups and B+ trees to 

perform intelligent data allocation and balancing tasks will most likely be counter-productive. This 

is because these features will cause guest file system's view of disk layout to deviate further from 

the reality. 
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Figure 3.22: Other hypervisors show variation of relative 110 throughput of guest file systems under 
database workload (higher is better) 

3.6 Summary 

Our main objective is to better understand performance implications when file systems are nested 

in a virtualized environment. The major finding is that the choice of nested file systems on both 

hypervisor and guest levels has a significant performance impact on UO performance. Traditionally, 

a guest file system is chosen based on the anticipated workload, regardless of the host file system. 

By examining a large set of different combinations of host and guest file systems under various 
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workloads, we have demonstrated the significant dependency of the two layers on performance, 

and hence, system administrators must be careful in choosing both file systems in order to reap the 

greatest benefit from virtualization. In particular, if workloads are sensitive to 110 latency, nested 

file systems should be avoided or host file systems should simply perform as a pass-through layer 

in certain cases. 

We also have conducted experiments with the database workload to verify if the 110 performance 

of nested file systems is hypervisor-dependent. The chosen hypervisors are architecturally akin to 

KVM, such as VMware Player 3.1.4 with guest tools [27], and Xen 4.0 with Xen para-virtualized 

device drivers [32]. Figure 3.22 shows that the 110 performance variations of guest file systems on 

Xen and VMware are fairly similar to those on KVM. 



Chapter 4 

Shadow Patching: Minimizing 

Maintenance Window 

4.1 Introduction 

Cloud service providers allow customers to instantiate new virtual machines and manage their life­

cycle on-demand to best suit business needs and budget constraints. It is always a challenge to strike 

the right balance between ensuring VMs in a secure and compliant state and needing to schedule 

downtimes to make such changes to running systems [44]. Depending on the nature of the change 

and the complexity of the affected applications, downtime (maintenance window) can extend from 

several hours to days. During maintenance windows, services and applications are first shutdown, 

and then changes are applied, for which, one or more system reboots might be required. Once 

changes are committed, various tests are performed to verify the system is still in a working state, 

i.e., functional, performance, scalability, etc., which can also be time consuming. During this time 

window, the services provided by the affected systems are often completely disrupted (unless high­

availability mode is enabled, which might or might not be always possible depending on the type 

71 
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of the service and the additional cost to enable high-availability.) To minimize such disruptions, 

some may choose to continue to operate on outdated software [73], resulting in high security risks. 

Ideally, this downtime should be minimized if not eliminated. 

To eliminate change windows completely, various online patching techniques have been pro­

posed [35, 64, 71]. However, these techniques are applicable to only specific OSes and applications. 

For example, Ksplice [35] allows Linux kernel patches to be applied to a running kernel without 

rebooting by changing in-memory data structures on the fly. Conceptually, the same approach can 

be applied to other operating systems, but unless their respective vendor or a third party is making 

a similar tool available, this will remain as a Linux-only tool. For a large enterprise or a Cloud 

provider where many different OSes are supported, this is not a general approach one can use across 

all the different systems. 

We present a software patching framework, called Shadow Patching. Shadow Patching uses 

parallel virtual machine instances similar to Devirtualizable Virtual Machines (DVM) [64]. Unlike 

DVM which uses a highly customized VMM based on HP Alphaserver DS20, Shadow Patching 

will work with any commodity VMMs, e.g., KVM, Vmware, Xen, etc., and does not require any 

changes to VMM or guest VMs. The parallel VM instance is created for the duration when patches 

are applied, and is deprovisioned when finished, thus, not consuming resources during steady-state 

operations. The parallel VM instance is an exact replica of the VM to be patched in terms of OS, 

middleware, applications, and all the configurations. Thus, when a patch is applied, it will occur the 

same behavior on the parallel instance, or known as a cloned VM, as it would on the original VM. 

When a patch is applied to the parallel VM, we monitor all file system operations that change con-
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tents on persistent storage. Changes to persistent storage can happen due to patching itself, system 

reboots, configuration file changes, and any other changes due to post-patching testing. These steps 

are done in the parallel VM while the original VM continues to run, and all file system changes in 

both VMs will be captured during this time. Once these steps are done, both VMs will need to be 

quiescenced and shut down so that the deltas can be compared and merged. One would imagine 

there should be no conflicts between the two deltas as the delta from the parallel VM is a result of 

applying the patch and the delta from the original VM is a result of the running workload making 

changes to the application data, thus, merging of the deltas should be straightforward. However, 

in reality, there are many conflicts. We provide a default set of rules that would allow deltas to 

be merged correctly in common cases. Essentially, Shadow Patching removes conventional patch 

management operations from the critical patch (i.e., during maintenance window). This allows un­

expected problems to be resolved outside of the maintenance window and transforms a patching 

operation to a set of simple file merging operations. 

Based on the similar technique used for VM cloning, Shadow Patching also enables administra­

tors to leverage storage utilities to clone virtual disk images. Since a cloned disk image is hypervisor 

independent, a cloned VM can be launched on top of a different physical system, thus, resulting in 

no performance impact on the system that hosts the original VM. The main contributions of this 

paper are summarized as follows: 

• We develop a simple but effective software patching framework. We demonstrate that our 

proposed mechanism always takes less time than traditional methods for software patching. 

• In case of failure patches, our framework significantly lowers the maintenance window of 
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actual enterprise systems, since we can resolve the patching issues on the cloned system. 

4.2 Related Work 

The Shadow Patching framework is based on various approaches, which are related to online and 

offline system software patching techniques. Online patching techniques try to eliminate the system 

and/or services down time while guaranteeing system stability. However, it is challenging to build 

a generic online patching framework for both kernel and application level updates or it may require 

some significant modifications to system infrastructure in order to employ such techniques [52]. 

Arnold et al. propose a tool called Ksplice [35], which focuses on live Linux kernel update. 

Ksplices runs on the object code layer, and it transforms patches into hot updates and do not require 

system to be rebooted. However, Ksplice is only suitable for Linux kernel update, in which data 

structures do not change frequently. When it comes to applications, it is common that data structures 

are changed much more frequently, and in these cases, Ksplice requires software developers to 

write some new code to cope with the patches. In contrast, Shadow Patching is able to handle both 

application and kernel updates, and we do not need to write any additional code for each patch. 

Another important form of online patching is dynamic software updating, which is the extreme 

form of online patching. In short, it does not require the program in question to be stopped and then 

restarted. This actually eliminates the downtime, however, existing techniques are designed for 

some specific programming languages, such as the applications written inC or C++ [34, 53, 65], or 

the operating systems written inC or C++ [37, 42, 66], or systems written in Java [82]. Subramanian 

et al. [82] propose NOLVE, and their experiments demonstrate that NOLVE is able to update 
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Jetty webservers, JavaEmaiiServer, and CrossFI'P server. However, the commonality is, all these 

software are written in Java. So, while these dynamic software updating techniques are efficient 

in dealing with some specific programming languages, they cannot handle any other languages. 

In addition, these techniques are either able to handle applications updating, or able to cope with 

operating systems updating, but not both. By contrast, our framework does not depend on any 

specific programming languages, and it can handle both application and operating system updates. 

There are also several other online software patching solutions, which count on the approach of 

migration. This migration approach provides an ability to preserve a running state of a system or 

a service, thus flexibly transferring them between old and new versions. As an example, parallel 

instance is a common technique that facilitates this migration. Besides the original instance, another 

instance is created to host migrated running services, so that software patches are able to be deployed 

on the original one. Basically, an instance can be a physical system [31], a VM [64, 71, 48], or a 

process [62, 48]. A limitation of these approaches is that when a patch changes the underlying data 

structure and/or interfaces, the changes will prevent the migration operations to properly function. 

Our approach uses mature virtualization techniques, e.g., VM snapshot and clone, and is hypervisor­

agnostic, and thus can be adopted more widely. Additionally, the troublesome migration operation 

in previous work is transformed in our work to a simple offline data merging task, again, enhancing 

its practicality. This is done at the expense of requiring an explicit downtime. However, as most 

patches would require the affected software to be refreshed for the change to take effect, service 

interruption time is unavoidable in most cases anyway. 

On the other hand, a patching system needs to be restarted [29] or stayed at dormant states [90] if 
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its software is offline patched. Even though offline patching techniques facilitate the software main­

tenance, these techniques impact on the software maintenance window, thus, reducing the availabil­

ity of system and hosted services. Our approach, even though does not eliminate the maintenance 

window, will minimize its duration by hiding the time spent to apply patches, resolve any problems, 

perform regression tests so it is not visible from the user's perspective. 

With respect to the offline software patching, different solutions are proposed. VMWare's 

vSphere Update Manage inserts patches into the software update process [29]. Microsoft's VMST 

wakes a dormant VM up, and then applies software patches on this system [15]. Nuwa requires 

rewriting installation scripts to apply software patches on a mounted disk image [90]. 

The solutions proposed in [29] and [ 15] do not guarantee the stability of a patched system. By 

stability, we mean that any conflicts caused by newly patched software can only be triggered after 

the system is rebooted. The Shadow Patching framework instead applies software patches on a 

cloned VM rather than on an original system, thus reducing impacts on the original system. 

Nuwa of Zhou et. al [90] leverages Mirage [72], a storage mechanism for cloud environments, 

to apply software patches on dormant virtualized systems. The overlap between Nuwa and Shadow 

Patching is the requirement to analyze a virtual machine at the file system level to properly apply 

patches. Besides this similarity, the two frameworks are different in terms of goals and techniques 

being used. 

First, we focus on keeping the maintenance window short for online VMs, whereas Nuwa 

focuses on keeping offline VMs up-to-date. Second, instead of using a cloned VM, Nuwa uses 

chroot to patch software on a mounted disk image and rewrites update scripts to resolve conflicts 
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and dependencies incurred by software patching. Last but not least, Nuwa cannot apply all software 

patches. This technique conceals a limitation, in which unsuccessful software update could hap­

pen. This is because some software patches can only be properly applied under a running system. 

Using disk cloning, Shadow Patching is able to avoid this limitation. In addition, the disk cloning 

technique eases maintenance jobs, such as rewriting system installation scripts, analyzing memory 

changes caused by update commands, and resolving conflicts caused by a replacement of software 

and dependencies. Finally, Shadow Patching allows the cloned VM to be restarted several rounds, 

instead of waiting for a next reboot to verify if patches are successfully applied. Thus, the system's 

stability and availability are guaranteed. 

4.3 Technical Background 

The focus of this research is to improve the effectiveness of software patching in commodity enter­

prise systems, especially in virtualized cloud environments. To better understand software patching 

in such environments, we first present the technical background and related challenges. Then, we 

briefly describe our chosen approach. 

4.3.1 Software patching 

Current software patching is centered on the replacement of software components at the level of 

file systems. As an advantage, this method allows old software components to be replaced with 

new ones. However, this method does not guarantee the stability of the recently patched system. 

The reason is that the majority of software patches are system dependent. Due to differences across 
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systems, software conflicts could occur, leading to system crashes. It has been proved that ideal 

software packages must be well tested before they are published. However, nearly 70% of software 

patches are buggy in their first released, regardless of the available techniques used to either self­

fix or determine software faults [44, 73, 80]. For this reason, an enhanced software patching 

mechanism must balance its simplicity and effectiveness, while addressing the problems of buggy 

patches. 

4.3.2 Virtual disk image and VM cloning 

It has been well known that VM disk images facilitate the management and maintenance of VMs in 

cloud environments [72]. The use of such thinly provisioned files allows storage space overcommit 

or flexible snapshotting. The VM images based on the copy-on-write strategy not only optimize 

the storage space, but also simplify the snapshotting at the file level, making it easier than that at 

the block level. The particular disk image formats (e.g. QCoW or vmdk) support different types of 

snapshots, allowing deltas to be stored internally in the VM image or externally as separated files. 

Cloning a VM is an effective method to deploy multiple VMs in cloud environments. By 

cloning, system settings of the VM, which include configured virtual devices, installed software, 

and other VM contents, are copied. Intuitively, when a VM is cloned, the resulting cloned VM is in­

dependent of the original VM. The changes made to the cloned VM are not reflected on the original 

VM, and vice versa. The cloned VM can either be a fresh boot, a replica of a template VM [I, 29], or 

a VM of the fork primitive (a parent VM copy itselt) [63]. Cloning a running VM is more challeng­

ing than cloning a dormant VM, due to various system changes occurred, which must be handled, 

including unflushed 1/0s, dirty memory, or CPU states. To manage all these changes, people have 
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(1) External Snapshotting (2) Patching and Restarting 

(3) Merging Deltas (4) Activating the Original System 

Figure 4.1: Scenario of Shadow Patching session 

introduced sophisticated techniques that induce high overhead, thus, resulting in a negative impact 

on the original system's performance, as well as hosted services' down time. 

4.3.3 Disk cloning approach 

Our disk cloning approach takes advantage of cloning VM and leverages the feature of disk image 

snapshotting for software patching. As a straightforward approach, we concentrate on cloning disk 

images by using snapshotting technique, instead of using sophisticated techniques to clone an entire 

virtualized system. Compared to snapshotting of an entire system, snapshotting of a disk image only 

requires to handle ongoing 1/0s, thus significantly reducing incurred overhead. In contrast, snap-

shotting of an entire system requires to manage 1/0s and states of running system and applications, 

leading to much higher overhead. 
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In the snapshotting of disk image, as an available feature of CoW disk image formats, an external 

snapshot allows deltas to be immediately written into the newly created disk image, and the original 

disk image becomes a read-only base. Therefore, to clone a disk image of a running VM while 

guaranteeing a consistency between the original and cloned disks, the read-only base is cloned as 

soon as an external snapshot of the original disk image is taken. By consistency, we mean that data 

content and data structure at the file system level and block level of two disk images are identical. 

Once a clone of disk image is completed, a simulated VM is able to operate. 

4.4 Shadow Patching Framework 

4.4.1 Patching scenario 

The Shadow Patching framework must be simple and effective, as well as generic. By generic, we 

mean that Shadow Patching should be able to conduct software patching on any virtualized system. 

Figure 4.I illustrates a session of Shadow Patching software patching. Instead of scheduling this 

maintenance at a system's off-peak time, Shadow Patching allows the software maintenance of a 

virtualized system to perform on demand. The details of the session is described as follows: 

• External snapshotting. As a virtualized enterprise server, VM I includes a running OS that 

hosts multiple enterprise application services. By default, VM I is based on a freshly installed 

OS, which is stored at a preserved read-only base image. When VM I is running, its changes 

are maintained and stored in Deltas-0. Deltas-0 functions as a disk layer created on top of 

the base image. As soon as software of VM 1 need to update, an external snapshot of Deltas-
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0 is taken, thus creating Deltas-! on top of Deltas 0. Therefore, Deltas-0 becomes another 

read-only base, while the changes ofVM1 are written into Deltas-1. 

• Patching and restarting. To clone VM1, Deltas-2 is created on top of Deltas-0. A cloned 

VMI, called VM2, is created based on Deltas-2. Since VMl and VM2 share the same base 

image Deltas-0, the changes of VM2 are independently stored on Deltas-2 without producing 

any impact on Deltas-!. This independent storage allows VM2 to be properly activated. Once 

VM2 is activated, it is able to install software upgrades to the OS, apply software patches, set 

up a new version of the application, or reconfigure other software components. After software 

patches are applied and configuration settings are adjusted, VM2 can be restarted and then we 

can conduct the thorough tests on the patched software and new settings. 

• Merging deltas. At the appointed time, as soon as both VMs are dormant, the changes of 

Deltas-! and Deltas-2 are merged. Merging deltas denotes that the software components 

generated on Deltas-2, due to the software patching on VM2, are copied back to Deltas-! of 

VMl. It is known that when software is patched on VM2, VMI is still running. Therefore, 

the conflicts induced by a modification on the same components at both systems could occur. 

To resolve such conflicts, we consider a hybrid method, which is detailed in Section 4.4.2.2. 

• Activating the original system. Once VMl starts, OS and applications are running with their 

new patches and configuration settings. For VM2, because it is no longer used, Deltas-2 can 

be discarded. 
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4.4.2 Software component replacement 

Replacing software components or merging deltas, between Deltas- I and Deltas-2, must guarantee 

consistency and effectiveness. By consistency, we mean that the changes at the level of file systems 

of Deltas- I and Deltas-2 are well managed. By effectiveness, we mean that the induced overhead 

must be minimized. Here we present how deltas are managed in Shadow Patching. 

4.4.2.1 Monitoring deltas 

In terms of storage, deltas can be managed at two levels: disk block and file system. At the disk 

block level, the snapshots of a disk image handle the deltas as modified data blocks. These modified 

data blocks are exposed as the disk blocks of the VM's block device. Intuitively, by monitoring the 

changes taken place on every disk block, we are able to monitor deltas in a fine-grained manner. 

However, this fine-grained monitoring incurs high overhead. At the file system level, deltas include 

the modifications of data and metadata. In particular, I/0 operations on files and directories, such as 

create, delete, move, or modify, and open, close, or access, cause data changes and 

metadata changes, respectively. Deltas can be determined by simply scanning the entire file system. 

However, a file system could consist of thousands of files and this scanning may be impractical and 

induce a significant overhead. 

To ease the monitoring of deltas in Shadow Patching, inotify is used at the file system level [ 11] 

of VM 1 and VM2. This technique is chosen because of its efficiency and accuracy. As a Linux 

kernel subsystem, inotify provides an interface between user and kernel levels to instantly capture 

exact changes occurred on the system's device node. Thus, this interface can precisely indicate the 
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modification of data and metadata of any files or directories. Next, we specify how inotify is used 

in Shadow Patching to monitor deltas. 

First, inotify only focuses on the changes of data, instead of both data and metadata. To manage 

the changes of all files and directories of the file system, inotify recursively monitors 110 events 

of the system's root directory. Only four types of events are monitored, including IN....MODIFY, 

IN....MOVE..FROM/TO, IN..DELETE, and IN_CREATE. Once an event is triggered, inotify captures this 

timestamped event. The information of this event, including file or directory name, is stored in an 

individual delta file. 

Files and directories are frequently modified due to system 1/0s. To minimize overhead induced 

by monitoring files and directories, Shadow Patching's inotify maintains a list of non-scanning 

items. Specifically, those items include deltas and special system files, such as character/block de­

vices, pipes, and sockets. Basically, the list is initiated based on the categorized system directories 

of the Linux system. When inotify monitors deltas, if any files or directories, which fall in the cat­

egory of special system files, are detected, their names will be appended into the list. For example, 

the exclusive list consists of /dev directory because this directory includes all device files. How­

ever, since executable binary files are stored in /bin, the directory of /bin is not included in the 

list. Due to the limited number of files and directories stored in the exclusive list, in comparison 

with the brute force scanning of the entire system, the exclusive list helps to lower about 3% induced 

overhead. 

Second, inotify must monitor every 1/0 event occurred on VM2. However, on VM l, inotify 

only needs to monitor 1/0 events after the snapshot Deltas- I is taken, thus minimizing the size of 
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Rules On Deltas-1 On Deltas-2 Time conditions Decisions 

I Yes No SS ~T1 Delete on Deltas-1 

2 No Yes T2 ~ SS Copy from Deltas-2 to Deltas- I 

3 Yes Yes T1 ~ S S and SS ~ T2 Copy from Deltas-2 to Deltas-1 

4 Yes Yes S S ~ T1 and S S ~ T2 Hybrid copy from Deltas-2 to Deltas-1 

Table 4.1: Time base comparison between files/directories. SS: Snapshot time, T1 : Last modification time 
of file on Deltas- I, T2 : Last modification time of file on Deltas-2 

deltas. Note that the captured file system events are time stamped, to guarantee the consistency of 

captured 110 events, the system timers of VM l, VM2, and the host must be synchronized. 

4.4.2.2 Merging deltas 

The underlying technique of merging deltas between Deltas- I and Deltas-2 is the proper replace-

ment of files and directories between the file systems of VM I and VM2. Based on the delta files 

and exclusive list provided by inotify, Shadow Patching can determine the modified files and direc-

tories. In particular, the focus of this merging is to decide whether or not the files or directories in 

Deltas-1 should be kept, deleted, or replaced. The rule is based on the modification time of the file 

or directory and the snapshot time of VM I. Here, the modification time of a file or directory can be 

retrieved from its inode. Based on these estimated times, Table 4.1 lists the rules made on those 

files or directories. The details of these rules are described as follows: 
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• Rule 1: A file on VM 1 has not been accessed or modified since the snapshot time. If the 

cloned version of this file on VM2 is deleted by a software update, the file must be deleted. 

• Rule 2: A file on VM2 is freshly created by a software update. It must be copied back to 

VMI. 

• Rule 3: A file on VMI has not been accessed or modified since the snapshot time. However, 

the cloned version of this file on VM2 is modified because of a software update. Thus, the 

file must be replaced by its newer version, which is copied back from VM2. 

• Rule 4: A file on VMl and its cloned version on VM2 are modified after the snapshot time. 

These two files must be kept on VMI after the merging by performing a hybrid copy. Basi­

cally, a hybrid copy consists of three steps: ( 1) Renaming those two files based on their inode 

information, so that their names are different. (2) Copying a newly renamed file from VM2 

to VMI. And (3) creating a symbolic link on VMI based on the original name of the file. 

To guarantee that the freshly copied file will be used once VMl starts, the symbolic link is 

linked to the newly copied file rather than its original version. 

4.4.3 Prototype of Shadow Patching 

A working prototype of Shadow Patching is built on Linux systems, which supports software main­

tenance of Linux distributions. 

Shadow Patching requires disk images that host VMs to be formatted as QCoW/QCoW2, in­

stead of raw. As a copy-on-write data structure, a QCoW disk can be externally snapshotted without 

impacting on 110 performance of a running VM. This feature cannot be achieved on a raw disk. Note 
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that a QCoW disk image induces a larger overhead than a raw one. This is because a QCoW disk 

must allocate new clusters of data blocks once the disk needs to grow [20]. For a small disk, con­

verting back and forth between QCoW and raw formats when systems are dormant may avoid such 

an overhead. However, for a large disk (e.g., hundreds of GBs), the conversion will significantly 

increase the system downtime. 

To merge deltas, QCoW disk images are exposed as mount points at the file system level of 

the host machine. Different storage utilities can be used to leverage this mounting feature, such 

as kvm/qemu-nbd [61] for QCoW/QCoW2, Vmount [26] for vmdk, and losetup [21] for raw 

formats. Shadow Patching benefits from kvm/qemu-nbd that includes two components: client and 

server. As a kernel module, the client handles requests passed through the device node. These 

requests are forwarded to the server that stays at the user level. Then, the server processes the 

requests in order to access the data resided in QCoW disks. 

While our prototype of Shadow Patching works to maintain software of Linux systems, the prin­

ciples and considerations are applicable to other systems, such as Microsoft Windows. A feasible 

extension is discussed in Section 4.6. 

4.5 Experimentation 

4.5.1 Experimental setup 

To evaluate Shadow Patching, we use 2 metrics: correctness and the size of the maintenance window 

required. To verify correctness, we run application-specific benchmarks after patch deployment to 

check if the patched software has the right version and its functions and performance are as expected. 
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I Hardware I Software 

Host Pentium D 3.4GHz, lTB SATA, 2GB RAM Ubuntu 11.10, kemel3.0.0-12, libvirt0.9 

Guest Qemu0.14.1, 1GB RAM Ubuntu (10.04, 11.04) 

Table 4.2: Testbed setup 

Additionally, as patching in Shadow Patching is transformed to file compare, replace, merge, and 

delete operations, we scan file systems to verify all files and directories associated with a patch are 

correctly placed. Maintenance window is another key metric. We compare Shadow Patching with 

traditional patch management method for both success and failure scenarios. 

The software and hardware configurations of our test machine are shown in Table 4.2. All ex­

periments are performed within the virtual machines on the same hypervisor. In the next section, 

we first compare Shadow Patching with traditional method for applying individual software patches 

to contrast the two methods in the common path where patches are successfully applied. In Sec­

tion 4.5.3, we apply various service packs containing hundreds of individual patches and compare 

the two methods when failures occur. For all experiments, we maintain all software patches in a 

local repository so as to avoid possible variations in results due to network fluctuations. 

4.5.2 When Patch Succeeds 

In traditional software patching practice, a maintenance window is scheduled for making changes to 

running systems, e.g., patching. The action of applying a patch (usually would succeed) takes only 

a few minutes. However, running a regression test and/or resolving any unexpected problems would 

take much longer amount of time. Thus, maintenance windows are usually scheduled to range from 
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Old Packages New Packages Overhead 

Services Benchmarks 

Versions Sizes #Files Versions Sizes #Files (%) 

Bind9 9.4.2 744 36 9.7.0 1.024 51 1.23 DnsPerf 

SubVersion 1.4.6 3.400 28 1.6.6 4.204 35 1.30 Collabnet 

NFS 1.1.2 504 35 1.2.2 640 43 1.01 I Ozone 

OpenVPN 2.1 1.060 86 2.1.3 1.208 93 1.34 NetPerf 

PostgreSQL 8.3.16 13.884 95 8.4.9 14.804 92 1.40 PGbench 

Samba 3.0.28 9.216 43 3.4.7 16.676 55 1.67 Dbench/Netbench 

Squid 1.9 1.584 33 2.7 1.892 36 0.95 Web Polygraph 

Apache2 2.2.8 4.356 492 2.2.14 8.864 564 1.86 Apache Bench 

VsFrPd 2.0.6 396 41 2.2.3 460 44 1.23 Dkftpbench 

Table 4.3: Upgraded application services and utilized benchmarks (Size in KB). 

hours to days depending on the complexity of the patch. To allow sufficient amount of time to 

perform problem diagnosis and resolution, service providers are usually conservative in scheduling 

the maintenance windows. However, even if the entire window is not used, it would be difficult 

for users to salvage any of the remaining time to reduce services downtime as the patch completion 

time within the window is non-deterministic. This traditional process is illustrated in Figure 4.2(A), 

and Shadow Patching's is shown in Figure 4.2(B). 
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In our experiments, we use Ubuntu's dpkg to perform upgrades, or patching. Nine applications, 

listed in Table 4.3, are selected to be patched. As mentioned previously, one method to ensure 

correctness post-patch is by running application-specific regression tests, for which, we ran those 

commonly used benchmarks, which are also shown in the table. Besides a detailed specification 

of each application software, the column Overhead denotes results of overhead induced by inotify. 

Since inotify works as a part of the Linux's virtual file system, it only induces 1-2% overhead on 

system 1/0s, which is fairly negligible. 

First, we compare user perceived services downtime, which is shown in Figure 4.3. In traditional 

approach, the time it takes to apply the patch and perform regression test will all be visible to users. 

However, in the case of Shadow Patching, patching and testing occur in a separate cloned VM. 

This is completely hidden from users and can be done before maintenance window even starts. The 

downtime is only visible when we compare and merge disk deltas of the two VMs. In Figure 4.3, 

for each application, the left column shows the user perceived downtime when traditional approach 

is used, and the right column shows when Shadow Patching is used. 

Second, we quantify the 1/0 activities caused by merging deltas and show the results in Ta­

ble 4.4. The columns in the table are grouped based on the type of activities. Since rules 2 and 3 

consist of regular copies, the results of these activities are combined as one column. Based on these 

results, we make the following observations: 

• Shadow Patching significantly shortens services downtime. Because the tests of upgraded 

services are conducted on the cloned VM, the functional testing time, or Shadow Patching 

testing, does not impact on the patching time. As an example, a thorough test of a patched 
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Services Rule 1 Rule2 & 3 Rule4 

Bind9 2 48 0 

SubVersion 4 29 2 

NFS 2 35 3 

OpenVPN 2 89 0 

PostgreSQL 5 82 4 

Samba 2 40 8 

Squid 3 34 0 

Apache2 5 552 6 

VsFTPd 5 41 0 

Table 4.4: Rule-based activities in merging deltas of application services: (1) deletes, (2 & 3) copies, and (4) 
hybrid copies. 

NFS server using !Ozone can take up to 40 minutes. Running this test on the cloned VM 

would take the same time and provide the same results but without being visible to users. 

• Shadow Patching Jowers overhead incurred by the software component replacement. 

Comparing two versions of an application, if changes are minor, most files and directory 

structures will be similar, if not almost identical. If changes are more extensive, the similari-

ties are insignificant. Traditionally, patching an application involves three steps: (1) removing 

current application's files and directories, (2) extracting the new version of the application into 

a temporary location, and (3) copying the extracted files and directories into the right place. 

For a package whose changes are minor, this technique incurred unnecessary UOs on files and 
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directories, which are identical between two versions. However, Shadow Patching avoids this 

redundancy by comparing inode information of files and directories between two versions 

before each delta merge, thus, resulting in fewer I/0 operations. As an example, the results 

show that Shadow Patching helps Postgresql and Samba minimize their upgrading time. 

• Shadow Patching achieves less variations in services downtime than traditional approach 

across different software upgrades. In traditional approach, we observe large time varia­

tions in services downtime for different applications. This is largely due to the testing needed 

for these applications can differ significantly. 

• Shadow Patching does not impact on the number of merging activities. Application ser­

vices include sets of files, which can be unchanged or significantly modified from their previ­

ous versions. Shadow Patching utilizes this observation to minimize the number of copies. In 

addition, although merging activities include deletes, copies, and hybrid copies, we can see 

that the majority of the activities are regular copies. The number of copies occurred on each 

package depends on differences between software versions, rather than its size or the number 

of files. 

4.5.3 When Patch Fails 

We further compare Shadow Patching with traditional approach when one or more patches fail. A 

service pack is a bundle of many patches to upgrade the current system version to the next stable 

version. Patches are applied in a certain order to satisfy software dependencies, and if any one fails, 

it is simply skipped (as well as any dependent ones). However, the failed patches will eventually 
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Ubuntu #Succeed Merging Activities #Failed Fixing effort 

Versions Packages Rule 1 Rule2 & 3 Rule4 Packages (hours) 

10.04 -+ 10.10 339 1.460 43.079 943 8 20.0 

10.10-+ 11.04 346 1.597 47.406 1.148 5 12.5 

11.04 -+ 11.10 432 1.474 62.351 1.237 0 0 

Table 4.5: Upgrading different versions of Linux. Ubuntu 

need to be resolved within the change window. 

A patch can fail for many reasons, such as insufficient hardware, driver problems, incompati­

ble setup process, inconsistent system configuration, wrong architecture edition, data loss, permis­

sion/access problems, or software bugs. To resolve a failed upgrade, the following steps are usually 

taken: (I) reporting a problem, (2) looking for solutions from different databases, while waiting 

for the problem being solved, and (3) applying solutions to fix the failed upgrade. If a failure is 

caused by software bugs, bug-fixing is a non-trivial task. Generally, the time to fix a bug can be 

up to 200 days, although this number depends on the nature of the bug [59]. Recent studies of 

system configurations to upgrade software indicate that on average the time to fix one particular 

issue is no more than 5 hours [16, 86]. This average time is also known as a .fixing effort to denote 

an effort in person-hours to resolve an issue. In general, fixing issues existed in separate software 

packages can be accomplished in parallel, but requires more labor. Otherwise, the issues must be 

fixed sequentially. 

Table 4.5 shows the results of upgrading Linux. Ubuntu systems, including successful and failed 

upgrades. To estimate the fixing efforts for failed upgrades, two scenarios are considered: ( 1) all 
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failed upgrades must be fixed in order, and (2) at least two failed upgrades can be resolved at one 

time. In the worst case scenario, resolving 8 failed upgrades takes 8(Jailures) x 5(hours) = 

40(hours). However, 40(hours)/2(Jailures) = 20(hours) would be a fairly estimated fixing 

effort for the other scenarios. Note that for comparison purpose, Ubuntu systems are upgraded under 

both traditional and Shadow Patching methods. Shadow Patching does not modify the patching 

process, and thus producing similar results to the traditional method. 

Conducting a thorough test on an upgraded system is a complex and time consuming task. 

This is because upgrading a Linux system requires multiple replacements of software components, 

including executable binaries, shared libraries, configuration settings, databases, etc. To verify the 

accuracy and stability of upgraded software, various regression tests should be conducted. However, 

it is non-trivial to fully understand and prepare thorough tests for all upgraded software, and it is also 

out of scope of this work. Due to this complexity, we focus on upgrading time, rather than testing 

time. Basically, the upgrading time includes the time to replace software components and the time 

to reboot the system. For Shadow Patching, the upgrading time consists of both the time to reboot 

the system and the time to merge deltas. Based on the comparison of results between traditional and 

Shadow Patching upgrades, which are shown in Figure 4.4, we make following observations: 

• Shadow Patching helps a system administrator avoid failed upgrades. Since many rea­

sons can cause failed upgrades, if the maintenance window is short (e.g., a few hours) such 

failed upgrades may not be resolved. Thus, the system will not be fully upgraded. The exper­

imental results shown in Table 4.5 clearly illustrate this incident. Increasing the maintenance 

window gives more time to resolve the problem, however, it also greatly increases the services 
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Figure 4.4: Upgrading different Linux Ubuntu server distributions (lower is better) 

downtime. Shadow Patching is able to address this problem since resolving failed upgrades 

is performed in the cloned system. 

• Shadow Patching shows a low variation of upgrading time between different versions of 

a Linux system. Traditional software upgrades do not guarantee that a Linux system can be 

successfully upgraded after a specific amount of time. This is because an actual time spent 

for an upgrade can be varied from one to several hours. More specifically, the upgrading time 

induced by Shadow Patching depends on not only system's configuration, but also the number 

and type of software packages. Our experimentation to upgrade different versions of a Linux 

system on the same test-bed shows a low variation of the upgrading time. This is due to the 

similarity between different versions of the service pack. 

The choice of Linux distributions can be varied in enterprise environments. Systems can be built 

based on different Linux distributions, such as Ubuntu, openSUSE, or Fedora. To verify whether 

or not Shadow Patching can successfully upgrade various Linux distributions, we conduct a set of 

experiments to upgrade an openS USE system, from version 11.3 to version 12.1. We observe that a 

newly upgraded openSUSE 12.1 is able to perform properly. 
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Figure 4.5: Overhead Reduction by Shadow Patching between different Linux distributions (higher is better) 

Different Linux systems may benefit differently from Shadow Patching in reducing the service 

downtime. By default, the service downtime depends on the booting time of the system and the up-

grading time of software patches. Here the upgrading time includes the time to remove old software, 

extract the new ones, and merge deltas. For an upgrade using service packs that contain hundreds 

of individual patches, the majority of the service downtime is attributed to the upgrading time. It 

is true that service packs are different across Linux distributions in terms of size and packed soft-

ware patches. Therefore, the overhead induced by upgrading these service packs are also different 

between Linux distributions. Figure 4.5 shows how much overhead, which is induced by upgrading 

service packs, can be reduced when Shadow Patching is chosen over the traditional upgrades. As 

we can see, the upgrade of OpenSUSE from 11.3 to 12.1 benefits more by using Shadow Patching 

than the upgrade of Ubuntu from 11.04 to 11.1 0, in terms of the upgrading time reduction. 



CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 97 

4.6 Discussion 

In this section, we first discuss pros and cons of Shadow Patching, and then we present different 

approaches to further enhance the framework. 

4.6.1 Pros and Cons 

Shadow Patching framework does not require any changes to hypervisors, guest VMs, or software 

patches to perform a system upgrade. Typically, software packages and patches are complex to 

understand. Thus, to perform a system upgrade, traditional upgrades usually require either software 

engineering or system skills from administrators. Shadow Patching simplifies this requirement, so 

that administrators can perform any software upgrades without having a full understanding of either 

software packages or software patches. The software engineering skill is only required to resolve 

failed upgrades. 

Most techniques employed in traditional software upgrades try to achieve a zero down time 

by inserting updated software components into running application services. However, such tech­

niques can only successfully upgrade particular applications, thus, not becoming generic solutions. 

Although Shadow Patching focuses on software upgrades in virtualization environments, the frame­

work is generic because it does not depend on one particular application or system. At the host level, 

Shadow Patching can leverage different hypervisors, such as KVM, Vmware, or Xen, to maintain 

a clone VM without modifying core features of hypervisors. At the guest level, Shadow Patching 

does not modify the kernel, but benefits from kernel subroutines to facilitate delta monitoring. 

Shadow Patching also exposes some restrictions, such as disruption of running application ser-
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vices and extra consumed system resources. The two major limitations of Shadow Patching are 

detailed as follows. 

Merging deltas of Shadow Patching can only be performed when VMs are dormant. Thus, 

Shadow Patching cannot provide a live system upgrade. Specifically, a live system upgrade must 

achieve a zero downtime or only a brief delay of running services. However, Giuffrida et. at 

reveal that an ideal solution to achieve zero downtime in upgrading systems is not possible [52]. 

Although the recent work of Ksplice demonstrates a zero downtime in upgrading Linux kernel [35], 

this technique cannot be widely employed to live upgrade of any Linux systems or application 

software. However, a short planned downtime (from 5 to 20 minutes) caused by Shadow Patching 

for a system maintenance is fairly insignificant, compared to an actual maintenance window of 

enterprise systems (from 5 to 12 hours). 

Shadow Patching consumes extra system resources to run a cloned VM. The cloned VM con­

sumes CPU cycles, network traffic, and disk 1/0s to fully obtain and apply software patches. Due 

to the consumption of extra system resources, using Shadow Patching to simultaneously upgrade 

multiple virtualized systems may impact on the hypervisor's 110 performance. System administra­

tors should avoid this circumstance by scheduling a maintenance window of VMs in suitable times. 

In other words, since deltas are preserved within copy-on-write disk images, merging those deltas 

should be only performed when a maintenance time of the original system is appointed. 

4.6.2 Shadow Patching Enhancements 

There are alternative approaches to further enhance Shadow Patching, which are briefly described 

as follows. 
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4.6.2.1 Selective monitoring 

Selective monitoring is a technique to minimize the overhead induced by monitoring deltas. In gen­

eral, deltas are determined based on footprints of inotify's events, known as inotify traces. Since all 

110 events are recorded, it is possible that the traces may include 110 events occurred on unmodified 

files and directories. Apparently, monitoring these 110 events is unnecessary. To effectively monitor 

deltas, the selective monitoring classifies the directories at the root level to avoid a recursive scan 

of the entire root directory. Basically, these directories are classified based on their purposes. For 

instance, /bin, /boot, and /dev directories include command binaries, boot loaders, and devices, 

respectively. Thus, it is possible to assume that once the system runs, those directories are not 

changed while the most modifications of the file systems are limited to other directories, such as 

home, tmp, var, or etc. Using inotify to focus on monitoring deltas of these modified directories 

does not impact on the results of deltas, but reduces the overhead of merging activities. 

4.6.2.2 Flexible merging 

A flexible merging tries to reduce the overhead of merging deltas by analyzing deltas and data files 

before each merge. Basically, to merge deltas, one particular file is copied between VMs regardless 

its size. However, if the size of the deltas is small (few Bytes or KBs) compared to that of the file 

(hundreds GBs), a regular copy induces much redundant 1/0s. This is because the majority of 1/0s 

are used to copy similar portions of the file from the cloned VM to the original VM. If the type of 

the file is determined, such as regular data, character/block device, domain socket, named pipe, or 

symbolic link, the flexible merging is able to avoid redundant IIOs by specifically copying dissimilar 
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portions, instead of the entire content of the file. To determine the dissimilar portions of the files, 

we need to thoroughly analyze deltas at two different levels: file system and disk block. 

• File systems: The dissimilar portions are determined by thoroughly scan contents of two 

versions of the file. A merging process properly overwrites dissimilar portions of the file, 

from the cloned VM to its version on the original system. 

• Disk block: The dissimilar portions of two files can also be directly obtained as data blocks 

from the layer of disk blocks, rather than indirectly through the layer of file systems. A 

merging process is performed based on a copy of such data blocks, which are associated with 

dissimilar portions of files. 

4.6.2.3 Patching other systems 

Shadow Patching's disk images must be copy-on-write and guest VM's file systems must be struc­

tured. These requirements enable us to perform an external snapshot of virtualized storage and to 

expose the file systems of the disk images. As we can see, the requirements are at the level of 

storage, rather than other particular system states, such as virtualized CPU, harddrive interfaces, or 

allocated memory pages. Thus, this allows Shadow Patching to be able to patch non-Linux systems 

without major changes of the framework. For example, administrators can use Shadow Patching 

to upgrade Microsoft Windows Server 2008 systems running on NTFS or DFS file systems. Since 

NTFS and DFS are structured file systems, they can be exposed under Shadow Patching for a side­

by-side comparison of files and directories, thus, facilitating merging deltas between VMs. 

Note that deltas are monitored differently under different file systems. Linux file systems use 



CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW I 01 

inode, while Windows file systems (NTFS or DFS) rely on fileiD. Because of the different data 

structure, a modification of inotify is required in order to properly monitor and merge deltas on the 

Windows systems. 

4.7 Summary 

In this chapter, we propose Shadow Patching framework to reduce the maintenance window associ­

ated with deploying software patches. Software patching, testing, and troubleshooting are all done 

in a cloned VM so that these tasks will have no impact on the original VM. File system changes in 

the cloned VM are recorded and are subsequently merged with the original VM. The only down time 

perceived by the original VM is when it is taken offline to perform this merge operation, which is 

much faster and reliable than what is done in the traditional method. By hiding post-patch regression 

test and troubleshooting steps, maintenance window can be significantly shortened. 



Chapter 5 

Conclusion and Future Work 

5.1 Conclusion 

In this dissertation, we aim to tackle problems of understanding abstractions brought by virtual­

ization. The focus of our work lies in different abstraction aspects, such as an intensive memory 

multiplexing, called Batmem, and a nesting of file systems. We later propose a framework, called 

Shadow Patching, to effectively minimize the maintenance window time for software upgrading. 

The summarized discussion of contributions of these work are as follows: 

• Batmem: We believe that this work will help researchers to better understand the critical 

issues of memory sharing and VMBR in both high-end and low-end virtual support systems. 

We hope that our work will also motivate system designers to carefully evaluate security gaps 

at the reaUvirtual boundary in designing devices for virtual environments and to pay more 

attention to the threats posed by the adaptive behaviors of VMBR. 

• Nested File System: The intricate interactions between host and guest file systems represent 

an exciting and challenging optimization space for improving 110 performance in virtualized 

102 
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environments. Our preliminary investigation on nested file systems will help researchers to 

better understand critical performance issues in this area, and shed light on finding more 

efficient methods in utilizing virtual storage. We hope that our work will motivate system 

designers to more carefully analyze the performance gap at the real and virtual boundaries. 

• Shadow Patching: Indeed, compared with an actual time of the system upgrade, a given 

maintenance window is usually much larger. This is attributed to unpredictable software 

bugs, which mainly cause upgrade failures, traditional software patching frameworks have 

no choice, but increase the maintenance windows. Through extensive experiments, we have 

demonstrated that SP is able to not only avoid failed upgrades, but also significantly minimize 

the maintenance windows. We believe that our framework will help system administrators in 

enterprise environments to optimize the software maintenance process. We also expect that 

our work will motivate software developers and system administrators to carefully monitor 

deltas at different levels, such as file systems and disk blocks, to shorten the software upgrad­

ing time. 

5.2 Future Work 

5.2.1 Memory Optimization in Virtualization 

In high-end systems, Batmem is embedded into the hypervisor without violating the security design 

of the hypervisor. System administrators can protect Batmem from other malicious accesses inside 

VMs by placing Batmem as a read-only component within a protected memory area of the host. 
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Such a technique follows the similar approach of memory shadowing proposed by Riley et al. [74]. 

As a result, Batmem is protected in high-end systems. 

For low-end systems, we discuss the challenges to protect a low-end system from an installation 

of VMBR, as well as to detect its presence, in the rest of this section. 

5.2.1.1 Preventing VMBR Installation 

To protect the host boot sequence from malicious modifications of VMBR, we can employ soft­

ware or hardware solutions. Software solutions secure BIOS or boot processes by using encryption 

or out-of-the-box verification. Attackers need to retrieve the BIOS information to properly con-

figure virtual devices when the host is started. Encryption methods prevent this retrieval by en­

crypting/decrypting the BIOS information upon its exchange among legitimate system components. 

Out-of-the-box methods use the checkpoint verification technique, which compares system snap­

shots between suspicious and legitimate boot sequences to discover the malicious modifications. 

In general, hardware solutions can be built on a tainting technique that monitors exchanged data 

among legitimate system components. Those suspicious uses of tainted data will be considered as 

illegitimate. However, for a low-end system, both software and hardware solutions are difficult to 

apply because they either need to reboot the system for the snapshot comparison or degrade the 

system performance by their aggressive verifications of primitive data. 

5.2.1.2 Detecting Batmem 

Since Batmem is operated as an embedded component within VMBR, detecting its presence is 

challenging. However, as we mentioned in Section 2.3, to easily locate the buffer of each MMIO 
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session, Batmem maps the offset of the dynamic circular buffer to the first page of the main memory. 

This design may motivate defenders to scan and compare the content of the device memory and the 

first page of main memory to determine grouped regions, and hence, detect the presence of Batmem. 

Unfortunately, aggressively checking memory partitions is very expensive, leading to significant 

performance degradation. 

As an alternative, we can check the local time source to detect VMBR [50]. However, this 

method is not very robust since attackers can evade detection by using other similar approaches as 

Batmem to cloak their malicious activities on virtual components. In contrast, Garfinkel et al. [51] 

show a possibility of detecting VMBR without timing based techniques. Nevertheless, they target 

highly resource constrained VMBRs [60], and the flexible and small ones like Bluepill [77] are not 

considered. 

We can also exploit a vulnerability of KVM by checking shutdown conditions of the VCPU 

triple faults at the user level [ 12]. The effectiveness of this technique highly depends on possibilities 

to conceal such shutdown conditions of attackers. 

5.2.2 Virtualization Storage 

Besides file systems, a nesting of other 110 interfaces or storage components in a virtualization 

environment may also impact on the 1/0 performance of running applications, especially those 

1/0 components that direct 1/0s among applications, back-end drivers, block devices, and shared 

storage systems. Therefore, it is important to fully understand their performance implications under 

different nesting scenarios, which are discussed as follows. 
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5.2.2.1 110 Interfaces 

Commodity systems attempt to guarantee not only a high 1/0 performance on state-of-the-art de­

vices, but also a high compatibility between the systems and conventional devices. In a regular 

computer system, an 1/0 interface, which is represented by one particular device, handles 1/0s 

passed through 1/0 buses. In a virtualized environment, due to the two-level of guest and host, the 

abstraction of 1/0 buses is created: the buses at the guest level are used to connect virtual block de­

vices with back-end drivers, and the buses at the host level are used to connect the back-end drivers 

with mass storage devices. Guest/host 1/0s can be exchanged under different interfaces, resulting 

in a variation of the system performance. Intuitively, an improper combination of the guest and host 

1/0 interfaces can be disastrous to system performance. With an appropriate combination, the over­

head induced can be negligible. Because of this, we consider a future study of nested 1/0 interfaces. 

More specifically, our focus will be on the performance implication of virtualized systems under 

different 1/0 interfaces employed at guest and host levels, such as IDE, SATA, PATA, USB, SCSI, 

SAS, FICON, Fibre Channel, InfiniBand, or Thunderbolt. 

5.2.2.2 Storage Sharing 

Commodity storage systems enable the virtualized enterprise features to scale out data stored on 

the disk. In general, such features create a dynamic pool of shared storage resource available to 

guest VMs. With the help from the dynamic pool, the performance and availability of 1/0s across 

the physical storage are balanced and guaranteed. However, due to various 1/0 behaviors when 

different shared storages are employed, it is important to take advantage of the dynamic pool for one 
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particular system. Intuitively, the best perfonnance of IIOs depends on a nesting of virtual storage. 

This nested virtual storage is specified by not only the types of workload and storage at the guest 

level, but also the physical storage at the host level. Therefore, our future work will focus on the 

issues of nesting storage, in terms of (I) types of storage (host-based or network-based), (2) methods 

to optimize a storage utilization (thin or fat provisioning), and (3) mechanisms to differentiate data 

and metadata. 

Host-based Storage vs. Storage Area Network: Host-based storage for virtualization is imple­

mented through a logical volume management. As an advantage, this management is able to mini­

mizes the complexity in controlling physical storage by providing a flexible logical view of storage 

systems. However, virtualized systems must be manually configured and separately managed. 

A storage area network (SAN) provides block-level operations on interconnected storage de­

vices, rather than stacking another file abstraction on the physical storage. As a significant advan­

tage, a SAN based environment is completely transparent to virtualized systems. Thus, it is able 

to accommodate heterogeneous virtualized environments and minimize administrative tasks. How­

ever, to effectively leverage these block-level operations, another level of file system should be built 

on top of this SAN. In addition, a potential bottleneck induced by interconnected storage devices 

can impose a performance penalty on the entire virtualized environment. 

In general, host-based or SAN-based large scale virtualized environments are created by a stack­

ing of various levels of storage systems. This stacking includes multiple levels of physical or logical 

storage resources, whose 110 behaviors across the levels of storage are transparent. Thus, under­

standing 110 behaviors across those levels is necessary. As a future research direction, we plan to 
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conduct a thorough study on the multiple levels of storage systems to fully understand the perfor­

mance implication of virtualized environments. 

Storage Provisioning: A conventional storage provisioning technique, called fat (or thick) provi­

sioning, enables an allocated storage space beyond current needs. This technique does not require 

to accurately predicate the actual capacity of the storage during 1/0s, which may impact on I/0 

performance of storage systems. 

Thin provisioning is a technique to optimize the available space that is utilized for storage sys­

tems, especially SANs. The major advantage of this technique is that it allows the system admin­

istrators to allocate storage space "just in time" and use only as little as they need. Thus, thin 

provisioning significantly saves available disk space. 

To achieve the best performance of 1/0s, it is important to choose a right provisioning technique 

for a virtualized system. For example, while the thin provisioning can save the disk space, it may 

also cause an unstable performance. For this reason, a deep study of storage provisioning techniques 

used for virtualized systems and their impact on the system's I/0 performance are needed. As the 

problem will become even more challenging if the provisioning techniques could be deployed at 

different levels of storage, such as the physical level or the virtual level, we plan to explore this 

problem in the future. 

Data and Metadata Differentiation: In a virtualized environment, it is difficult to differentiate 

guest VM's 1/0s and determine if they are used for either data or metadata. Recently, few solutions 

have be considered to resolve this issue, such as ( 1) using device agents for VMs [29] to charac-
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terize IIOs, (2) storing files as objects along with user-defined metadata [7], and (3) relying on an 

individual metadata manager as a service node for distributed file systems. 

The proposed solutions may differentiate data from metadata. However, due to the changes 

made at both guest and hypervisor levels, those solutions may impact the scalability of a virtualized 

system, as well as the resiliency of data exchanged between two levels. Thus, they do not guar­

antee the best 110 performance if virtualized systems are hosted on different storage systems. By 

considering the effectiveness of different solutions in handling metadata for IIOs, we plan to further 

study the 110 performance of virtualized systems and provide a guideline for improving system 110 

performance. 

5.2.3 Shadow Patching Enhancements 

5.2.3.1 Selective monitoring 

A system downtime depends on a time to patch software. In fact, as software packages are different 

in terms of size and directory structure, the time to patch one particular software can be varied 

across different software packages, application versions, or upgrading procedures. As presented 

in experimental results, patching different application services results in different sizes of deltas 

to be merged. In general, deltas are determined based on footprints of inotify's events, known as 

inotify traces. Since all 110 events are recorded, it is possible that these traces may include 110 

events occurred on unmodified files and directories. Apparently, monitoring these 110 events is 

unnecessary and may incur overhead. 

To effectively monitor deltas, the selective monitoring classifies directories at root level to avoid 
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a recursive scan of the entire root directory. Basically, these directories are classified based on their 

purposes. For instance, /bin, /boot, and /dev directories include command binaries, boot loaders, 

and devices, respectively. Thus, it is possible to assume that once the system runs, these directories 

should not be changed while the majority of modifications is occurred on other directories, such as 

home, tmp, var, or etc. Using inotify to monitor deltas of these directories, this method does not 

impact on the results of deltas, but reduces overhead for merging activities. 

5.2.3.2 Flexible merging 

This method is based on an idea that an overhead induced by merging deltas is able to reduced if 

the file type and file contents can be determined in order to analyze. In general, based on deltas, 

merging activities will copy files from the cloned VM to to original system. However, if the size 

of delta is small (few Bytes or KBs) compared to the original file size (hundreds GBs), a regular 

copy significantly induces redundant 1/0s on the storage and lowers the performance of merging 

activities. This is because the majority of these 1/0s are used to copy a similar portion of the 

file from the cloned VM to another place. If a file type can be determined, such as regular data, 

character/block device, domain socket, named pipe, or symbolic link, a flexible merging is able to 

avoid these redundant 1/0s by specifically copying portions instead of the entire file. To determine 

portions of the file to be copied, we need to thoroughly analyze deltas at two levels: file system or 

disk block. 

• File system: Dissimilar portions are determined by thoroughly scan contents of two versions 

of the file. Merging activities properly overwrites dissimilar portions of the file, from the 

cloned VM to its version on the original system. 
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• Disk block: Dissimilar portions of two files can also be directly obtained as data block at the 

layer of disk block, rather than indirectly through the layer of file system. A merging process 

is performed based on a copy of disk blocks which are associated with dissimilar portions of 

files. 

It is noted that for the best performance in merging deltas, a buffer used for copying dissimilar 

portions of a file should be considered. Also, a size and a structure of this buffer should be defined 

properly based on the data type to represent dissimilar portions of the file. 

5.2.3.3 Patching other systems 

Shadow Patching requires virtual disk images to be formatted as multiple-layer disks and file sys­

tems used at the guest level must be structured. These requirements provides an ability to perform 

an external snapshot and to mount disk images as individual storage at the file system level of the 

host. Since these requirements focus on the disk level, rather than other particular system settings, 

such as states of virtualized CPU, states of harddrive interface, or allocated memory, it allows to 

perform Shadow Patching to patch other systems than Linux without major changes required of the 

framework. As an example, Shadow Patching can be used to patch a VM that runs Microsoft Win­

dows Server 2008 on NTFS or DFS file systems. Since NTFS and DFS are structured file systems, 

they can be exposed under Shadow Patching for a side-by-side comparison of files and directories 

between original and cloned VMs. 

Note that deltas are handled differently under different file systems. Linux file systems use 

inode, while Windows file systems (NTFS or DFS) rely on fileiD. Because of this different data 
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structure, a modification of inotify is required in order to properly monitor and merge deltas on 

such Windows systems. 
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