
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2012

Understanding and Leveraging Virtualization Technology in Understanding and Leveraging Virtualization Technology in

Commodity Computing Systems Commodity Computing Systems

Duy Le
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Le, Duy, "Understanding and Leveraging Virtualization Technology in Commodity Computing Systems"
(2012). Dissertations, Theses, and Masters Projects. Paper 1539623603.
https://dx.doi.org/doi:10.21220/s2-x1j5-p244

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539623603&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539623603&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-x1j5-p244
mailto:scholarworks@wm.edu

Understanding and Leveraging Virtualization Technology
in Commodity Computing Systems

Duy Le

Hanoi, Vietnam

Master of Science, The Francophone Institute of Computer Science, 2003

Bachelor of Science, Hanoi University of Technology, 2001

A Dissertation presented to the Graduate Faculty
of the College of William and Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

The College of William and Mary
August 2012

Copyright © Duy Le

All Rights Reserved

APPROVAL PAGE

This Dissertation is submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

Approved by the Committee, June 2012

Committee Chair
Associate Professor Haining Wang, Computer Science

The College of William and Mary

Professor Weizhen Mao, Computer Science

The College of William and Mary

Associate Professor Qun Li, Computer Science

The College of William and Mary

ABSTRACT PAGE

Commodity computing platforms are imperfect, requiring various enhancements for performance
and security purposes. In the past decade, virtualization technology has emerged as a promising
trend for commodity computing platforms, ushering many opportunities to optimize the allocation
of hardware resources. However, many abstractions offered by virtualization not only make en­
hancements more challenging, but also complicate the proper understanding of virtualized systems.
The current understanding and analysis of these abstractions are far from being satisfactory. This
dissertation aims to tackle this problem from a holistic view, by systematically studying the system
behaviors. The focus of our work lies in performance implication and security vulnerabilities of a
virtualized system.

We start with the first abstraction-an intensive memory multiplexing for 1/0 of Virtual Machines
(VMs)-and present a new technique, called Batmem, to effectively reduce the memory multi­
plexing overhead of VMs and emulated devices by optimizing the operations of the conventional
emulated Memory Mapped 1/0 in hypervisors. Then we analyze another particular abstraction-a
nested file system-and attempt to both quantify and understand the crucial aspects of performance
in a variety of settings. Our investigation demonstrates that the choice of a file system at both the
guest and hypervisor levels has significant impact upon 110 performance.

Finally, leveraging utilities to manage VM disk images, we present a new patch management frame­
work, called Shadow Patching, to achieve effective software updates. This framework allows system
administrators to still take the offline patching approach but retain most of the benefits of live patch­
ing by using commonly available virtualization techniques. To demonstrate the effectiveness of the
approach, we conduct a series of experiments applying a wide variety of software patches. Our re­
sults show that our framework incurs only small overhead in running systems, but can significantly
reduce maintenance window.

Contents

Dedication

Acknowledgments

List of Tables

List of Figures

1 Introduction

1.1 Challenges .

1.2 Goals ...

1.3 Dissertation Summary

1.3.1

1.3.2

1.3.3

Batmem: A Memory Optimization Mechanism

Performance Implications of Nested File System

Shadow Patching: Minimizing Maintenance Window .

1.4 Dissertation Organization .

2 Batmem: A Memory Optimization Mechanism

v

vi

vii

ix

1

2

3

4

4

5

6

6

7

2.1

2.2

Introduction

Virtual Device Taxonomy .

2.2.1

2.2.2

Virtual devices and MMIO optimization .

2.3

User behavior classification

System Design and Implementation

2.3.1

2.3.2

System design .

Implementation .

2.4 Experimentation

2.5

2.4.1

2.4.2

High-end Systems

Low-end Systems .

Discussion .

2.6 Summary .

3 Performance Implications of Nested File Systems

3.1 Introduction

3.2 Background

3.3 Macro-benchmark Results

3.3.1

3.3.2

3.3.3

Experimental Setup .

Benchmarks

Macro-benchmark Results

3.4 Micro-benchmarks Results

3.4.1 Benchmark

ii

7

9

9

12

12

l3

16

20

21

26

29

30

31

31

34

36

36

39

40

49

49

3.4.2

3.4.3

3.4.4

Experimental Results .

110 Analysis

Disk Image Formats

3.5 Discussion .

3.6 Summary .

4 Shadow Patching: Minimizing Maintenance Window

4.1 Introduction .

4.2 Related Work

4.3 Technical Background . .

Software patching 4.3.1

4.3.2

4.3.3

Virtual disk image and VM cloning

Disk cloning approach

4.4 Shadow Patching Framework .

Patching scenario . . . 4.4.1

4.4.2

4.4.3

Software component replacement

Prototype of Shadow Patching

4.5 Experimentation

4.5.1

4.5.2

4.5.3

Experimental setup . .

When Patch Succeeds

When Patch Fails .

4.6 Discussion

iii

49

53

63

66

69

71

71

74

77

77

78

79

80

80

82

85

86

86

87

92

97

4.6.1

4.6.2

Pros and Cons

Shadow Patching Enhancements .

4.7 Summary

S Conclusion and Future Work

5.1 Conclusion .

5.2 Future Work .

5.2.1 Memory Optimization in Virtualization

5.2.2 Virtualization Storage

5.2.3 Shadow Patching Enhancements .

Bibliography

Vita

iv

97

98

101

102

102

103

103

105

109

113

118

For Duc-Le and Ben Phong

For Hang Minh

For Parents and In-Laws

v

ACKNOWLEDGMENTS

Pursuing a Ph.D. is an opportunity to enjoy various stages of hard-working experience. With so
many kind help I have been receiving from people, I understand that I would not finish my Ph.D.
without their help. Though it will not be enough to express my gratitude in words to all people who
supported and encouraged me, I would still like to thank to many people who made this dissertation
possible.

First, I cannot overstate my appreciation to my Ph.D. advisor, Dr. Raining Wang. I would like
to give my sincere thanks to him, who kindly accepted me as his Ph.D. student back in 2007. His
continued encouragement, invaluable advice, and patient supervision, have always guided me in the
right direction. He has not only been a strong and supportive advisor to me throughout my graduate
school career, but he has always given me the freedom to pursue excellent work. To the end, I would
think that without his help, I could not have finished my dissertation successfully.

My second debt of gratitude must go to my mentor and research collaborator, Dr. Hai Huang,
who gave me the opportunity to extend upon my research work on file systems and storage. He also
supported me patiently and guided me through the research projects during my Ph.D. experience.
Most of all, I would like to thank Dr. Huang for his unflagging encouragement and for serving as a
model of conducting scrupulous research.

Furthermore, a very special thanks goes to Dr. Evginia Smirni. Without her motivation and
guidance, I would not have found an appreciation for the beauty of data analysis and performance
evaluation, which have become the core of my Ph.D. work.

My sincere thanks go to my committee members, Dr. Weizhen Mao, Dr. Qun Li, and Dr. Gang
Zhou for their valuable support and helpful suggestions. Their critical comments enabled me to
explore corner cases of my dissertation work and make the necessary improvements. What has
resulted is a tried and tested body of research.

I am indebted to my many student colleagues for not only collaborating in my Ph.D. research,
but also for providing a stimulating and fun environment in which to learn and grow. I am especially
grateful to Adam Wu, Chuan Yue, Tyler Smart, and Jidong Xiao for their kind assistance with con­
ducting experiments, wise advice, helping with various applications, and so on. Their involvements
in my Ph.D. research have served me well, and I owe them my appreciation.

I would like to thank my family for all of their love and encouragement: my parents and my
parents-in-law who fully supported me in all of my pursuits; for my sister Hang-Minh, a mother of
two, who encouraged me, helped me look after my parents when I was far away from home. I also
thank my entire extended family for providing a loving environment for me - my uncles, aunts, and
cousins have been extremely supportive. My family's understanding and love have encouraged me
to work hard and continue pursuing the Ph.D. studies. Continually letting me know that they are
proud of me has motivated me to work hard and do my best.

Lastly, and most importantly, I would like to convey my heartfelt thanks to my loving, support­
ive, encouraging, and patient wife Duc-Le Nguyen and my son Ben-Phong who form the backbone
and origin of my happiness. Without their faithful and full support during the various stages of this
Ph.D., I would not have finished. I owe my every achievement to both of them, and it is to them that
I dedicate this dissertation.

vi

List of Tables

2.1 VGA Bandwidth

2.2 Windows UHCI Bandwidth .

2.3 Linux UHCI Bandwidth

2.4 VMBR Module Size ..

3.1 Testbed Setup

3.2 Physical and logical disk partitions .

3.3 Parameters for Filebench workloads

3.4 Best and Worst Throuput

3.5 Best and Worst Latency .

3.6 FlO Benchmarking ...

4.1 Time base comparison between files/directories

4.2 Testbed setup

4.3 Application services and benchmarks

4.4 Rule-based activities in merging deltas .

vii

23

24

24

27

37

38

40

43

47

52

84

87

89

91

4.5 Upgrading Ubuntu Distribution . 93

viii

List of Figures

2.1 Batmem overview

2.2 MMIO Optimization in Batmem

2.3 Partition Memory Registration

2.4 MMIO overhead ..

2.5 NIC Virtual Capacity

2.6 UDP Packet Delay .

2.7 Browser Response Times

3.1 Nested File System Scenario

3.2 Experimental Testbed

3.3 File Server and Web Server Results of Throughput

3.4 Mail Server and Database Server Results of Throughput .

3.5 CV of Throughput.

3.6 Total 110 Size ...

3.7 File Server and Web Server Results of Latency

3.8 Mail Server and Database Server Results of Latency .

ix

13

15

17

18

21

23

28

31

37

41

42

44

44

45

46

3.9 CV of Latency

3 .I 0 I/0 Throughput in Reading

3.11 I/0 Throughput in Writing

3.12 Sequential Disk 1/0s

3.13 Cache Hit Ratio . . .

3.14 Sequential Read I/0 Times

3.15 Sequential Write Extra 1/0s .

3.16 I/0 Characteristics JFS/ReiserFS

3.17 110 Characteristics ReiserFS/XFS

3.18 Extra Written Data under JFS ...

3.19 Throughput different disk images .

3.20 Latency under different disk images

3.21 Extra Data Written Into Disk

3.22 Experiments with other hypervisors

Scenario of Shadow Patching session .

Upgrading process comparison

4.1

4.2

4.3 Individual upgrading application services

4.4 Upgrading different Ubuntu versions . .

4.5 Upgrading different Linux Distributions

X

48

50

51

54

56

57

57

58

60

62

63

64

66

69

79

88

88

95

96

Chapter 1

Introduction

Innovations in Virtualization Technology (VT) have significantly improved the utilization of hard-

ware resources and have also enabled a wide array of products and services being offered. As a

platform-virtualization software solution, hypervisor, known as a virtual machine monitor, has been

widely used for supporting a diverse set of hardware devices and monitoring information between

a host machine and multiple guest operating systems (OSes). For high-end systems, virtualization

is attractive for server consolidation due to its strong resource and fault isolation guarantees. For

example, in cloud computing environment, cloud vendors can quickly provide ready-to-use infras­

tructures, platforms, and software to customers in a low-cost virtualized environment. For low-end

systems, such as mobile netbooks, laptops, or client desktops, virtualization provides a high-level

OS interface for application programming via traditional real-time APis, allowing programs to be

performed on different OS platforms. However, virtualization is a double-edged sword. Along with

many benefits that it brings, virtualized systems are also more complex, and thus, more difficult to

understand, measure, and manage. This is often caused by layers of abstraction that virtualization

introduces.

Unfortunately, current understanding and analysis of this abstraction are far from being sat-

CHAPTERJ. INTRODUCTION 2

isfactory. Current techniques, such as NormanSandbox [19], Anubis [2], Ether [46], and Para­

norama [89], dynamically analyze the behavior of virtualized systems by monitoring system calls

or API calls when malicious programs are performed. However, these analyzes have serious limi­

tations: I) they do not provide a performance implication of a virtualized system in a fine-grained

manner under various configurations. 2) they do not uncover the hidden behavior of particular com­

ponents inside a virtualized system. and 3) they do not reason the inner-working mechanism of

hypervisor that causes abnormal behaviors on different running virtualized systems. Some research

efforts [75, 41, 58] have been made to consider some of these limitations or to analyze a particular

abstraction. However, none of them specifically addresses the problem of abstraction from a holistic

view, and thus cannot provide a full understanding of the behavior of virtualized systems.

In this dissertation, we aim to tackle this problem of the abstraction from a holistic view, by

systematically considering its challenges and goals, and thus fully understand the behavior of a

virtualized system. Then, we propose a research direction to effectively leverage VT to minimize

the maintenance window time for updating software in virtualized enterprise environments.

1.1 Challenges

Understanding and analyzing the abstraction offered by virtualization is a very challenging task. To

determine an efficient approach for the analysis, we have to address the following two challenges:

various configuration and fine-grained behavior.

• Various Configurations: We can see that virtualization is an ideal solution for high-end

computing platforms due to its capability to leverage services. However, virtualization can

CHAPTERJ. INTRODUCTION 3

also be well employed in low-end systems. As a result, to conduct a thorough investigation

on various host systems, not only a virtualization platform, but also emulated components

are carefully selected, making it difficult to effectively differentiate the behavior of virtual­

ized systems. Here, to facilitate the investigation, we focus on a memory multiplexing of

virtualized systems and examine its behavior on both high-end and low-end host systems.

• Fine-grained Behavior: Virtualization provides a capability to monitor the behavior of a reg­

ular program or a particular 1/0, which usually interacts with the system environment through

system calls or API calls. However, system call monitoring is too fine-grained, resulting in

much induced overhead. Therefore, to fully understand the system behavior at one particular

type of abstraction-the nested file system-without imposing much overhead, our analysis

needs to be conducted at user and kernel levels of both host and VM systems.

1.2 Goals

To fully understand the system behavior and performance implication in virtualized environment,

our analysis should meet the following goals:

• Addressing Challenges: The challenges we discussed above are noteworthy in terms of vir­

tualized system behavior analysis. A lack of addressing any of them may cause incomplete­

ness or inaccuracy of the analysis, and the value of its experimental results will be greatly

diminished.

• Reasoning Inner-working: Based on observed behaviors, it should be able to interpret at

different levels of details, such as what exactly this behavior is and how this behavior happens.

CHAPTERJ. INTRODUCTION 4

For example in nested file systems, we want to know the dependency between using files and

using physical disks to represent logical block devices at the guest VM.

• Maintaining Efficiency: In many cases, an effective analysis of system behavior strongly

depends on various configuration, resulting in various running time and precision for experi­

mentation. Therefore, it is very important to employ effective analysis methods that balance

between accuracy and complexity.

1.3 Dissertation Summary

In order to effectively leverage VT, it is important for system designers to fully understand the

behavior of virtualized systems. However, the current understanding and analysis of abstractions

brought by VT are far from being satisfactory. In this dissertation, we first focus on a holistic view

of the virtualized system behavior analysis and present the two projects on (I) memory optimization

and (2) performance implications of nested file systems. Furthermore, we leverage storage utility in

a virtualized environment to perform the third project of (3) a new patch management framework.

The summaries of these projects are described as follows.

1.3.1 Batmem: A Memory Optimization Mechanism

Utilizing the popular VT, users can benefit from server consolidation on high-end systems and ftexi-

ble programming interfaces on low-end systems. In these virtualization environments, the intensive

memory multiplexing for 1/0 of VMs significantly degrades system performance. In this project, we

present a new technique, called Batmem, to effectively reduce the memory multiplexing overhead

CHAPTERJ. INTRODUCTION 5

of VMs and emulated devices by optimizing the operations of the conventional emulated Memory

Mapped I/0 in Virtual Machine Monitor (VMM)Ihypervisor. To demonstrate the feasibility of Bat­

mem, we conduct a detailed taxonomy of the memory optimization on selected virtual devices. We

evaluate the effectiveness of Batmem in Windows and Linux systems. Our experimental results

show that: {l) For high-end systems, Batmem operates as a component of the hypervisor and sig­

nificantly improves the performance of the virtual environment. (2) For low-end systems, Batmem

could be exploited as a component of the VM-based malware/rootkit (VMBR) and cloak malicious

activities from users' awareness.

1.3.2 Performance Implications of Nested File System

Virtualization allows computing resources to be utilized much more efficiently than those in tradi­

tional systems, and it is a strong driving force behind commoditizing computing infrastructure for

providing cloud services. Unfortunately, the multiple layers of abstraction that virtualization intro­

duces also complicate the proper understanding, accurate measurement, and effective management

of such an environment. In this project, we focus on one particular layer: storage virtualization,

which enables a host system to map a guest VM's file system to almost any storage media. A fiat

file in the host file system is commonly used for this purpose. However, as we will show, when one

file system (guest) runs on top of another file system (host), their nested interactions can have unex­

pected and significant performance implications (as much as 67% degradation). From performing

experiments on 42 different combinations of guest and host file systems, we give advice on how to

and how not to nest file systems.

CHAPTER!. INTRODUCTION 6

1.3.3 Shadow Patching: Minimizing Maintenance Window

Keeping software up-to-date is a fact of life in any IT environment. Although sophisticated live

patching techniques have been available for many years, conventional offline methods are almost

always used in practice. This is due to online methods being usually very OS or application spe­

cific and cannot be applied as generally as offline methods. In this project, we present a patch

management framework that allows system administrators to still use the offline patching methods

while retaining most of the benefits of live patching by leveraging commonly available virtualization

techniques. To demonstrate the effectiveness of the approach, we conduct a series of experiments

applying a wide variety of software patches. Our results show that our framework incurs only small

overheads in running systems but can significantly reduce maintenance window.

1.4 Dissertation Organization

The remainder of this dissertation is structured as follows. In Chapter 2, we present Batmem as an

effective memory optimization mechanism for hypervisor. In Chapter 3, we detail our investigation

of nested file systems to explore their dependency at different levels of details. In Chapter 4, we

present Shadow Patching as a novel and effective software updating mechanism for virtualized cloud

environments. Finally, in Chapter 5, we conclude and discuss challenges of potential future work.

Chapter 2

Batmem: A Memory Optimization

Mechanism

2.1 Introduction

In high-end systems, virtualization allows its main memory to be shared and to be monitored be­

tween VMs [85, 69, ~7]. The bottleneck of virtualized systems lies in VM multiplexing, which is

dependent on system capacity features, including memory slot availability, additional power con­

sumption, and the memory-sharing mechanism of hypervisor. Here the memory-sharing mechanism

is known as page sharing, memory compression, or memory 1/0 multiplexing. Thus, the memory

usage inside VMs and the memory-sharing mechanism in VM multiplexing are critical to a host's

performance. As a result, commodity hypervisors require an effective memory-sharing mechanism

between VMs and their host, such as optimizing frequent paging and memory that is mapped for

virtual 1/0 devices.

However, due to the small capacity of a low-end system, multiple VMs cannot be installed on

a single host. Thus, in terms of performance, memory sharing is not a critical issue for low-end

7

CHAPTER2. BATMEM:AMEMORYOPTIMIZATION~CHAN~M 8

systems. Nevertheless, in terms of security, malware may exploit virtualization techniques includ­

ing memory sharing to completely control VMs on low-end systems. SubVirt [60], BluePill [77],

and Cloaker [45] are typical examples of Virtual Machine Based Rootkit (VMBR) that attempt to

append a thin hypervisor as a middleware between a running OS and hardware devices. The suc­

cess of VMBR relies on two factors: compromising devices and hiding malicious behaviors. More

specifically, VMBR requires virtual devices to intercept the 110 operations of a victim OS, and then

VMBR must cloak its malicious behaviors, which could include system modification violation or

performance degradation. Therefore, reducing the overhead in memory multiplexing of VMs will

not only improve the performance of high-end systems, but also help us understand the possibility

of cloaking malicious VMBR behaviors in low-end systems.

We present Batmem, an effective technique to improve the performance of the Memory Mapped

110 (MMIO)--a conventional memory exchange mechanism-by reducing the overhead and redun­

dant memory regions during the multiplexing of VMs. The key component of Batmem is a dynamic

circular buffer that coalesces memory partitions to be written into the reserved memory areas of

virtual devices. We also employ a compression algorithm to reduce the allocated memory regions

used in such 110 writing. For either high-end or low-end systems, Batmem is applied on virtual

devices, such as the Video Graphics Array (VGA), Network Interface Controller (NIC), and Uni­

versal Host Controller Interface (UHCI). In particular, for high-end systems, we use selective micro

benchmarks to evaluate system performance at the device level. For low-end systems, Batmem

functions as a VMBR component. To validate its effectiveness in concealing VMBR activities from

users' observations, we evaluate the performance of selected user applications while maintaining

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM 9

two malicious services: keylogger and data transmission.

With VT support, we implement Batmem as a prototype based on Kernel Virtual Machine

(KVM) [61] and conduct experiments on emulated devices for both Windows and Linux systems.

Even though other open-source hypervisors such as Xen [36] or lguest [13] support fault contain­

ment and performance isolation by partitioning physical memory among multiple VMs and allows

unmodified guest OSes to run on a VT-x supported host, its particular domain-based architecture

makes it impossible to compare with other light-weight hypervisor architectures, in terms of driver

domain model and performance. In contrast, KVM inherits lguest's flexibility and turns a Linux ker­

nel into an in-kernel hypervisor, in which OSes can directly run on the hardware and take advantage

ofVT-x.

2.2 Virtual Device Taxonomy

We first categorize virtual device emulations by analyzing three devices - Video Graphic Adapter,

Network Interface Card, and Universal Host Controller Interface- and discuss possibilities for op­

timizing MMIO on such devices. Then, we classify end-user behavior regarding such optimization.

2.2.1 Virtual devices and MMIO optimization

Video Graphic Adapter (VGA): The complexity of VGA architecture highly depends on the

various modes and modification capabilities of VGA hardware. In a virtual environment, its per­

formance can be easily degraded due to instruction translations by the VGA emulator. The VGA

emulator translates guest instructions into load/store instructions on the host. Identifying emulated

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM 10

instructions that are directed to VGA hardware is difficult because the emulated VGA module may

replace the load/store instruction with a branch to support the general-purpose functionalities of

graphical operations. Consequently, the performance of the emulator module is adversely affected.

To improve the performance of the emulated VGA, then, we should optimize the emulator module

by improving either the speed of store/load instructions mapped to main memory or the accuracy

of differentiating such instructions with in-line code generations. Because in-line code generations

depend on hardware specifications, our work focuses on memory-mapped operations.

Network Interface Card (NIC): NIC information exchange requires two important communica­

tion features: highly sustained throughput and low latency. An emulated NIC is supported in two

modes: bridge and virtual host. The bridge mode is more flexible and functional than the virtual

host mode in that a VM is considered as an independent system on a LAN. Thus, our work focuses

on the bridge mode. Moreover, virtual NIC functions are built as NIC modules. To allow the NIC

to function effectively, VMM needs to make a trade-off between the flexibility and complexity of

such modules. Recent research found that the majority of overhead is due to a non-optimization

of the 110 exchange between a host and VMM [54]. More specifically, in each VMM-host context

switch, the overhead is caused by asynchronous data mapping between the processor and memory

address spaces of the virtual NIC. Therefore, to reduce the overhead of the virtual NIC, we consider

optimizing its memory-mapping mechanism.

Universal Host Controller Interface (UHCI): In the USB architecture, UHCI consists of two

main functions: building a data structure for device-to-application communication and providing

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM 11

a register-level hardware interface for a compatible software driver. In virtual systems, UHCI and

USB drivers are emulated as a host USB to take control of real USB devices attached to the host.

The host USB emulates the USB buses and devices connected to them so that external USB devices

appear and function properly under the guest OS. To monitor data transmissions between USB de­

vices and an application, the host USB also emulates a root hub. In general, USB data transmissions

are conducted in one of four modes: isochronous, interrupt, control, and bulk. The bulk mode is

more commonly used to transfer a large amount of data under relaxed latency requirements than

the others. Therefore, we focus on the bulk mode and consider optimizing its data transmission on

UHCI.

MMIO optimization: MMIO uses the same address bus to address both memory and UO devices,

and the CPU instructions used to access the memory are also used for accessing UO devices. In

virtual systems, VMM emulates a context switch module to enable a guest OS using MMIO. When

a device driver on the guest OS requires an MMIO on a particular emulated device, it issues a

writing request and sends it to the context switch module. Then, according to the received writing

request, the context switch module and the virtual CPU establish MMIO on the main memory and

the device. In general, this MMIO establishment is monitored by a mapping module in VMM.

Fortunately, the mapping module is accessible and can be modified as a regular kernel module.

Therefore, we consider improving MMIO by optimizing such a mapping module. Moreover, not

only VGA and NIC, but also UHCI and other emulated devices are considered as generic PCI

devices in virtual systems, thereby enabling them to participate in the memory-mapping process.

Page protection-based solutions decrease virtuaVreal timing characteristic differences but induce

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM 12

virtualization overhead. Thus, we attempt to reduce such overhead by solving the MMIO latency

problem.

2.2.2 User behavior classification

In accordance with user-perceived performance, we classify user behaviors into three different

groups: screen-based, net-based, and file system-based. Note that the performance metrics are

chosen according to their acceptable validity and reliability in previous studies [49, 70].

• Screen-based behavior is a variation of the end-user screen interaction, which is described by

an instantly estimated frame-per-second (FPS) metric. The higher the FPS values, the closer

the matching between a real VGA and an emulated VGA.

• Net-based behavior is a variation of the end-user network activity. We use performance met­

rics such as virtual capacity and packet delay of a NIC to quantify the variation. Here virtual

capacity is defined as the maximum data transfer rate over the virtual NIC, specifically be­

tween the guest OS and outside networks.

• File system-based behavior affects user interactions on virtual file systems, such as emulated

USB storage. The 110 activities of end-users will be affected by the bandwidth of file systems.

2.3 System Design and Implementation

In this section, we first detail the system design of Batmem. In particular, Batmem improves the

speed of MMIO write by using (I) a dynamic circular buffer to group write requests and (2) a

CHAPTER2. BATMEM:AMEMORYOPTIMIZATION~CHAN~M

MMIO
Partitions

Dynamic Circular
Buffer

Figure 2.1: A virtual environment overview with Batmem

13

compression to minimize written memory partitions into the reserved memory. Then, we describe

its implementation and related malicious services on KVM.

2.3.1 System design

In our design, Batmem participates in writing MMIO with other virtual components, such as the

main memory, devices, and context switch. As shown in Figure 2.1, a virtual CPU (VCPU) takes

control of reading data from the device and writing MMIO data to memory. Batmem intercepts

such an exchange by monitoring virtual device status (1) and 110 device operations (2) to control

the MMIO writing on the reserved memory area. The context switch, known as a switching mod-

ule, controls 110 requests sent from guest OS device drivers to virtual devices (3). With VCPU, the

switching module conducts the MMIO writing to virtual memory (4). To allow Batmem to prop-

erly participate in the MMIO writing, we need to establish a connection between Batmem and the

switching module (5). This connection registers Batmem into a contact list of the switching module,

making Batmem capable of monitoring 110 requests. These 110 requests are issued from the guest

OS device driver controller, passing through the context switch in each MMIO session.

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM 14

In each MMIO session, the issued MMIO requests are executed by 110 instructions at the switch­

ing module and VCPU. Such requests hold the address and size of the shared page of memory for

each MMIO writing. When the Batmem/switching module connection is established, Batmem ex­

changes with the switching module to obtain information about the MMIO session, including the

addresses belonging to MMIO page and reserved memory partitions. Each partition holds informa­

tion about its size, address, and status (registered or unregistered). The registered partition intro­

duces an occupied memory area, which is allocated and used by Batmem. The unregistered partition

presents an extensible unoccupied memory area. The unregistered partitions are extended and used

when current allocated memory partitions for Batmem are overrun by numerous arrivals of writing

requests. Through Batmem, these partitions are registered or unregistered with the switching mod­

ule. Note that such partitions are associated with another assigned memory area known as a hatched

buffer. To increase the MMIO writing speed from the reserved memory for a device to the main

memory, we create the hatched buffer as a dynamic circular buffer to store all MMIO partitions as a

batch for each writing session.

The dynamic circular buffer structure is built on an ordinary circular buffer to prevent buffer un-

derruns when devices perform numerous write-backs to the main memory. As shown in Figure 2.2-

A, the dynamic circular buffer is a list of memory regions, where each element can be freed or

ready to be filled upon receiving a writing request. To batch MMIO partitions, each buffer element

needs to record the physical address and size of the mapped memory. Upon receiving notification

from the switching module at session completion, Batmem informs the dynamic circular buffer to

group all current partitions in the buffer. Instead of sequentially writing into the reserved memory,

CHAPTER2. BATMEM:AMEMORYOPTIM~ATIONMECHAN~M 15

(A)

Reserved
Memory

##-- • ·oynamic· · · ·-~
MMIO i Circular Buffer ~: Reserved

Partitions : : Memory
I

(B)

Figure 2.2: (A) Regular MMIO partitions written into reserved memory; (B) Batmem enhances writing speed
by using dynamic circular buffer with compression

which is time consuming and may slow other devices's 1/0 on the main memory, Batmem simply

completes an MMIO by copying the available buffer to the reserved memory. Since the buffer to be

copied is in a mapped memory area that lies on the same main memory area, this copying is obvi-

ously much less expensive than the regular sequential MMIO writing. In order to eliminate buffer

underruns when the requests of other devices fall behind, Batmem adjusts the size of the dynamic

circular buffer by appending a number of free elements. Note that although a circular buffer has

been widely used in sharing memory mechanisms, our improvement goes beyond the design of data

structure by dynamically associating its functionalities with a memory compression in each writing

session.

To reduce the memory footprint in the reserved memory, as shown in Figure 2.2-B, Batmem em-

ploys RLE to compress the batched memory regions in the dynamic circular buffer. Because such

a compression is useful only when the compression ratio is high, we need to determine the regions

to compress. At the beginning, instead of compressing an entire region, we just compress the first

half of a region. Batmem defines a threshold to compare with the compression ratio of the first half

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM 16

region's. If the measured compression ratio is higher than the given threshold, the compression is

effective. The rest of the region is compressed and then is written into the reserved memory. Other­

wise, the entire uncompressed hatched region is committed to writing into the reserved memory as

usual.

In the reserved memory, Batmem marks the compressed regions to differentiate them from

others. When a read request from the VM accesses a compressed region, Batmem automatically

decompresses and returns the region. Note that a compressed region and its mark remain intact until

it is discarded or overwritten by new regions.

Batmem groups and compresses MMIO partitions without affecting the MMIO session. After

the partitions to be grouped are successfully registered, the switching module notifies both Batmem

and the devices to activate the MMIO hatching. Using the device status provided by the switching

module, Batmem can differentiate the device and its registered memory partitions from other devices

that are not actively executed. Note that when VMM is initialized, to monitor the virtualized main

memory, VCPU needs to map all first pages of device memory structures to the main memory. Since

the regular size of the mapped memory is given and specified by VMM, Batmem maps the offset of

this dynamic circular buffer to the first page of the main memory to easily locate the buffer in each

MMIO session.

2.3.2 Implementation

We implement Batmem on KVM, an open-source based VMM/hypervisor, which operates as a

subsystem leveraging the virtualization extension. The recent KVM version works as a Linux kernel

module running under a VT-x supported host. As a benefit of the Linux kernel architecture, KVM

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM

switch (ioctl)

case BATCHINGJREG:

bkvm_reg(kvm, &partition, reg_flag, ...);

case BATCHING_UNREG:

bkvm_unreg(kvm, &partition, unreg_flag, ...);

Figure 2.3: Partition Memory Registration

17

can perform or schedule the OS as a Linux process. For high-end systems, Batmem is added into

KVM as a module that maintains a capability to monitor multiple running VMs. For low-end

systems, Batmem is implemented as a VMBR component that attempts to conceal the presence of

running malicious services from the end-user. The implementation on KVM includes two main

parts: Batmem and malicious services.

A. Batmem: Batmem takes advantage of the standard ioctl () functions under the Linux kernel

to allocate, register, and unregister memory partitions. Such functions are immediately initialized

with the KVM core module when the host is started. To protect allocated partitions from other

processes that do not involve the MMIO writing session, the KVM core must be secure before and

after each use. To secure the KVM core and schedule legitimate processes, we use a semaphore. As

shown in Figure 2.3, we monitor a memory partition by using flag and side values that represent

the results and side effects of the current hatching process. The results consist of the registered

partition information, including device identifications, the reserved memory size, and the circular

dynamic buffer address. The side effects are considered to be either memory allocation latencies or

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM

~2600~--~~--~~--~~--~~--~ -~2400
~2200
0 ;2000
:I

~ 1800 w LL--~--~--~--~~--~--~--~--~--~

1 2 3 4 5 6 7 8 9 10
Comoression ratio threshold (0/ol

Figure 2.4: Average of total MMIO functions' overhead

18

buffer overrun circumstances. For the dynamic circular buffer, we start with a default size of 100

elements. If the number of partitions being used reaches the current buffer size, the buffer size is

incremented by 10 elements. We choose these numbers to strike a balance between system memory

usage and buffer overrun circumstances.

We need to minimize the overhead produced by compression/decompression operations. The

overhead is measured in terms of the execution times of various functions involved in MMIO/Batmem,

where we enable each function in isolation and evaluate its execution time. Figure 2.4 shows the av-

erage of total overhead imposed by major Batmem/MMIO operations, corresponding to the different

compression ratio thresholds. As expected, the overhead grows with the increase of the compression

threshold value. The overhead growth is primarily due to the increased number of batched regions

that are available for compression. More specifically, we conduct multiple experiments using dif-

ferent compression ratio values as integers in a given range with an estimated error of the standard

deviation. In each experiment, we maintain consistent batched memory regions as input for the

compression. As a result, the ratio threshold of 5% is selected as the default value, with which the

compression/decompression module only adds 1-1.5% overhead to the entire system.

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM 19

For VGA and Rtl8193 NIC, we intercept their original registration functions to monitor both de­

vice information and writing processes. The interception directly points original registrations to our

new registration routines. Therefore, we can perform batching on the mapped memory partitions of

these devices upon receipt of their statuses. Since Batmem conducts the batching, this interception

makes our new routines transparent to the guest OS device drivers.

For UHCI, we modify its registration and create its reserved memory for MMIO. To have the

KVM UHCI function as a regular PCI device, we modify UHCI registration based on the core

registration of a standard PCI device. However, on the KVM, UHCI is emulated without a reserved

memory area. We create a reserved memory for UHCI on the main memory and add it to the contact

list of the switching module. To allow UHCI to operate MMIO, we modify the UHCI initialization

by directly assigning the destinations of its 110 operations to the new reserved memory. Note that

such modifications do not affect the fundamental UHCI architecture.

B. Malicious services: We implement two malicious services as parts of VMBR: key logger and

data transmission between malware.

First, using the kernel keylogger concept [25], we implement the keylogger to compromise

both the data buffers and 1/0 functions of the emulated keyboard controller. Since the emulated

keyboard controller is operated as a kernel module within KVM, we need to recompile KVM with

the keylogger to activate the service. To hijack a keystroke data buffer, the keylogger first checks

the buffer availability, then performs its own read/write functions to copy the keystroke data to its

buffer. The checking is executed via generated interrupts at an emulated serial port of KVM. We

implement a small module to store the copied keystroke data as readable log files under the host.

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM 20

Although the key logger is not fully functional, such as encrypting keystroke data or sending it out to

networks, we believe that its interception precisely represents a regular VMBR's keylogger service.

Second, to illustrate a data exchange between two pieces of mal ware, we implement a data trans­

mission service for exchanging data between the user level of the guest OS and the kernel level of

the host. The exchanged data is guest OS sensitive information, such as a Windows registry structure

or a Linux file system map. An inside-the-guest mal ware functions at the user level of the guest OS.

Another out-of-the-box malware operates at the kernel level of the host, more specifically, inside

KVM. These two pieces of malware attempt to periodically send and receive data to each other by

using implicit communication methods, such as interrupts, ports, or devices. The inside-the-guest

malware cannot modify device drivers, and using interrupt-based or port-based communications is

more challenging than a device-based method. We implement a simple protocol based on TCPIIP

that allows both malware to send and receive data packets via an emulated NIC. The emulated NIC

is initialized when the system is started with activated network services. VMBR can immediately

perform this data transmission service afterwards.

2.4 Experimentation

We use benchmarks and sample payloads to evaluate the effectiveness of Batmem. First, for high­

end systems, we conduct experiments with KVM/Batmem for three types of guest OSes: Windows

XP, Ubuntu 7.10 Linux Kernel (LK) 2.6.21, and Fedora 8 LK 2.6.22. Each type has two guest

OSes, for a total of six guest OSes. We run these guest OSes on a Tank GT20 server that includes

a quad-core 2.0 GHz Intel Xeon processor and 4 GB RAM. Each guest OS uses 512 MB shared

CHAPTER2. BATMEM:AMEMORYOPTIMIZATIONMECHAN~M

700

600 -"' :a 500
:1 -!400
l! ..
.; 300
c
g200

~
0100

0

LK2.6.22

o Without Batmem
• With Batmem

WlnXP

LK 2.6.21
(Ubuntu 7.10)

(
..---_..A._ ______

\

16 8 16 8 16
TCP window sizes (KB)

Figure 2.5: NIC virtual capacity (larger is better)

8

21

memory. We use benchmarks to examine the operations of intercepted devices. Second, for low-

end systems, our evaluation includes two parts: analyzing the modules of Batmem based on their

sizes and complexities, and measuring the varied run-time application behaviors when malicious

services are activated. The running host consists of Intel 2.0 GHz and 1 GB memory, in which a

shared 512 MB is for a guest OS.

2.4.1 High-end Systems

We use selected device level benchmarks to verify the effectiveness of Batmem on NIC, VGA,

and UHCI. Our experiments are conducted in two scenarios: with and without Batmem. Each ex-

perimental result is an average of eight independent measurements along with an error estimate

specified by the sample standard deviation. Due to the different running services involved and dif-

ferences between UDP and TCP in terms of reliability and weight, we use I perf [18] to measure the

two parameters of virtual NIC, i.e., virtual capacity and UDP packet delay, which correspond to the

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM 22

net-based behaviors. The measurements are conducted under different benchmark configurations.

We cluster the performance results into different groups based on the running OS.

Figure 2.5 shows that Batmem works more effectively in Linux than in Windows. The results

show that Batmem increases the virtual capacity of Windows by only 0.05%. However, these virtual

capacity values are varied in Linux. In the LK 2.6.22, the virtual capacity is significantly improved

by 490%, but only by 16.5% in the LK 2.6.21. These improvements are due to MMIO partitions,

which belong to MMIO requests of the virtual NIC and are completely grouped by Batmem. Such

grouping increases the data written into the main memory, and thus increases the virtual capacity.

Note that without Batmem, the virtual capacity of the vanilla LK 2.6.22 is even less than that of

the LK 2.6.21. The reason is that the vanilla LK 2.6.22 system applies some modifications on

the TCP congestion control of the LK 2.6.21. On one hand, the beneficial modifications consist

of merging sampling RTT, recomputing RTT updates, and resizing option fields with flag bits. In

particular, the TCP socket buffer is required to consider invalid zero timestamps in communication

with the RTT sampler upon the ACKed TCP retransmission request, and hence slightly affects

its data transfer rate [14]. On the other hand, these modifications increase the number of MMIO

requests and reduce the amount of data written into the main memory for each request. The reduced

amount of written data lowers the virtual capacity. Therefore, we believe that these modifications

of the TCP congestion control significantly improve the virtual capacity in the LK 2.6.22 when

Batmem is active.

Figure 2.6 shows the effectiveness of Batmem in reducing UDP packet delays. The UDP pack­

ets are transmitted between the guest OS and the host through the virtual NIC. We conduct the

CHAPTER2. BATMEM:AMEMORYOPTIMIZATION~CHAN~M

7.00 -r---------------:-L-:-::K~2:-::.6:-::.2:-::2:----.

6.00 0 Without Batmem

• With Batmem

(FedoraS)

5 .

5.00 +--------------------1

u;
E4.00+---~~~--------------------~-4 - LK 2.6.21

- {lJilullW 7.Ul)~ -
i;' .! 3.00

2.00 +-------r+r---1

0.00

. '

10 50 100 10 50 100 10 50 100
Transferred data (MB)

Figure 2.6: UDP packet delay (smaller is better)

I Mem cache ON I Mem cache OFF I
WinXP 37.07 ±7.7 33.41 ±3.5

WinXP+Batmem 45.17 ±6.15 44.81 ±8.65

Table 2.1: VGA bandwidth (frames/s, larger is better)

23

experiments with different amounts of transferred data. Our experimental results demonstrate that

Batmem helps Windows reduce the UDP packet delay up to 83%. In Linux systems, we observe

that Batmem also reduces the UDP packet delay in the LK 2.6.21 by 45%, but by just 13% in

the LK 2.6.22. As expected, in all the systems, Batmem works less effectively with the increase

of transferred data because the NIC device driver progressively issues MMIO requests under such

an increase. More specifically, the more MMIO requests are issued, the more partitions are re-

allocated. Consequently, Batmem induces more overhead to group the partitions.

We use 3DBench [23] to measure the VGA memory bandwidth in Windows, which corresponds

CHAPTER2. BATMEM:AMEMORYOPTIM~ATIONMffiCHAN~M 24

Write Read

Sequential Random Sequential Random

WinXP 156 ±5.2 126 ±0.5 122 ± 3.2 170 ± 0.6

WinXP+Batmem 480 ±6.1 351 ±0.4 391 ± 4.6 242 ± 0.7

Table 2.2: UHCI bandwidth under Windows (KB/s, NTFS, larger is better)

Sequential per character Random Sequential create Random create

Output Input Seeks Create Read Create Read

LK2.6.21 3155± 4.3 2007± 2.8 132.5± 1.1 232± 2.4 477± 6.3 348± 1.0 475± 2.0

LK2.6.2l+Batmem 3560± 5.6 2309± 3.1 150.9± 2.0 252± 2.0 508± 7.2 374± 7.2 505± 4.1

LK2.6.22 4010± 4.1 3832± 7.2 177.1± 6.5 438±1.4 1055±5.4 717± 7.2 1041± 6.6

LK2.6.22+Batmem 9309± 4.5 7924± 6.5 469.2± 4.2 885± 2.0 2143± 9.2 1453± 7 2141±5.1

Table 2.3: UHCI bandwidth under Linux (K.B/s, file size= 128MB, chunk size=4K.B, ext3, larger is better)

to the screen-based behavior. The benchmark intensively executes 3D routines that require aggres­

sive 110 data exchanges on the VGA card. These data exchanges depend on three major factors,

including processor speed, VGA bus size, and memory cache. Since the processor speed and the

VGA bus size cannot be changed, to observe the variations of the VGA bandwidth, we conduct

experiments in two cases, with and without memory cache. As shown in Table 2.1, for 60-100 sec­

onds, Batmem helps the Windows system increase the actual VGA bandwidth, represented by FPS,

in both cases by 20-33%.

We use the SiSoftware [22] in Windows and Bonnie++ [6] in Linux to measure the UHCI 110

performance, which corresponds to the file system based behavior. To avoid a sensitivity of the

file system workload that may affect the overall performance of 110, we consistently maintain a

CHAPTER2. BATMEM:AMEMORYOPTIM~ATION~CHAN~M 25

data file for such measurements. Table 2.2 shows the improvement of read/write in Windows when

Batmem is active. In particular, Batmem increases the 110 speed up to 220% in the sequential mode

and 170% in the random mode. In Linux, to measure the operations of read, seek, and delete, we

create a 128 MB file, clear the cache, and assign a 4 KB chunk for each operation. For writes,

we create an empty file and keep writing 4 KB data chunks to the file until the file size reaches

128MB. As shown in Table 2.3, Batmem takes advantage of the asynchronous write in the Ext3

file system when the number of MMIO sessions is increased, and thus increases the amount of

exchanged data for a period of time. Moreover, Batmem increases the 110 speeds from 7% to 15%

in the LK 2.6.21 and from 95% to 164% in the LK 2.6.22, respectively. The accelerations for the

LK 2.6.22 are significant when Batmem is active. This is because patches are applied on the LK

2.6.22 to optimize inode read/write functions of the Ext3 file system, thereby increasing the speed

of 110 requests. In fact, the improvement of the 110 request speed enhances the host/virtual 110

context switch. Consequently, Batmem can accelerate the MMIO writing and increase the UHCI

110 bandwidth.

We also conduct experiments to evaluate memory saving on the system. Our results show that

the compression component can save up to 5% of memory. Since the saving is not significant, we

plan to employ more effective compression algorithms for greater improvement in the future.

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM 26

2.4.2 Low-end Systems

2.4.2.1 Module examinations

We examine our implemented modules on VMBR, including Batmem, malicious services, and the

VMBR installation procedure, in terms of their size and complexity features. These modules must

limit their sizes and complexities to hide themselves on systems. Since our VMBR is built on KVM,

whose original size is given, our focus is on these new modules.

First, the Batmem module includes (1) vector structures, which form the dynamic circular buffer,

(2) shared libraries, which consist of memory interactions with devices, and (3) a compression

buffer, which supports memory compression. ven without applying source code optimization meth­

ods, as shown in Table 2.4, we observe that the module size of Batmem remains almost the same

after the compilation (12 KB of source code and 13 KB of binary code). The slight difference

between the two numbers is due to the use of the KVM shared memory library.

Second, of the malicious services, the key logger implementation is more complex than the data

transmission service. As a Linux kernel module, the key logger uses low level kernel 1/0 functions to

lock, read, and write the keyboard data. For data transmission, the inside-the-guest module benefits

from high level functions to maintain its communication, while the out-of-the-box module uses

primitive kernel read/write functions. Therefore, the binary size of the data transmission module

is significantly expanded compared to the keylogger module. This comparison clearly shows the

advantage of using low level library functions for malicious module implementations.

Third, we consider the VMBR installation as a procedure, instead of a part of the malicious

module. This procedure functions as a script, which includes essential initializations on KVM and

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM 27

Malicious Services Installation
Batmem

Key logger Data transmission procedure

Code 12,038 7,415 3,624 2,617

Module 13,332 9,194 8,936 -

Table 2.4: VMBR module size (Bytes)

devices, to instantly invoke KVM when the host is started. More specifically, since we only insert

and activate this procedure script at the end of the boot sequence, the fundamental structure of the

host boot sequence is not changed. In some cases, users may recognize a variation of the guest OS

screen resolution because the emulated VGA is not automatically detected. However, this gap can

be resolved if attackers retrieve accurate hardware VGA device information to properly configure

the guest OS resolution.

2.4.2.2 User Level Experimentation

We run the selected user-level applications on guest OSes under two different conditions: with and

without malicious services. The performance metric we used is application response time. As one

of the most popular Internet applications, web browsers are sensitive to response time. Our selected

applications include Internet Explorer in Windows and Firefox in Linux. We differentiate the re­

sponse times in two cases, with and without Batmem, on compromised systems running malicious

services. Note that we do not change the configuration of the web browsers during the experiments,

and all web browser caches are cleared before each test to avoid possible side effects.

In our experiments with malicious services, malware is executed either separately as a single

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM

0 Without Batmem • With Batmem
SO%~--~W"-In~X~P~~~~~~~~~~~~--~

0%

,.---_,A...__---....
(\

38.36'W.

32.05%

25. 4%

1 .37%

LK 2.6.21
(Ubuntu 7.10)

r

LK 2.6.22
(Fedora 8)

A'----..."1

34. II%

27.

KL DT Dual KL DT Dual KL DT Dual

Figure 2.7: Web browser response times with malicious services (smaller is better)

28

service or simultaneously as a dual one (Dual). For the keylogger (KL), we use AutoHotkey [3]

and Autokey [4] to generate keystroke patterns. For data transmission (DT), a connection is au-

tomatically established to exchange files between two malicious components. We conduct these

experiments in two scenarios, without and with Batmem. Each experimental result is compared

with the response time of a vanilla system (i.e., the base value n. The lowest T is 18.44 seconds

in LK 2.6.21 and the largest Tis 23.62 seconds in Windows.

• Without Batmem: Through web browsers, we access a local website, download, and store

a given data file into a USB drive. As shown in Figure 2.7, running malicious services sig-

nificantly increases the user-perceived response times. For example, with a dual service,

compared to the corresponding T, the response time is increased by 38.47% in Windows and

35.76% in Linux.

• With Batmem: We repeat the previous tests. As expected, Batmem effectively reduces

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM 29

VMBR overhead in both Windows and Linux. Thus, the user-perceived response times of

the web browsers are greatly decreased, which is evidently shown in Figure 2. 7. For Win­

dows systems, the reduction is around 60%, while for Linux systems, the reduction is up to

80%.

Overall, our results clearly demonstrate the capability of Batmem in concealing VMBR's activ­

ities from user awareness. The overhead reduction by Batmem in Windows is not as much as that

in Linux systems. We believe that this is due mainly to non-optimization of device context switches

and 110 system calls in Windows systems.

2.5 Discussion

The dynamic circular buffer and memory compression techniques of Batmem can be applied to

other hypervisors because they do not depend on a particular hypervisor architecture. Batmem only

attempts to improve the speed of MMIO write by monitoring 110 functions on selected devices.

More specifically, while the context switch and reserved memory areas are two primary components

of the hypervisor, Batmem only optimizes their memory 110 exchanges and does not modify their

fundamental operations. Therefore, the operations of these original components are not affected by

Batmem.

For memory compression, the actual benefit is determined by a tradeoff between its overhead

and compression ratio. While the chosen compression ratio threshold of 5% is not reasonably high,

we believe that it is appropriate because the total system overhead is only increased by 1-1.5%. As

expected, the compression behavior highly depends on the chosen algorithm. Although the applied

CHAPTER 2. BATMEM: A MEMORY OPTIMIZATION MECHANISM 30

RLE is less effective than WKdm and/or Lempel-Ziv in terms of compression ratio [87], we also

believe that the prototype of Batmem shows the potential of using such a simple technique to reduce

memory redundancy in a virtual support system.

2.6 Summary

We have presented the design and implementation of Batmem, a technique that significantly reduces

the overhead of the conventional memory exchange mechanism MMIO. To demonstrate its feasibil­

ity, we build Batmem in KVM and conduct experimentation in both high-end and low-end systems.

For the high-end systems, we evaluate the performance improvement of virtual devices. For the

low-end systems, Batmem functions as a VMBR component. Our experimental results on Windows

and Linux show significant performance improvements with the use of Batmem in device-level

benchmarks and user-level applications.

VM1
Guest File System

/d~sda
•"··· . ,, 1'- •

/imagesNM2disk
' •.

' p

Hardware

VM3

Guest File System

/deisda
·~ , - -·-''

/lmagesNM3dlsk • ~- ":\: ;':•" ~
'~ . ; .) ·- . .

Figure 3.1: Scenario of nesting of file systems.

Chapter 3

Performance Implications of Nested File

Systems

3.1 Introduction

Virtualization has significantly improved hardware utilization, thus, allowing IT services providers

to offer a wide range of application, platform and infrastructure solutions through low-cost, com-

moditized hardware (e.g., Cloud [I, 10, 30]). However, virtualization is a double-edged sword.

Along with many benefits it brings, virtualized systems are also more complex, and thus, more

31

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 32

difficult to understand, measure, and manage. This is often caused by layers of abstraction that

virtualization introduces. One particular type of abstraction, which we use often in our virtualized

environment but have not yet fully understood, is the nesting of file systems in the guest and host

systems.

In a typical virtualized environment, a host maps regular files as virtual block devices to VMs.

Completely unaware of this, a VM would format the block device with a file system that it thinks

is the most suitable for its particular workload. Now, we have two file systems - a host file system

and a guest file system - both of which are completely unaware of the existence of the other layer.

Figure 3.1 illustrates such a scenario. The fact that there is one file system below another compli­

cates an already delicate situation, where file systems make certain assumptions, based on which,

optimizations are made. When some of these assumptions are no longer true, these optimizations

will no longer improve performance, and sometimes, will even hurt performance. For example, in

the guest file system, optimizations such as placing frequently used files on outer disk cylinders for

higher 110 throughput (e.g., NTFS), de-fragmenting files (e.g., QCoW [20]), and ensuring meta-data

and data locality, can cause some unexpected effects when the real block allocation and placement

decisions are done at a lower level (i.e., in the host).

An alternative to using files as virtual block devices is to give VMs direct access to physical disks

or logical volumes. However, there are several benefits in mapping virtual block devices as files in

host systems. First, using files allows storage space overcommit when they are thinly provisioned.

Second, snapshotting a VM image using copy-on-write (e.g., using QCoW) is simpler at the file level

than at the block level. Third, managing and maintaining VM images and snapshots as files is also

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 33

easier and more intuitive as we can leverage many existing file-based storage management tools.

Moreover, the use of nested virtualization [17, 39], where VMs can act as hypervisors to create

their own VMs, has recently been demonstrated to be practical in multiple types of hypervisors.

As this technique encourages more layers of file systems stacking on top of one another, it would

be even more important to better understand the interactions across layers and their performance

implications.

In most cases, a file system is chosen over other file systems primarily based on the expected

workload. However, we believe, in a virtualized environment, the guest file system should be chosen

based on not only the workload but also the underlying host file system. To validate this, we conduct

an extensive set of experiments using various combinations of guest and host file systems including

Ext2, Ext3, Ext4, ReiserFS, XFS, and JFS. It is well understood that file systems have different

performance characteristics under different workloads. Therefore, instead of comparing different

file systems, we compare the same guest file system among different host file systems, and vice

versa. From our experiments, we observe significant 110 performance differences. An improper

combination of guest and host file systems can be disastrous to performance, but with an appropriate

combination, the overhead can be negligible.

The main contributions of this work are summarized as follows.

• A quantitative study of the interactions between guest and host file systems. We demonstrate

that the virtualization abstraction at the file system level can be more detrimental to the 1/0

performance than it is generally believed.

• A detailed block-level analysis of different combinations of guest/host file systems. We un-

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 34

cover the reasons behind UO performance variations in different file system combinations

and suggest various tuning techniques to enable more efficient interactions between guest and

host file systems to achieve better UO performance.

From our experiments, we have made the following interesting observations: (1) for write­

dominated workloads, joumaling in the host file system could cause significant performance degra­

dations, (2) for read-dominated workloads, nested file systems could even improve performance,

and (3) nested file systems are not suitable for workloads that are sensitive to UO latency. We

believe that more work is needed to study performance implications of file systems in virtualized

environments. Our work takes a first step in this direction, and we hope that these findings can help

file system designers to build more adaptive file systems for virtualized environments.

3.2 Background

Virtualizing UO, especially storage, has been proven to be much more difficult than virtualizing

CPU and memory. Achieving bare-metal performance from virtualized storage devices has been

the goal of many past works. One approach is to use para-virtualized UO device drivers [76],

in which, a guest OS is aware of running inside of a virtualized environment, and thus, uses a

special device driver that explicitly cooperates with the hypervisor to improve UO performance.

Examples include KVM's VirtiO driver [76], Xen's para-virtualized driver [33], and VMware's

guest tools [27]. Additionally, Jujjuri et al. [57] proposed to move the para-virtualization interface

up the stack to the file system level.

The use of para-virtualized UO device drivers is almost a de-facto standard to achieve any rea-

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 35

sonable 1/0 performance, however, Yassour et al. [88] explored an alternative solution that gives

guest direct access to physical devices to achieve near-native hardware performance. In this chap­

ter, we instead focus on the scenario where virtual disks are mapped to files rather than physical

disks or volumes. As we will show, when configured correctly, the additional layers of abstraction

introduce only limited overhead. On the other hand, having these abstractions can greatly ease the

management of VM images.

Similar to nesting of file systems, 1/0 schedulers are also often used in a nested fashion, which

can result in suboptimal 1/0 scheduling decisions. Boutcher and Chandra [41] explored different

combinations of 110 schedulers in guest and host systems. They demonstrated that the worst case

combination provides only 40% throughput of the best case. In our experiments, we use the best

combination of 110 schedulers found in their paper but try different file system combinations, with

the focus on performance variations caused only by file system artifacts. Whereas, for performance

purposes, there is no benefit to performing additional 110 scheduling in the host, it has a significant

impact on inter-application 110 isolation and fairness as shown in [58]. Many other works [43,

47, 68, 78] have also studied the impact of nested 110 schedulers on performance, fairness, and

isolation, and these are orthogonal to our work in the file system space.

When a virtual disk is mapped to an image file, the data layout of the image file can signifi-

cantly affect its performance. QCOW2 [20], VirtualBox VDI [24], and VMware VMDK [28] are

some popular image formats. However, as Tang [84] pointed out, these formats unnecessarily mix

the function of storage space allocation with the function of tracking dirty blocks. Tang presented an

FVD image format to address this issue and demonstrated significant performance improvements

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 36

for certain workloads. Various techniques [40, 55, 83] to dynamically change the data layout of

image files, depending on the usage patterns, have also been proposed. Suzuki et al. [83] demon­

strated that by co-locating data blocked used at boot time, a virtual machine can boot much faster.

Bhadkamkar et al. [40] and Huang et al. [55] exploited data replication techniques to decrease the

distance between temporally related data blocks to improve 110 performance. Sivathanu et al. [81]

studied the performance effect of the image file placed at different locations of a disk.

110 performance in storage virtualization can be impacted by many factors, such as device driver,

110 scheduler, and image format. To the best of our knowledge, this is the first work that studies the

impact of the choice of file systems in guest and host systems in a virtualization environment.

3.3 Macro-benchmark Results

To better understand the performance implications caused by guest I host file system interactions,

we take a systematic approach in our experimental evaluation. First, we exercise macro-benchmarks

to understand the potential performance impact of nested file systems on realistic workloads, from

which, we were able to observe significant performance impact. In Section 3.4, we use micro­

benchmarks coupled with low-level 110 tracing mechanisms to investigate the underlying cause.

3.3.1 Experimental Setup

As there is no single "most common" or "best" file system to use in the hypervisor or guest VMs,

we conduct our experiments using all possible combinations of popular file systems on Linux (i.e.,

Ext2, Ext3, Ext4, ReiserFS, XFS, and JFS) in both the hypervisor and guest VMs, as shown in

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 37

~uest

Figure 3.2: Setup for macro-level experimentation

Hardware Software

Pentium D 3.4GHz, 2GB RAM Ubuntu 10.04 (2.6.32-33)

Host 80GB WD 7200 RPM SATA (sda) qemu-kvm 0.12.3

lTB WD 7200 RPM SATA (sdb) libvirt 0.9.0

Guest Qemu 0.9, 512MB RAM Ubuntu 10.04 (2.6.32-33)

Table 3.1: Testbed Setup

Figure 3.2. A single x86 64-bit machine is used to run KVM [61] at the hypervisor level, and

QEMU [38] is used to run guest VMs1. To reflect typical enterprise setting, each guest VM is

allocated a single dedicated processor core. More hardware and software configuration settings are

listed in Table 3.1.

The entire host OS is installed on a single disk (sda) while another single disk (sdb) is used for

experiments. We create multiple equal-sized partitions from sdb, each corresponding to a different

host file system. Each partition is then formatted using the default parameters of the host file sys-

tern's mkf s* command and is mounted using the default parameters of mount. In the newly created

1 Similar performance variations are observed in the experiments with other hypervisors including Xen and VMWare,

which are shown in 3.6.

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 38

Host file system
'> Guest file system . ' '

Devices #Blocks Speed(MB/s) Type
Device #Blocks Type

x106

x106

sdb2 60.00 127.64 Ext2
'' I vdc2 9.27 Ext2

·sdb3 60.00· 127.71 Ext3
vdc3 9.26 Ext3

sdb4 60.00 126.16 Ext4
vdc4 9.27 Ext4

sdb5 60.00 125.86 ReiserFS
vdc5 9.28 Rei serFS

sdb6 60.00 123.47 XFS
vdc6 9.27 XFS

sdb7 60.00 122.23 JFS
vdc7 9.08 JFS

sdb8 60.00 121.35 Block Device

Table 3.2: Physical and logical disk partitions

host file system, we create a flat file and expose this flat file as the logical block device to the guest

VM, which in tum, further partitions the block device, having each corresponding to a different

guest file system. By default, virtio [76] is used as the block device driver for the guest VM and

we consider write-through as a caching mode for all backend storages. The end result is the guest

VM having access to all combinations of guest and host file systems. Table 3.2 shows an example

of our setup: a file created on /dev/sdb3, which is formatted as Ext3, is exposed as a logical block

device vdc to the guest VM, which further partitions vdc into vdc2, vdc3, vdc4, etc. for different

guest file systems. Note that all disk partitions of the hypervisor (sdb*) and the guest (vdc•) are

properly aligned using fdisk to avoid most of the block layer interference caused by misalignment

problems.

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 39

In addition to the six host file systems, we also create a raw disk partition that is directly exposed

to the guest VM and is labeled as Block Device (BD) in Table 3.2. This allows a guest file system to

sit directly on top of a physical disk partition without the extra host file system layer. This special

case is used as our baseline to demonstrate how large (or how small) of an overhead the host file

system layer induces. However, there are some side effects to this particular setup, and namely,

the file systems being created on outer disk cylinders will have higher 1/0 throughput than those

created on inner cylinders. Fortunately, as each disk partition created at the hypervisor level is

60GB, only a portion of the entire disk is utilized and thus limits this effect. Table 3.2 also shows

the results of running hdparm on each disk partition. The largest throughput difference between any

two partitions is only about 5%, which is fairly negligible.

The choice of 1/0 scheduler at host and guest levels can significantly impact performance [41,

56, 78, 79]. As file system is the primary focus of this work, we used CFQ scheduler in the host and

Deadline scheduler in the guest as these schedulers were shown to be the top performers in their

respective domains by Boutcher and Chandra [41].

3.3.2 Benchmarks

We use Filebench [8] to generate macro-benchmarks of different 1/0 transaction characteristics

controlled by predefined parameters, such as the number of files to be used, average file size, and

1/0 buffer size. Since Filebench supports a synchronization between threads to simulate concurrent

and sequential 1/0s, we use this tool to create four server workloads: a file server, a web server, a

mail server, and a database server. The specific parameters of each workload are listed in Table 3.3,

showing that the experimental working set size is configured to be much larger than the size of the

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 40

Services #Files #Threads File size 110 size

File server 50,000 50 128KB 16KB-1MB

Web server 50,000 100 16KB 512KB

Mail server 50,000 16 8-16KB 16KB

DB server 8 200 1GB 2KB

Table 3.3: Parameters for Filebench workloads

page cache in the VM. The detailed description of these workloads is as follows.

• File server: Emulates a NFS file service. File operations are a mixture of create, delete,

append, read, write, and attribute on files of various sizes.

• Web server: Emulates a web service. File operations are dominated by reads: open, read,

and close. Writing to the web log file is emulated by having one append operation per open.

• Mail server: Emulates an e-mail service. File operations are within a single directory con­

sisting of 110 sequences such as open/read/close, open/append/close, and delete.

• Database server: Emulates the 110 characteristic of Oracle 9i. File operations are mostly

read and write on small files. To simulate database logging, a stream of synchronous

writes is used.

3.3.3 Macro-benchmark Results

Our main objective is to understand how much of a performance impact nested file systems have

on different types of workloads, and whether or not the impact can be lessened or avoided. As

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS

I Guest file system E.xt2 • E.xt3 • Ext4 • ReiserFS • XFS IT: JFS = I
_a
~ 7

I 6
:=-s
&.4
'§,3 s 2 ...
.c 1
..... 0

-30
(I)

iii 25

~ 20 -a 1s
.c
~ 10

e s
~

0

BD Ext2 Ext3 Ext4 RelserFS XFS

File Server

BD Ext2 Ext3 Ext4 RelserFS XFS

Web Server

JFS

JFS

100

90 -
80 -;R.
~

70 G)
60 C)

50 .!
40 c
30 e
20 G)
10 a.
0

120

100~ -80 G)
C)

60 .! c
40 e
20 :..

0

Figure 3.3: 110 throughput for Filebench workloads (higher is better)

41

mentioned before, we use all combinations of six popular file systems in both the hypervisor and

guest VMs. For comparison purpose, we also include one additional combination, in which the

hypervisor exposes a physical partition to guest VMs as a virtual block device. This results in 42

(6 x 7) different combinations of storage I file system configurations.

The performance results are shown in Figures 3.3, 3.4, 3.7, and 3.8, in terms of 110 throughput

and 110 latency, respectively. Each sub-figure consists of a left and a right side. The left side

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 42

I Guest file system Ext2 • Exl3 • Ext4 • ReiserFS • XFS C: JFS = j

- 2.5 80
en -m 2
:E

70-
so! --1.5

~
a.
.c 1 CJ)
:J
0 0.5 ...
.c
1-

0

50 &
40S c
30 ~
20 ... G)

10 c:L

0
BD Ext2 Ext3 Ext4 Rei serFS XFS JFS

Mail Server

_4 140
.!!
! 3 -

120-
~ 0

100-
cu -5.2

.c
CJ)

g 1 ...
r:

0

80 CJ)
ca -60 c
cu

40 u ...
20 :.
0

BD Ext2 Ext3 Ext4 RelserFS XFS JFS

Database Server

Figure 3.4: I/0 throughput for Filebench workloads (higher is better)

shows the performance results when the guest file systems are provisioned directly on top of raw

disk partitions in the hypervisor. These are expressed in absolute numbers (i.e., MB per second for

throughput or millisecond for latency) and are used as our baseline. The right side shows the relative

performance (to the baseline numbers) of the guest tile systems when they are provisioned as files

in the host tile system. In these figures, each column group represents a different storage option in

the hypervisor, and each column within the group represents a different storage option in the guest

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 43

File server Web server Mail server Database

Guest File Systems Worst Best Worst Best Worst Best Worst Best

Ext2 79 91 82 100 56 72 84 106

Ext3 47 97 79 93 45 56 81 104

Ext4 67 96 83 91 36 51 41 104

ReiserFS 76 91 90 101 42 53 33 94

XFS 79 93 88 98 55 68 69 102

JFS 69 88 79 103 52 70 64 88

Table 3.4: Best and worst case 1/0 throughput (relative to baseline) of each guest file system across different
host file systems(%).

VM.

3.3.3.1 Throughput

The baseline numbers (leftmost column group) show the intrinsic characteristics of various file sys-

terns under different types of workloads. These characteristics indicate that some file systems are

more efficient on large files than small files, while some file systems are more efficient at reading

than writing. As an example, when ReiserFS runs on top of BD, its throughput under the web server

workload (27 .2 MB/s) is much higher than that under the mail server workload (1.4MB/s). These

properties of file systems are well understood, and how one would choose which file system to use

is a straight-forward function of the expected 110 workload. However, in a virtualized environ-

ment where nested file systems are often used, the decision becomes more difficult. Based on the

experimental results, we make the following observations:

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS

I Guest file system Eld2 • Ex13 • Ext4 • ReiserFS • XFS E: JFS = I
~ 50
~

~ 40 c as ·c
as 30
>
0 c 20
CD

·c:; 10

~
(.) 0

Flleserver Webserver Mallserver Database

44

Figure 3.5: Coefficient of variance of guest file systems' throughput under Filebench workloads across dif­
ferent host file systems.

-al
(!) -

12

8
CJRead
• Write

FileserverWebse rverMa ilse rver Data base

Figure 3.6: Total I/0 transaction size of Filebench workloads

• A guest file system's performance varies significantly under different host file systems.

Figure 3.4 shows an example of the database workload. When ReiserFS runs on top of Ext2,

its throughput is reduced by 67% compared to its baseline number. However, when it runs on

top of JFS, its 110 performance is not impacted at all. We use coefficient of variance to quan-

tify how differently a guest file system' performance is affected by different host file systems,

which is shown in Figure 3.5. For each workload, a variance number is calculated based

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS

I Guest file system Ext2 • Ext3 • Ex\4 • ReiserFS • XFS c JFS = I
900 250

_aoo
~ 700
en 600
..§. 500
~400
; 300
,j 200

100
0

250 -u 200

= E 150 ->-g 100
s
j 50

0

BD

BD

Ext2 Ext3 Ext4 Rei serFS

File Server

Ext2 Ext3 Ext4 Rei serFS

Web Server

XFS JFS

XFS JFS

-200 "#. -
150 & .e
100 ;

~
50 :.

0

350

300~
250-

CD
200 C)

ftl -150 c
CD

100 ~
G)

50 Q.

0

Figure 3.7: 1/0 latency of guest file systems under different workloads (lower is better)

45

on relative performance values of a guest file system when it runs on top of different host

file systems. Our results show that the throughput of ReiserFS experiences a large variation

(45%) under the database workload, while that of Ext4 varies insignificantly (4%) under the

web server workload. The large variance numbers indicate that having the right guest/host file

system combination is critical to performance, and having a wrong combination can result in

serious performance degradation. For instance, under the database workload, ReiserFS/Ext2

is a right combination, but ReiserFS/JFS is a wrong combination.

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS

j Guest file system Ext2 • Ext3 • Ext4 • ReiserFS • XFS C JFS -- I
250 300 -~ 200

0

E 150 ->o g 100
s
j 50

0

250 -() 200
~
E 150 ->o g 100
s
j 50

0

BD Ext2 Ext3 Ext4 RelserFS XFS JFS

Mail Server

BD Ext2 Ext3 Ext4 RelserFS XFS JFS

Database Server

2501 -200 CD
0)

150 J! c
100 ~
50 :.

0

9000
8000-
7000~
6000 CD
5000 g»
4000 c:
3000 5
2000 ~
10000..
0

Figure 3.8: 110 latency of guest file systems under different workloads (lower is better)

46

• A host file system impacts different guest file systems' performance differently. Similar

to the previous observation, a host file system can have a different impact on different guest

file systems' performance. Figure 3.3 shows an example of the file server workload. When

Ext2 runs on top of Ext3, its throughput is slightly degraded by about 10%. However, when

Ext3 runs on top of Ext3, the throughput is reduced by 40%. Based on results of coefficient

of variance of guest file systems' throughputs shown in Figure 3.5, we observe that this bi-

directional dependency between guest and host file systems again stresses the importance of

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 47

File server Web server Mail server Database

Guest File Systems Best Worst Best Worst Best Worst Best Worst

Ext2 137 180 89 Ill 141 182 150 162

Ext3 133 227 164 319 176 222 133 197

Ext4 121 167 185 251 188 267 149 241

ReiserFS Ill 152 164 185 185 228 137 263

XFS 123 151 108 167 147 191 126 153

JFS 123 154 107 133 136 186 198 232

Table 3.5: Best and worst case 110 latency {relative to baseline) of each guest file system across different
host file systems (%).

choosing the right guest/host file system combination.

• A right guest file system/host file system combination can produce minimal performance

degradation. Also based on results shown in Figure 3.5, one can also observe how badly

performance can be impacted when a wrong combination of guest/host file system is chosen.

However, it is possible to find a guest file system whose performance loss is the lowest. For

example, the results of the mail server workload show that once Ext2 runs on top of Ext2, its

throughput degradation is the lowest (by 46%).

• The performance of nested file systems is affected much more by write than read op-

erations. As one can see in Figure 3.4, all the combinations of nested file systems perform

poorly for the mail server workload, unlike the other three workloads. We study the detailed

disk traces from these workloads by examining request queuing time, request merging, re-

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS

I Guest file system Ext2 • Ext3 • Ext4 • ReiserfS • XFS c JFS = I
- 50 tft -B c ca

40

·a:
ca 30
>
0
- 20 c
Q)
'()

~
10

0
Flleserver Webserver Mallserver Database

Figure 3.9: Coefficient of variance of guest file system's latency across different host file systems.

48

quest size, etc., and find that the mail server workload is only significantly different from the

others in having a much higher proportion of writes than reads, as shown in Figure 3.6. We

will use micro-benchmarks in Section 3.4 to describe the reasons behind this behavior.

3.3.3.2 Latency

The latency results are illustrated in Figures 3.7 and 3.8. Similar to UO throughput, latency is also

deteriorated when guest file systems are provisioned on top of host file systems rather than raw

partitions. Whereas the impact to throughput can be minimized (for some workloads) by choosing

the right combinations of guest/host file system, latency is much more sensitive to nesting of file

systems. In comparison to the baseline, the latency of each guest file system varies in a certain range

when it runs on top of different host file systems. Even for the lowest cases, latency is increased by

5-15% across the board (e.g., Ext2 guest file system under the web server workload). Coefficient

of variance for latency, as shown in Figure 3.9, is similar to that of throughput shown in Figure 3.5.

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 49

However, for latency sensitive workloads, like the database workload, such a significant increase in

110 response time could be unacceptable.

3.4 Micro-benchmarks Results

We first study nested file systems using a micro-level benchmark FlO [9]. Based on the experimental

results, we further conduct an analysis at the block layer on the guest VM and the hypervisor,

respectively, using an 110 tracing mechanism [5].

3.4.1 Benchmark

We use FlO as a micro-level benchmark to examine disk 1/0 workloads. As a highly configurable

benchmark, FlO defines a test case based on different 110 transaction characteristics, such as total

110 size, block size, number of 110 parallelism, and 110 mode. Here our focus is on the performance

variation of primitive 110 operations, such as read and write. With the combination of these 110

operations and two 110 pattens, random and sequential, we design four test cases: random read,

random write, sequential read, and sequential write. The specific 1/0 characteristics of these test

cases are listed in Table 3.6.

3.4.2 Experimental Results

On the same testbed, the experiments are conducted with many small files, which create a 5GB

of total data footprint for each workload. Figures 3.10 and 3.11 show the performance in both

sequential and random IIOs. Based on the experimental results, we make two observations:

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS

I Guest file system Ext2 • Ext3 • RelserFS • XFS C:: JFS :: I

~
2

al 1.6
::E -'5 1.2
Q.
'§, 0.8
:I e o.4
.c
1- 0

-100
(I) -m 80

::E -- 60 :I
Q.
.c 40 C)
:I
0 20 ...
.c
1-

0

BD Ext2 Ext3 Ext4 RelserFS XFS JFS

Random

BD Ext2 Ext3 Ext4 RelserFS XFS JFS

Sequential

Figure 3.10: 110 throughput of guest file systems in reading files

160
140-
120~
100 &
80 .! c
60 ~
40 i
20 a.
0

160
140-
120~
100 &
80 .!

c
60 Cl)

(,)

40 ...
Cl)

20 a.
0

50

• The performance of those workloads that are dominated by read operations is largely

unaffected by nested file systems. The performance impact is weakly dependent on guest/host

file systems. More interestingly, for sequential reads, in a few scenarios, a nested file system

can even improve 110 performance (e.g., by 34% for Ext3/JFS).

• The performance of those workloads that are dominated by write operations is heavily

affected by nested file systems. The performance impact varies in both random and sequen-

tial writes, with higher variations in sequential writes. In particular, a host file system like

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS

I Guest file system Ext2 • Exl3 • RelserFS • XFS c:: JFS = I

BD Ext2 Ext3 Ext4 RelserFS XFS JFS

Random

-100
fl) -m 80

:::E -- 60 ::s a.
.c 40 en ::s
0 20 ..
.c
1-

0
BD Ext2 Ext3 Ext4 RelserFS XFS JFS

Sequential

Figure 3.11: 110 throughput of guest file systems in writing files

160
140-
120~
100 &
80 .! c
60 ~
40 G)

20 Q.

0

160
140-
120~
100 &
80 .! c
60 G)

u
40 ..

G)

20 Q.

0

51

XFS can degrade the performance by 40% for both random and sequential writes. As a re-

suit, it is important to understand the root cause of this performance impact, especially on the

sequential write dominated workload.

To interpret these observations, our analysis will focus on sequential workloads and the perfor-

mance implication across certain guest/host file system combinations. For this set of experiments

with micro-benchmark, due to space constraints, we only concentrate on deciphering the 1/0 be-

havior of these representative file system combinations. Although only a few combinations are

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 52

I Description Parameters

Total 1/0 size 5GB

1/0 parallelism 255

Block size SKB

1/0 pattern Random/Sequential

1/0 mode Native asynchronous 1/0

Table 3.6: FlO benchmark parameters

considered, principles used here are applicable to other combinations as well.

For sequential read workloads, we attempt to uncover the reasons behind the significant perfor­

mance improvement on the right guest/host file system combinations. We select the combinations of

Ext3/JFS and Ext3/BD for analysis. For sequential write workloads, we try to understand the root

cause of the significant performance variations in the scenarios of (1) different guest file systems

running on the same host file system and (2) the same guest file system operating on different host

file systems. We analyze three guest file system/host file system combinations: Ext3/ReiserFS,

JFS/ReiserFS, and JFS/XFS. Here Ext3/ReiserFS and JFS/ReiserFS are used to examine how dif­

ferent guest file systems can affect performance differently on the same host file system, while

JFS/ReiserFS and JFS/XFS are used to examine how different host file systems can affect perfor­

mance differently on the same guest file system.

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS

3.4.3 1/0 Analysis

53

To understand the underlying cause of the performance impact due to nesting of file systems, we

use blktrace to record 110 activities at both the guest and hypervisor levels. The resulting trace files

are stored on another device, thus increasing only 3-4% CPU utilization. Therefore, the interference

with our benchmarks from such an 110 recoding is negligible. Blktrace keeps detailed account of

each 110 request from start to finish as it goes through various 110 states (e.g., put the request onto

an 110 queue, merge with an existing request, and wait on the 110 queue). The 110 states that are of

interest to us in this study are described as follows.

• Q: a new 110 request is queued by an application.

• 1: the 110 request is inserted into an 110 scheduler queue.

• 0: the 110 request is being served by the device.

• C: the 110 request has completed by the device.

Blktrace records the timestamp when an UO request enters a new state, so it is trivial to calculate

the amount of time the request spends in each state (i.e., Q21, 120, and 02C). Here Q21 is the time

it takes to insert/merge a request onto a request queue. 120 is the time it takes to idle on the request

queue waiting for merging opportunities. 02C is the time it takes for the device to serve the request.

The sum of Q21, 120, and 02C is the total processing time of an 110 request, which we denote as

Q2C.

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS

400

-g 300
0
~ 200
0 ::a
~ 100
tl)

c
0

Ext3/JFS Ext3/BD

Guest level

•Queued
D Served

IIJ
Ext3/JFS Ext3/BD

Hypervisor level

Figure 3.12: Disk 1/0s under sequential read workload

3.4.3.1 Sequential Read Workload

54

As mentioned in the experimental setup, the logical block device of the guest VM can be represented

as either a flat file or a physical raw disk partition at the hypervisor level. However, the different

representation of the guest VM's block device directly affects the number of I/0 requests served

at the hypervisor level. For the selected combinations of Ext3/JFS and Ext3/BD, as Figure 3.12

shows, the number of I/0 requests served at the hypervisor's block layer is significantly lower than

that at the guest's block layer. More specifically, if JFS is used as a host file system, it greatly

reduces the number of queued I/0 requests sent from the guest level, resulting in much fewer I/0

requests served at the hypervisor level than those at the guest level. If a raw disk partition is used

instead, although there is no reduction on the number of queued I/0 requests, the hypervisor level's

block layer also lowers the number of served I/0 requests by merging queued I/0 requests.

There are two root causes for these I/0 behaviors: (I) the file prefetching technique at the hy-

pervisor level, known as readahead, and (2) the merging activities at the hypervisor level introduced

by the I/0 scheduler. The detailed descriptions of these root causes are given below.

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 55

First, there are frequent accesses to both files' content and metadata in a sequential read dom­

inated workload. To expedite this process, readahead 110 requests are issued at the kernel level of

both the guest and the hypervisor. Basically, readahead 110 requests populate the page cache with

data already read from the block device, so that subsequent reads from the accessed files do not

block on other 110 requests. As a result, it decreases the number of accesses to the block device.

In particular, at the hypervisor level, a host file system issues readahead requests and attempts to

minimize the frequent accesses on the flat file by caching the subsequently accessed contents and

metadata in the physical memory. Therefore, the IIOs served at the hypervisor level are much fewer

than those at the guest level.

However, when accessing a raw disk partition, there is no readahead. Thus, for sequential

workloads, a host file system outperforms a raw disk partition due to more effective caching. This

discrepancy of data caching at the hypervisor level is clearly shown in Figure 3.13.

Second, to optimize 1/0 requests being served on the block device, the hypervisor's block layer

attempts to reduce the number of accesses into the block device by sorting and merging queued 110

requests. However, when many 110 requests are sorted and merged, they need to stay longer in the

queue than normal. For JFS (host file system), as shown in Figure 3.12, due to the effective caching,

much fewer 1/0 requests are sent to the disk, and thus much fewer sorting/merging activities occur

at the 1/0 queue. However, when a raw partition is used, much more 110 requests need to be

sorted/merged. The sorting/merging activities cause a higher idle time (120) for 110 requests being

served on the block device than those on the JFS (host file system). This behavior is depicted in

Figure 3.14 (hypervisor level).

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 56

80

- • Ext3/JFS
?fl. 60 D Ext3/BD -0 ·-...
"' 40 '-
~
.s::.
G)

20 .s::.
(,)

"' 0
0

Guest Hypervisor

Figure 3.13: Cache hit ratio under sequential read workload.

Remark: When a flat file is used as a guest VM's logical block device, sequential read dom-

inated workloads can take advantage of the readahead at the hypervisor, achieving effective data

caching. In contrast, when a disk partition is used, there is no readahead and data caching. There-

fore, for all file systems, to gain high 1/0 performance, we recommend cloud administrators to select

a flat file over raw partitions for services dominated by sequential reads.

3.4.3.2 Sequential Write Workload

Our investigation uncovers the root causes of the nested file systems' performance dependency

under a sequential write workload in two cases: (A) two file system combinations hold the same

host file system, and (B) two combinations hold the same guest file system. The analysis detailed

below focuses on two principal factors: sensitivity of an 1/0 scheduler and effectiveness of block

allocation mechanisms.

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS

-u
4)
Cl)

E -Q)

.5
1-

g
~
tn ·-c

0.8

0.6 •Q21
tsii2D

0.4 OD2C

0.2

0.0
Ext3/JFS Ext3/BD
Guest level

Ext3/JFS Ext3/BD
Hypervisor level

Figure 3.14: 1/0 times under sequential read workload.

400

300
Journal log

• Metadata

200

100

Ext3 JFS

Figure 3.15: Extra 1/0 for journal log and metadata updates under sequential write workload.

57

A. Different guests (Ext3, JFS) on the same host (ReiserFS): As shown in Figure 3.11, we can

see that the performance of sequential 1/0s of Ext3/ReiserFS is much worse than that of Ext3/BD,

while the 1/0 performance of JFS/ReiserFS is much better than JFS/BD. At the guest level, we

analyze the performance dependency of Ext3 and JFS based on the comparison of their 1/0 charac-

teristics. The details of this comparison are shown in Figure 3 .16.

Figure 3.16 (A) shows that most 1/0s issued from Ext3 and sent to the block layer are well

merged at the guest level's 110 scheduler. The effective merging of 1/0s significantly reduces the

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 58

en
0 --
~
.!!!
"0

0
u. c
0

50 -C)
40 C)

C)
30 >< -Q 20 -~
10 tiJ c
0

1

0.8

Ext3

• Queued
DServed

JFS

(A) Disk 1/0s

I

Ext3-:
JFS ••••••• : -··· -·· .•... -. ··-··· ... ·-· .. ···"

0.6

0.4

0.2

0
0

160

-~ 120
If)

.§. 80
Q)

~ 40

0

256 512 768 1024

Request size (4K-block)

(B) 1/0 Size

Ext3

•Q21
E!312D
DD2C

JFS

(C) Average 110 Times

Figure 3.16: 110 characteristics at guest level of JFS/ReiserFS

number of UOs to be served on Ext3 (guest). Meanwhile, Figure 3.16 (B) shows that 99% 1/0s of

Ext3 are in small size (8K) and those of JFS is 68%. Apparently, merging multiple small size UOs

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 59

incurs additional overhead. This is because the small requests have to be waited longer in the queue

in order to be merged, thus, increasing their idle times. This behavior is illustrated in Figure 3.16

(C).

To understand the root cause of merging happened on Ext3 and JFS (guest), we perform a deep

analysis by monitoring every issued UO activities at the guest level. What we found is that the

block allocation mechanism causes this performance variation. To minimize disk seeks, Ext3 issues

UOs to allocate blocks of data on disk close to each other. The data includes regular data file, its

metadata, and journal logs of metadata. This allocation scheme makes most UOs be back merged.

A back merge behavior denotes that a new request sequentially falls behind an exiting request on

an order of the start sector, as they are logically adjacent. Note that two UOs are logically adjacent

when the end sector of one UO is logically located next to the begin sector of the other UO. As we

can see, clustering adjacent UOs facilitates the data access. However, it requires the issued UOs to

be waited longer in the queue for being processed.

JFS is more efficient than Ext3 in joumaling. For regular data file written into disk, both Ext3

and JFS effectively coalescence multiple write operations to reduce the number of UO committed

into disk. However, for metadata and journal logs, instead of independently committing every single

concurrent log entry as Ext3, JFS requires multiple concurrent log entries to be coalesced as one

commit. For this reason, as shown in Figure 3.15, JFS has less UOs spent for joumaling, resulting

in less performance degradation.

Remarks: The efficiency provided by the UO scheduler's optimization is no longer valid for all

nested file systems. Since file systems allocate blocks on disk differently, nested file systems have

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS

0
g
.lll::
.!!
"'C

0
LL
c
0

16

-812
Q

80

u 60
Q)
en
E 40 -Q)

.5 20
t-

0

1

0.8

0.6

0.4

•Queued
o Served

Reise rFS XFS

•Q21
Cli2D

(A) Disk 1/0s

ReiserFS XFS

(B) Average 1/0 Times

0.2 RelserFS -
XFS -

0 ~--~----_.----~----~--~
0 0.2 0.4 0.6 0.8 1

Normalized seek distance

(C) Disk Seeks

Figure 3.17: 110 characteristics at hypervisor level of ReiserFS/XFS.

60

different impacts on performance when one particular UO scheduler is used. Therefore, a nested file

system should be chosen based on the effectiveness of underlying UO scheduler's operations on its

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 61

block allocation scheme.

B. Same guest (JFS) on different hosts (ReiserFS, XFS): Based on results of sequential writes

shown in Figure 3.11, JFS (guest) performs better on ReiserFS than on XFS. We analyze 110 ac­

tivities of these host file systems to uncover differences of their block allocation mechanisms. The

detailed analysis is given below.

The analysis of 110 activities reveals that the 110 scheduler processes Rei serFS' IIOs similarly

to those of XFS. As shown in Figure 3.17 (A), the number of host file systems' IIOs to be queued

and served are fairly similar in ReiserFS and XFS. However, Figure 3.17 (B) denotes that XFS' IIOs

are executed slower than those of ReiserFS. A further analysis is needed to explain this behavior.

In general, file systems allocate blocks on disk differently, thus, resulting in a different execution

time for IIOs. For this reason, we perform an analysis on the disk seeks. Based on the results shown

in Figure 3.17 (C), we find that long distance disk seeks on XFS cause high overhead and reduce

its 110 performance. Note that in Figure 3.17 (C), the x-axis is represented as a normalized seek

distance and 1 denotes the longest seek distance of the disk head, from one end to the other end of

the partition.

With respect to the case of one host file system allocates disk blocks more effectively than

another under the same workload, we analyze the mechanisms to allocate disk blocks of ReiserFS

and XFS and find that XFS induces an overhead because of a multiple journal logging. The detailed

explanations are as follows:

A multiple logging mechanism of metadata also incurs an overhead on XFS. Basically, XFS is

able to record multiple separate changes occurred on the metadata of a single file and store them

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 62

-m 160 ::E -cu
120

cu
"'C
cu 80 C1)

E
"'C 40 c
cu
C)

0 0
..J ReiserFS XFS

Figure 3.18: Extra data written into disk under the same workload from JFS (guest).

into journal logs. This technique effectively avoids such changes to be flushed into disk before

another new change will be logged. However, every change of metadata can be range from 256

Bytes to 2 KB in size, while the default size of the log buffer is only 32 KB. Under an intensive

write dominated workload, this small log buffer causes multiple changes of the file metadata to be

frequently logged. As shown in Figure 3.18, this repeatedly logging produces extra data written into

disk, thus, resulting in a performance loss.

Remarks: (l) An effective block allocation of one particular file system no longer guarantees a

high performance when it runs on top of another file system. (2) Under an intensive write dominated

workload, an update of journal logs on disk should be carefully considered to avoid performance

degradation. Especially for XFS, the majority of its performance loss is attributed to not only a

placement of journal logs, but also a technique to handle updates of these logs.

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS

Ext2 - Ext3 - Ext4 - Aelserf'S - XFS l:i::=:J JFS c:::::J I

Ext2 Ext3 Ext4 RelserFS XFS JFS

Qcow2 Format

Ext2 Ext3 Ext4 RelserFS XFS JFS

Raw Non-Preallocated Format

180
160-
140 tf!--120 G,)

100 ~
80 c
60 ~
40 ;
20 D.

0

180
160-
140 tf!--120 G,)

100 ~
80 c
60 ~
40 ;
20 D.

0

Figure 3.19: Latency of guest file systems under different formats of disk images.

3.4.4 Disk Image Formats

63

The logical block devices of a guest VM can be represented in other formats under the flat files, such

as Qcow2, Raw non-preallocated or raw preallocated. As a native disk image file format, a Qcow2

file grows as needed. The more features provided by the Qcow2 over the Raw include base images,

snapshots, compression, and encryption. In contrast, a Raw disk image needs to be allocated in the

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS

Ext2

Ext2

Ext2 - Ext3 - Ext4 - ReiserFS - XFS t:::::::J JFS c:::J I

Ext3 Ext4 RelserFS XFS JFS

Qcow2 Format

Ext3 Ext4 RelserFS XFS JFS

Raw Non-Preallocated Format

350

300;?
0

250-
Q)

200 ~ ...
150 ~
100 E

Q)

50 a.
0

350

300;?
0

250-
Q)

200 ~ ...
150 ~

100 E
Q)

50 a.
0

Figure 3.20: Latency of guest file systems under different formats of disk images.

64

full size beforehand. If a Raw sparse disk image is based on a regular sparse file, a Raw one is based

on a non-sparse file whose empty data blocks are filled up by null, making its actual size on the

disk generally smaller than its logical size. Since this Raw format is an exact bit-for-bit copy of a

block device, its structure contains files and folders of stored data, and other components of a block

device, such as a boot sector and file allocation tables.

To examine 110 behaviors when different disk image formats are used, we conduct a set of

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 65

experiments where the disk image is formatted as Qcow2, Raw sparse, and Raw respectively. Based

on FlO benchmark parameters used for previous experiments, we create a workload. This workload

simultaneously performs sequential reads/writes and creates a 5GB of data footprint. In total we test

36 different combinations of guest file system/host file system. Based on the experimental results

shown in Figure 3.19 and Figure 3.20, we make two important observations:

A. Performance discrepancy between Qcow2 and Raw disk images: With the copy-on-write

strategy on a fixed size block device, a Qcow2 disk image only reflects changes made on the under­

lying disk. Thus, it enables to efficiently maintain a small size of disk image. However, managing

a small size of disk image also induces overhead, which produces negative impacts on the 1/0 per­

formance. Unlike Qcow2, a Raw sparse disk image does not need to minimize its actual size on

the block device. This is because blocks marked as null on the file image are simply filled up by

data. Thus, it increases the actual size of the disk image on the block device. As a result, using Raw

sparse image can achieve higher 110 performance for sequential workloads in nested file systems

than using Qcow2.

B. Trade-otT between performance and other storage features: Qcow2 disk images offer more

features than Raw and Raw sparse disk images. However, based on the experimental results with

different guest/host file system combinations, administrators of cloud storage systems should make

a trade-off between performance and management when choosing disk format. For example, in a

virtualization system that requires high 1/0 performance, the administrator should select Raw sparse

rather than Qcow2 to format disk images. However, if the system requires a guarantee on reliability

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 66

160
Journal log - • Metadata al

:E 120 -"' ..,
80 "' "'C

e
40 ..,

>< w
0

Ext2 Ext3ReiserFS XFS JFS

Figure 3.21: (hypervisor level) Extra data written into disk under a write-dominated workload from guest
VM.

or security, instead of performance, for its services, the disk image should be formatted as Qcow2.

3.5 Discussion

Despite various practical benefits in using nested file systems in a virtualized environment, our

experiments have shown the associated performance overhead to be significant if not configured

properly. Here we offer five advice on choosing the right guest/host file system configurations to

minimize performance degradation, or in some cases, even improve performance.

Advice 1 For workloads that are read-dominated (both sequential and random), using nested file

systems has minimal impact on l/0 throughput, independent of guest and host file systems. For

workloads that have a significant amount of sequential reads, nested file systems can even improve

throughput due to the readahead mechanism at the host level.

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 67

Advice 2 On the other hand, for workloads that are write-dominated, one should avoid using

nested file systems in general due to (1) one more layer to pass through and (2) additional metadata

update operations. If one must use nested file systems, joumaled file systems in the host should be

avoided. Joumaling of both metadata and data can cause significant performance degradation, and

therefore, is not practical to use for most workloads, and if only metadata is joumaled, a crash can

corrupt a VM image file easily, thus, giving no benefit to metadata-only joumaling mode in the host.

As shown in Figure 3.21, the additional metadata writes to the journal log can result in significantly

more 110 traffic. Performance is even more impacted if the location of the log is placed far away

from either the metadata or the data locations.

Advice 3 For workloads that are sensitive to 110 latency, one should also avoid using nested file

systems. As shown in Figures 3.7 and 3.8, even in the best case scenarios, nested file systems could

increase 110 latency by 10-30% due to having an additional layer of file system to traverse and one

more 110 queue to wait for.

Advice 4 In a nested file system, data and metadata placement decisions are made twice, first in

the guest file system and then in the host file system. Guest file system uses various temporal and

spatial heuristics to place related metadata and data blocks close to each other. However, when

these placement decisions reach the host file system, it can no longer differentiate between data and

metadata and treats everything as data. As a result, the secondary data placement decisions made

by a host file system are both unnecessary and less efficient than those made by a guest file system.

Ideally, the host file system should simply act as a pass-through layer such as VirtFS [57].

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 68

Advice 5 In our experiments, we used the default set of formatting and mounting parameters in

all the file systems. However, just like in a non-virtualized environment, these parameters can be

tuned to improve performance. There are more benefits in tuning the host file system's parameters

than guest's as it is ultimately the layer that communicates with the storage device.

One should tune its parameters in such a way that the host file system most resembles a "dumb"

disk. For example, when a disk is instructed to read a small disk block, it will actually read the

entire track or cylinder and keep them in its internal cache to minimize mechanical movement for

future UO requests. A host file system can emulate this behavior by using larger block sizes.

Metadata operations at host file system is another source of overhead. When a VM image file

is accessed or modified, its metadata often has to be modified, thus, causing additional UO load.

Parameters such as noatime and nodiratime can be used to avoid updating the last access time

without losing any useful information. However, when the image file is modified, there is no option

to avoid updating the metadata. As the image file will stay constant in size and ownership, the only

field in the metadata that needs to be updated is the last modified time, which for an image file is just

pure overhead. Perhaps this can be implemented as a file system mount option. Note thatjoumaling,

as mentioned previously, in the metadata-only mode has very little usage in the host level.

Lastly, using more advanced file system features to configure block groups and B+ trees to

perform intelligent data allocation and balancing tasks will most likely be counter-productive. This

is because these features will cause guest file system's view of disk layout to deviate further from

the reality.

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS

I Guest file system Ext2 • Ext3 • Ext4 • ReiserFS • XFS c:: JFS -I
-4 140
~

~ 3 --5.2
.c
C)
:s e 1

~
0

BD

BD

Ext2 Ext3 Ext4 Rei serFS

XEN bypervisor

Ext2 Ext3 Ext4 RelserFS

VMware bypervisor

120-
~ 0

1oo-
CD

80 C)
C'G -60 c
CD

40 u ...
CD

20 0..

0
XFS JFS

140

120-
fl.

1oo-
CD

80 C)
C'G -60 c
CD

40 u ...
CD

20 0..

0
XFS JFS

69

Figure 3.22: Other hypervisors show variation of relative 110 throughput of guest file systems under
database workload (higher is better)

3.6 Summary

Our main objective is to better understand performance implications when file systems are nested

in a virtualized environment. The major finding is that the choice of nested file systems on both

hypervisor and guest levels has a significant performance impact on UO performance. Traditionally,

a guest file system is chosen based on the anticipated workload, regardless of the host file system.

By examining a large set of different combinations of host and guest file systems under various

CHAPTER 3. PERFORMANCE IMPLICATIONS OF NESTED FILE SYSTEMS 70

workloads, we have demonstrated the significant dependency of the two layers on performance,

and hence, system administrators must be careful in choosing both file systems in order to reap the

greatest benefit from virtualization. In particular, if workloads are sensitive to 110 latency, nested

file systems should be avoided or host file systems should simply perform as a pass-through layer

in certain cases.

We also have conducted experiments with the database workload to verify if the 110 performance

of nested file systems is hypervisor-dependent. The chosen hypervisors are architecturally akin to

KVM, such as VMware Player 3.1.4 with guest tools [27], and Xen 4.0 with Xen para-virtualized

device drivers [32]. Figure 3.22 shows that the 110 performance variations of guest file systems on

Xen and VMware are fairly similar to those on KVM.

Chapter 4

Shadow Patching: Minimizing

Maintenance Window

4.1 Introduction

Cloud service providers allow customers to instantiate new virtual machines and manage their life­

cycle on-demand to best suit business needs and budget constraints. It is always a challenge to strike

the right balance between ensuring VMs in a secure and compliant state and needing to schedule

downtimes to make such changes to running systems [44]. Depending on the nature of the change

and the complexity of the affected applications, downtime (maintenance window) can extend from

several hours to days. During maintenance windows, services and applications are first shutdown,

and then changes are applied, for which, one or more system reboots might be required. Once

changes are committed, various tests are performed to verify the system is still in a working state,

i.e., functional, performance, scalability, etc., which can also be time consuming. During this time

window, the services provided by the affected systems are often completely disrupted (unless high­

availability mode is enabled, which might or might not be always possible depending on the type

71

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 72

of the service and the additional cost to enable high-availability.) To minimize such disruptions,

some may choose to continue to operate on outdated software [73], resulting in high security risks.

Ideally, this downtime should be minimized if not eliminated.

To eliminate change windows completely, various online patching techniques have been pro­

posed [35, 64, 71]. However, these techniques are applicable to only specific OSes and applications.

For example, Ksplice [35] allows Linux kernel patches to be applied to a running kernel without

rebooting by changing in-memory data structures on the fly. Conceptually, the same approach can

be applied to other operating systems, but unless their respective vendor or a third party is making

a similar tool available, this will remain as a Linux-only tool. For a large enterprise or a Cloud

provider where many different OSes are supported, this is not a general approach one can use across

all the different systems.

We present a software patching framework, called Shadow Patching. Shadow Patching uses

parallel virtual machine instances similar to Devirtualizable Virtual Machines (DVM) [64]. Unlike

DVM which uses a highly customized VMM based on HP Alphaserver DS20, Shadow Patching

will work with any commodity VMMs, e.g., KVM, Vmware, Xen, etc., and does not require any

changes to VMM or guest VMs. The parallel VM instance is created for the duration when patches

are applied, and is deprovisioned when finished, thus, not consuming resources during steady-state

operations. The parallel VM instance is an exact replica of the VM to be patched in terms of OS,

middleware, applications, and all the configurations. Thus, when a patch is applied, it will occur the

same behavior on the parallel instance, or known as a cloned VM, as it would on the original VM.

When a patch is applied to the parallel VM, we monitor all file system operations that change con-

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 73

tents on persistent storage. Changes to persistent storage can happen due to patching itself, system

reboots, configuration file changes, and any other changes due to post-patching testing. These steps

are done in the parallel VM while the original VM continues to run, and all file system changes in

both VMs will be captured during this time. Once these steps are done, both VMs will need to be

quiescenced and shut down so that the deltas can be compared and merged. One would imagine

there should be no conflicts between the two deltas as the delta from the parallel VM is a result of

applying the patch and the delta from the original VM is a result of the running workload making

changes to the application data, thus, merging of the deltas should be straightforward. However,

in reality, there are many conflicts. We provide a default set of rules that would allow deltas to

be merged correctly in common cases. Essentially, Shadow Patching removes conventional patch

management operations from the critical patch (i.e., during maintenance window). This allows un­

expected problems to be resolved outside of the maintenance window and transforms a patching

operation to a set of simple file merging operations.

Based on the similar technique used for VM cloning, Shadow Patching also enables administra­

tors to leverage storage utilities to clone virtual disk images. Since a cloned disk image is hypervisor

independent, a cloned VM can be launched on top of a different physical system, thus, resulting in

no performance impact on the system that hosts the original VM. The main contributions of this

paper are summarized as follows:

• We develop a simple but effective software patching framework. We demonstrate that our

proposed mechanism always takes less time than traditional methods for software patching.

• In case of failure patches, our framework significantly lowers the maintenance window of

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 74

actual enterprise systems, since we can resolve the patching issues on the cloned system.

4.2 Related Work

The Shadow Patching framework is based on various approaches, which are related to online and

offline system software patching techniques. Online patching techniques try to eliminate the system

and/or services down time while guaranteeing system stability. However, it is challenging to build

a generic online patching framework for both kernel and application level updates or it may require

some significant modifications to system infrastructure in order to employ such techniques [52].

Arnold et al. propose a tool called Ksplice [35], which focuses on live Linux kernel update.

Ksplices runs on the object code layer, and it transforms patches into hot updates and do not require

system to be rebooted. However, Ksplice is only suitable for Linux kernel update, in which data

structures do not change frequently. When it comes to applications, it is common that data structures

are changed much more frequently, and in these cases, Ksplice requires software developers to

write some new code to cope with the patches. In contrast, Shadow Patching is able to handle both

application and kernel updates, and we do not need to write any additional code for each patch.

Another important form of online patching is dynamic software updating, which is the extreme

form of online patching. In short, it does not require the program in question to be stopped and then

restarted. This actually eliminates the downtime, however, existing techniques are designed for

some specific programming languages, such as the applications written inC or C++ [34, 53, 65], or

the operating systems written inC or C++ [37, 42, 66], or systems written in Java [82]. Subramanian

et al. [82] propose NOLVE, and their experiments demonstrate that NOLVE is able to update

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 75

Jetty webservers, JavaEmaiiServer, and CrossFI'P server. However, the commonality is, all these

software are written in Java. So, while these dynamic software updating techniques are efficient

in dealing with some specific programming languages, they cannot handle any other languages.

In addition, these techniques are either able to handle applications updating, or able to cope with

operating systems updating, but not both. By contrast, our framework does not depend on any

specific programming languages, and it can handle both application and operating system updates.

There are also several other online software patching solutions, which count on the approach of

migration. This migration approach provides an ability to preserve a running state of a system or

a service, thus flexibly transferring them between old and new versions. As an example, parallel

instance is a common technique that facilitates this migration. Besides the original instance, another

instance is created to host migrated running services, so that software patches are able to be deployed

on the original one. Basically, an instance can be a physical system [31], a VM [64, 71, 48], or a

process [62, 48]. A limitation of these approaches is that when a patch changes the underlying data

structure and/or interfaces, the changes will prevent the migration operations to properly function.

Our approach uses mature virtualization techniques, e.g., VM snapshot and clone, and is hypervisor­

agnostic, and thus can be adopted more widely. Additionally, the troublesome migration operation

in previous work is transformed in our work to a simple offline data merging task, again, enhancing

its practicality. This is done at the expense of requiring an explicit downtime. However, as most

patches would require the affected software to be refreshed for the change to take effect, service

interruption time is unavoidable in most cases anyway.

On the other hand, a patching system needs to be restarted [29] or stayed at dormant states [90] if

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 76

its software is offline patched. Even though offline patching techniques facilitate the software main­

tenance, these techniques impact on the software maintenance window, thus, reducing the availabil­

ity of system and hosted services. Our approach, even though does not eliminate the maintenance

window, will minimize its duration by hiding the time spent to apply patches, resolve any problems,

perform regression tests so it is not visible from the user's perspective.

With respect to the offline software patching, different solutions are proposed. VMWare's

vSphere Update Manage inserts patches into the software update process [29]. Microsoft's VMST

wakes a dormant VM up, and then applies software patches on this system [15]. Nuwa requires

rewriting installation scripts to apply software patches on a mounted disk image [90].

The solutions proposed in [29] and [15] do not guarantee the stability of a patched system. By

stability, we mean that any conflicts caused by newly patched software can only be triggered after

the system is rebooted. The Shadow Patching framework instead applies software patches on a

cloned VM rather than on an original system, thus reducing impacts on the original system.

Nuwa of Zhou et. al [90] leverages Mirage [72], a storage mechanism for cloud environments,

to apply software patches on dormant virtualized systems. The overlap between Nuwa and Shadow

Patching is the requirement to analyze a virtual machine at the file system level to properly apply

patches. Besides this similarity, the two frameworks are different in terms of goals and techniques

being used.

First, we focus on keeping the maintenance window short for online VMs, whereas Nuwa

focuses on keeping offline VMs up-to-date. Second, instead of using a cloned VM, Nuwa uses

chroot to patch software on a mounted disk image and rewrites update scripts to resolve conflicts

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 77

and dependencies incurred by software patching. Last but not least, Nuwa cannot apply all software

patches. This technique conceals a limitation, in which unsuccessful software update could hap­

pen. This is because some software patches can only be properly applied under a running system.

Using disk cloning, Shadow Patching is able to avoid this limitation. In addition, the disk cloning

technique eases maintenance jobs, such as rewriting system installation scripts, analyzing memory

changes caused by update commands, and resolving conflicts caused by a replacement of software

and dependencies. Finally, Shadow Patching allows the cloned VM to be restarted several rounds,

instead of waiting for a next reboot to verify if patches are successfully applied. Thus, the system's

stability and availability are guaranteed.

4.3 Technical Background

The focus of this research is to improve the effectiveness of software patching in commodity enter­

prise systems, especially in virtualized cloud environments. To better understand software patching

in such environments, we first present the technical background and related challenges. Then, we

briefly describe our chosen approach.

4.3.1 Software patching

Current software patching is centered on the replacement of software components at the level of

file systems. As an advantage, this method allows old software components to be replaced with

new ones. However, this method does not guarantee the stability of the recently patched system.

The reason is that the majority of software patches are system dependent. Due to differences across

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 78

systems, software conflicts could occur, leading to system crashes. It has been proved that ideal

software packages must be well tested before they are published. However, nearly 70% of software

patches are buggy in their first released, regardless of the available techniques used to either self­

fix or determine software faults [44, 73, 80]. For this reason, an enhanced software patching

mechanism must balance its simplicity and effectiveness, while addressing the problems of buggy

patches.

4.3.2 Virtual disk image and VM cloning

It has been well known that VM disk images facilitate the management and maintenance of VMs in

cloud environments [72]. The use of such thinly provisioned files allows storage space overcommit

or flexible snapshotting. The VM images based on the copy-on-write strategy not only optimize

the storage space, but also simplify the snapshotting at the file level, making it easier than that at

the block level. The particular disk image formats (e.g. QCoW or vmdk) support different types of

snapshots, allowing deltas to be stored internally in the VM image or externally as separated files.

Cloning a VM is an effective method to deploy multiple VMs in cloud environments. By

cloning, system settings of the VM, which include configured virtual devices, installed software,

and other VM contents, are copied. Intuitively, when a VM is cloned, the resulting cloned VM is in­

dependent of the original VM. The changes made to the cloned VM are not reflected on the original

VM, and vice versa. The cloned VM can either be a fresh boot, a replica of a template VM [I, 29], or

a VM of the fork primitive (a parent VM copy itselt) [63]. Cloning a running VM is more challeng­

ing than cloning a dormant VM, due to various system changes occurred, which must be handled,

including unflushed 1/0s, dirty memory, or CPU states. To manage all these changes, people have

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 79

(1) External Snapshotting (2) Patching and Restarting

(3) Merging Deltas (4) Activating the Original System

Figure 4.1: Scenario of Shadow Patching session

introduced sophisticated techniques that induce high overhead, thus, resulting in a negative impact

on the original system's performance, as well as hosted services' down time.

4.3.3 Disk cloning approach

Our disk cloning approach takes advantage of cloning VM and leverages the feature of disk image

snapshotting for software patching. As a straightforward approach, we concentrate on cloning disk

images by using snapshotting technique, instead of using sophisticated techniques to clone an entire

virtualized system. Compared to snapshotting of an entire system, snapshotting of a disk image only

requires to handle ongoing 1/0s, thus significantly reducing incurred overhead. In contrast, snap-

shotting of an entire system requires to manage 1/0s and states of running system and applications,

leading to much higher overhead.

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 80

In the snapshotting of disk image, as an available feature of CoW disk image formats, an external

snapshot allows deltas to be immediately written into the newly created disk image, and the original

disk image becomes a read-only base. Therefore, to clone a disk image of a running VM while

guaranteeing a consistency between the original and cloned disks, the read-only base is cloned as

soon as an external snapshot of the original disk image is taken. By consistency, we mean that data

content and data structure at the file system level and block level of two disk images are identical.

Once a clone of disk image is completed, a simulated VM is able to operate.

4.4 Shadow Patching Framework

4.4.1 Patching scenario

The Shadow Patching framework must be simple and effective, as well as generic. By generic, we

mean that Shadow Patching should be able to conduct software patching on any virtualized system.

Figure 4.I illustrates a session of Shadow Patching software patching. Instead of scheduling this

maintenance at a system's off-peak time, Shadow Patching allows the software maintenance of a

virtualized system to perform on demand. The details of the session is described as follows:

• External snapshotting. As a virtualized enterprise server, VM I includes a running OS that

hosts multiple enterprise application services. By default, VM I is based on a freshly installed

OS, which is stored at a preserved read-only base image. When VM I is running, its changes

are maintained and stored in Deltas-0. Deltas-0 functions as a disk layer created on top of

the base image. As soon as software of VM 1 need to update, an external snapshot of Deltas-

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 81

0 is taken, thus creating Deltas-! on top of Deltas 0. Therefore, Deltas-0 becomes another

read-only base, while the changes ofVM1 are written into Deltas-1.

• Patching and restarting. To clone VM1, Deltas-2 is created on top of Deltas-0. A cloned

VMI, called VM2, is created based on Deltas-2. Since VMl and VM2 share the same base

image Deltas-0, the changes of VM2 are independently stored on Deltas-2 without producing

any impact on Deltas-!. This independent storage allows VM2 to be properly activated. Once

VM2 is activated, it is able to install software upgrades to the OS, apply software patches, set

up a new version of the application, or reconfigure other software components. After software

patches are applied and configuration settings are adjusted, VM2 can be restarted and then we

can conduct the thorough tests on the patched software and new settings.

• Merging deltas. At the appointed time, as soon as both VMs are dormant, the changes of

Deltas-! and Deltas-2 are merged. Merging deltas denotes that the software components

generated on Deltas-2, due to the software patching on VM2, are copied back to Deltas-! of

VMl. It is known that when software is patched on VM2, VMI is still running. Therefore,

the conflicts induced by a modification on the same components at both systems could occur.

To resolve such conflicts, we consider a hybrid method, which is detailed in Section 4.4.2.2.

• Activating the original system. Once VMl starts, OS and applications are running with their

new patches and configuration settings. For VM2, because it is no longer used, Deltas-2 can

be discarded.

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 82

4.4.2 Software component replacement

Replacing software components or merging deltas, between Deltas- I and Deltas-2, must guarantee

consistency and effectiveness. By consistency, we mean that the changes at the level of file systems

of Deltas- I and Deltas-2 are well managed. By effectiveness, we mean that the induced overhead

must be minimized. Here we present how deltas are managed in Shadow Patching.

4.4.2.1 Monitoring deltas

In terms of storage, deltas can be managed at two levels: disk block and file system. At the disk

block level, the snapshots of a disk image handle the deltas as modified data blocks. These modified

data blocks are exposed as the disk blocks of the VM's block device. Intuitively, by monitoring the

changes taken place on every disk block, we are able to monitor deltas in a fine-grained manner.

However, this fine-grained monitoring incurs high overhead. At the file system level, deltas include

the modifications of data and metadata. In particular, I/0 operations on files and directories, such as

create, delete, move, or modify, and open, close, or access, cause data changes and

metadata changes, respectively. Deltas can be determined by simply scanning the entire file system.

However, a file system could consist of thousands of files and this scanning may be impractical and

induce a significant overhead.

To ease the monitoring of deltas in Shadow Patching, inotify is used at the file system level [11]

of VM 1 and VM2. This technique is chosen because of its efficiency and accuracy. As a Linux

kernel subsystem, inotify provides an interface between user and kernel levels to instantly capture

exact changes occurred on the system's device node. Thus, this interface can precisely indicate the

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 83

modification of data and metadata of any files or directories. Next, we specify how inotify is used

in Shadow Patching to monitor deltas.

First, inotify only focuses on the changes of data, instead of both data and metadata. To manage

the changes of all files and directories of the file system, inotify recursively monitors 110 events

of the system's root directory. Only four types of events are monitored, including IN....MODIFY,

IN....MOVE..FROM/TO, IN..DELETE, and IN_CREATE. Once an event is triggered, inotify captures this

timestamped event. The information of this event, including file or directory name, is stored in an

individual delta file.

Files and directories are frequently modified due to system 1/0s. To minimize overhead induced

by monitoring files and directories, Shadow Patching's inotify maintains a list of non-scanning

items. Specifically, those items include deltas and special system files, such as character/block de­

vices, pipes, and sockets. Basically, the list is initiated based on the categorized system directories

of the Linux system. When inotify monitors deltas, if any files or directories, which fall in the cat­

egory of special system files, are detected, their names will be appended into the list. For example,

the exclusive list consists of /dev directory because this directory includes all device files. How­

ever, since executable binary files are stored in /bin, the directory of /bin is not included in the

list. Due to the limited number of files and directories stored in the exclusive list, in comparison

with the brute force scanning of the entire system, the exclusive list helps to lower about 3% induced

overhead.

Second, inotify must monitor every 1/0 event occurred on VM2. However, on VM l, inotify

only needs to monitor 1/0 events after the snapshot Deltas- I is taken, thus minimizing the size of

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 84

Rules On Deltas-1 On Deltas-2 Time conditions Decisions

I Yes No SS ~T1 Delete on Deltas-1

2 No Yes T2 ~ SS Copy from Deltas-2 to Deltas- I

3 Yes Yes T1 ~ S S and SS ~ T2 Copy from Deltas-2 to Deltas-1

4 Yes Yes S S ~ T1 and S S ~ T2 Hybrid copy from Deltas-2 to Deltas-1

Table 4.1: Time base comparison between files/directories. SS: Snapshot time, T1 : Last modification time
of file on Deltas- I, T2 : Last modification time of file on Deltas-2

deltas. Note that the captured file system events are time stamped, to guarantee the consistency of

captured 110 events, the system timers of VM l, VM2, and the host must be synchronized.

4.4.2.2 Merging deltas

The underlying technique of merging deltas between Deltas- I and Deltas-2 is the proper replace-

ment of files and directories between the file systems of VM I and VM2. Based on the delta files

and exclusive list provided by inotify, Shadow Patching can determine the modified files and direc-

tories. In particular, the focus of this merging is to decide whether or not the files or directories in

Deltas-1 should be kept, deleted, or replaced. The rule is based on the modification time of the file

or directory and the snapshot time of VM I. Here, the modification time of a file or directory can be

retrieved from its inode. Based on these estimated times, Table 4.1 lists the rules made on those

files or directories. The details of these rules are described as follows:

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 85

• Rule 1: A file on VM 1 has not been accessed or modified since the snapshot time. If the

cloned version of this file on VM2 is deleted by a software update, the file must be deleted.

• Rule 2: A file on VM2 is freshly created by a software update. It must be copied back to

VMI.

• Rule 3: A file on VMI has not been accessed or modified since the snapshot time. However,

the cloned version of this file on VM2 is modified because of a software update. Thus, the

file must be replaced by its newer version, which is copied back from VM2.

• Rule 4: A file on VMl and its cloned version on VM2 are modified after the snapshot time.

These two files must be kept on VMI after the merging by performing a hybrid copy. Basi­

cally, a hybrid copy consists of three steps: (1) Renaming those two files based on their inode

information, so that their names are different. (2) Copying a newly renamed file from VM2

to VMI. And (3) creating a symbolic link on VMI based on the original name of the file.

To guarantee that the freshly copied file will be used once VMl starts, the symbolic link is

linked to the newly copied file rather than its original version.

4.4.3 Prototype of Shadow Patching

A working prototype of Shadow Patching is built on Linux systems, which supports software main­

tenance of Linux distributions.

Shadow Patching requires disk images that host VMs to be formatted as QCoW/QCoW2, in­

stead of raw. As a copy-on-write data structure, a QCoW disk can be externally snapshotted without

impacting on 110 performance of a running VM. This feature cannot be achieved on a raw disk. Note

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 86

that a QCoW disk image induces a larger overhead than a raw one. This is because a QCoW disk

must allocate new clusters of data blocks once the disk needs to grow [20]. For a small disk, con­

verting back and forth between QCoW and raw formats when systems are dormant may avoid such

an overhead. However, for a large disk (e.g., hundreds of GBs), the conversion will significantly

increase the system downtime.

To merge deltas, QCoW disk images are exposed as mount points at the file system level of

the host machine. Different storage utilities can be used to leverage this mounting feature, such

as kvm/qemu-nbd [61] for QCoW/QCoW2, Vmount [26] for vmdk, and losetup [21] for raw

formats. Shadow Patching benefits from kvm/qemu-nbd that includes two components: client and

server. As a kernel module, the client handles requests passed through the device node. These

requests are forwarded to the server that stays at the user level. Then, the server processes the

requests in order to access the data resided in QCoW disks.

While our prototype of Shadow Patching works to maintain software of Linux systems, the prin­

ciples and considerations are applicable to other systems, such as Microsoft Windows. A feasible

extension is discussed in Section 4.6.

4.5 Experimentation

4.5.1 Experimental setup

To evaluate Shadow Patching, we use 2 metrics: correctness and the size of the maintenance window

required. To verify correctness, we run application-specific benchmarks after patch deployment to

check if the patched software has the right version and its functions and performance are as expected.

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 87

I Hardware I Software

Host Pentium D 3.4GHz, lTB SATA, 2GB RAM Ubuntu 11.10, kemel3.0.0-12, libvirt0.9

Guest Qemu0.14.1, 1GB RAM Ubuntu (10.04, 11.04)

Table 4.2: Testbed setup

Additionally, as patching in Shadow Patching is transformed to file compare, replace, merge, and

delete operations, we scan file systems to verify all files and directories associated with a patch are

correctly placed. Maintenance window is another key metric. We compare Shadow Patching with

traditional patch management method for both success and failure scenarios.

The software and hardware configurations of our test machine are shown in Table 4.2. All ex­

periments are performed within the virtual machines on the same hypervisor. In the next section,

we first compare Shadow Patching with traditional method for applying individual software patches

to contrast the two methods in the common path where patches are successfully applied. In Sec­

tion 4.5.3, we apply various service packs containing hundreds of individual patches and compare

the two methods when failures occur. For all experiments, we maintain all software patches in a

local repository so as to avoid possible variations in results due to network fluctuations.

4.5.2 When Patch Succeeds

In traditional software patching practice, a maintenance window is scheduled for making changes to

running systems, e.g., patching. The action of applying a patch (usually would succeed) takes only

a few minutes. However, running a regression test and/or resolving any unexpected problems would

take much longer amount of time. Thus, maintenance windows are usually scheduled to range from

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 88

3000

... 2500

1!
! 2000

.!!.

I 1500
;;

r 1000

~ 500
IL

0

(A) - Traditional Upgrading

I
I ·

Merging

(B) - Shadow Patching Upgrading

Figure 4.2: Upgrading process of application service

•Traditional Upgrading

• Traditional Upgrading + Testing

• SP UDIJ .. IJIIOIJ

~~ :..1'1'
~,fi

,§> ..
Figure 4.3: Individual upgrading application services (lower is better)

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 89

Old Packages New Packages Overhead

Services Benchmarks

Versions Sizes #Files Versions Sizes #Files (%)

Bind9 9.4.2 744 36 9.7.0 1.024 51 1.23 DnsPerf

SubVersion 1.4.6 3.400 28 1.6.6 4.204 35 1.30 Collabnet

NFS 1.1.2 504 35 1.2.2 640 43 1.01 I Ozone

OpenVPN 2.1 1.060 86 2.1.3 1.208 93 1.34 NetPerf

PostgreSQL 8.3.16 13.884 95 8.4.9 14.804 92 1.40 PGbench

Samba 3.0.28 9.216 43 3.4.7 16.676 55 1.67 Dbench/Netbench

Squid 1.9 1.584 33 2.7 1.892 36 0.95 Web Polygraph

Apache2 2.2.8 4.356 492 2.2.14 8.864 564 1.86 Apache Bench

VsFrPd 2.0.6 396 41 2.2.3 460 44 1.23 Dkftpbench

Table 4.3: Upgraded application services and utilized benchmarks (Size in KB).

hours to days depending on the complexity of the patch. To allow sufficient amount of time to

perform problem diagnosis and resolution, service providers are usually conservative in scheduling

the maintenance windows. However, even if the entire window is not used, it would be difficult

for users to salvage any of the remaining time to reduce services downtime as the patch completion

time within the window is non-deterministic. This traditional process is illustrated in Figure 4.2(A),

and Shadow Patching's is shown in Figure 4.2(B).

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 90

In our experiments, we use Ubuntu's dpkg to perform upgrades, or patching. Nine applications,

listed in Table 4.3, are selected to be patched. As mentioned previously, one method to ensure

correctness post-patch is by running application-specific regression tests, for which, we ran those

commonly used benchmarks, which are also shown in the table. Besides a detailed specification

of each application software, the column Overhead denotes results of overhead induced by inotify.

Since inotify works as a part of the Linux's virtual file system, it only induces 1-2% overhead on

system 1/0s, which is fairly negligible.

First, we compare user perceived services downtime, which is shown in Figure 4.3. In traditional

approach, the time it takes to apply the patch and perform regression test will all be visible to users.

However, in the case of Shadow Patching, patching and testing occur in a separate cloned VM.

This is completely hidden from users and can be done before maintenance window even starts. The

downtime is only visible when we compare and merge disk deltas of the two VMs. In Figure 4.3,

for each application, the left column shows the user perceived downtime when traditional approach

is used, and the right column shows when Shadow Patching is used.

Second, we quantify the 1/0 activities caused by merging deltas and show the results in Ta­

ble 4.4. The columns in the table are grouped based on the type of activities. Since rules 2 and 3

consist of regular copies, the results of these activities are combined as one column. Based on these

results, we make the following observations:

• Shadow Patching significantly shortens services downtime. Because the tests of upgraded

services are conducted on the cloned VM, the functional testing time, or Shadow Patching

testing, does not impact on the patching time. As an example, a thorough test of a patched

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 91

Services Rule 1 Rule2 & 3 Rule4

Bind9 2 48 0

SubVersion 4 29 2

NFS 2 35 3

OpenVPN 2 89 0

PostgreSQL 5 82 4

Samba 2 40 8

Squid 3 34 0

Apache2 5 552 6

VsFTPd 5 41 0

Table 4.4: Rule-based activities in merging deltas of application services: (1) deletes, (2 & 3) copies, and (4)
hybrid copies.

NFS server using !Ozone can take up to 40 minutes. Running this test on the cloned VM

would take the same time and provide the same results but without being visible to users.

• Shadow Patching Jowers overhead incurred by the software component replacement.

Comparing two versions of an application, if changes are minor, most files and directory

structures will be similar, if not almost identical. If changes are more extensive, the similari-

ties are insignificant. Traditionally, patching an application involves three steps: (1) removing

current application's files and directories, (2) extracting the new version of the application into

a temporary location, and (3) copying the extracted files and directories into the right place.

For a package whose changes are minor, this technique incurred unnecessary UOs on files and

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 92

directories, which are identical between two versions. However, Shadow Patching avoids this

redundancy by comparing inode information of files and directories between two versions

before each delta merge, thus, resulting in fewer I/0 operations. As an example, the results

show that Shadow Patching helps Postgresql and Samba minimize their upgrading time.

• Shadow Patching achieves less variations in services downtime than traditional approach

across different software upgrades. In traditional approach, we observe large time varia­

tions in services downtime for different applications. This is largely due to the testing needed

for these applications can differ significantly.

• Shadow Patching does not impact on the number of merging activities. Application ser­

vices include sets of files, which can be unchanged or significantly modified from their previ­

ous versions. Shadow Patching utilizes this observation to minimize the number of copies. In

addition, although merging activities include deletes, copies, and hybrid copies, we can see

that the majority of the activities are regular copies. The number of copies occurred on each

package depends on differences between software versions, rather than its size or the number

of files.

4.5.3 When Patch Fails

We further compare Shadow Patching with traditional approach when one or more patches fail. A

service pack is a bundle of many patches to upgrade the current system version to the next stable

version. Patches are applied in a certain order to satisfy software dependencies, and if any one fails,

it is simply skipped (as well as any dependent ones). However, the failed patches will eventually

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 93

Ubuntu #Succeed Merging Activities #Failed Fixing effort

Versions Packages Rule 1 Rule2 & 3 Rule4 Packages (hours)

10.04 -+ 10.10 339 1.460 43.079 943 8 20.0

10.10-+ 11.04 346 1.597 47.406 1.148 5 12.5

11.04 -+ 11.10 432 1.474 62.351 1.237 0 0

Table 4.5: Upgrading different versions of Linux. Ubuntu

need to be resolved within the change window.

A patch can fail for many reasons, such as insufficient hardware, driver problems, incompati­

ble setup process, inconsistent system configuration, wrong architecture edition, data loss, permis­

sion/access problems, or software bugs. To resolve a failed upgrade, the following steps are usually

taken: (I) reporting a problem, (2) looking for solutions from different databases, while waiting

for the problem being solved, and (3) applying solutions to fix the failed upgrade. If a failure is

caused by software bugs, bug-fixing is a non-trivial task. Generally, the time to fix a bug can be

up to 200 days, although this number depends on the nature of the bug [59]. Recent studies of

system configurations to upgrade software indicate that on average the time to fix one particular

issue is no more than 5 hours [16, 86]. This average time is also known as a .fixing effort to denote

an effort in person-hours to resolve an issue. In general, fixing issues existed in separate software

packages can be accomplished in parallel, but requires more labor. Otherwise, the issues must be

fixed sequentially.

Table 4.5 shows the results of upgrading Linux. Ubuntu systems, including successful and failed

upgrades. To estimate the fixing efforts for failed upgrades, two scenarios are considered: (1) all

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 94

failed upgrades must be fixed in order, and (2) at least two failed upgrades can be resolved at one

time. In the worst case scenario, resolving 8 failed upgrades takes 8(Jailures) x 5(hours) =

40(hours). However, 40(hours)/2(Jailures) = 20(hours) would be a fairly estimated fixing

effort for the other scenarios. Note that for comparison purpose, Ubuntu systems are upgraded under

both traditional and Shadow Patching methods. Shadow Patching does not modify the patching

process, and thus producing similar results to the traditional method.

Conducting a thorough test on an upgraded system is a complex and time consuming task.

This is because upgrading a Linux system requires multiple replacements of software components,

including executable binaries, shared libraries, configuration settings, databases, etc. To verify the

accuracy and stability of upgraded software, various regression tests should be conducted. However,

it is non-trivial to fully understand and prepare thorough tests for all upgraded software, and it is also

out of scope of this work. Due to this complexity, we focus on upgrading time, rather than testing

time. Basically, the upgrading time includes the time to replace software components and the time

to reboot the system. For Shadow Patching, the upgrading time consists of both the time to reboot

the system and the time to merge deltas. Based on the comparison of results between traditional and

Shadow Patching upgrades, which are shown in Figure 4.4, we make following observations:

• Shadow Patching helps a system administrator avoid failed upgrades. Since many rea­

sons can cause failed upgrades, if the maintenance window is short (e.g., a few hours) such

failed upgrades may not be resolved. Thus, the system will not be fully upgraded. The exper­

imental results shown in Table 4.5 clearly illustrate this incident. Increasing the maintenance

window gives more time to resolve the problem, however, it also greatly increases the services

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 95

- 25
~
::J "'Traditional Upgrade 0 20 .1:. - •SP Upgrade
CIJ
E 15
:;:
C)

10 ·= "C e 5 C)
Q.

:::)
0

10.04 to 10.10 10.10 to 11.04 11.04 to 11.10

Figure 4.4: Upgrading different Linux Ubuntu server distributions (lower is better)

downtime. Shadow Patching is able to address this problem since resolving failed upgrades

is performed in the cloned system.

• Shadow Patching shows a low variation of upgrading time between different versions of

a Linux system. Traditional software upgrades do not guarantee that a Linux system can be

successfully upgraded after a specific amount of time. This is because an actual time spent

for an upgrade can be varied from one to several hours. More specifically, the upgrading time

induced by Shadow Patching depends on not only system's configuration, but also the number

and type of software packages. Our experimentation to upgrade different versions of a Linux

system on the same test-bed shows a low variation of the upgrading time. This is due to the

similarity between different versions of the service pack.

The choice of Linux distributions can be varied in enterprise environments. Systems can be built

based on different Linux distributions, such as Ubuntu, openSUSE, or Fedora. To verify whether

or not Shadow Patching can successfully upgrade various Linux distributions, we conduct a set of

experiments to upgrade an openS USE system, from version 11.3 to version 12.1. We observe that a

newly upgraded openSUSE 12.1 is able to perform properly.

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 96

c
0

40%

t; 30%
;::,

"C
! 20%

"C

m -E 10%
~
0 0%

Ubuntu
(11.04 to 11.10)

OpenSuse
(11.3 to 12.1)

Figure 4.5: Overhead Reduction by Shadow Patching between different Linux distributions (higher is better)

Different Linux systems may benefit differently from Shadow Patching in reducing the service

downtime. By default, the service downtime depends on the booting time of the system and the up-

grading time of software patches. Here the upgrading time includes the time to remove old software,

extract the new ones, and merge deltas. For an upgrade using service packs that contain hundreds

of individual patches, the majority of the service downtime is attributed to the upgrading time. It

is true that service packs are different across Linux distributions in terms of size and packed soft-

ware patches. Therefore, the overhead induced by upgrading these service packs are also different

between Linux distributions. Figure 4.5 shows how much overhead, which is induced by upgrading

service packs, can be reduced when Shadow Patching is chosen over the traditional upgrades. As

we can see, the upgrade of OpenSUSE from 11.3 to 12.1 benefits more by using Shadow Patching

than the upgrade of Ubuntu from 11.04 to 11.1 0, in terms of the upgrading time reduction.

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 97

4.6 Discussion

In this section, we first discuss pros and cons of Shadow Patching, and then we present different

approaches to further enhance the framework.

4.6.1 Pros and Cons

Shadow Patching framework does not require any changes to hypervisors, guest VMs, or software

patches to perform a system upgrade. Typically, software packages and patches are complex to

understand. Thus, to perform a system upgrade, traditional upgrades usually require either software

engineering or system skills from administrators. Shadow Patching simplifies this requirement, so

that administrators can perform any software upgrades without having a full understanding of either

software packages or software patches. The software engineering skill is only required to resolve

failed upgrades.

Most techniques employed in traditional software upgrades try to achieve a zero down time

by inserting updated software components into running application services. However, such tech­

niques can only successfully upgrade particular applications, thus, not becoming generic solutions.

Although Shadow Patching focuses on software upgrades in virtualization environments, the frame­

work is generic because it does not depend on one particular application or system. At the host level,

Shadow Patching can leverage different hypervisors, such as KVM, Vmware, or Xen, to maintain

a clone VM without modifying core features of hypervisors. At the guest level, Shadow Patching

does not modify the kernel, but benefits from kernel subroutines to facilitate delta monitoring.

Shadow Patching also exposes some restrictions, such as disruption of running application ser-

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 98

vices and extra consumed system resources. The two major limitations of Shadow Patching are

detailed as follows.

Merging deltas of Shadow Patching can only be performed when VMs are dormant. Thus,

Shadow Patching cannot provide a live system upgrade. Specifically, a live system upgrade must

achieve a zero downtime or only a brief delay of running services. However, Giuffrida et. at

reveal that an ideal solution to achieve zero downtime in upgrading systems is not possible [52].

Although the recent work of Ksplice demonstrates a zero downtime in upgrading Linux kernel [35],

this technique cannot be widely employed to live upgrade of any Linux systems or application

software. However, a short planned downtime (from 5 to 20 minutes) caused by Shadow Patching

for a system maintenance is fairly insignificant, compared to an actual maintenance window of

enterprise systems (from 5 to 12 hours).

Shadow Patching consumes extra system resources to run a cloned VM. The cloned VM con­

sumes CPU cycles, network traffic, and disk 1/0s to fully obtain and apply software patches. Due

to the consumption of extra system resources, using Shadow Patching to simultaneously upgrade

multiple virtualized systems may impact on the hypervisor's 110 performance. System administra­

tors should avoid this circumstance by scheduling a maintenance window of VMs in suitable times.

In other words, since deltas are preserved within copy-on-write disk images, merging those deltas

should be only performed when a maintenance time of the original system is appointed.

4.6.2 Shadow Patching Enhancements

There are alternative approaches to further enhance Shadow Patching, which are briefly described

as follows.

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 99

4.6.2.1 Selective monitoring

Selective monitoring is a technique to minimize the overhead induced by monitoring deltas. In gen­

eral, deltas are determined based on footprints of inotify's events, known as inotify traces. Since all

110 events are recorded, it is possible that the traces may include 110 events occurred on unmodified

files and directories. Apparently, monitoring these 110 events is unnecessary. To effectively monitor

deltas, the selective monitoring classifies the directories at the root level to avoid a recursive scan

of the entire root directory. Basically, these directories are classified based on their purposes. For

instance, /bin, /boot, and /dev directories include command binaries, boot loaders, and devices,

respectively. Thus, it is possible to assume that once the system runs, those directories are not

changed while the most modifications of the file systems are limited to other directories, such as

home, tmp, var, or etc. Using inotify to focus on monitoring deltas of these modified directories

does not impact on the results of deltas, but reduces the overhead of merging activities.

4.6.2.2 Flexible merging

A flexible merging tries to reduce the overhead of merging deltas by analyzing deltas and data files

before each merge. Basically, to merge deltas, one particular file is copied between VMs regardless

its size. However, if the size of the deltas is small (few Bytes or KBs) compared to that of the file

(hundreds GBs), a regular copy induces much redundant 1/0s. This is because the majority of 1/0s

are used to copy similar portions of the file from the cloned VM to the original VM. If the type of

the file is determined, such as regular data, character/block device, domain socket, named pipe, or

symbolic link, the flexible merging is able to avoid redundant IIOs by specifically copying dissimilar

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW 100

portions, instead of the entire content of the file. To determine the dissimilar portions of the files,

we need to thoroughly analyze deltas at two different levels: file system and disk block.

• File systems: The dissimilar portions are determined by thoroughly scan contents of two

versions of the file. A merging process properly overwrites dissimilar portions of the file,

from the cloned VM to its version on the original system.

• Disk block: The dissimilar portions of two files can also be directly obtained as data blocks

from the layer of disk blocks, rather than indirectly through the layer of file systems. A

merging process is performed based on a copy of such data blocks, which are associated with

dissimilar portions of files.

4.6.2.3 Patching other systems

Shadow Patching's disk images must be copy-on-write and guest VM's file systems must be struc­

tured. These requirements enable us to perform an external snapshot of virtualized storage and to

expose the file systems of the disk images. As we can see, the requirements are at the level of

storage, rather than other particular system states, such as virtualized CPU, harddrive interfaces, or

allocated memory pages. Thus, this allows Shadow Patching to be able to patch non-Linux systems

without major changes of the framework. For example, administrators can use Shadow Patching

to upgrade Microsoft Windows Server 2008 systems running on NTFS or DFS file systems. Since

NTFS and DFS are structured file systems, they can be exposed under Shadow Patching for a side­

by-side comparison of files and directories, thus, facilitating merging deltas between VMs.

Note that deltas are monitored differently under different file systems. Linux file systems use

CHAPTER 4. SHADOW PATCHING: MINIMIZING MAINTENANCE WINDOW I 01

inode, while Windows file systems (NTFS or DFS) rely on fileiD. Because of the different data

structure, a modification of inotify is required in order to properly monitor and merge deltas on the

Windows systems.

4.7 Summary

In this chapter, we propose Shadow Patching framework to reduce the maintenance window associ­

ated with deploying software patches. Software patching, testing, and troubleshooting are all done

in a cloned VM so that these tasks will have no impact on the original VM. File system changes in

the cloned VM are recorded and are subsequently merged with the original VM. The only down time

perceived by the original VM is when it is taken offline to perform this merge operation, which is

much faster and reliable than what is done in the traditional method. By hiding post-patch regression

test and troubleshooting steps, maintenance window can be significantly shortened.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this dissertation, we aim to tackle problems of understanding abstractions brought by virtual­

ization. The focus of our work lies in different abstraction aspects, such as an intensive memory

multiplexing, called Batmem, and a nesting of file systems. We later propose a framework, called

Shadow Patching, to effectively minimize the maintenance window time for software upgrading.

The summarized discussion of contributions of these work are as follows:

• Batmem: We believe that this work will help researchers to better understand the critical

issues of memory sharing and VMBR in both high-end and low-end virtual support systems.

We hope that our work will also motivate system designers to carefully evaluate security gaps

at the reaUvirtual boundary in designing devices for virtual environments and to pay more

attention to the threats posed by the adaptive behaviors of VMBR.

• Nested File System: The intricate interactions between host and guest file systems represent

an exciting and challenging optimization space for improving 110 performance in virtualized

102

CHAPTER 5. CONCLUSION AND FUTURE WORK 103

environments. Our preliminary investigation on nested file systems will help researchers to

better understand critical performance issues in this area, and shed light on finding more

efficient methods in utilizing virtual storage. We hope that our work will motivate system

designers to more carefully analyze the performance gap at the real and virtual boundaries.

• Shadow Patching: Indeed, compared with an actual time of the system upgrade, a given

maintenance window is usually much larger. This is attributed to unpredictable software

bugs, which mainly cause upgrade failures, traditional software patching frameworks have

no choice, but increase the maintenance windows. Through extensive experiments, we have

demonstrated that SP is able to not only avoid failed upgrades, but also significantly minimize

the maintenance windows. We believe that our framework will help system administrators in

enterprise environments to optimize the software maintenance process. We also expect that

our work will motivate software developers and system administrators to carefully monitor

deltas at different levels, such as file systems and disk blocks, to shorten the software upgrad­

ing time.

5.2 Future Work

5.2.1 Memory Optimization in Virtualization

In high-end systems, Batmem is embedded into the hypervisor without violating the security design

of the hypervisor. System administrators can protect Batmem from other malicious accesses inside

VMs by placing Batmem as a read-only component within a protected memory area of the host.

CHAPTER 5. CONCLUSION AND FUTURE WORK 104

Such a technique follows the similar approach of memory shadowing proposed by Riley et al. [74].

As a result, Batmem is protected in high-end systems.

For low-end systems, we discuss the challenges to protect a low-end system from an installation

of VMBR, as well as to detect its presence, in the rest of this section.

5.2.1.1 Preventing VMBR Installation

To protect the host boot sequence from malicious modifications of VMBR, we can employ soft­

ware or hardware solutions. Software solutions secure BIOS or boot processes by using encryption

or out-of-the-box verification. Attackers need to retrieve the BIOS information to properly con-

figure virtual devices when the host is started. Encryption methods prevent this retrieval by en­

crypting/decrypting the BIOS information upon its exchange among legitimate system components.

Out-of-the-box methods use the checkpoint verification technique, which compares system snap­

shots between suspicious and legitimate boot sequences to discover the malicious modifications.

In general, hardware solutions can be built on a tainting technique that monitors exchanged data

among legitimate system components. Those suspicious uses of tainted data will be considered as

illegitimate. However, for a low-end system, both software and hardware solutions are difficult to

apply because they either need to reboot the system for the snapshot comparison or degrade the

system performance by their aggressive verifications of primitive data.

5.2.1.2 Detecting Batmem

Since Batmem is operated as an embedded component within VMBR, detecting its presence is

challenging. However, as we mentioned in Section 2.3, to easily locate the buffer of each MMIO

CHAPTER 5. CONCLUSION AND FUTURE WORK 105

session, Batmem maps the offset of the dynamic circular buffer to the first page of the main memory.

This design may motivate defenders to scan and compare the content of the device memory and the

first page of main memory to determine grouped regions, and hence, detect the presence of Batmem.

Unfortunately, aggressively checking memory partitions is very expensive, leading to significant

performance degradation.

As an alternative, we can check the local time source to detect VMBR [50]. However, this

method is not very robust since attackers can evade detection by using other similar approaches as

Batmem to cloak their malicious activities on virtual components. In contrast, Garfinkel et al. [51]

show a possibility of detecting VMBR without timing based techniques. Nevertheless, they target

highly resource constrained VMBRs [60], and the flexible and small ones like Bluepill [77] are not

considered.

We can also exploit a vulnerability of KVM by checking shutdown conditions of the VCPU

triple faults at the user level [12]. The effectiveness of this technique highly depends on possibilities

to conceal such shutdown conditions of attackers.

5.2.2 Virtualization Storage

Besides file systems, a nesting of other 110 interfaces or storage components in a virtualization

environment may also impact on the 1/0 performance of running applications, especially those

1/0 components that direct 1/0s among applications, back-end drivers, block devices, and shared

storage systems. Therefore, it is important to fully understand their performance implications under

different nesting scenarios, which are discussed as follows.

CHAPTER 5. CONCLUSION AND FUTURE WORK 106

5.2.2.1 110 Interfaces

Commodity systems attempt to guarantee not only a high 1/0 performance on state-of-the-art de­

vices, but also a high compatibility between the systems and conventional devices. In a regular

computer system, an 1/0 interface, which is represented by one particular device, handles 1/0s

passed through 1/0 buses. In a virtualized environment, due to the two-level of guest and host, the

abstraction of 1/0 buses is created: the buses at the guest level are used to connect virtual block de­

vices with back-end drivers, and the buses at the host level are used to connect the back-end drivers

with mass storage devices. Guest/host 1/0s can be exchanged under different interfaces, resulting

in a variation of the system performance. Intuitively, an improper combination of the guest and host

1/0 interfaces can be disastrous to system performance. With an appropriate combination, the over­

head induced can be negligible. Because of this, we consider a future study of nested 1/0 interfaces.

More specifically, our focus will be on the performance implication of virtualized systems under

different 1/0 interfaces employed at guest and host levels, such as IDE, SATA, PATA, USB, SCSI,

SAS, FICON, Fibre Channel, InfiniBand, or Thunderbolt.

5.2.2.2 Storage Sharing

Commodity storage systems enable the virtualized enterprise features to scale out data stored on

the disk. In general, such features create a dynamic pool of shared storage resource available to

guest VMs. With the help from the dynamic pool, the performance and availability of 1/0s across

the physical storage are balanced and guaranteed. However, due to various 1/0 behaviors when

different shared storages are employed, it is important to take advantage of the dynamic pool for one

CHAPTER 5. CONCLUSION AND FUTURE WORK 107

particular system. Intuitively, the best perfonnance of IIOs depends on a nesting of virtual storage.

This nested virtual storage is specified by not only the types of workload and storage at the guest

level, but also the physical storage at the host level. Therefore, our future work will focus on the

issues of nesting storage, in terms of (I) types of storage (host-based or network-based), (2) methods

to optimize a storage utilization (thin or fat provisioning), and (3) mechanisms to differentiate data

and metadata.

Host-based Storage vs. Storage Area Network: Host-based storage for virtualization is imple­

mented through a logical volume management. As an advantage, this management is able to mini­

mizes the complexity in controlling physical storage by providing a flexible logical view of storage

systems. However, virtualized systems must be manually configured and separately managed.

A storage area network (SAN) provides block-level operations on interconnected storage de­

vices, rather than stacking another file abstraction on the physical storage. As a significant advan­

tage, a SAN based environment is completely transparent to virtualized systems. Thus, it is able

to accommodate heterogeneous virtualized environments and minimize administrative tasks. How­

ever, to effectively leverage these block-level operations, another level of file system should be built

on top of this SAN. In addition, a potential bottleneck induced by interconnected storage devices

can impose a performance penalty on the entire virtualized environment.

In general, host-based or SAN-based large scale virtualized environments are created by a stack­

ing of various levels of storage systems. This stacking includes multiple levels of physical or logical

storage resources, whose 110 behaviors across the levels of storage are transparent. Thus, under­

standing 110 behaviors across those levels is necessary. As a future research direction, we plan to

CHAPTER 5. CONCLUSION AND FUTURE WORK 108

conduct a thorough study on the multiple levels of storage systems to fully understand the perfor­

mance implication of virtualized environments.

Storage Provisioning: A conventional storage provisioning technique, called fat (or thick) provi­

sioning, enables an allocated storage space beyond current needs. This technique does not require

to accurately predicate the actual capacity of the storage during 1/0s, which may impact on I/0

performance of storage systems.

Thin provisioning is a technique to optimize the available space that is utilized for storage sys­

tems, especially SANs. The major advantage of this technique is that it allows the system admin­

istrators to allocate storage space "just in time" and use only as little as they need. Thus, thin

provisioning significantly saves available disk space.

To achieve the best performance of 1/0s, it is important to choose a right provisioning technique

for a virtualized system. For example, while the thin provisioning can save the disk space, it may

also cause an unstable performance. For this reason, a deep study of storage provisioning techniques

used for virtualized systems and their impact on the system's I/0 performance are needed. As the

problem will become even more challenging if the provisioning techniques could be deployed at

different levels of storage, such as the physical level or the virtual level, we plan to explore this

problem in the future.

Data and Metadata Differentiation: In a virtualized environment, it is difficult to differentiate

guest VM's 1/0s and determine if they are used for either data or metadata. Recently, few solutions

have be considered to resolve this issue, such as (1) using device agents for VMs [29] to charac-

CHAPTER 5. CONCLUSION AND FUTURE WORK 109

terize IIOs, (2) storing files as objects along with user-defined metadata [7], and (3) relying on an

individual metadata manager as a service node for distributed file systems.

The proposed solutions may differentiate data from metadata. However, due to the changes

made at both guest and hypervisor levels, those solutions may impact the scalability of a virtualized

system, as well as the resiliency of data exchanged between two levels. Thus, they do not guar­

antee the best 110 performance if virtualized systems are hosted on different storage systems. By

considering the effectiveness of different solutions in handling metadata for IIOs, we plan to further

study the 110 performance of virtualized systems and provide a guideline for improving system 110

performance.

5.2.3 Shadow Patching Enhancements

5.2.3.1 Selective monitoring

A system downtime depends on a time to patch software. In fact, as software packages are different

in terms of size and directory structure, the time to patch one particular software can be varied

across different software packages, application versions, or upgrading procedures. As presented

in experimental results, patching different application services results in different sizes of deltas

to be merged. In general, deltas are determined based on footprints of inotify's events, known as

inotify traces. Since all 110 events are recorded, it is possible that these traces may include 110

events occurred on unmodified files and directories. Apparently, monitoring these 110 events is

unnecessary and may incur overhead.

To effectively monitor deltas, the selective monitoring classifies directories at root level to avoid

CHAPTER 5. CONCLUSION AND FUTURE WORK 110

a recursive scan of the entire root directory. Basically, these directories are classified based on their

purposes. For instance, /bin, /boot, and /dev directories include command binaries, boot loaders,

and devices, respectively. Thus, it is possible to assume that once the system runs, these directories

should not be changed while the majority of modifications is occurred on other directories, such as

home, tmp, var, or etc. Using inotify to monitor deltas of these directories, this method does not

impact on the results of deltas, but reduces overhead for merging activities.

5.2.3.2 Flexible merging

This method is based on an idea that an overhead induced by merging deltas is able to reduced if

the file type and file contents can be determined in order to analyze. In general, based on deltas,

merging activities will copy files from the cloned VM to to original system. However, if the size

of delta is small (few Bytes or KBs) compared to the original file size (hundreds GBs), a regular

copy significantly induces redundant 1/0s on the storage and lowers the performance of merging

activities. This is because the majority of these 1/0s are used to copy a similar portion of the

file from the cloned VM to another place. If a file type can be determined, such as regular data,

character/block device, domain socket, named pipe, or symbolic link, a flexible merging is able to

avoid these redundant 1/0s by specifically copying portions instead of the entire file. To determine

portions of the file to be copied, we need to thoroughly analyze deltas at two levels: file system or

disk block.

• File system: Dissimilar portions are determined by thoroughly scan contents of two versions

of the file. Merging activities properly overwrites dissimilar portions of the file, from the

cloned VM to its version on the original system.

CHAPTER 5. CONCLUSION AND FUTURE WORK 111

• Disk block: Dissimilar portions of two files can also be directly obtained as data block at the

layer of disk block, rather than indirectly through the layer of file system. A merging process

is performed based on a copy of disk blocks which are associated with dissimilar portions of

files.

It is noted that for the best performance in merging deltas, a buffer used for copying dissimilar

portions of a file should be considered. Also, a size and a structure of this buffer should be defined

properly based on the data type to represent dissimilar portions of the file.

5.2.3.3 Patching other systems

Shadow Patching requires virtual disk images to be formatted as multiple-layer disks and file sys­

tems used at the guest level must be structured. These requirements provides an ability to perform

an external snapshot and to mount disk images as individual storage at the file system level of the

host. Since these requirements focus on the disk level, rather than other particular system settings,

such as states of virtualized CPU, states of harddrive interface, or allocated memory, it allows to

perform Shadow Patching to patch other systems than Linux without major changes required of the

framework. As an example, Shadow Patching can be used to patch a VM that runs Microsoft Win­

dows Server 2008 on NTFS or DFS file systems. Since NTFS and DFS are structured file systems,

they can be exposed under Shadow Patching for a side-by-side comparison of files and directories

between original and cloned VMs.

Note that deltas are handled differently under different file systems. Linux file systems use

inode, while Windows file systems (NTFS or DFS) rely on fileiD. Because of this different data

CHAPTER 5. CONCLUSION AND FUTURE WORK 112

structure, a modification of inotify is required in order to properly monitor and merge deltas on

such Windows systems.

Bibliography

[l] Amazon Elastic Compute Cloud- EC2. http: I /http: I laws. amazon. com/ec2.

[2] Anubis: Analyzing Unknown Binaries. http: I /anubis. iseclab. org [Accessed: May
2012].

[3] Autohotkey: Program with hotkeys and autotext. www. autohotkey. corn.

[4] Autokey: Text replacement tool for Linux. http: I I autokey. source forge. net, [De­
cember 2009].

[5] blktrace- generate traces of the UO traffic on block devices. gi t: I I gi t. kernel. org I
pub/scm/linux/kernel/git/axboe/blktrace. gitbt [Accessed: May 2012].

[6] Bonnie++: File system benchmarks. www. coker. com. au/bonnie++.

[7] DataDirect Networks- Web Object Scaler. http: I /www.ddn.com/pdfs/WOS_2_0_
Whi tepaper .pdf [Accessed: May 2012].

[8] Filebench. www. solarisinternals. com/wiki I index. php/FileBench [Ac­
cessed: May 2012].

[9] FlO- Flexible UO Tester. http: I /freshmeat .net/projects/fie [Accessed: May
2012].

[10) IBMCloudComputing. http://www.ibm.com/ibm/cloud/ [Accessed: May2012].

[II] Inotify - Monitoring File System Events. http://www.kernel.org/doc/
man-pages/online/pages/man? /inotify. 7. html [Accessed: May 20I2].

[I2] Kernel TRAP - KVM: detect if VCPU triple faults. http: I /kerneltrap.org/
mailarchive/git-commits-head/2008/4/27/1622284.

[13] Lguest: The simple x86 hypervisor. http: I /lguest. ozlabs. org.

[I4] Linux kemel2.6.22 modification. www.kernel.org/pub/linux/kernel/v2.6/
ChangeLog-2.6.22.

[15] Microsoft Virtual Machine Servicing Tool 3.0. http://www.microsoft.com/
download/ en/details. aspx?displaylang=en&id=2 3 3 0 0 [Accessed: May
20I2].

II3

http://freshmeat.net/projects/fiotAccessed
http://www.kernel

BIBLIOGRAPHY 114

[16] Microsoft Windows Server 2003 vs. Red Hat Enterprise Linux AS 3.0: IT Professionals Run­
ning a Production Environment. www. veri test. com [Accessed: May 2012].

[17] Nested SVM virtualization for KVM. http://avikivity.blogspot.com/2008/
09/nested-svm-virtualization-for-kvm.html [Accessed: May 2012].

[18] Nlanr/dast: I perf- the tcp/udp bandwidth measurement tool. http: I I das t. nlanr. net I
Projects/Iperf.

[19] Norman SandBox. http: I /www.norman.com/security_center/security_
tools [Accessed: May 2012].

[20] The QCOW2 Image Format. http: I /people. gnome. org/-markmc/
qcow- image- format. html [Accessed: May 2012].

[21] Set up and control loop devices. http: I /linux.die.net/man/8/losetup [Ac­
cessed: May 2012].

[22] Sisoftware Sandra- Windows system analyser. www. sisoftware. co. uk/.

[23] Superscape 3d vga benchmark. www. bookcase. com/ library I software /msdos.
util.screen.vga.html.

[24] VirtuaiBox VDI. http: I /forums. virtualbox. org/viewtopic .php?t=8046
[Accessed: May 2012].

[25] Vlogger at the hacker's choice. www. the. org.

[26] Vmware diskmount utility. www. vmware. com/pdf /VMwareDiskMount. pdf [Ac­
cessed: May 2012].

[27] VMware Tools for Linux Guests. http: I /www. vmware. com/support/ws5/doc/
ws_newguest_tools_linux.html [Accessed: May 2012].

[28] VMWare Virtual Disk Format 1.1. http: I /www. vmware. com/
technical- resources I interfaces /vmdk. html [Accessed: May 2012].

[29] VMware vSphere Update Manager. http: I /www. vmware. com/support/pubs/
vum_pubs. html [Accessed: May 2012].

[30] Window Azure- Microsoft's Cloud Services Platform. http: I /www. microsoft. com/
windowsazure/ [Accessed: May 2012].

[31] Windows 2000 clustering: Performing a rolling upgrade. http: I /technet.
microsoft. com/en-us/library/bb742504. aspx [Accessed: May 2012].

[32] Xen Hypervisor Source. http: I /xen. org /products /xen_archi ves. html [Ac­
cessed: May 2012].

[33] Xen Source -Progressive paravirtualization. http: I /xen.org/files/summit_3/
xen-pv-drivers .pdf [Accessed: May 2012].

http://www.bookcase.com/library/software/msdos
http://www.microsoft
http://technet

BIBLIOGRAPHY 115

[34] GAUTAM ALTEKAR, ILYA BAGRAK, PAUL BURSTEIN, AND ANDREW SCHULTZ. OPUS:
online patches and updates for security. In Proceedings of the 14th Conference on USENIX
Security Symposium, Berkeley, CA, USA, July 2005.

[35] JEFF ARNOLD AND M. FRANS KAASHOEK. Ksplice: automatic rebootless kernel updates.
In Proceedings of the 4th ACM European Conference on Computer Systems, Nuremberg, Ger­
many, March 2009.

[36] PAUL BARHAM, BORIS DRAGOVIC, KEIR FRASER, STEVEN HAND, TIM HARRIS, ALEX
HO, ROLF NEUGEBAUER, IAN PRATT, AND ANDREW WARFIELD. Xen and the art of virtu­
alization. In Proceedings of the 19th ACM Symposium on Operating Systems Principles, New
York, NY, USA, October 2003.

[37] ANDREW BAUMANN, GERNOT HEISER, JONATHAN APPAVOO, DILMA DASILVA, ORRAN
KRIEGER, ROBERT W. WISNIEWSKI, AND JEREMY KERR. Providing dynamic update in
an operating system. In Proceedings of the USENJX Annual Technical Conference, Anaheim,
CA, USA, April 2005.

[38] FABRICE BELLARD. QEMU, a fast and portable dynamic translator. In Proceedings of the
USENJX Annual Technical Conference, Anaheim, CA, USA, April 2005.

[39] MULl BEN-YEHUDA, MICHAEL D. DAY, ZVI DUBITZKY, MICHAEL FACTOR, NADAV
HAR'EL, ABEL GORDON, ANTHONY LIGUORI, 0RIT WASSERMAN, AND BEN-AMI YAS­
SOUR. The Turtles Project: Design and Implementation of Nested Virtualization. In Pro­
ceedings of the 9th USENJX Symposium on Operating Systems Design and Implementation,
Vancouver, Canada, October 2010.

[40] MEDHA BHADKAMKAR, JORGE GUERRA, LUIS USECHE, SAM BURNETT, JASON LIP­
TAK, RAJU RANGASWAMI, AND VAGELIS HRISTIDIS. BORG: Block-reORGanization for
Self-optimizing Storage Systems. In Proceedings of the 7th USENIX Conference on File and
Storage Technologies, San Francisco, CA, USA, February 2009.

[41] DAVID BOUTCHER AND ABHISHEK CHANDRA. Does virtualization make disk scheduling
passe? In Proceedings of the Workshop on Hot Topics in Storage and File Systems, Big Sky,
MT, USA, October 2009.

[42] HAIBO CHEN, RONG CHEN, FENGZHE ZHANG, BINYU ZANG, AND PEN-CHUNG YEW.
Live updating operating systems using virtualization. In Proceedings of the 2nd International
Conference on Virtual Execution Environments, Ottawa, Canada, June 2006.

[43] LUDMILA CHERKASOVA, DIWAKER GUPTA, AND AMIN VAHDAT. When virtual is harder
than real: Resource allocation challenges in virtual machine based IT environments. In HP
Laboratories- HPL-2007-25, Palo Alto, CA, USA, Feburary 2007.

[44] CRISPIN COWAN, HEATHER HINTON, CALTON PU, AND JONATHAN WALPOLE. The
Cracker Patch Choice: An Analysis of Post Hoc Security Techniques. In Proceedings of
the 23rd National Information Systems Security Conference, Baltimore, MD, USA, October
2000.

BIBLIOGRAPHY 116

[45] FRANCIS M. DAVID, ELLICK M. CHAN, JEFFREY C. CARLYLE, AND ROY H. CAMPBELL.
Cloaker: Hardware Supported Rootkit Concealment. In Proceedings of the 29th IEEE Sympo­
sium on Security and Privacy, Oakland, CA, USA, May 2008.

[46] ARTEM DINABURG, PAUL ROYAL, MONIRUL SHARIF, AND WENKE LEE. Ether: malware
analysis via hardware virtualization extensions. In Proceedings of the 15th ACM Conference
on Computer and Communications Security, Alexandria, Virginia, USA, 2008.

[47] KENNETH J. DUDA AND DAVID R. CHERITON. Borrowed-virtual-time (BVT) scheduling:
supporting latency-sensitive threads in a general-purpose scheduler. In Proceedings of the
seventeenth ACM Symposium on Operating Systems Principles, Charleston, SC, USA, October
1999.

[48] TUDOR DUMITRA~ AND PRIYA NARASIMHAN. Why do upgrades fail and what can we do
about it?: toward dependable, online upgrades in enterprise system. In Proceedings of the lOth
ACMIIFIPIUSENIX International Conference on Middleware, Urbanna, IL, USA, November
2009.

[49] YASUHIRO ENDO, ZHENG WANG, J. BRADLEY CHEN, AND MARGO SELTZER. Using
latency to evaluate interactive system performance. In Proceedings of the 2nd Symposium on
OS Design and Implementation, Seattle, WA, USA, October 1996.

[50] PETER FERRIE. Attacks on virtual machine emulators, December 2006. www. symantec.
com/avcenter/reference/Virtual_Machine_Threats.pdf.

[51] TAL GARFINKEL, KEITH ADAMS, ANDREW WARFIELD, AND JASON FRANKLIN. Compat­
ibility is Not Transparency: VMM Detection Myths and Realities. In Proceedings of the lith
USENIX Workshop on Hot Topics in Operating Systems, San Diego, CA, USA, May 2007.

[52] CRISTIANO GIUFFRIDA AND ANDREW S. TANENBAUM. A Taxonomy of Live Updates.
In Proceedings of the 16th Annual Conference of the Advanced School for Computing and
Imaging, Veldhoven, The Netherlands, November 2010.

[53] GISLI HJALMTYSSON AND ROBERT GRAY. Dynamic C++ Classes: A lightweight mecha­
nism to update code in a running program. In Proceedings of the US EN/X Annual Technical
Conference, New Orleans, LA, USA, June 1998.

[54] TOM Ho. Architecture for emulating an ethemet network interface card. United States Patent
7023878, April 2006.

[55] HAl HUANG, WANDA HUNG, AND KANG G. SHIN. FS2: dynamic data replication in free
disk space for improving disk performance and energy consumption. In Proceedings of the
20th ACM Symposium on Operating Systems Principles, Brighton, United Kingdom, October
2005.

[56) KHOA HUYNH AND STEFAN HAJNOCZI. KVM/QEMU Storage Stack Performance Discus­
sion. In Proposals of Linu.x Plumbers Conference, Cambridge, MA, USA, November 2010.

BIBLIOGRAPHY 117

[57] VENKATESWARARAO JUJJURI, ERIC VAN HENSBERGEN, AND ANTHONY LIGUORI.
VirtFS- A virtualization aware File System pass-through. In Proceedings of the Ottawa Linux

Symposium, Ottawa, Canada, July 2010.

[58] MUKIL KESAVAN, ADA GAVRILOVSKA, AND KARSTEN SCHWAN. On Disk 110 Scheduling
in Virtual Machines. In Proceedings of the 2nd USENIX Workshop on 110 Virtualization,
Pittsburgh, PA, USA, March 2010.

[59] SUNGHUN KIM AND E. JAMES WHITEHEAD, JR. How long did it take to fix bugs? In Pro­
ceedings of the 3rd ACM International Workshop on Mining Software Repositories, Shanghai,
China, May 2006.

[60] SAMUEL T. KING, PETER M. CHEN, YI-MIN WANG, CHAD VERBOWSKI, HELEN J.
WANG, AND JACOB R. LORCH. SubVirt: Implementing malware with virtual machines.
In Proceedings of the 27th IEEE Symposium on Security and Privacy, Oakland, CA, USA,
May 2006.

[61] AVI KIVITY, YANIV KAMAY, DOR LAOR, URI LUBLIN, AND ANTHONY LIGUORI. kvm:
the Linux Virtual Machine Monitor. In Proceedings of the Linux Symposium, Ottawa, Canada,
July 2007.

[62] OREN LAADAN AND JASON NIEH. Operating system virtualization: practice and experience.
In Proceedings of the 3rd Annual Haifa Experimental Systems Conference, Haifa, Israel, May
2010.

[63] HORACIO ANDRES LAGAR-CAVILLA, JOSEPH ANDREW WHITNEY, ADIN MATTHEW
SCANNELL, PHILIP PATCHIN, STEPHEN M. RUMBLE, EYAL DE LARA, MICHAEL
BRUDNO, AND MAHADEV SATYANARAYANAN. SnowFlock: rapid virtual machine cloning
for cloud computing. In Proceedings of the 4th ACM European Conference on Computer
Systems, Nuremberg, Germany, March 2009.

[64] DAVID E. LOWELL, YASUSHI SAITO, AND EILEEN J. SAMBERG. Devirtualizable virtual
machines enabling general, single-node, online maintenance. In Proceedings of the 1 lth In­
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, Boston, MA, USA, October 2004.

[65] KRISTIS MAKRIS AND RIDA A. BAZZI. Immediate multi-threaded dynamic software updates
using stack reconstruction. In Proceedings of the USENTX Annual Technical Conference, San
Diego, CA, USA, June 2009.

[66] KRISTIS MAKRIS AND KYUNG DONG RYU. Dynamic and adaptive updates of non­
quiescent subsystems in commodity operating system kernels. In Proceedings of the 2nd ACM
SlOOPS/European Conference on Computer Systems, Lisbon, Portugal, March 2007.

(67] MICHAEL R. MARTY AND MARK D. HILL. Virtual hierarchies to support server consolida­
tion. June 2007.

(68] DIEGO ONGARO, ALAN L. COX, AND SCOTT RIXNER. Scheduling 110 in virtual machine
monitors. In Proceedings of the 4th ACM STGPLAN/SIGOPS International Conference on
Virtual Execution Environments, Seattle, WA, USA, March 2008.

BIBLIOGRAPHY 118

[69] PRADEEP PADALA, XIAOYUN ZHU, ZHIKUI WANG, SHARAD SINGHAL, AND KANG G.
SHIN. Performance Evaluation of Virtualization Technologies for Server Consolidation. Tech­
nical report, HP Labs Report HPL-2007-59, Palo Alto, CA, USA, April2007.

[70] JONATHAN W. PALMER. Web Site Usability, Design, and Performance Metrics. Information
Systems Research, 13(2), June 2002.

[71] SHAYA POTTER AND JASON NIEH. Reducing downtime due to system maintenance and
upgrades. In Proceedings of the 19th Conference on Large Installation System Administration
Conference, San Diego, CA, USA, December 2005.

[72] DARRELL REIMER, ARUN THOMAS, GLENN AMMONS, TODD MUMMERT, BOWEN
ALPERN, AND VASANTH BALA. Opening black boxes: using semantic information to com­
bat virtual machine image sprawl. In Proceedings of the 4th ACM SIGPLANISIGOPS Inter­
national Conference on Virtual Execution Environments, Seattle, WA, USA, March 2008.

[73] ERIC RESCORLA. Security holes ... who cares? In Proceedings of the 12th Conference on
USENIX Security Symposium, Washington, DC, USA, August 2003.

[74] RYAN RILEY, XUXIAN JIANG, AND DONGYAN XU. Guest-transparent prevention of ker­
nel rootkits with vmm-based memory shadowing. In Proceedings of the I 1 th International
Symposium on Recent Advances in Intrusion Detection, Cambridge, MA, USA, September
2008.

[75] JOHN SCOTT ROBIN AND CYNTHIA E. IRVINE. Analysis of the Intel Pentium's ability to
support a secure virtual machine monitor. In Proceedings of the 9th Conference on USENIX
Security Symposium, Denver, CO, USA, August 2000.

[76] RUSTY RUSSELL. virtio: towards a de-facto standard for virtual 110 devices. ACM SIGOPS
Operating Systems Review, 42(5), July 2008.

[77] JOANNA RUTKOWSKA. Introducing Blue Pill, June 2006. http: I I
theinvisiblethings.blogspot.coml20061061introducing-blue-pill.
html.

[78] SEETHARAMI R. SEELAM AND PATRICIA J. TELLER. Virtual 110 scheduler: a scheduler
of schedulers for performance virtualization. In Proceedings of the 3rd International ACM
SIGPLAN/SIGOPS Conference on Virtual Execution Environments, San Diego, CA, USA,
June 2007.

[79] PRASHANT J. SHENOY AND HARRICK M. YIN. Cello: A Disk Scheduling Framework for
Next Generation Operating Systems. In Proceedings of ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, Seattle, WA, USA, June 1997.

[80] STELIOS SIDIROGLOU, SOTIRIS IOANNIDIS, AND ANGELOS D. KEROMYTIS. Band-aid
patching. In Proceedings of the 3rd US EN/X Workshop on Hot Topics in System Dependability,
Edinburgh, UK, June 2007.

BIBLIOGRAPHY 119

[81] SANKARAN SIVATHANU, LING LIU, MEI YIDUO, AND XING PU. Storage Management in
Virtualized Cloud Environment. In Proceedings of the 3rd IEEE International Conference on
Cloud Computing, Miami, FL, USA, July 2010.

[82] SURIYA SUBRAMANIAN, MICHAEL HICKS, AND KATHRYN S. MCKINLEY. Dynamic soft­
ware updates: a VM-centric approach. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, Dublin, Ireland, June 2009.

[83] KUNIYASU SUZAKI, TOSHIKI YAGI, KENGO IIJIMA, NGUYEN ANH QUYNH, AND YOSHI­
HITO WATANABE. Effect of readahead and file system block reallocation for lbcas. In Pro­
ceedings of the Linux Symposium, Ottawa, Canada, July 2009.

[84] CHUNQIANG TANG. FVD: a high-performance virtual machine image format for cloud. In
Proceedings of the US EN/X Conference on US EN/X Annual Technical Conference, Portland,
OR, USA, June 2011.

[85] CARL A. WALDSPURGER. Memory resource management in VMware ESX server. In Pro­
ceedings of the 5th USENIX Symposium on Operating Systems Design and Implementation,
Hollywood, CA, USA, October 2002.

[86] CATHRIN WEISS, RAHUL PREMRAJ, THOMAS ZIMMERMANN, AND ANDREAS ZELLER.
How long will it take to fix this bug? In Proceedings of the 4th IEEE International Workshop
on Mining Software Repositories, Minneapolis, MN, USA, May 2007.

[87] PAUL R. WILSON, SCOTT F. KAPLAN, AND YANNIS SMARAGDAKIS. The case for com­
pressed caching in virtual memory systems. In Proceedings of the US EN/X Annual Technical
Conference, Monterey, CA, USA, June 1999.

[88] BEN-AMI YASSOUR, MULl BEN-YEHUDA, AND 0RIT WASSERMAN. On the DMA map­
ping problem in direct device assignment. In Proceedings of the 3rd Annual Haifa Experimen­
tal Systems Conference, Haifa, Israel, May 2010.

[89] HENG YIN, DAWN SONG, MANUEL EGELE, CHRISTOPHER KRUEGEL, AND ENGIN
KIRDA. Panorama: capturing system-wide information flow for malware detection and analy­
sis. In Proceedings of the 14th ACM Conference on Computer and Communications Security,
Alexandria, VA, USA, October 2007.

[90] WU ZHOU, PENG NINO, XIAOLAN ZHANG, GLENN AMMONS, RUOWEN WANG, AND
VASANTH BALA. Always up-to-date: scalable offline patching of VM images in a compute
cloud. In Proceedings of the 26th Annual Computer Security Applications Conference, Austin,
TX, USA, December 2010.

VITA

DuyLe

Duy Le has been at The College of William & Mary, Williamsburg, VA since 2006. He got his M.S

degree from The Francophone Institute of Computer Science and B.S degree of Computer Science

from Hanoi University of Technology, Vietnam in 2003 and 2001, respectively.

His primary research interests focus on File Systems and Storages, Virtualization, and Cloud

Computing. His research interests also include Energy Efficiency and System Security. In details,

his research aims to tackle challenges of understanding the 110 behavior brought by virtualization

and leveraging the virtualization technology in commodity computing systems. By focusing on both

performance and security issues in a virtualization system, findings from his research will motivate

system designers to carefully analyze the performance gap at the real and virtual boundaries.

	Understanding and Leveraging Virtualization Technology in Commodity Computing Systems
	Recommended Citation

	tmp.1539748087.pdf.UHxLL

