340 research outputs found

    Dynamic Modeling of Routing Protocols Using Colored Petri Net

    Get PDF
    The growth of interest and research on mobile ad-hoc networks is exponentially in recent years. In a Mobile Ad hoc NETwork (MANET), Nodes are mobile in nature, so the node movement in the dynamic environment causes frequent topology changes to the network. In this paper, we are going to model the AODV (Ad hoc On-demand Distance Vector) routing protocol and analyse the STATE SPACE diagram of AODV routing protocol using CPN TOOL to detect the problems in routing protocol and resolve the issues before implementation. Modelling in CPN tools require predefined input values to be incorporated in the states which are used to detect the neighbours and track the path from one node to another node on the network. In this model, we assume all nodes have sufficient energy. State space diagram helps to identify the loops, path breaks and dead nodes in the network. In this paper we done dynamic modelling of AODV routing protocol using cpn with the help of NS2 and MATLab. In this process we chosen a trace file from ns2 convert it into cpn input format with the help of MATLab

    Proceedings of International Workshop "Global Computing: Programming Environments, Languages, Security and Analysis of Systems"

    Get PDF
    According to the IST/ FET proactive initiative on GLOBAL COMPUTING, the goal is to obtain techniques (models, frameworks, methods, algorithms) for constructing systems that are flexible, dependable, secure, robust and efficient. The dominant concerns are not those of representing and manipulating data efficiently but rather those of handling the co-ordination and interaction, security, reliability, robustness, failure modes, and control of risk of the entities in the system and the overall design, description and performance of the system itself. Completely different paradigms of computer science may have to be developed to tackle these issues effectively. The research should concentrate on systems having the following characteristics: • The systems are composed of autonomous computational entities where activity is not centrally controlled, either because global control is impossible or impractical, or because the entities are created or controlled by different owners. • The computational entities are mobile, due to the movement of the physical platforms or by movement of the entity from one platform to another. • The configuration varies over time. For instance, the system is open to the introduction of new computational entities and likewise their deletion. The behaviour of the entities may vary over time. • The systems operate with incomplete information about the environment. For instance, information becomes rapidly out of date and mobility requires information about the environment to be discovered. The ultimate goal of the research action is to provide a solid scientific foundation for the design of such systems, and to lay the groundwork for achieving effective principles for building and analysing such systems. This workshop covers the aspects related to languages and programming environments as well as analysis of systems and resources involving 9 projects (AGILE , DART, DEGAS , MIKADO, MRG, MYTHS, PEPITO, PROFUNDIS, SECURE) out of the 13 founded under the initiative. After an year from the start of the projects, the goal of the workshop is to fix the state of the art on the topics covered by the two clusters related to programming environments and analysis of systems as well as to devise strategies and new ideas to profitably continue the research effort towards the overall objective of the initiative. We acknowledge the Dipartimento di Informatica and Tlc of the University of Trento, the Comune di Rovereto, the project DEGAS for partially funding the event and the Events and Meetings Office of the University of Trento for the valuable collaboration

    Analysis of Mobile Networks’ Protocols Based on Abstract State Machines

    Get PDF
    We define MOTION (MOdeling and simulaTIng mObile adhoc Networks), a Java application based on the framework ASMETA (ASM mETAmodeling), that uses the ASM (Abstract State Machine) formalism to model and simulate mobile networks. In particular, the AODV (Ad-hoc On-demand Distance Vector) protocol is used to show the behaviour of the application

    Ad hoc network security and modeling with stochastic petri nets

    Get PDF
    Advances in wireless technology and portable computing along with demands for high user mobility have provided a major promotion toward the development of ad hoc networks. These networks feature dynamic topology, self-organization, limited bandwidth and battery power of a node. Unlike the existing commercial wireless systems and fixed infrastructure networks, they do not rely on specialized routers for path discovery and traffic routing. Security is an important issue in such networks. Typically, mobile nodes are significantly more susceptible to physical attacks than their wired counterparts. This research intends to investigate the ad hoc network routing security by proposing a performance enhanced Secure ad hoc On-demand Routing protocol (SOR). Specifically, it presents a method to embed Security Level into ad hoc on-demand routing protocols using node-disjoint multipath, and to use maximum hopcount to restrict the number of routing packets in a specific area. The proposed scheme enables the use of security as a marked factor to improve the relevance of the routes discovered by ad hoc routing protocols. It provides customizable security to the flow of routing protocol messages. In general, SOR offers an alternative way to implement security in on-demand routing protocols. Ad hoc network is too complex to allow analytical study for explicit performance expressions. This research presents a Stochastic Petri net-based approach to modeling and analysis of mobile ad hoc network. This work illustrates how this model is built as a scalable model and used to exploit the characteristics of the networks. The proposed scheme is a powerful analytical model that can be used to derive network performance much more easily than a simulation-based approach. Furthermore, the proposed model is extended to study the performance of ad hoc network security by adding multipath selection and security measurement parameters. This research gives a quantificational measurement to analyze the performance of a modified SPN model under the effect of multipath and attack of a hypothetical compromised node

    Responsible Composition and Optimization of Integration Processes under Correctness Preserving Guarantees

    Full text link
    Enterprise Application Integration deals with the problem of connecting heterogeneous applications, and is the centerpiece of current on-premise, cloud and device integration scenarios. For integration scenarios, structurally correct composition of patterns into processes and improvements of integration processes are crucial. In order to achieve this, we formalize compositions of integration patterns based on their characteristics, and describe optimization strategies that help to reduce the model complexity, and improve the process execution efficiency using design time techniques. Using the formalism of timed DB-nets - a refinement of Petri nets - we model integration logic features such as control- and data flow, transactional data storage, compensation and exception handling, and time aspects that are present in reoccurring solutions as separate integration patterns. We then propose a realization of optimization strategies using graph rewriting, and prove that the optimizations we consider preserve both structural and functional correctness. We evaluate the improvements on a real-world catalog of pattern compositions, containing over 900 integration processes, and illustrate the correctness properties in case studies based on two of these processes.Comment: 37 page

    Recommendations Based QoS Trust Aggregation and Routing in Mobile Adhoc Networks

    Get PDF
    In mobile adhoc netwotk (MANET), a node’s quality of service (QoS) trust represents how much it is reliable in quality. QoS trust of a node is computed based on its multiple quality parameters and it is an interesting and challenging area in MANETs. In this work, QoS trust is evaluated by taking into consideration quality parameters like node residual energy, bandwidth and mobility. The proposed method “Recommendations Based QoS Trust Aggregation and Routing in Mobile Adhoc Networks-QTAR” is a frame work. Where the trust is established through four phases like QoS trust computation, aggregation, propagation and routing. The Dempster Shafer Theory (DST) is used for aggregation of trust recommendations. In the network, trust information is propagated through HELLO packets. Each node stores the QoS trust information of other nodes in the form of trust matrices. We applied matrix algebra operations on trust matrices for route establishment from source to destination. The time and space complexity of proposed method is discussed theoretically. The simulation is conducted for the varying of node velocity and network size, where the proposed method shown considerable improvement over existing protocols

    Improving Scalability and Usability of Parallel Runtime Environments for High Availability and High Performance Systems

    Get PDF
    The number of processors embedded in high performance computing platforms is growing daily to solve larger and more complex problems. Hence, parallel runtime environments have to support and adapt to the underlying platforms that require scalability and fault management in more and more dynamic environments. This dissertation aims to analyze, understand and improve the state of the art mechanisms for managing highly dynamic, large scale applications. This dissertation demonstrates that the use of new scalable and fault-tolerant topologies, combined with rerouting techniques, builds parallel runtime environments, which are able to efficiently and reliably deliver sets of information to a large number of processes. Several important graph properties are provided to illustrate the theoretical capability of these topologies in terms of both scalability and fault-tolerance, such as reasonable degree, regular graph, low diameter, symmetric graph, low cost factor, low message traffic density, optimal connectivity, low fault-diameter and strongly resilient. The dissertation builds a communication framework based on these topologies to support parallel runtime environments. Such a framework can handle multiple types of messages, e.g., unicast, multicast, broadcast and all-gather. Additionally, the communication framework has been formally verified to work in both normal and failure circumstances without creating any of the common problems such as broadcast storm, deadlock and non-progress cycle

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication

    Eighth Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark, October 22-24, 2007

    Get PDF
    This booklet contains the proceedings of the Eighth Workshop on Practical Use of Coloured Petri Nets and the CPN Tools, October 22-24, 2007. The workshop is organised by the CPN group at the Department of Computer Science, University of Aarhus, Denmark. The papers are also available in electronic form via the web pages: http://www.daimi.au.dk/CPnets/workshop0

    An energy-aware and QOS assured wireless multi-hop transmission protocol

    Get PDF
    A thesis submitted in fulfillment of the requirements for the degree of Master of Science by researchThe Ad-hoc network is set up with multiple wireless devices without any pre-existing infrastructure. It usually supports best-effort traffic and occasionally some kinds of Quality of Service (QoS). However, there are some applications with real-time traffic requirements where deadlines must be met. To meet deadlines, the communication network has to support the timely delivery of inter-task messages. Furthermore, energy efficiency is a critical issue for battery-powered mobile devices in ad-hoc networks. Thus, A QoS guaranteed and energy-aware transmission scheme is one hot of research topics in the research area. The MSc research work is based on the idea of Real-Time Wireless Multi-hop Protocol (RT-WMP). RT-WMP is a well known protocol originally used in the robots control area. It allows wireless real-time traffic in relatively small mobile ad-hoc networks using the low-cost commercial IEEE 802.11 technology. The proposed scheme is based on a token-passing approach and message exchange is priority based. The idea of energy-aware routing mechanism is based on the AODV protocol. This energy-saving mechanism is analysed and simulated in our study as an extension of the RT-WMP. From the simulation results and analysis, it has been shown that adding energy-aware mechanism to RT-WMP is meaningful to optimise the performance of traffic on the network
    corecore