
Analysis of Mobile Networks’ Protocols
Based on Abstract State Machine

Emanuele Covino and Giovanni Pani

Dipartimento di Informatica
Universitá di Bari, Italy

emanuele.covino@uniba.it, giovanni.pani@uniba.it

Abstract. We define MOTION (MOdeling and simulaTIng mObile ad-
hoc Networks), a Java application based on the framework ASMETA
(ASM mETAmodeling), that uses the ASM (Abstract State Machine)
formalism to model and simulate mobile networks. In particular, the
AODV (Ad-hoc On-demand Distance Vector) protocol is used to show
the behaviour of the application.

Keywords: Abstract State Machines; mobile ad-hoc networks.

1 Introduction

Mobile Ad-hoc NETwork (MANET) is a technology used to establish and to
perform wireless communication among both stationary and mobile devices in
absence of physical infrastructure [1]. While stationary devices cannot change
their physical location, mobile devices are free to move randomly: they can enter
or leave the network and change their relative positions. Thus, the network lacks
a predictable topology. Each device is able to broadcast messages inside its radio
range only; outside this area, communication is possible only by means of co-
operation between intermediate devices. They can act as initiator, intermediate
and destination of a communication. This research area is receiving attention in
the last few years, in the context of smart mobile computing, cloud computing
and Cyber Physical Systems ([21] and [13]).

One of the most popular routing protocols for MANETs is the Ad-hoc On-
demand Distance Vector (AODV, [22]), and several variants have been intro-
duced in order to reduce communication failures due to topology changes. For
example, Reverse-AODV (R-AODV, [18] and [8]) overcomes this problem by
building all possible routes between initiator and destination: in case of failure
of the primary route (typically the shortest one), communication is still provided
by the alternative routes. More recently, variants have been proposed to cope
with congestion issues ([17] and [10]) and to improve the security on commu-
nications, using cryptography to secure data packets during their transmission
(Secure-AODV, [29]), and adopting the so-called trust methods, in which nodes
are part of the communication if and only if they are considered trustworthy
(Trusted-AODV, [19] and [10]).



2 Covino, Pani

The technology of Mobile Ad-hoc NETwork (MANET) raises several prob-
lems about the analysis of performance, synchronization and concurrency of the
network. Moreover, the request of computing services characterized by high qual-
ity levels, broad and continuous availability, and inter-operability over heteroge-
neous platforms, increases the complexity of the systems’ architecture. Therefore,
it is important to be able to verify qualities like responsiveness, robustness, cor-
rectness and performance, starting from the early stages of the development. To
do this, many studies are executed with the support of simulators [3], [27], [25].
They are suitable to evaluate performance and to compare different solutions,
implementing the network at a low abstraction level, and considering only a lim-
ited range of scenarios. The simulators, by their intrinsic nature, cannot provide
specification at higher level, and they cannot support proofs of correctness, of
synchronization and of deadlock properties. They measure performances, but
they cannot model MANETs with a higher abstraction level of specification.

To do this, formal methods that model the process are needed. For instance,
the process-calculus [24], CMN (Calculus of Mobile Ad Hoc Networks, [20]),
and AWN (Algebra for Wireless Networks, [12]) capture essential characteristic
of nodes, such as mobility or packets broadcasting. Petri nets have been em-
ployed to study the modeling and verification of routing protocols [28] and the
evaluation of protocols performance [11]. With respect to process calculi, state-
based models provide a suitable way of representing algorithms, and they are
typically equipped with tools, such as CPN Tools [16], that allow to simulate
the algorithms, directly. However, we believe that proposed state-based models
lack expressiveness: basically, they provide only a single level of abstraction, and
cannot support refinements to executable code. Instead, this characteristic is in-
trinsic in the ASM model. Even if formal methods are satisfactory for reasoning
about correctness properties, they rarely are useful for studying performance
properties [9]. Generally speaking, correctness properties are formally proved,
while the performance properties are investigated through simulations of the
system.

Our aim is to use the ASM formalism to study formal properties, and to use
MOTION as a tool for evaluating performance properties. The ASM approach
provides a way to describe algorithms in a simple abstract pseudo-code, which
can be translated into a high-level programming language source code, as in [7]
and in [15].

In Section 2, we recall concepts and definitions related to the Abstract State
Machine’s model. In Section 3, we describe three mobile network’s protocols:
AODV (Ad-hoc On-demand Distance Vector), N-AODV (NACK-based AODV),
and BN-AODV (Black hole-free N-AODV). In Section 4, we introduce the defi-
nition and specific behaviour of MOTION, with respect to the ASM’s model of
the previous network protocols. Conclusions and future work can be found in
Section 5.



ASM used to model MANET 3

2 Abstract State Machines

An Abstract State Machine (ASM, [7]) M is a tuple (Σ,S,R, PM ). Σ is a sig-
nature, that is a finite collection of names of total functions; each function has
arity n, and the special value undef belongs to the range (undef represents an
undetermined object, the default value). Relations are expressed as particular
functions that always evaluate to true, false or undef.

S is a finite set of abstract states. The concept of abstract state extends the
usual notion of state occurring in finite state machines: it is an algebra over the
signature Σ, i.e. a non-empty set of objects together with interpretations of the
functions in Σ. Pairs of function names together with values for their arguments
are called locations: they are the abstraction of the notion of memory unit.
Since a state can be viewed as a function that maps locations to their values,
the current configuration of locations, together with their values, determines the
current state of the ASM.

R is a finite set of rule declarations built starting from the transition rules
skip, update (f(t1, t2, . . . , tn) := t), conditional (if φ then P elseQ), let (let x = t
in P ), choose (choose x with φ do P ), sequence (P seq Q), call (r(t1, . . . , tn)),
block (P par Q) (see [7] for their operational semantics). The rules transform
the states of the machine, and they reflect the notion of transition occurring in
traditional transition systems. A distinguished rule PM , called the main rule of
the machine, represents the starting point of the computation.

A move of a ASM, in a given state, consists of the execution of all the
rules whose conditions are true in that state. Since different updates could affect
the same location, it is necessary to impose a consistency requirement: a set of
updates is said to be consistent if it contains no pairs of updates referring to the
same location. Therefore, if the updates are consistent, the result of a move is
the transition of the machine from the current state to another; otherwise, the
computation doesn’t produce a next state. A run is a (possibly infinite) sequence
of moves: they are iterated until no more rules are applicable.

The aforementioned notions refer to the basic ASMs. However, there exist
some generalisations, e.g. Parallel ASMs and Distributed ASMs (DASMs) [15].
Parallel ASMs are basic ASMs enriched with the rule forall x with φ do P , to
express the simultaneous execution of the same ASM P over x satisfying the
condition φ. A Distributed ASM is intended as a finite number of independent
agents, each one executing its own underlying ASM: it is capable of capturing
the formalization of multiple agents acting in a distributed environment. A run,
which is defined for sequential systems as a sequence of computation steps of
a single agent, is defined as a partial order of moves of finitely many agents,
such that the three conditions of co-finiteness, sequentiality of single agents, and
coherence are satisfied. Roughly speaking, a global state corresponds to the union
of the signatures of each ASM together with interpretations of their functions.



4 Covino, Pani

3 MANET and routing protocols

Mobile Ad-hoc NETworks are networks of autonomous mobile nodes whose
topology is not predefined. Each node has a transmission radio range within
which it can transmit data to other nodes, directly. Because of the potential
movements of the nodes, the routes connecting them can change rapidly.

Several routing protocols have been proposed; among them, the Ad-hoc On-
demand Distance Vector (AODV) is one of the most popular. Indeed, a large
number of simulation studies are dealing with it, representing a reliable baseline
for comparison to the results of simulations executed with MOTION. Moreover,
we add two variants of AODV: NACK-based Ad-hoc On-demand Distance Vec-
tor (N-AODV, [4]), that improves the awareness that each host has about the
network topology, and Blackhole-free N-AODV (BN-AODV, [5]), that detects
the presence of malicious nodes leading to a blackhole attack.

3.1 Ad-hoc On-demand Distance Vector (AODV)

This routing protocol has been defined in [22]: it is a reactive protocol that com-
bines two mechanisms, namely the route discovery and the route maintenance,
in order to store some knowledge about the routes into routing tables. The rout-
ing table associated with each node is a list of all the discovered (and still valid)
routes towards other nodes in the network, together with other information. In
particular, for the purposes of the present paper, an entry of the routing table
of the node i concerning a node j includes: the address of j; the last known
sequence number of j; the hop count field, expressing the distance between i and
j; and the next hop field, identifying the next node in the route to reach j.

The sequence number is an increasing number maintained by each node,
that expresses the freshness of the information about the respective node. When
an initiator wants to start a communication session towards the destination,
it checks if a route is currently stored in its routing table. If so, the protocol
ends and the communication starts. Otherwise, the initiator broadcasts a control
packet called route request (RREQ) to all its neighbors.

An RREQ packet includes the initiator address and broadcast id, the desti-
nation address, the sequence number of the destination (i.e., the latest available
information about the destination), and the hop count, initially set to 0, and
increased by each intermediate node. The pair <initiator address; broadcast id>
identifies the packet, uniquely; this implies that duplications of RREQs already
handled by nodes can be ignored.

When an intermediate node n receives an RREQ, it creates the routing table
entry for the initiator, or updates it in the fields related to the sequence number
and to the next hop. Then, the process is iterated: n checks if it knows a route
to the destination with corresponding sequence number greater than the one
contained into the RREQ (this means that its knowledge about the route is
more recent). If so, n unicasts a second control packet (the route reply, RREP)
back to the initiator. Otherwise, n updates the hop count field and broadcasts
once more the RREQ to all its neighbors.



ASM used to model MANET 5

The process successfully ends when a route to the destination is found. While
the RREP travels towards the initiator, routes are updated inside the routing
tables of the traversed nodes, creating an entry for the destination, when needed.
Once the initiator receives back the RREP, the communication can start. If the
nodes’ movements break a link (i.e., a logical link stored in a routing table is
no more available), a route maintenance is executed in order to notify the error
and to invalidate the corresponding routes: to this end the control packet route
error (RERR) is used.

3.2 NACK-based AODV (N-AODV)

One of the main disadvantages of the AODV protocol is the poor knowledge
that each node has about the network topology. In fact, each node n is aware
of the existence of a node m only when n receives an RREQ, either originated
by, or directed to m. In order to improve the network topology awareness, the
NACK-based AODV routing protocol has been proposed and modeled by means
of a Distributed ASM in [4].

This protocol is a variant of AODV: it adds a Not ACKnowledgment (NACK)
control packet in the route discovery phase. Whenever an RREQ originated by
n and directed to m is received by the node p that doesn’t know anything about
m, p unicasts the NACK to n. The purpose of this control packet is to state the
ignorance of p about m. In this way, n (as well as all the nodes in the path to
it) receives fresh information about the existence and the relative position of p.
Therefore, on receiving the NACK, all the nodes in the path to p add an entry
in their respective routing tables, or update the pre-existing entry. N-AODV has
been experimentally validated through simulations, showing its efficiency and
effectiveness: the nodes in the network actually improve their knowledge about
the other nodes and, in the long run, the number of RREQ decreases, with
respect to the AODV protocol.

3.3 Black hole-free N-AODV (BN-AODV)

All routing protocols assume the trustworthiness of each node; this implies that
MANETS are very prone to the black hole attack [26]. In AODV and N-AODV
a black hole node produces fakes RREPs, in which the sequence number is as
great as possible, so that the initiator establishes the communication with the
malicious node, and the latter can misuse or discard the received information.
The black hole can be supported by one or more colluders, that confirm the
trustworthiness of the fake RREP. The Black hole-free N-AODV protocol [5]
allows the honest nodes to intercept the black holes and the colluders, thanks to
two control packets: each intermediate node n receiving an RREP must verify
the trustworthiness of the nodes in the path followed by the RREP; to do this, n
produces a challenge packet (CHL) for the destination node, and only the latter
can produce the correct response packet (RES). If n receives RES, it sends the
RREP, otherwise the next node towards the destination is a possible black hole.



6 Covino, Pani

4 MOTION

4.1 Development and behavior

As stated before, MOTION (MOdeling and simulaTIng mObile ad-hoc Net-
works) is a Java application that allows to specify the simulation parameters, to
execute the network described, and to collect the output data of the simulation.

To define MOTION, we have used the ASM-based method consisting in de-
velopment phases, from requirements’ specification to implementation. Some en-
vironments support this method, and among them the ASMETA (ASM mETA-
modeling) framework [2], [14]. This framework is characterized by logical compo-
nents that capture the requirements by constructing the so-called ground models,
i.e. representations at high level of abstraction that can be graphically depicted.
Starting from ground models, hierarchies of intermediate models can be built by
stepwise refinements, leading to executable code: each refinement describes the
same system at a finer granularity. The framework supports both verification,
through formal proof, and validation, through simulation.

MOTION is developed within the ASMETA framework thanks to the ab-
stract syntax defined in the AsmM metamodel; the behavior of the MANET is
modelled using the AsmetaL language, and then the network is executed by the
AsmetaS simulator. Since AsmetaS simulates instances of the model expressed
by means of the AsmetaL, the information concerning each instance (number of
agents and their features, for instance) must be recorded into the AsmetaL file.

The executions of MOTION and ASMETA are interleaved: MOTION pro-
vides the user interface and captures the data inserted by the user, representing
the parameters of the simulation. MOTION then includes these data into the
AsmetaL file, and it runs AsmetaS. AsmetaS executes an ASM move, simulating
the behavior of the network protocol over the current data, and it records the
values of the locations in a log file, for each state. At the end of each move the
control goes back to MOTION: it gets the information about the results of the
ASM move, such as the relative position of the hosts, the sent/received packets,
and the values of waiting time, and it records them into the AsmetaL file. Then,
MOTION invokes AsmetaS for the next move. Even if this interleaved execu-
tions requires a good amount of interaction work, this is done in order to collect
the information about the evolution of the network step by step, and to use it
for the analysis of the performances and behaviour of the network itself.

At the end of the simulation, MOTION reads the final log file, parses it, and
stores the collected results in a csv file. Web pages, with the complete package,
can be found at https://sourceforge.net/projects/motion-project/.

4.2 Defining the mobility model

A realistic simulation of a MANET should take into account all its features.
We have decided that the movement issues, as well as the amplitude of the
radio range, are defined within the mobility model. We assume that the whole
network topology is expressed by the connections among devices, implicitly, and



ASM used to model MANET 7

for each of them we consider only its current neighborhood. More precisely, in
MOTION the network topology is expressed by an adjacency matrix C, such
that cij = 1 if i and j are neighbors, 0 otherwise, for each pair of devices i
and j. This implies that we can use concepts and properties of graph theory;
for instance, the reachability between two agents ai and aj is expressed by the
predicate isLinked(ai, aj), which evaluates to true if there exists a coherent path
from ai to aj , to false otherwise.

Within MOTION, the mobility model is implemented into a Java class that,
before executing any ASM move, updates the adjacency matrix. To this end,
each cij is randomly set to 0 or 1, according to a mobility parameter defined by
the user (see Section 4.4). The new values of the matrix are then set within the
AsmetaL file, so that the ASM move can be executed, accordingly.

4.3 The Abstract State Machine-based models

The AODV routing protocol has been formally modelled through ASMs in [6]
(Chapter 6). It is described as a set of nodes, each one representing a device. A
modified version is used in MOTION, that takes into consideration the parameter
Timeout (that is, the waiting time for the route-reply packet). The high-level
definition of MOTION for AODV is:

MAIN RULE AODV =
forall a ∈ Nodes do AODVSPEC(a)

where

AODVSPEC(a) =
forall dest ∈ Nodes with dest 6= a do

if WaitingForRouteTo(a, dest) then
if Timeout(a, dest) > 0 then

Timeout(a, dest) := Timeout(a, dest)-1
else

WaitingForRouteTo(a, dest) := false
if WishToInitiate(a) then PREPARECOMM
if not Empty(Message) then ROUTER

If the device needs to start a communication (i.e. the predicate WishToIni-
tiate evaluates to true), then PREPARECOMM is called. The predicate Wait-
ingForRouteTo expresses that the discovery process previously started is still
running; in this case, if the waiting time for RREP is not expired (i.e., Time-
out() > 0), the time-counter is decreased. Finally, if the device has received a
message (either RREQ, RREP or RERR), ROUTER is called, with

ROUTER = ProcessRouteReq
ProcessRouteRep
ProcessRouteErr



8 Covino, Pani

where each process expresses the behavior of the device, depending on the type
of the message received.

The main difference between the previous model and the ASM model for N-
AODV concerns ROUTER, that includes the call to PROCESS-NACK, in order
to unicast the NACK packet, if needed.

The BN-AODV model is more structured, because it has to describe the be-
havior of three different kinds of agents: honest hosts, black holes, and colluders.
So, the main rule has the form:

MAIN RULE BN-AODV=
forall a ∈ Blackhole do BLACKHOLESPEC(a)
forall a ∈ Colluder do COLLUDERSPEC(a)
forall a ∈ Honest do HONESTSPEC(a)

where HONESTSPEC describes the behavior of the honest nodes, and it’s anal-
ogous to AODVSPEC. BLACKHOLESPEC and COLLUDERSPEC are the spec-
ifications for the non-honest nodes and the colluders, respectively. Moreover,
ROUTER for the honest nodes must verify the trustworthiness of the received
RREPs.

Thanks to the formalization of the protocols, some correctness properties
have been proved in the past, such as the starvation freeness for the AODV
protocol, the properness of the packet (either NACK or RREP) received back
by the initiator of any communication, when it is not isolated for N-AODV, and
the capability to intercept blackhole attacks for BN-AODV.

4.4 Specific behavior of the tool

A simulation in MOTION is performed in a number of sessions established by
the user (10 sessions, Figure 1), each of which has a duration (50 moves, Figure
1); during each session, the MANET includes a number of devices defined by the
user, that depends on the specific evolution of the network (due to movements,
some of them can be disconnected). Moreover, during each session, each device is
the initiator for a number of attempts for establishing a communication, each of
them towards a destination different from the initiator itself: the user expresses
the probability that each device acts as an initiator by setting the parameter
Initiator Probability (10 per cent, Figure 1). Thanks to the intrinsic parallelism
in the execution of the ASM’s rules, more attempts can be simultaneously exe-
cuted. A communication attempt is considered successful if the initiator receives
an RREP packet within the waiting time expressed by the parameter RREP
Timeout ; otherwise, the attempt is considered failed.

In MOTION, the devices mobility is defined by the user by means of two
parameters, namely Initial connectivity and Mobility level. The former defines
the initial topology of the MANET: it expresses the probability that each device
is directly linked to any other. During the simulation, the devices mobility is
expressed by the random redefinition of the values of the adjacency matrix C.
More precisely, for each pair of devices < ai, aj >, and for each move of the ASM,
the values of C are changed with a probability expressed by Mobility level.



ASM used to model MANET 9

Fig. 1. MOTION user interface for AODV protocol

When the BN-AODV routing protocol is simulated, the MOTION user inter-
face includes the definition of the number of black holes and colluders, and two
parameters establishing the increment of the fake sequence number produced by
the black holes. Figure 1 shows the current state of the simulation in the panel
under the two buttons START and STOP.

From the ASM perspective, there are two different machines, both called by
the ASMETA’s main rule. The first one is OBSERVERPROGRAM: it is not part
of the MANET, but it is used in order to manage the execution. It initializes
the locations and data structures for all devices, manages the mobility (setting
the initial topology and resetting the adjacency matrix at each move), and up-
dates the counter for the time expiration. The second machine, called by the
main rule, is the model of the devices’ behavior. Currently, MOTION allows the
users to study AODV, N-AODV, and BN-AODV; for all of them, the MANET
is modeled by means of a Distributed ASM. In both AODV and N-AODV all
the nodes behave in the same way, described by the respective DASM, so the
machine specifying the protocol is called; at each move the machine randomly
decides if the current agent will initiate new communication attempts by invok-
ing PREPARECOMM, then it acts as a router by processing the proper control
packets (with ROUTER).



10 Covino, Pani

5 Conclusions and future work

Mobile Ad-hoc NETwork is a technology used to perform wireless communica-
tions among mobile devices in absence of physical infrastructure. It is widely used
in the context of smart mobile computing, cloud computing and Cyber Physi-
cal Systems. Several routing protocols have been developed, and problems have
been raised about the measurement of performances of these networks, and also
about the formal analysis of qualities like responsiveness, robustness, correct-
ness. In order to address these problems, both simulators and formal description
methods are needed. The former allow us to measure performance through direct
simulation, but they aren’t suitable to describe the properties of the networks.
On the other hand, formal methods can do it, but they can hardly be used for
studying performance properties.

In this paper, we have introduced MOTION, a Java application in which
MANET’s are modeled as an Abstract State Machine by means of the AsmetaL
representation. This representation can be used to prove formal properties of
the network, as well as can be simulated by the simulation engine AsmentaS.
MOTION can collect the results of this simulation, that can be used for perfor-
mances’ analysis. We have validated MOTION on the Ad-hoc On-Demand Vec-
tor protocol and on two of its variants (concerning the host’s network topology
awareness and the ability to intercept blackhole attacks). Note that MOTION
itself has been developed within the ASMETA framework, thanks to the abstract
syntax defined in the AsmM metamodel.

A sensible improvement of MOTION could be the definition of a new inter-
face, in which the dynamic evolution of the network, during the computations,
is shown (as in [23]). Moreover, a complexity analysis of the network’s protocols
and the related algorithms could be performed, when the network is represented
by means of ASM’s. Finally, a change of the structure that represents the connec-
tivity among the nodes (from adjacency matrix to adjacency list, for instance),
could lead to a dramatic improvement of the resource-consumption during the
simulation of the behaviour of the network.

References

1. D. P. Agrawal, Q.-A. Zeng. Introduction to wireless and mobile systems. Cengage
learning - Fourth Edition, Boston, 2016.

2. P. Arcaini, A. Gargantini, E. Riccobene, P. Scandurra. A model-driven process for
engineering a toolset for a formal method. Software: Practice and Experience vol.
41(2), pp. 155–166, 2011.

3. S. Basagni, M. Mastrogiovanni, A. Panconesi, C. Petrioli. Localized protocols for ad
hoc clustering and backbone formation: A performance comparison. IEEE Trans.
Parallel Distrib. Syst., vol. 17(4), pp. 292–306, 2006, doi:10.1109/TPDS.2006.52,
URL https://doi.org/10.1109/TPDS.2006.52

4. A. Bianchi, S. Pizzutilo, G. Vessio. Preliminary description of nack-based ad-hoc
on-demand distance vector routing protocol for MANETS. In 2014 9th Interna-
tional Conference on Software Engineering and Applications (ICSOFT-EA), pp.
500–505. IEEE, 2014.



ASM used to model MANET 11

5. A. Bianchi, S. Pizzutilo, G. Vessio. Intercepting blackhole attacks in manets: An
ASM-based model. In International Conference on Software Engineering and For-
mal Methods, pp. 125–137. Springer, 2017.

6. E. Börger, A. Raschke. Modeling Companion for Software Practitioners, Springer,
2018. doi:10.1007/978-3-662-56641-1. URL https://doi.org/10.1007/978-3-662-
56641-1

7. E. Börger, R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer Verlag, Berlin, 2003.

8. L. Bononi, G. D’Angelo, L. Donatiello. Hla-based adaptive distributed simulation
of wireless mobile systems. In Proceedings of the seventeenth workshop on Parallel
and distributed simulation, p. 40, IEEE Computer Society, 2003.

9. R. Calinescu, C. Ghezzi, M. Kwiatkowska, R. Mirandola. Self-adaptive software
needs quantitative verification at runtime. Communications of the ACM, vol. 55(9),
pp. 69–77, 2012.

10. N. Das, S. K. Bisoy, S. Tanty. Performance analysis of TCP variants using routing
protocols of manet in grid topology. In Cognitive Informatics and Soft Computing,
pp. 239–245, Springer, 2019.

11. F. Erbas, K. Kyamakya, K. Jobmann. Modelling and performance analysis of a
novel position-based reliable unicast and multicast routing method using coloured
Petri nets. In 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall,
Vol. 5, pp. 3099–3104, IEEE, 2003.

12. A. Fehnker, R. van Glabbeek, P. Höfner, A. McIver, M. Portmann, W. L. Tan. A
process algebra for wireless mesh networks In European Symposium on Program-
ming, pp. 295–315, Springer, 2012.

13. A. Garcia-Santiago, J. Castaneda-Camacho, J. F. Guerrero-Castellanos, G. Mino-
Aguilar, V. Y. Ponce-Hinestroza. Simulation platform for a VANET using the
truetime toolbox: Further result toward cyber-physical vehicle systems. IEEE 88th
Vehicular Technology Conference (VTC-Fall), IEEE, pp. 1–5, 2018.

14. A. Gargantini, E. Riccobene, P. Scandurra. A metamodel-based language and
a simulation engine for abstract state machines. J. UCS vol. 14(12), pp. 1949–
1983, 2008. doi:10.3217/jucs-014-12-1949. URL https://doi.org/10.3217/jucs-014-
12-1949

15. U. Glässer, Y. Gurevich, M. Veanes. Abstract communication model for
distributed systems. IEEE Trans. Software Eng., 30(7), pp. 458–472, 2004.
doi:10.1109/TSE.2004.25. URL https://doi.org/10.1109/TSE.2004.25

16. K. Jensen, L. M. Kristensen, L. Wells. Coloured Petri nets and CPN tools for
modelling and validation of concurrent systems. International Journal on Software
Tools for Technology Transfer vol. 9(3-4), pp. 213–254, 2007.

17. N. Kaur, R. Singhai. Analysis of traffc impact on proposed congestion control
scheme in AODV. Wireless Personal Communications, pp. 1–24, 2019.

18. C. Kim, E. Talipov, B. Ahn. A reverse AODV routing protocol in ad hoc mobile
networks. In International Conference on Embedded and Ubiquitous Computing,
pp. 522–531, Springer, 2006.

19. X. Li, M. R. Lyu, J. Liu. A trust model based routing protocol for secure ad hoc
networks. In 2004 IEEE Aerospace Conference Proceedings , Vol. 2, pp. 1286–1295,
IEEE, 2004.

20. M. Merro. An observational theory for mobile ad hoc networks. Information and
Computation, vol. 207(2), pp. 194–208, 2009.

21. A. P. Pandian, J. I.-Z. Chen, Z. A. Baig Sustainable mobile networks and its
applications. Mobile networks and application, vol. 24(2), pp. 295–297, 2019.



12 Covino, Pani

22. C. E. Perkins, E. M. Belding-Royer, S. R. Das. Ad hoc on-demand distance vec-
tor (AODV) routing. RFC 3561 (2003), pp. 1–37, doi:10.17487/RFC3561. URL
https://doi.org/10.17487/RFC3561.

23. N. Saquib, Md. Sabbir Rahman Sakib, Al-Sakib Khan Pathan. ViSim: A user-
friendly graphical simulation tool for performance analysis of MANET routing
protocols. Mathematical and Computer Modelling, Vol 53, 11–12, June 2011, pp.
2204-2218

24. A. Singh, C. Ramakrishnan, S. A. Smolka. A process calculus for mobile ad-hoc
networks. Science of Computer Programming vol.75(6), pp. 440–469, 2010.

25. D. A. Tran, H. Raghavendra. Congestion adaptive routing in mobile ad-hoc net-
works. IEEE Trans. Parallel Distrib. Syst., vol. 17(11), pp. 1294–1305, 2006,
doi:10.1109/TPDS.2006.151, URL https://doi.org/10.1109/TPDS.2006.151.

26. F.-H. Tseng, L.-D. Chou, H.-C. Chao. A survey of black hole attacks in wireless
mobile ad hoc networks. Human-centric computing and information sciences, 1,4,
2011.

27. J. Wu, F. Dai. Mobility-sensitive topology control in mobile ad hoc networks. IEEE
Trans. Parallel Distrib. Syst., vol. 17(6), pp. 522–535, doi:10.1109/TPDS.2006.73,
URL https://doi.org/10.1109/TPDS.2006.73.

28. C. Xiong, T. Murata, J. Leigh. An approach for verifying routing protocols in mo-
bile ad hoc networks using Petri nets. In Proceedings of the IEEE 6th Circuits and
Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless
Communication, Vol. 2, pp. 537–540, IEEE, 2004.

29. M. G. Zapata. Secure ad hoc on-demand distance vector routing. ACM SIGMO-
BILE Mobile Computing and Communications Review, 6(3), pp. 106–107, 2002.


