14 research outputs found

    On Computing the Worst-case H∞ Performance of Lur'e Systems with Uncertain Time-invariant Delays

    Get PDF
    This paper presents a worst-case H∞ performance analysis for Lur'e systems with time-invariant delays. The sucient condition to guarantee an upper bound of worst-case performance is developed based on the delay-partitioning Lyapunov-Krasovskii functional containing the integral of sector-bounded nonlinearities. Using Jensen inequality and S-procedure, the delay-dependent criterion is given in terms of linear matrix inequalities. In addition, we extend the criterion to compute the worst-case performance for Lur'e systems subject to norm-bounded uncertainties by using a matrix eliminating lemma. Numerical results show that our criterion provide the least upper bound on the worst-case H∞ performance comparing to the criteria derived based on existing techniques

    An improved stability criterion for discrete-time time-delayed Lur’e systemwith sector-bounded nonlinearities

    Get PDF
    The absolute stability problem of discrete-time time-delayed Lur\u27e systems with sector bounded nonlinearities is investigated in this paper. Firstly, a modified Lyapunov-Krasovskii functional (LKF) is designed with augmenting additional double summation terms, which complements more coupling information between the delay intervals and other system state variables than some previous LKFs. Secondly, some improved delay-dependent absolute stability criteria based on linear matrix inequality form (LMI) are proposed via the modified LKF and the relaxed free-matrix-based summation inequality technique application. The stability criteria are less conservative than some results previously proposed. The reduction of the conservatism mainly relies on the full use of the relaxed summation inequality technique based on the modified LKF. Finally, two common numerical examples are presented to show the effectiveness of the proposed approach

    Model Reduction of Hybrid Systems

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    5th EUROMECH nonlinear dynamics conference, August 7-12, 2005 Eindhoven : book of abstracts

    Get PDF

    Consensus in multi-agent systems with time-delays

    Get PDF
    Different consensus problems in multi-agent systems have been addressed in this thesis. They represent improvements with respect to the state of the art. In the first part of the thesis in luding Chapters 2, 3, and 4, the state of the art of the representation and stability analysis of consensus problems, time-delay systems, and sampled-data systems have been presented. Novel contributions have been illustrated in Chapters 5-8. Particularly, in Chapter 5 we reported the results of Zareh et al. (2013b), where we investigated the consensus problem for networks of agents with double integrator dynamics affected by time-delay in their coupling. We provided a stability result based on the Lyapunov-Krasovskii functional method and a numerical proc edure based on an LMI condition which depends only on the algebraic connectivity of the considered network topologies, thus reducing greatly the computational complexity of the procedure. Obviously, this result implies the existence of a minimum dwell time such that the proposed consensus protocol is stable for slow swit things between network topologies with suffient algebraic connectivity. Future work will involve actually computing such a dwell time by adopting a multiple Lyapunov function method and evaluating the worst case sider only delayed relative measurements instead of delayed absolute values of the neighbors' state variables. The results of Zareh et al. (2013a) were addressed in Chapter 6, in which a on- tinuous time version of a consensus on the average protocol for arbitrary strongly connected directed graphs is proposed and its convergence properties with respect to time delays in the local state update are characterized. The convergenc e properties of this algorithm depend upon a tuning parameter that an be made arbitrary small to prove stability of the networked system. Simulations have been presented to corroborate the theoretical results and show that the existenc e of a small time delay an a tually improve the algorithm performance. Future work will include an extension of the mathematical characterization of the proposed algorithm to consider possibly heterogeneous or time-varying delays. In Chapter 7 we proposed a PD-like consensus algorithm for a second-order multi- agent system where, at non-periodic sampling times, agents transmit to their neighbors information about their position and veloc ity, while each agent has a perfect knowledge of its own state at any time instant. Conditions have been given to prove onsensus to a ommon xed point, based on LMIs verification. Moreover, we also show how it is possible to evaluate an upper bound on the de ay rate of exponential convergence of stable modes. In Chapter 8, mainly based on our paper Zareh et al. (2014b), we considered the same problem as in Chapter 7. The main contribution consists in proving consensus to a common fixed point, based on LMIs verification, under the assumption that the network topology is not known and the only information is an upper bound on the connectivity. Two are the main directions of our future research in this framework. First, we want to compute analytically an upper bound on the value of the second largest eigenvalue of the weighted adjacency matrix that guarantees consensus, as a function of the other design parameters. Second, we plan to study the case where agents do not have a perfect knowledge of their own state

    Consensus in multi-agent systems with time-delays

    Get PDF
    Different consensus problems in multi-agent systems have been addressed in this thesis. They represent improvements with respect to the state of the art. In the first part of the thesis in luding Chapters 2, 3, and 4, the state of the art of the representation and stability analysis of consensus problems, time-delay systems, and sampled-data systems have been presented. Novel contributions have been illustrated in Chapters 5-8. Particularly, in Chapter 5 we reported the results of Zareh et al. (2013b), where we investigated the consensus problem for networks of agents with double integrator dynamics affected by time-delay in their coupling. We provided a stability result based on the Lyapunov-Krasovskii functional method and a numerical proc edure based on an LMI condition which depends only on the algebraic connectivity of the considered network topologies, thus reducing greatly the computational complexity of the procedure. Obviously, this result implies the existence of a minimum dwell time such that the proposed consensus protocol is stable for slow swit things between network topologies with suffient algebraic connectivity. Future work will involve actually computing such a dwell time by adopting a multiple Lyapunov function method and evaluating the worst case sider only delayed relative measurements instead of delayed absolute values of the neighbors' state variables. The results of Zareh et al. (2013a) were addressed in Chapter 6, in which a on- tinuous time version of a consensus on the average protocol for arbitrary strongly connected directed graphs is proposed and its convergence properties with respect to time delays in the local state update are characterized. The convergenc e properties of this algorithm depend upon a tuning parameter that an be made arbitrary small to prove stability of the networked system. Simulations have been presented to corroborate the theoretical results and show that the existenc e of a small time delay an a tually improve the algorithm performance. Future work will include an extension of the mathematical characterization of the proposed algorithm to consider possibly heterogeneous or time-varying delays. In Chapter 7 we proposed a PD-like consensus algorithm for a second-order multi- agent system where, at non-periodic sampling times, agents transmit to their neighbors information about their position and veloc ity, while each agent has a perfect knowledge of its own state at any time instant. Conditions have been given to prove onsensus to a ommon xed point, based on LMIs verification. Moreover, we also show how it is possible to evaluate an upper bound on the de ay rate of exponential convergence of stable modes. In Chapter 8, mainly based on our paper Zareh et al. (2014b), we considered the same problem as in Chapter 7. The main contribution consists in proving consensus to a common fixed point, based on LMIs verification, under the assumption that the network topology is not known and the only information is an upper bound on the connectivity. Two are the main directions of our future research in this framework. First, we want to compute analytically an upper bound on the value of the second largest eigenvalue of the weighted adjacency matrix that guarantees consensus, as a function of the other design parameters. Second, we plan to study the case where agents do not have a perfect knowledge of their own state

    Flexible structure control laboratory development and technology demonstration

    Get PDF
    An experimental structure is described which was constructed to demonstrate and validate recent emerging technologies in the active control and identification of large flexible space structures. The configuration consists of a large, 20 foot diameter antenna-like flexible structure in the horizontal plane with a gimballed central hub, a flexible feed-boom assembly hanging from the hub, and 12 flexible ribs radiating outward. Fourteen electrodynamic force actuators mounted to the hub and to the individual ribs provide the means to excite the structure and exert control forces. Thirty permanently mounted sensors, including optical encoders and analog induction devices provide measurements of structural response at widely distributed points. An experimental remote optical sensor provides sixteen additional sensing channels. A computer samples the sensors, computes the control updates and sends commands to the actuators in real time, while simultaneously displaying selected outputs on a graphics terminal and saving them in memory. Several control experiments were conducted thus far and are documented. These include implementation of distributed parameter system control, model reference adaptive control, and static shape control. These experiments have demonstrated the successful implementation of state-of-the-art control approaches using actual hardware
    corecore