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Abstrat

This thesis is onerned with onsensus algorithms, onvergene, and stability of

multi-agent systems with time-delays. The main objetives of the thesis are

• Utilize and de�ne distributed onsensus protools for multi-agent systems with

�rst- or seond-order dynamis so that the onsensus state is reahed.

• Analyze the stability behavior of the designed system in the presene of delays

in the system, with fous on ommuniation delays. The stability of the whole

system must be determined in a distributed manner, i.e., it must rely only on

some general properties of the orresponding ommuniation network topology

of system suh as algebrai onnetivity.

• Redue the amount of the ommuniations between the pairs of the agents by

using a sampled-data ommuniation strategy. We suppose that the samplings

are aperiodi, and we provide some proofs for the stability and onsensus of the

system.

For that purpose, this thesis is divided is three main parts:

• The �rst part, inluding Chapters 2, 3, and 4, aims at providing a su�iently

detailed state of the art of the representation and stability analysis of onsensus

problems, time-delay systems, and sampled-data systems.

• The seond part, inluding Chapters 5, 6, 7, and 8 onsists in a presentation of

several results that demonstrate the main ontributions of this thesis.

• Finally, the third part, inluding Chapter 9 onludes the thesis and addresses

the future diretions and the open issues of this researh.
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1

Introdution and struture of the

thesis

�Coming together is a beginning; Keeping together is progress; Working to-

gether is suess.�

� Henry Ford

In the following hapter, we introdue the hallenges that we fae in distributed

ontrol systems under di�erent information exhange regimes. In Setion 1.1, multi-

agent systems are introdued. In Setion 1.2, we disuss power networks and dis-

tributed lightning systems as two motivating appliations. Finally, in Setion 1.3, we

outline the thesis.

1.1 Multi-agent systems

During the last deades, inspired by advanes in small size omputation, ommuni-

ation, sensing, and atuation, a growing interest of the ontrol theory ommunity in

distributed ontrol has witnessed. Reent developments in ontrol engineering, em-

bedded omputing, and ommuniation networks, have made it feasible to have a large

group of autonomous systems working ooperatively to perform omplex tasks. These

tehnologial advanes require new ways of managing and deision making over the
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information �ow generated by the single units. Espeially, the design of ontrol sys-

tems, i.e. a deision making proess, has shifted from entralized approahes, where

all the information available is �ooded in the network in a neighbor-to-neighbor data

exhange in some point of time and spae and then deisions are dispathed through

the network, to deentralized and distributed approahes, where the information lo-

ally gathered by the units (agents) is proessed in lous and ontrol deisions are

taken ooperatively by the agents with no supervision. Figure 1-1 illustrates how

the information �ows through the units in entralized, deentralized, and distributed

networked systems.

In order to desribe the interations among the di�erent units in large sale sys-

tems, the notion of multi-agent systems(MASs) has been introdued. Eah agent,

indeed, is assumed to have some peuliar dynamis, and the network or interonne-

tions among the agents are then desribed by a graph alled ommuniation topology

graph(CTG). In a CTG eah vertex indiates an agent, and the two agents that

an exhange information are being onneted by an edge. Cooperative MASs an

be found in numerous appliations like airraft and satellite formations, intelligent

transportation infrastrutures, �exible strutures, and forest �re monitoring. A basi

ommon feature of multi-agent ontrol systems is that they are omposed of several

subsystems oupled through their dynamis, deision-making proess, or performane

objetives. When designing these systems, it is often neessary to adopt a distributed

arhiteture, in whih the deision maker (e.g., ontroller, network manager, soial

planner) is omposed of several interonneted units. Eah loal deision maker an

only aess a subset of the global information (e.g., sensor measurements, model pa-

rameters) and atuate on a subset of the inputs in its neighborhood. This distributed

arhiteture is typially imposed sine the entral deision maker with full aess to

information might beome very omplex and not possible to implement, or beause

di�erent subsystems may belong to ompeting entities that wish to retain a level of

autonomy.

Generally, the studies of MASs are oriented in the following diretions:

1. Consensus and the like problems (synhronization and rendezvous).

18



2. Distributed formation and the like (�oking).

3. Distributed optimization.

4. Distributed estimation and ontrol.

The above problems are not independent but atually may have overlapping in some

ontexts.

One of the most attrative problems that appears in distributed ontrol of MAS,

espeially in oordination-type problems, is the onsensus problem. The study of dis-

tributed ontrol of MASs was �rst motivated by the work in distributed omputing

(Lynh et al., 2008), management siene (DeGroot, 1974), and statistial physis

(Visek et al., 1995). For example, robots need to arrive at an agreement so as to

aomplish some ompliated tasks. Floks of birds tend to synhronize during mi-

gration in order to resist aggression and reah their destinations. Investigations of

suh problems are of signi�ane in both theory and engineering appliations. A

ritial problem for oordinated ontrol is to design appropriate protools and algo-

rithms suh that the group of agents an reah onsensus on the shared information.

The idea behind onsensus serves as a fundamental priniple for the design of dis-

tributed multi-agent oordination algorithms. The aim is, given initial values (salar

or vetor) of agents, establish onditions under whih, through loal interations and

omputations, agents asymptotially agree upon a ommon value, or reah a onsen-

sus. Due to its broad spetrum of appliations, in the past years, a large attention

has been devoted to the onsensus problem in MAS (Qin et al., 2011; Ren et al.,

2005a; Yu et al., 2010; Zareh et al., 2013a). Sensor networks (Yu et al., 2009; Olfati-

Saber and Shamma, 2005), automated highway systems (Ren et al., 2005a), mobile

robotis (Khoo et al., 2009), satellite alignment (Ren, 2007a) and several more, are

some of the potential areas in whih a onsensus problem is taken into aount. In

the other words, Consensus is a state of a networked MAS in whih all the agents

reah agreement on a ommon value by only sharing information loally, namely with

their neighbors. Several algorithms, often alled onsensus protools, have been pro-

posed that lead a MAS to onsensus. As an illustrative example, the oordination

19



Figure 1-1: A shemati view of di�erent ommuniation networks in MASs.

problem of mobile robots �nds several appliations in the manufaturing industry in

the ontext of automated material handling. The onsensus problem in the ontext

of mobile robots onsists in the design of loal state update rules whih allow the

network of robots to rendezvous at some point in spae or follow a leading robot

exploiting only measurements of speeds and relative positions between neighboring

robots. To bridge the gap between the study of onsensus algorithms and many phys-

ial properties inherited in pratial systems, it is neessary and meaningful to study

onsensus by onsidering many pratial fators, suh as atuation, ontrol, om-

muniation, omputation, and vehile dynamis, whih haraterize some important

features of pratial systems. This is the main motivation to study onsensus. An

overview of the researh progress in the study of onsensus is given in the next setion

regarding stohasti network topologies and dynamis, omplex dynamial systems,

delay e�ets, and quantization, whih they were published mainly after 2006. Several

milestone results prior to 2006 an be found in Olfati-Saber and Murray (2004); Jad-

babaie et al. (2003); Moreau (2005); Tsitsiklis et al. (1986); Fax and Murray (2004);

Ren et al. (2005b); Lin et al. (2005). A full review of the related works is given in

the next hapters.

Time-delays exist in many real world proesses due to the period of time it takes

for the events to our. Delays are partiularly evident in networks of interonneted

systems, suh as supply hains and systems ontrolled over ommuniation networks.

In these ontrol problems, taking the delays into aount is partiularly important

for performane evaluation and ontrol system's design. It has been shown, indeed,

that delays in a ontrolled system (for instane, a ommuniation delay for data
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aquisition) may have a very ompliated nature: they may stabilize the system, or,

in the ontrary, they may lead to deterioration of the losed-loop performane or

even instability, depending on the delay value and the system parameters. It is a fat

that delays have stabilizing e�ets, but this is learly on�iting for human intuition.

Therefore, spei� analysis tehniques and design methods are to be developed to

satisfatorily take into aount the presene of delays at the design stage of the ontrol

system. On the other hand, time delay is ubiquitous in biologial, physial, hemial,

and eletrial systems (Bliman and Ferrari-Treate, 2008; Tian and Liu, 2008). In

biologial and ommuniation networks, time delays are usually inevitable due to

the possible slow proess of interations among agents. It has been observed from

numerial experiments that onsensus algorithms without onsidering time delays

may lead to unexpeted instability. In Bliman and Ferrari-Treate (2008); Tian and

Liu (2008), some su�ient onditions are derived for the �rst-order onsensus in

delayed multi-agent systems. In Mazen and Maliso� (2014), framework to prove

stability for nonlinear systems that may have delays and disontinuities, is studied.

In this thesis, we try to mathematially formulate the e�ets of suh time-delays in

distributed ontrol of omplex networked systems.

In MAS, heavy omputational loads an interrupt the sampling period of a ertain

ontroller. A sheduled sampling period an be used to deal with this problem. In

suh a ase robust stability analysis with respet to the hanges in the sampling time

is neessary. For interesting ontributions in this area we address the reader to Ak-

ermann (1985); Fridman (2010); Zutshi et al. (2012) and the referenes therein. We

also mention the work by Fridman et al. (2004) who exploited an approah for time-

delay systems and obtained the su�ient stability onditions based on the Lyapunov-

Krasovskii funtional method. Seuret (2012) and Fridman (2010) proposed methods

with better upper bounds to the maximum allowed sampling. Shen et al. (2012) stud-

ied the sampled-data synhronization ontrol problem for dynamial networks. Qin

et al. (2010) and Ren and Cao (2008) studied the onsensus problem for networks of

double integrators with a onstant sampling period. In the latter two papers, even

though the authors use the sampled-data notion to introdue their novelty, they sup-
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pose that the ommuniation and the loal sensing our simultaneously and this

simpli�es the problem into a disrete state onsensus problem. Xiao and Chen (2012)

and Yu et al. (2011) studied seond-order onsensus in multi-agent dynamial systems

with sampled position data. A omprehensive review of the works published in the

framework of onsensus problems is given in the next hapter.

Now we give some examples to illustrate the importane of onsensus problems in

pratie.

1.2 Illustrative Examples

In this setion we brie�y introdue some examples to demonstrate the main problems

onsidered in the thesis. We revisit these examples in the subsequent to illustrate the

importane of the theoretial �ndings whih will be developed in this thesis.

Commerial Lighting Control

In this setion we introdue an example proposed by Sandhu et al. (2004). The appli-

ation of wireless sensor networks to ommerial lighting ontrol provides a pratial

appliation that an bene�t diretly from arti�ial intelligene tehniques. This ap-

pliation requires deision making in the fae of unertainty, with needs for system

self-on�guration and learning. Suh a system is partiularly well-suited to the eval-

uation of multi-agent tehniques involving distributed learning. Generally, two-thirds

of generated eletriity is for ommerial buildings, and lighting onsumes 40 per-

ent of this. An additional 45 perent energy savings are possible through the use

of oupant and light sensors (Wen and Agogino, 2008). The goal in this domain

is to leverage wireless sensor networks to reate an intelligent, eonomial solution

for reduing energy osts, and overall soietal energy usage, while improving indi-

vidual lighting omfort levels. There are also so many works in intelligent lighting

ontrol involving building ontrol that fouses on HVAC (heating, ventilation, and

air-onditioning), seurity or other aspets of building management. Several groups

have examined the use of MAS for building ontrol.
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The proposed system onsists of wireless sensor nodes loated throughout the

physial environment for purposes of sensing (light, temperature, and oupany),

atuation, and ommuniation. Multiple sensors per node may be neessary for pra-

tial deployment; sine a partiular node may not need to use all sensors, or beause

it may simply at as a ommuniation relay - dynami resoure alloation may be

needed. All atuation will our in eiling-mounted, dimmable lighting ballasts. Pri-

mary design requirements are the inlusion of individual user preferenes and the

ability for the user to override the intelligent system. The most desirable automati

daylighting systems ontrol overhead lighting but allow users to manually adjust desk-

top lighting (Yozell-Epstein, 2003). In order to maintain a pratial system it will

be neessary to enode user preferenes into the system and provide methods for

modifying these preferenes.

The overall system for a building will funtionally be deomposed into many

smaller pseudo-stati subnets sine only loal sensing a�ets loal lighting atuation

(Figure 1-2). With a single agent per node, these subnets still present multi-agent

oordination problems. Within this framework, single nodes may belong to multiple

adjaent subnets. While muh sensor network literature predits future networks on

the order of hundreds or thousands of nodes, pratial solutions to the presented

problem an be aomplished with tens of nodes per subnet. At the same time that

this sale makes the problem presently tratable, it also provides barriers to suessful

use of probabilisti tehniques.

The primary goal of an MAS-based approah is to emulate the suess of the de-

isions in a distributed manner. In partiular, the interation among the agents must

emulate sensor validation and fusion tehniques. Additionally, the deision making

proess must aount for fators suh as user preferenes and variable eletriity pri-

ing. There are many hallenges to the design and implementation of a suessful MAS

for this appliation. Many of the stated hallenges are more generally appliable to

designing MAS solutions for wireless sensor network problems. Simple agents are

neessary beause of the limited memory and proessing assoiated with eah sensor

node. Limited radio ommuniation among the nodes is neessary to onserve power.
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Loation awareness and reon�guration are neessary aspets of a robust system.

The system must be able to handle lateny and time asynhroniity graefully, due

to ommuniation onstraints.

Agent interation is an essential aspet of this arhiteture. Beause of the om-

muniation and power onstraints of sensor networks, agent interation must be highly

e�ient. Multiple agents will ontribute to the ontrol of a given lighting atuator. In

ontinuous domains suh as this, ontrol an be ahieved by averaging agent ations

or taking the median of their ations. Additionally, on�dene values an be used to

attenuate the global e�ets of aberrant loal ations. When it is only neessary for

the atuator to take on a �xed number of values ontrol an be ahieved by voting

on what ation to take. These methods allow a solution to be formed based on in-

formation from multiple sensors in disparate loations. They also add redundany

and noise redution allowing the system to overome faulty sensors. Many have used

online learning tehniques in automated building ontrol systems, though the solu-

tions tend to require signi�ant omputation and onsequently entralized support

(See for example Barnes (1995); Sharples et al. (1999); Chang and Mahdavi (2002)).

In order to avoid the need for entralization, this system must be able to learn in a

distributed manner; depending on the information available to the agents, supervised

and reinforement learning are the two major lasses of learning that apply to this

environment.

Synhronization in Power Networks

Consider the power network omposed of two generators shown in Figure 1-3 from

Kundur et al. (1994) and Ghandhari (2000). We an model this power network as

δ̇1(t) = ω1(t),

ω̇1 =
1

M1

[

(P1(t) + ω1(t))−K−1
12 sin(δ1(t)− δ2(t))−K−1

1 sin(δ1(t))−D1ω1(t)
]

(1.1)
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Figure 1-2: A subnet may rely on sensors that simultaneously belong to neighboring

subnets. Eah subnet is haraterized by an MAS ontrolling a dimmable lighting

ballast.

Figure 1-3: Shemati diagram of the power network

and

δ̇2(t) = ω2(t),

ω̇2 =
1

M2

[

(P2(t) + ω2(t))−K−1
12 sin(δ2(t)− δ1(t))−K−1

2 sin(δ1(t))−D2ω2(t)
]

(1.2)

where δi(t), Pi(t), and ωi(t) are the phase angle of the terminal voltage, the

rotation frequeny, the input mehanial power, and the exogenous input of generator

i, respetively. We assume that P1(t) = P01 + M1v1(t) and P2(t) = P02 + M2v2(t),

where v1(t) and v2(t) are the ontinuous-time ontrol inputs of this system, and P01

25



and P02 are onstant referenes. Now, we an �nd the equilibrium point (δ∗1, δ
∗
2) of

the system and linearize it around this equilibrium. Furthermore, let us disretize

the linearized system by applying Euler's onstant step sheme with sampling time

∆T , whih results in

x(k + 1) = Ax(k) +Bu(k) +Hω(k), (1.3)

where

x(k) =

















∆δ1(k)

∆ω1(k)

∆δ2(k)

∆ω2(k)

















u(k) =





u1(k)

u2(k)



 ω(k) =





ω1(k)

ω2(k)





A =



















1 ∆T 0 0

a21 1− ∆TD1

M1

a23 0

0 0 1 ∆T
a23M1

M2
0 a21



















,

where

a21 =
−∆T (K−1

12 cos(δ∗1 − δ∗2) +K−1
1 cos(δ∗1))

M1

,

a23 =
∆TK−1

12 cos(δ∗1 − δ∗2)

M1

.

and

B =

















0 0

1 0

0 0

0 1

















H =

















0 0

1/M1 0

0 0

0 1/M2

















.

Here, ∆δ1(k), ∆δ2(k), ∆ω1(k) and ∆ω2(k) denote the deviation of the orresponding

parameters from their equilibrium points at time instanes t = k∆T .

It is interesting to ahieve the optimal ontrol of this power network. Whenever

we restrit our onsiderations to linear time-invariant ontrollers, the losed-loop per-
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formane measure is given by

J = ‖Tyω(z)‖22,

where Tyω denotes the losed-loop transfer funtion from the exogenous input ω(k) to

output vetor y(k) = [x(k)T u(k)T ]T in whih z is the symbol for the one time-step

forward shift operator. Through minimizing suh a ost funtion, we guarantee that

the frequeny of the generators stays lose to its nominal value without wasting too

muh energy. For the design of nonlinear ontrollers, we onsider the ost funtion

J = lim
T→∞

T−1
∑

k=0

x(k)Tx(k) + u(k)Tu(k).

This ost funtion is equal to the H2-norm of the losed-loop transfer funtion

for linear time-invariant systems exited by exogenous inputs that are elements of

a sequene of independently and identially distributed Gaussian random variables

with zero mean and unit ovariane.

Let us assume that the impedane of the lines that onnet eah generator to the

in�nite bus in Figure 1-3 varies over time. De�ne αi, i = 1, 2, as the deviation of the

admittane K−1
i from its nominal value. Notie that αi only appears in the model of

subsystem i. When designing the ontrol laws, assume that the information regarding

the value of parameter αi is only available in the design of ontroller for subsystem i.

One motivation for this an be that the generators are physially far apart from eah

other.

The synhronization of oupled nonlinear power generators is a losely related

topi to the onsensus of MASs. In the pioneering work by Peora and Carroll (1990),

the synhronization phenomenon of two master-slave haoti systems was observed

and applied to seure ommuniations. Peora and Carroll (1990) and Peora and

Carroll (1998) addressed the synhronization stability of a network of generator by

using the master stability funtion method. Due to nonlinear dynamis, usually, only

su�ient onditions an be given for verifying the synhronization.
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1.3 Organization of the Dissertation

The dissertation is organized as follows: In Chapter 2, we study the onsensus prob-

lem of multi-agent systems. A omprehensive review of the related works up to the

present is given. We disuss the �rst-order, the seond-order, and the higher-order

onsensus problems separately, and an overview to some more ompliated problems

is also given. Some main results and progress in distributed multi-agent oordina-

tion, fousing on papers published in major ontrol systems and robotis journals

sine 2006. Distributed oordination of multiple vehiles, inluding unmanned aerial

vehiles, unmanned ground vehiles, and unmanned underwater vehiles, has been

a very ative researh subjet studied extensively by the systems and ontrol om-

munity. The reent results in this area are ategorized into several diretions, suh

as onsensus, formation ontrol, optimization, and estimation. After the review, a

short disussion setion is inluded to summarize the existing researh and to propose

several promising researh diretions along with some open problems that are deemed

important for further investigations.

The purpose of Chapter 3 is to survey the reent results developed to analyze

the asymptoti stability of time-delay systems. Both delay-independent and delay-

dependent results are reported in this hapter. Speial emphases are given to the

issues of onservatism of the results and omputational omplexity. Connetions of

ertain delay-dependent stability results are also disussed.

In Chapter 4, we onsider the problem of stability of sampled-data systems.

Sampled-data systems are a form of hybrid model whih arises when disrete mea-

surements and updates are used to ontrol ontinuous-time plants. In this hapter,

we use a reently introdued Lyapunov approah to derive stability onditions for

both the ase of �xed sampling period (synhronous) and the ase of a time-varying

sampling period (asynhronous). This approah requires the existene of a Lyapunov

funtion whih dereases over eah sampling interval. To enfore this onstraint, we

use a form of slak variable whih exists over the sampling period, may depend on

the sampling period, and allows the Lyapunov funtion to be temporarily inreasing.
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The resulting onditions are enfored using a new method of onvex optimization of

polynomial variables known as Sum-of-Squares.

In Chapter 5, we address the problem of deriving su�ient onditions for asymp-

toti onsensus of seond order multi-agent systems with slow swithing topology and

time delays. A PD-like protool is proposed based on loal interation protool and

the stability analysis is based on the Lyapunov-Krasovskii funtional method. The

approah is based on the omputation of a set of parameters that guarantee stability

under any network topology of a given set. A signi�ant feature of this method is

that it does not require to know the possible network topologies but only a bound on

their seond largest eigenvalue (algebrai onnetivity).

In Chapter 6, we study the stability property of a onsensus on the average al-

gorithm in arbitrary direted graphs with respet to ommuniation/sensing time-

delays. The proposed algorithm adds a storage variable to the agents' states so that

the information about the average of the states is preserved despite the algorithm

iterations are performed in an arbitrary strongly onneted direted graph. We prove

that for any network topology and hoie of design parameters the onsensus on the

average algorithm is stable for su�iently small delays.

In Chapter 7, onsensus in seond-order multi-agent systems with a non-periodi

sampled-data exhange among agents is investigated. The sampling is random with

bounded inter-sampling intervals. It is assumed that eah agent has exat knowl-

edge of its own state at all times. The onsidered loal interation rule is PD-type.

The haraterization of the onvergene properties exploits a Lyapunov-Krasovskii

funtional method, su�ient onditions for stability of the onsensus protool to a

time-invariant value are derived.

Chapter 8 studies onsensus in seond-order multi-agent systems with a non-

periodi sampled-data exhange among agents is investigated in this hapter. Sam-

pling is random with bounded inter-sampling intervals, and eah agent has exat

knowledge of its own state at any time instant. A onstant ommuniation delay

among agents is also onsidered. A loal PD-type protool is used to bring the sys-

tem into an agreement state. Under the assumption that only the onnetivity of the
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graph modeling the network topology is known, su�ient onditions for the stability

of the onsensus protool to a time-invariant value are derived based on LMIs.

Chapter 9 summarizes the ontributions and explains the open issues.

In Appendies, the eigenvalue properties of Laplaian matrix, perturbation bounds

on matrix eigenvalues, and the eigenvalue properties of weighted adjaeny matrix is

addressed
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2

Consensus problems

�Those who know that the onsensus of many enturies has santioned the

oneption that the earth remains at rest in the middle of the heavens as its

enter, would, I re�eted, regard it as an insane pronounement if I made

the opposite assertion that the earth moves.�

� Niolaus Copernius

At the �rst glane, the word onsensus may bring politial issues into mind.

Aording to Merriam-Webster, onsensus, is a general agreement about something,

an idea or opinion that is shared by all the people in a group. So two key features

determine the de�nition of it: �rst it happens among a group, and seond shared

opinions among the group are neessary. We see that in the systems framework, the

same features must be held.

In this hapter, the onsensus problem is introdued. In the following setion we

introdue the main de�nitions of a onsensus problem. In Setion 2.2, we review the

existing literature of onsensus problem in systems whose dynamial equations are of

�rst-order. Similarly in Setion 2.3, onsensus problems in systems with seond-order

dynamis, and in Setion 2.4 systems with dynamis of an order higher than two,

are reviewed. In Setion 2.5, onsensus in systems with omplex dynamis (generally

omplexity indiates nonlinearity), is skimmed.
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2.1 Introdution

By the help of embedded omputational resoures in autonomous vehiles, many ivil-

ian and military appliations pro�t enhaned operational apability and greater e�-

ieny through ooperative teamwork ompared to those in whih the vehiles perform

single tasks. Some examples of suh appliations inlude spae-based interferometers,

surveillane, and reonnaissane systems, and distributed sensor networks. In order

to over all these appliations, various ooperative ontrol apabilities need to be de-

veloped, rendezvous, attitude alignment, �oking, foraging, task and role assignment,

payload transport, air tra� ontrol, and ooperative searh. Generally, ooperative

ontrol for MAS an be ategorized as either formation ontrol problems like the

ontrol protools used for mobile robots, unmanned air vehiles (UAVs), autonomous

underwater vehiles (AUVs), satellites, spaeraft, and automated highway systems,

or non-formation based ooperative ontrol problems suh as task assignment, role

assignment, air tra� ontrol, timing, and searh. There are several hallenges in the-

oretial and pratial in implementation of ooperative ontrol in MAS. An e�etive

ooperative ontrol strategy must take into aount numerous issues, inluding the

de�nition and management of shared information among a group of agents to faili-

tate the oordination of these agents. Generally the shared information may take the

form of ommon objetives, ommon ontrol algorithms, relative position and veloity

information, or an image. Information exhange among the agents, whih is neessary

for ooperation, an be shared in a variety of ways, e.g., relative position sensors may

enable vehiles to onstrut state information for other vehiles, knowledge may be

ommuniated between vehiles using a wireless network, or joint knowledge might

be preprogrammed into the vehiles before a mission begins. Obviously, several un-

predited issues may disturb the system, and hene in an e�etive ooperative ontrol

strategy, a team of agents must be able to respond to the new onditions that are

sensed as a ooperative task. As the environment hanges, the agents on the team

must be in agreement as to what hanges took plae.

Cooperative ontrol of multiple autonomous vehiles poses signi�ant theoretial
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and pratial hallenges. First, the researh objetive is to develop a system of sub-

systems rather than a single system. Seond, the ommuniation bandwidth and on-

netivity of the team are often limited, and the information exhange among vehiles

may be unreliable. It is also di�ult to deide what to ommuniate and when and

with whom the ommuniation takes plae. Third, arbitration between team goals

and individual goals needs to be negotiated. Fourth, the omputational resoures

of eah individual vehile will always be limited. Reent years have seen signi�ant

interest and researh ativity in the area of oordinated and ooperative ontrol of

multiple autonomous vehiles (e.g.,Anderson and Robbins (1998); Balh and Arkin

(1998); Beard et al. (2001)). Muh of this work assumes the availability of global

team knowledge, the ability to plan group ations in a entralized manner, and/or

perfet and unlimited ommuniation among the vehiles. A entralized oordination

sheme relies on the assumption that eah member of the team has the ability to om-

muniate to a entral loation or share information via a fully onneted network. As

a result, the entralized sheme does not sale well with the number of vehiles. The

entralized sheme may result in a atastrophi failure of the overall system due to

its single point of failure. Also, real-world ommuniation topologies are usually not

fully onneted. In many ases, they depend on the relative positions of the vehiles

and on other environmental fators and are therefore dynamially hanging in time.

In addition, wireless ommuniation hannels are subjet to multi- path, fading and

drop-out. Therefore, ooperative ontrol in the presene of real-world ommuniation

onstraints beomes a signi�ant hallenge.

When multiple vehiles agree on the value of a variable of interest, they are said

to have reahed onsensus. Information onsensus guarantees that vehiles sharing

information over a network topology have a onsistent view of information that is rit-

ial to the oordination task. To ahieve onsensus, there must be a shared variable

of interest, alled the information state, as well as appropriate algorithmi methods

for negotiating to reah onsensus on the value of that variable, alled the onsen-

sus algorithms. The information state represents an instantiation of the oordination

variable for the team. Examples inlude a loal representation of the enter and shape

33



of a formation, the rendezvous time, the length of a perimeter being monitored, the

diretion of motion for a multi-vehile swarm. By neessity, onsensus algorithms are

designed to be distributed, assuming only neighbor-to-neighbor interation between

vehiles. Vehiles update the value of their information states based on the infor-

mation states of their neighbors. The goal is to design an update law so that the

information states of all of the vehiles in the network onverge to a ommon value.

Consensus algorithms have a historial perspetive by Borkar and Varaiya (1982);

Chatterjee and Seneta (1977); DeGroot (1974); Gilardoni and Clayton (1993); Lynh

(1996); Tsitsiklis et al. (1986), to name a few, and have reently been studied exten-

sively in the ontext of ooperative ontrol of multiple autonomous vehiles (Fax and

Murray, 2004; Jadbabaie et al., 2003; Lin et al., 2004; Moreau, 2005; Olfati-Saber

and Murray, 2004; Ren et al., 2005b). Some results in onsensus algorithms an be

understood in the ontext of onnetive stability (�iljak, 1974). Consensus algorithms

have appliations in rendezvous (Beard et al., 2006; Dimarogonas and Kyriakopoulos,

2007; Lin et al., 2004; Lin and Jia, 2011; Mart�nez et al., 2005; Sinha and Ghose, 2006;

Smith et al., 2005, 2007), formation ontrol (Fax and Murray, 2004; La�erriere et al.,

2005; Lawton et al., 2003; Lin et al., 2005; Marshall et al., 2006; Por�ri et al., 2007;

Ren, 2007b), �oking (Cuker and Smale, 2007; Dimarogonas et al., 2006; Lee and

Spong, 2007; Moshtagh and Jadbabaie, 2007; Olfati-Saber, 2006; Regmi et al., 2005;

Tanner et al., 2007; Veerman et al., 2005), attitude alignment (Lawton and Beard,

2002; Ren, 2007a,; Ren and Beard, 2004), perimeter monitoring (Casbeer et al.,

2006), deentralized task assignment (Alighanbari and How, 2005), and sensor net-

works (Yang et al., 2008; Olfati-Saber, 2005; Olfati-Saber and Shamma, 2005; Spanos

et al., 2005; Xiao et al., 2005). The basi idea of a onsensus algorithm is to impose

similar dynamis on the information states of eah vehile. If the ommuniation

network among vehiles allows ontinuous ommuniation or if the ommuniation

bandwidth is su�iently large, then the information state update of eah vehile

is modeled using a di�erential equation. On the other hand, if the ommuniation

data arrive in disrete pakets, then the information state update is modeled using a

di�erene equation.
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2.2 First-order Consensus

This setion overviews fundamental onsensus algorithms in whih a salar infor-

mation state is updated by eah vehile using, respetively, a �rst-order di�erential

equation and a �rst-order di�erene equation.

Suppose that there are n vehiles in the team. The team's ommuniation topology

an be represented by direted graph G = (V, E) where V = {1, . . . , n} is the set of

nodes (vehiles) and E ⊆ {V×V} is the set of edges. An edge (i, j) ∈ E exists if there is

a ommuniation hannel between vehiles i and j. Self loops (i, i) are not onsidered.

The set of neighbors of agent i is denoted by Ni = {j : (j, i) ∈ E ; j = 1, . . . , n}. Let
δi = |Ni| be the degree of agent i whih represents the total number of its neighbors.

The topology of graph G is enoded by the so-alled adjaeny matrix, an n × n

matrix Ad whose (i, j)-th entry is equal to 1 if (i, j) ∈ E , 0 otherwise. Obviously in

an undireted graph matrix Ad is symmetri.

We denote ∆ = diag(δ1, . . . , δn) the diagonal matrix whose non-null entries are

the degrees of the nodes. Denote ∆in and ∆out, orresponding to in- and out- degree

matries respetively, in a direted graph. We now de�ne the Laplaian matrix as

L = ∆ − A. The in-Laplaian and out-Laplaian matries of a direted graph are

de�ned as Lin = ∆in − Ad and Lout = ∆out − Ad. Due to the Gershgorin Cirle

Theorem applied to the rows of the in-Laplaian or the olumns of the out-Laplaian

it is possible to show that both matries have eigenvalues with non-negative real

part for any graph G. By onstrution matries Lin and Lout have at least one null

eigenvalue beause either the row sum or the olumn sum is zero. Furthermore, let

1n and 0n be respetively the n-elements vetors of ones and zeros, then Lin1 = 0

and 1
TLout = 0

T
. If G is strongly onneted, i.e., there exists a direted path that

onnets any pair of nodes in V, then the algebrai multipliity of the null eigenvalue

of both Lin and Lout is one. More details about the harateristis of Laplaian matrix

is given in Appendix A.

Let xi be the information state of the i th agent. The information state repre-

sents information that needs be oordinated among agents (Ren et al., 2005a). The
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information state may be agent position, veloity, osillation phase, deision variable

The system onsidered in this setion is similar to the one presented by Ren et al.

(2005b). There are n agents eah with state vetors xi ∈ R. for agents i = 1, . . . , n

having single integrator dynamis:

ẋi(t) = ui(t). (2.1)

As desribed by Olfati-Saber and Murray (2004), a ontinuous-time onsensus

protool an be summarized as

ẋi(t) = ui(t) = −
∑

j∈Ni(t)

γij(t) (xi(t)− xj(t)) (2.2)

where Ni(t) represents the set of agents whose information is available to agent i

at time t and γij(t) denotes a positive time-varying weighting fator. In other words,

the information state of eah agent is driven toward the states of its (possibly time-

varying) neighbors at eah time. Note that some agents may not have any information

exhange with other agents during some time intervals. The ontinuous-time linear

onsensus protool (2.2) an be written in matrix form as ẋ(t) = −Lx(t), where L is

the graph Laplaian and x = [x1, . . . , xn]
T
.

Similarly, the disrete-time form of the equation, as used by Ren (2007a) an be

given as

xi(k + 1) = −
∑

j∈Ni(k)∪i

βij(k)xj(k) (2.3)

where

∑

j∈Ni(k)∪i
βij(k) = 1, and βij > 0 for j ∈ Ni(k) ∪ i. In other words, the next

state of eah agent is updated as the weighted average of its urrent state and the

urrent states of its (possibly time-varying) neighbors. Note that an agent simply

maintains its urrent state if it has no information exhange with other agents at a

ertain time step. The disrete-time linear onsensus protool (2.3) an be written in

matrix form as x(k+1) = P (k)x(k) , where P (k) is a stohasti matrix with positive

diagonal entries.
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A MAS with n agents is said has reahed onsensus if lim
t→∞

‖xi(t)−xj(t)‖ → 0, for

∀i 6= j.

In the following setion a review of some �rst-order onsensus problems with

di�erent onditions, are reviewed and the onvergene properties are given.

Convergene Analysis

Below, we brie�y review the existing results on well known �rst order onsensus

problems.

• Time-invariant Information Exhange Topology

Under a time-invariant information exhange topology, it is assumed that if

one agent an aess another agent's information at one time, it an obtain

information from that agent all the time. For the ontinuous-time onsensus

protool (2.2), it is straightforward to see that L1 = 0 and all eigenvalues of

the Laplaian matrix L have non-negative real parts from Gershgorin's dis

theorem. If zero is a simple eigenvalue of L , it is known that x(t) onverges

to the kernel of L , that is, span{1}, whih in turn implies that lim
t→∞

‖xi(t) −
xj(t)‖ → 0.

It is well-known that zero is a simple eigenvalue (Chung, 1997). However, this

is only a su�ient ondition rather than a neessary one. We have the formal

statement that zero is a simple eigenvalue of the Laplaian matrix if and only if

its digraph has a spanning tree. This onlusion was shown by Ren et al. (2005a)

by an indution approah while the same result is proven independently by Lin

et al. (2005) by a onstrutive approah. As a result, under a time-invariant

information exhange topology, the ontinuous-time protool ahieves onsensus

asymptotially if and only if the information exhange topology has a spanning

tree.

For the disrete-time onsensus protool (2.3), it an be shown that all eigen-

values of D that are not equal to one are within the open unit irle from

Gershgorin's dis theorem. If one is a simple eigenvalue of P and all other
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eigenvalues have module less than one, it is known that lim
k→∞

P k = 1νT
, where

ν is a olumn vetor. This implies that lim
k→∞

‖xi(k)− xj(k)‖ → 0.

The well-known Perron-Frobenius theorem states that one is a simple eigenvalue

of a stohasti matrix if the graph of the matrix is strongly onneted. Similar

to the ontinuous-time ase, this is only a su�ient ondition rather than a ne-

essary one. Horn and Johnson (2012) showed that for a nonnegative matrix with

idential positive row sums, the row sum of the matrix is a simple eigenvalue

if and only if the digraph of the matrix has a spanning tree. In other words, a

matrix may be reduible but retains its spetral radius as a simple eigenvalue.

Furthermore, if the matrix has a spanning tree and positive diagonal entries,

it is shown that the spetral radius of the matrix is the unique eigenvalue of

maximum modulus. We have the formal statement that one is a unique eigen-

value of modulus one for the stohasti matrix P if and only if its digraph has

a spanning tree (La�erriere et al., 2005). As a result, under a time-invariant

information exhange topology, the disrete-time protool ahieves onsensus

asymptotially if and only if the information exhange topology has a spanning

tree.

• Time-varying Information Exhange Topology

Consider an MAS of n agents that ommuniate with eah other and need to

agree upon a ertain objetive of interest or perform synhronization. Due to

the fat that the nodes of the network are moving, it is easy to imagine that

some of the existing ommuniation links an fail simply due to the existene

of an obstale between two agents. The opposite situation an arise when new

links between two agents are reated beause the agents ome to an e�etive

range of detetion with respet to eah other. In terms of the network topology,

this means that a ertain number of edges are added or removed from the graph.

Here, we are interested to investigate this in ase of a network with swithing

topology G, whether it is still possible to reah a onsensus, or not.

Based on a valid ommon Lyapunov funtion for the disagreement dynamis,
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Olfati-Saber and Murray (2004) proved that, for any arbitrary swithing signal,

solution of the swithing system (2.2) globally asymptotially onverges to the

average of the initial value (i.e., average-onsensus is reahed).

• Communiation delay

In the ase that information is exhanged between agents through ommunia-

tions, time delays of the ommuniation hannels need to be onsidered. Let

τij denote the time delay for information ommuniated from agent j to agent

i. The ontinuous-time onsensus protool is now denoted by:

ẋi(t) = ui(t) = −
∑

j∈Ni(t)

γij(t) (xi(t− τii)− xj(t− τij)) . (2.4)

As it is shown by Olfati-Saber and Murray (2004), in the ase τij = τii = τ ∈
R>0

, if the ommuniation topology is �xed, undireted, and onneted, average-

onsensus is ahieved if and only if τ ∈ [0,
π

2δmax
], where δmax denote the

maximum degree of the orresponding ommuniation topology graph. Consider

another ase where the time delay only a�ets the information state that is

being transmitted. This implies that τii = 0 in (2.4). Now if τij = τ ∈ R>0
,

and the ommuniation topology is direted and swithing, the onsensus result

for swithing topologies desribed previously is still valid for an arbitrary time

delay τ .

2.3 Seond-Order Consensus

All the previously mentioned referenes fous on onsensus protools that take the

form of �rst-order dynamis. In reality, equations of motion of a broad lass of vehi-

les require seond-order dynami models. For example, some vehile dynamis an

be feedbak linearized as double integrators, e.g. mobile robot dynami models. In

the ase of �rst-order onsensus protools, the �nal onsensus value is a onstant. In

ontrast to the onstant �nal onsensus value, it might be proper to derive seond-
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order onsensus protools suh that some information states onverge to a onsis-

tent value (e.g. position of the formation enter) while others onverge to another

onsistent value (e.g. veloity of the formation enter). However, the extension of

onsensus protools from �rst order to seond order is nontrivial. In the paper of

Ren (2007), formation keeping algorithms taking the form of seond-order dynamis

are addressed to guarantee attitude alignment, agreement of position deviations and

veloities, and/or ollision avoidane in a group of vehiles.

In a very general form, a seond-order MAS an be desribed by the following

dynamis:

ẋi(t) = vi(t)

v̇i(t) = ui(t).
(2.5)

Seond-order onsensus in the multi-agent system (2.5) is said to be ahieved if

for any initial onditions it holds:

lim
t→∞

|xi(t)− xj(t)| = 0

lim
t→∞

|vi(t)− vj(t)| = 0
∀i 6= j. (2.6)

2.4 Higher-order onsensus

Reently, inreasing interest has turned to MASs with high-order or/and heteroge-

neous dynamial agents. Wang et al. (2008) and Seo et al. (2009) disussed the

solvability of the onsensus seeking problem for systems of idential agents in net-

works without ommuniation delays, and proved that for suh systems the onsensus

problem is solvable if the interonnetion topology has a globally reahable node. Ar-

ak (2007) developed a general framework based on passivity theory for the design

of group oordination ontrol of systems with nonlinear dynamial agents. Using the

small-gain method, Lee and Spong (2006) proposed a su�ient onsensus ondition

for high-order heterogeneous systems with diverse ommuniation delays.

Based on the general Nyquist stability riteria and an S-hull tehnique, Lestas

and Vinniombe (2010) also onsidered high-order heterogeneous systems with di-
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verse ommuniation delays, and proposed frequeny-domain onditions whih are

less onservative than small-gain-like or passivity-like results. It should be noted that

only the onstant-onsensus problem has been onsidered in the above-mentioned ref-

erenes on high-order heterogeneous MASs, and the main fous of these referenes is

on the stability instead of the existene of the set of onsensus solutions. Atually,

the existene of a onstant onsensus depends only on the onnetivity of the inter-

onnetion topology of MASs (Ren et al., 2005a). The values of self delays introdued

by agents in onsensus protools may lead to instability of the onsensus solution (see

Papahristodoulou et al. (2010)) but they do not in�uene the existene of a onstant

onsensus solution.

However, it is possible for seond-order or high-order MASs to reah not only

onstant onsensus solutions but also dynamial onsensus solutions. Suh dynamial

onsensus solutions will be also alled high-order onsensus solutions in this setion.

An interesting problem for high-order MASs is under whih ondition the high-order

onsensus solution exists. The problem has not been fully addressed in urrently

existing literature. It an be shown that an inappropriate value of self-delay may lead

to the in-existene of a high-order onsensus solution. To guarantee the existene of

high-order onsensus solutions, urrently existing onsensus protools introdue self-

delays whih are exatly equal to the orresponding ommuniation delays (see, e.g.,

Hu et al. (2007)). In pratie, however, ommuniation delays an be estimated only

approximately. Therefore, a high-order onsensus protool whih does not depend on

exat values of ommuniation delays is of great importane for pratial appliation

of the onsensus theory.

2.5 Consensus in Complex systems

In the mathematial modeling of physial systems, it is an unavoidable dilemma: use a

more aurate model whih is harder to manage, or work with a simpler model whih

is easier to manipulate but with less on�dene? A omplex system is a damped,

driven system (for example, a harmoni osillator) whose total energy exeeds the
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threshold for it to perform aording to lassial mehanis but does not reah the

threshold for the system to exhibit properties aording to haos theory.

A topi that is losely related to the onsensus of MAS, is the synhronization of

oupled nonlinear osillators. In the pioneering work by Peora and Carroll (1990),

the synhronization phenomenon of two master-slave haoti systems was observed

and applied to seure ommuniations. Lu and Chen (2006) and Peora and Carroll

(1998) addressed the synhronization stability of a network of osillators by using the

master stability funtion method. Reently, the synhronization of omplex dynam-

ial networks, suh as small world and sale-free networks, has been widely studied

(see Chen (2008); Duan et al. (2009); Koarev and Amato (2005); Lu et al. (2008);

Por�ri et al. (2008); Wang and Chen (2002); Wu et al. (2009)) and the referenes

therein). Due to nonlinear node dynamis, usually, only su�ient onditions an be

given for verifying the synhronization.

Below, we present some examples whih show some appliations of onsensus

algorithms in omplex dynamial systems.

Example 2.1 (Bullo et al., 2009) The following models of ontrol systems are om-

monly used in robotis, beginning with the early works of Dubins (1957), and Reeds

and Shepp (1990). Figure 2-1(left) show a two-wheeled vehile and a four-wheeled

vehile, respetively. The two-wheeled planar vehile is desribed by the dynamial

system

ẋ(t) = v cos θ(t) ẏ(t) = v sin θ(t) θ̇(t) = ω(t), (2.7)

with state variables x ∈ R, y ∈ R and θ ∈ S
1
desribing the planar position and

orientation of the vehile, and with ontrols v and ω, desribing the forward linear

veloity and the angular veloity of the vehile.

A group of suh robots as shown in Figure 2-1 (right), is an example of MAS. �

Example 2.2 (Bullo et al., 2009) Communiation ongestion: Omni-diretional wire-

less transmissions interfere. Clear reeption of a signal requires that no other signals
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Figure 2-1: Two-wheeled robots in a plane in Example 2.2 (left). A multi-robot

networked system (right).

are present at the same point in time and spae. In an ad ho network, node i reeives

a message transmitted by node j only if all other neighbors of i are silent. In other

words, the transmission medium is shared among the agents. As the density of agents

inreases, so does wireless ommuniation ongestion. The following asymptoti and

optimization results are known.

First, for ad ho networks with n uniformly randomly plaed nodes, it is known

(Gupta and Kumar, 2000) that the maximum-throughput ommuniation range r(n) of

eah node dereases as the density of nodes inreases; in d dimensions, the appropriate

saling law is r(n) ∈ Θ(((log(n)/n)))
1

d
. This is referred to as the onnetivity regime

in perolation theory and statistial mehanis. Using the k-nearest neighbor graph

over uniformly plaed nodes, the analysis by Xue and Kumar (2004) suggests that the

minimal number of neighbors in a onneted network grows with log(n). Seond, a

growing body of literature (Santi, 2005; Lloyd et al., 2005) is available on topology

ontrol, that is, on how to ompute transmission power values in an ad ho network so

as to minimize energy onsumption and interferene (due to multiple soures), while

ahieving various graph topologial properties, suh as onnetivity or low network

diameter. �

Several authors have devised new strategies to address di�erent onsensus prob-

lems, but still there are so many open problems left in this area. In this thesis, we

study �rst- and seond-order MASs. Our fous is espeially on onsensus problems in
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systems with time-delays and sampled-data ommuniations. We study both direted

and undireted ommuniations. In the next two hapters, we study the time-delay

systems and sampled-systems and we desribe the tools we use in order to analyze

the MASs.

2.6 Conlusions

In this hapter we reviewed di�erent existing onsensus problems and haraterized

some important notions in multi agent system ontrol framework. The agreement

and stability onditions for a diversity of onditions in �rst order, seond order, and

high order and omplex systems were skimmed. Some illustrative example showed

the appliations and importane of MASs.
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3

Time-delay systems

�You may delay, but time will not.�

� Benjamin Franklin

Delay, is de�ned as a situation in whih something happens later than it should in

Merriam-Webster. Delay is unavoidable in almost every real-world phenomena. It is

well known that even a very small delay may ause big disasters. Some milliseonds

of delay would be enough to happen a big ar rash in highway. Delay, also an

have stabilizing e�ets. For example, in wild water anoeing, the athlete should not

immediately reat to every sudden hange. Instead, his or her reations must be with

a delay so that the water's behavior is better preditable. It is now lear that why

delay analysis is so important. In this hapter, we provide useful tools to analyze the

stability of time-delay systems.

3.1 Introdution

Time-delay systems (TDSs) belong to the lass of funtional di�erential equations, as

opposed to ordinary di�erential equations, and represent a lass of in�nite-dimensional

systems widely used to desribe propagation and transport phenomena or population

dynamis. They are also alled hereditary or with memory, deviating arguments, af-

tere�ets, post ations, dead-time, or time-lag (Hammarstrom and Gros, 1980). Time
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delays exist in various engineering systems suh as long transmission lines in pneu-

mati systems, nulear reators, rolling mills, hydrauli systems and manufaturing

proesses. In eonomis, delays appear in a natural way due to deisions and e�ets

(investment poliy, ommodity markets evolution: prie �utuations, trade yles) are

separated by some (needed analysis) time interval. In ommuniation, data transmis-

sion is always aompanied by a non-zero time interval between the initiation- and

the delivery-time of a message or signal. In other ases, the presene of a delay in a

system may be the result of some essential simpli�ation of the orresponding proess

model.

A famous example of the TDSs an be seen in regulating hot water on the shower.

Suppose that someone is under the shower aiming at having a pleasant water temper-

ature Td. Due to the dynamis, it would take a while until the guy an see the e�et

of fauet hange on the temperature after few seonds. Indeed the person reeives

the information with a delay and this an ause some unwanted ations like too warm

or too old water, or , if we look at it as a system theory, this may lead the system

to an unstable ondition. A simple solution to enounter this spei� problem, an

be to wait for few seonds. However, generally in more omplex systems, some more

omprehensive might be needed to avoid instability. Let T (t) denote the water tem-

perature in the mixer output and let τ̄ be the onstant time needed by the water

to go from the mixer output to the person's head . Assume that the hange of the

temperature is proportional to the angle of rotation of the handle, whereas the rate

of rotation of the handle is proportional to T (t) − Td. At time t the person feels

the water temperature leaving the mixer at time t− τ , whih results in the following

equation with the onstant delay τ :

Ṫ (t) = −k(T (t− τ)− Td), k ∈ R. (3.1)

Due to its omplexity, the problem of stability analysis and ontrol of TDS has

attrated muh attention during the past years, whih is of both pratial and theo-

retial importane. Various types of TDS have been investigated and a great number
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of results on TDSs have been reported in the literature (see, e.g. Chen and Lath-

man (1995), Chu (1997), Hui and Hu (1997), Cao et al. (1998a), Su and Chu (1999),

Hmamed (2000), Shi et al. (2000), Park (2001),Fridman and Shaked (2002), Lu et al.

(2003),Niu et al. (2005), Zhou and Li (2005), Chen et al. (2006), Shi et al. (2007),

Chen et al. (2010a), Gouaisbaut and Ariba (2011),Goebel et al. (2011),Chesi et al.

(2012), Bekiaris-Liberis and Krsti (2013a,b), Feyzmahdavian et al. (2014), Mazen

and Maliso� (2014), and the referenes ited therein).

In the following setion, we brie�y desribe a history about TDSs whih has been

taken mainly from Shoen (1995).

3.2 History

Studying retarded elastiity e�ets, Boltzman in 1874, presented one of the earliest

studies of TDS. His publiation, however, did not point out learly the need of the

past states for a realisti modeling of retarded elastiity e�ets. In the early 1900's

a ontroversy arose over the neessity of speifying the earlier history of a system

in order to predit its future evolution. This view stood in ontradition with the

Newtonian tradition whih laimed that the knowledge of the present values of all

relevant variables should su�e for predition. Piard in 1907 took the view that the

past states are important for a realisti modeling. He analyzed a system with essential

hidden variables, not themselves aessible to observation. He laimed that the pre-

dition of that system requires also the knowledge of the earlier values of the hidden

variables. His paradigm for that situation was a pendulum lok whose desending

weight is enased. As long as we annot observe the present position of the weight

and its rate of desent, a predition of the future motion of the lok hand requires

the knowledge of when the lok was last wound. Systemati work with mathematial

models on mediine and biology began with the epidemiologial studies of Ross in

1911. Ross was laying the equations. His results were extended and improved in the

1920's. The need for delays was emphasized both by Sharpe and Lotka (1978), who

disussed the disrete delays due to the inubation times in the Ross malaria epidemi
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model. From the very beginning of their eologial investigations, Lotka realized that,

in order to ahieve some degree of realism, delayed e�ets had to be expliitly taken

into aount. Lotka's main previous interest had been in physial hemistry, with

speial emphasis on the osillations of hemial reations. He had also dealt with

demographi problems and with evolutionary theory. Volterra's previous interests

were mostly in mehanis, inluding irreversible phenomena and elastiity. The latter

had led him to develop the theory of funtionals and integral-di�erential equations,

for whih he beame well known. He also attempted to introdue a onept of energy

funtion to study the asymptoti behavior of the system in the distant future. Mi-

norsky (1943) pointed out very learly the importane of the delay onsiderations in

the feedbak mehanism. The great interest in ontrol theory during those and later

years has ertainly ontributed signi�antly to the rapid development of the theory

of di�erential equations with dependene on the past state.

While it beame lear a long time ago that retarded systems ould be handled

as in�nite dimensional problems, the paper of Myshkis (1949) gave the �rst orret

mathematial formulation of the initial value problem. Furthermore he later intro-

dued a general lass of equations with delayed arguments and laid the foundation

for a general theory of linear systems.

Subsequently, several books appeared whih presented the urrent knowledge on

the subjet and whih greatly in�uened later developments. In their monograph at

the Rand Corporation (Bellman et al., 1953) pointed out the diverse appliations of

equations ontaining past information to other areas suh as biology and eonomis.

They also presented a well organized theory of linear equations with onstant oe�-

ients and the beginnings of stability theory. A more extensive development of these

ideas is ontained in the book of Bellman and Cooke (1963). Some important results

were supplied also by Krasovskii, who studied stability and optimal ontrol problems

for time-delay systems (Krasovskii, 1962). Further important works have been writ-

ten by Elsgolts and Norkin (1973) and Hale (1971). In reent years several books

have been published on this topi (Hino et al., 1991; MaDonald and MaDonald,

2008; Hammarstrom and Gros, 1980; Neudeker and Magnus, 1988; Stépán, 1989).
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The stability analysis for TDSs an be divided into two main groups: Eigenvalue-

based analysis and Lyapunov or energy-based methods. Eigenvalue-based methods,

using the harateristi equation of the system, usually provide a neessary and suf-

�ient onditions under whih a TDS remains stable. Basially, these methods are

used when a onstant delay exist, aiming to �nd the interval/s in the delay spae

where the stability of the system is guaranteed. Lyapunov-based methods provide

su�ient onditions for the stability of TDSs. Even though, it is not always so

trivial to �nd the neessary onditions for the stability of suh systems. The Lya-

punov based tools are typially used to investigate the stability of suh systems. Out

of them Lyapunov-Razumikhin theory, Lyapunov-Krasovskii theory are used widely.

The Lyapunov based methods an be also lassi�ed into two types: delay-dependent

and delay-independent stability onditions; the former inlude the information on

the size of the delay, while the latter do not. Generally speaking, delay-independent

stability onditions are simpler to apply, while delay-dependent stability onditions

are less onservative espeially in the ase when the time delay is small. The main

objetives of the study of the delay-dependent stability problem are:

• to develop delay-dependent onditions to provide a maximal allowable delay as

large as possible,

• to develop delay-dependent onditions by using as few as possible deision vari-

ables while keeping the same maximal allowable delay.

However, none of these basi onepts represents appliable stability tests in terms

of the system matries. The stability tests obtained an be ategorized into four

groups, depending on how muh information onerning the delays is required for

these tests:

• Delay-independent stability riteria: The length of the delay need not be known

for the appliation of these stability tests. The delays may be state-dependent

and/or time variable. The only assumption needed is that the delays are on-

tinuous and bounded.
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• Stability riteria independent of onstant delays: In the seond group it is

assumed that the delays of the system are onstant; no further information on

the delays is neessary.

• Stability riteria independent of a delay onstant: This type of stability riteria

presumes that the delays are onstant and that the ratios of size of the delays

are known.

• Delay-dependent stability riteria: This group inludes exat algebrai stabil-

ity riteria depending on the delay and on the system onstants and stability

riteria whih yield an upper bound of the admissible delay. The need for delay-

independent (and related) stability tests is obvious, sine in pratie the delays

are di�ult to estimate, espeially those that are time variable and state de-

pendent. While algebrai stability tests independent of delays are suitable to

apply, exat algebrai stability onditions depending on the delay and the sys-

tem onstants are known only in some speial ases. In this ontext a method

is presented to ahieve some extensions. The method permits the investiga-

tion of the stability of systems whih are general enough to demonstrate the

di�erenes among the four types of stability tests. The stability of general,

linear time-delay systems, however, an be heked exatly only by eigenvalue

onsiderations.

In the literature, various approahes have been proposed to obtain delay-dependent

stability onditions, among whih the linear matrix inequality (LMI) approah is the

most popular and has played an important role due to the fat that LMIs an be

ast into a onvex optimization problem whih an be handled e�iently by resorting

to reently developed numerial algorithms for solving LMIs (Boyd et al., 1994).

Another reason that makes LMI onditions appealing is their frequent readiness to

solve the orresponding synthesis problems one the stability (or other performane)

onditions have been established, espeially when state feedbak is employed.

In the following setion, we study di�erent methods of analyzing TDSs.
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3.3 Stability analysis

Before stating these methods, some notations must be introdued.

For a given salar τ̄ > 0, let Cn = C([−τ̄ , 0],Rn) be the Banah spae of ontinuous

vetor funtions mapping the interval [−τ̄ , 0] into Rn
. For any φ ∈ Cn

, its norm is

de�ned by

‖φ‖c = sup
−τ̄≤s≤0

‖φ(s)‖, (3.2)

where ‖φ(s)‖ denotes the Eulidean norm of φ(s) ∈ Rn
. De�ne a set

Ca
n = {φ ∈ Cn|‖φ‖c < a},

for some a > 0.

In a general form, a TDS an be illustrated by the following di�erential- di�erene-

di�erene equation:

ẋ(t) = f(t, xt), t ≥ t0, (3.3)

where x(t) ∈ Rn
is the state vetor, and xt is de�ned as:

xt = x(t + θ), −τ̄ ≤ θ ≤ 0.

Assume that the funtion f : R+ × Cn → Rn
is ontinuous and f(t, 0) = 0 holds

for all t ∈ R. The initial ondition of the system is given by the following equation:

xt0(θ) = φ(θ), −τ̄ ≤ θ ≤ 0. (3.4)

We assume that for any φ ∈ Cn and for any t0 ∈ R, the system in (3.3) with the

initial ondition (3.4) has a unique solution. We also assume that f(t, 0) = 0, whih

guarantees that (3.3) possesses a trivial solution x(t) ≡ 0.
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Eigenvalue based methods

In this part, we disuss linear TDSs, harateristi equations, and loation of eigen-

values of the system, as well as e�ets of delays on stability.

Consider a salar retarded TDS

ẋ(t) = ax(t) + bx(t− τ̄ ), (3.5)

with real onstant oe�ients and onstant delay τ̄ > 0. Substituting x(t) = est into

(3.5) we �nd that the solution satis�es the equation if s is the root of the harateristi

equation

∆(s) = s− a− be−τ̄ s
(3.6)

Dissimilar to systems without delays, the transendental equation ∆(s) = 0 gener-

ally, has an in�nite number of solutions. This also re�ets the in�nite-dimensional

nature of TDSs. However, sine ∆(s) is an entire funtion,

1

it annot have an in�nite

number of zeros within any ompat set |s| ≤ M, ∀M > 0. Therefore, most of the

harateristi roots go to in�nity. To understand the loation of the harateristi

roots, i.e., of the solutions of the harateristi equation we note that

|s| ≤ |a|+ |b|e−τ̄Re(s)
(3.7)

When |s| → ∞, the left-hand side of the above equation approahes to ∞, thus, the

right-hand side, i.e., e−τ̄Re(s)
approahes in�nity as well. This means that

lim
|s|→∞

Re(s) = −∞.

Hene, ∀α ∈ R there is a �nite number of harateristi roots with real parts

greater than α. Therefore, the loation of the harateristi roots has a nie property

1

In omplex analysis, an entire funtion, also alled an integral funtion, is a omplex-valued

funtion that is holomorphi over the whole omplex plane. Typial examples of entire funtions are

polynomials and the exponential funtion, and any sums, produts and ompositions of these, suh

as the trigonometri funtions sine and osine and their hyperboli ounterparts sinh and cosh, as

well as derivatives and integrals of entire funtions suh as the error funtion.
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Figure 3-1: Roots of harateristis equation.

that the number of the roots on the right hand side of any vertial line, is �nite.

Figure 3-1 depits this property.

An LTI system with N disrete delays and with a distributed delay has a form:

ẋ(t) =
N
∑

k=0

Akx(t− τk) +

∫ 0

−τd

A(θ)x(t + θ)dθ, (3.8)

with the initial ondition

x(t0 + θ) = φ(θ), θ ∈ [τ̄ , 0], φ ∈ C[τ̄ , 0], (3.9)

where 0 = τ0 < τ1 < . . . < τN , x(t) ∈ R, Ak are onstant matries and A(θ) is an

integrable matrix funtion, and τ̄ = max{taud, τN}. The harateristi equation of

this system is given by

det

[

sI −
N
∑

k=0

Ake
−sτk −

∫ 0

−τd

A(θ)esθ

]

= 0. (3.10)

Equation (3.10) is transendental having in�nite number of roots. Similar to what

was said about the salar ase in (3.5), sine here the left hand side of (3.10) is

an entire funtion, it annot have an in�nite number of zeros within any ompat

set |s| < M, ∀M > 0. The LTI system has exponential solutions of the form estν,
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where s is a harateristi root and ν ∈ Rn
is an eigenvetor of the matrix inside

the determinant in (3.10). The latter an be veri�ed by substituting estν into (3.10).

Moreover, if s is a harateristi root of multipliity m, then tmestν is the solution of

(3.10). Hene, solutions of (3.10) are given by x(t) =
∑

l pl(t)e
slt
, where sl are the

harateristi roots and pl(t), are polynomials.

As mentioned above, the loation of the harateristi roots has a nie property:

there is a �nite number of roots to the right of any vertial line. Using this fat, the

following statement holds (Hale, 1993; Bellman and Cooke, 1963).

Theorem 3.1 (Fridman, 2014) For any α ∈ R, there are only a �nite number of

harateristi roots (poles) with real parts greater than α. Let si be harateristi

roots and α0 = maxiℜ(si). Then ∀α > α0 there exists K ≥ 1 suh that for any

φ ∈ C[−τ̄ , 0] the solution of (3.10) with x0 = φ satis�es the inequality

|x(t)| ≤ Keαt‖φ‖c, t ≥ 0. (3.11)

TDS (3.10) is alled exponentially stable if for any φ ∈ C[−τ̄ , 0] there exist α < 0 and

K ≥ 1 suh that the solution initialized by (3.9) satis�es (3.11).

Corollary 3.1 Retarded TDS in (3.8) is exponentially stable i� all the roots of its

harateristi quasi-polynomial in (3.10) have negative real parts.

Stability of single delay harateristi equation

Note that the for the ase of having a single delay, Equation (3.10) beomes

det

[

sI −
1
∑

k=0

Ake
−sτk

]

= 0, (3.12)

where τ0 = 0 and τ1 = τ > 0. By manipulating, one an get the following quasi-

polynomial equation

L(s) = P (s) +Q(s)e−sτ = 0, (3.13)
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where P and Q are polynomials

P (s) = sn + an−1s
n−1 + . . .+ a0,

Q(s) = bms
m + bm−1s

m−1 + . . .+ a0, n > m.

It is assumed that P andQ have no ommon imaginary roots jω ∀ω ∈ R (otherwise

L(jω) = 0), and that a0+b0 6= 0 (otherwise L(0) = 0). The key property of the quasi-

polynomial (3.13) is the ontinuity of its roots as funtions of positive τ . This means

that as τ hanges, the harateristi roots may transit from the LHP to the RHP

(i.e., beome unstable) and vie versa (i.e., beome stable) by rossing the imaginary

axis only. Thus, the analysis steps are as follows: loate the roots of P (s) + Q(s),

inrease τ and hek for the imaginary axis rossings of roots (for the orresponding

rossing frequenies ωc ).

If at some τ roots of L(s) ross the imaginary axis, we have P (jω)+Q(jω)e−jωτ = 0

and, thus, P (jω) 6= 0 sine otherwise P (jω) = Q(jω) = 0, whih ontradits the

assumption that P and Q have no ommon imaginary roots jω for all ω ∈ R. Hene

−Q(jω)/P (jω) = ejωτ

This leads to phase equations as follows

ωτ = arg(−Q(jω)

P (jω)
) + 2πk, k = 0, 1, . . . , (3.14)

and the magnitude equation as

|P (jω)|2 − |Q(jω)|2 = 0, (3.15)

respetively, where (with no loss of generality) we assume that arg(.) ∈ [0, 2π). The

magnitude equation (3.15) is delay-independent and an be rewritten as

P (jω)P (−jω)−Q(jω)Q(−jω) = 0 (3.16)
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whih is polynomial equation in ω2
. As a onsequene, a �nite number of rossing

frequenies may be determined by solving this equation. It is lear that for any

positive real solution ωc of (3.15) there always exists a τ > 0 (atually, a family of

delays of the form τ0+
2π

ωc

k) suh that (3.14) holds for ω = ωc as well. If there are no

positive real solutions of (3.15), no poles migrate from left to right or vie versa as

τ varies and the stability (or instability) of the roots of (3.13) is delay-independent

(does not depend on τ). Thus, if (for τ = 0) P (s) +Q(s) is stable and

∣

∣

∣

∣

Q(jω)

P (jω)

∣

∣

∣

∣

< 1, ∀ω > 0 (3.17)

the harateristi quasi-polynomial is delay-independently stable. Note that

∣

∣

∣

∣

Q(jω)

P (jω)

∣

∣

∣

∣

> 1, ∀ω > 0 (3.18)

does not hold sine n > m. Another possibility for delay-independent stability is the

stability of P (s) (orresponding to τ = ∞) together with (3.17).

Now, we introdue some useful de�nitions that determine the behavior of the roots

and in turn the stability of an LTI TDS.

De�nition 3.1 Root tendeny (RT): At eah rossing frequeny ωc, is de�ned as

RT = sign

(

Re(
ds

dτ
)

)

(3.19)

�

Indeed, RT indiates that the root loi of (3.13) tends to either LHP (RT < 0) or to

RHP (RT > 0) at the rossings when τ inreases.

De�nition 3.2 (Fridman, 2014) The sensitivity funtion is de�ned as

σ(ωc) =
d

dω

(

|P (jω)|2 − |Q(jω)|2
)

ω=ωc
, ωc > 0, (3.20)

whih is independent of τ . �
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Proposition 3.1 (Fridman, 2014) If σ(ωc) > 0, a root rosses the axis from left

to right(RT > 0); if σ(ωc) < 0, a root rosses from right to left(RT < 0); and, if

σ(ωc) = 0 there is a touh of the roots with the imaginary axis.

Example 3.1 Consider a salar TDS

ẋ(t) = −x(t− τ). (3.21)

The system without delay is stable and its quasi-polynomial is given by L(s) = s+e−τs
.

Then, the magnitude equation (3.15) ω2−1 = 0 has a unique positive solution ωc = 1,

where the sensitivity funtion

σ(ωc) =
d

dω
[ω2 − 1]ωc

= 2,

is positive, whih indiates that the harateristi roots rossing at ωc = 1 move from

LHP to RHP. The phase equation (3.14) has the form

τk = arg(−1/j) + 2πk = π/2 + 2πk, k = 0, 1, . . . .

Therefore, the equation is (exponentially) stable for τ ∈ [0, π
2
) and is unstable for

τ > π
2
. Moreover, for eah k ≥ 0 two harateristi roots move to RHP at τ = τk.

Now, time onsider

ẋ(t) = −bx(t− τ), b > 0. (3.22)

by hanging the time t̄ = bt we get,t− τ = (t̄− bt)/b, and denoting x̄(t) = x(t̄/b), we

arrive at

˙̄x(t̄) = −x̄(t̄− bτ), b > 0.

whih is exponentially stable for bτ < π
2
and unstable for bτ > π

2
.

�
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Example 3.2 Consider a TDS

ẋ(t) = −ax(t)− bx(t− τ), a+ b > 0. (3.23)

The system without delay is stable and its quasi-polynomial is given by

L(s) = s+ a+ be−τs.

Sine a+ b > 0, the system is stable at τ = 0. The magnitude equation has the form

ω2 + a2 − b2 = 0.

It may have a nontrivial solution only when |a| < |b|, yielding the positive rossing
frequeny ωc =

√
b2 − a2. Clearly, this is possible only when either a > 0, b > 0, or

a < 0, b > 0. Moreover, the sensitivity funtion

σ(ωc) =
d

dω
[ω2 + a2 − b2]ω=ωC

= 2ωc > 0,

indiates that the harateristi roots rossing at ωc =
√
b2 − a2 move to RHP If

a > 0, b > 0,

√
b2 − a2τk = arg(− b

j
√
b2 − a2

+ a) + 2πk

= arg(a− j
√
b2 − a2) + 2πk

= π − arccos(
a

b
) + 2πk, k = 0, 1, . . . .

As a result, the �rst rossing happens at

τ0 =
π − arccos(b/a)√

b2 − a2
,

whih implies the exponential stability for τ ∈ [0, τ0) and instability for τ > τ0.
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If a < 0, b > 0, then

√
b2 − a2τk = arg(− b

j
√
b2 − a2

+ a) + 2πk

= arccos(
a

b
) + 2πk, k = 0, 1, . . . .

and thus, the system is stable for τ ∈ [0, τ0) and unstable for τ > τ0 with

τ0 =
arccos(b/a)√

b2 − a2
.

On the other hand, the system is delay-independently exponentially stable if and

only if a ≥ |b| (provided a + b > 0), i.e., i� a ≥ b > 0 or a > −b ≥ 0. Indeed, the

ondition a ≥ |b| guarantees that
∣

∣

∣

∣

Q(jω)

P (jω)

∣

∣

∣

∣

=

∣

∣

∣

∣

b

jω + a

∣

∣

∣

∣

< 1, ∀ω > 0

. �

Lyapunov based methods

This setion presents generalizations of the diret Lyapunov method to TDSs. First,

for general TDSs, the stability notions are de�ned, and Lyapunov-Krasovskii and

Lyapunov-Razumikhin stability theorems are stated. Then delay-independent and

delay-dependent stability onditions for linear TDSs are derived. Su�ient onditions

are derived in terms of LMIs. Some of the presented ideas may be useful in the

nonlinear ase and Lyapunov-based neessary stability onditions for LTI retarded

TDSs.

Note that the diret Lyapunov method is also alled the seond Lyapunov method,

whereas the �rst one establishes the stability of a nonlinear system on the basis of the

exponential stability of the linearized system. In order to have a better understanding

of the notations, following de�nition of the onept of stability is given

De�nition 3.3 The trivial solution of (3.3) is
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• uniformly (in t0) stable if ∀t0 ∈ R and ∀ǫ > 0, there exists a δ = δ(ǫ) > 0 suh

that ‖xt0‖c < δ(ǫ) implies |x(t)| < ǫ for all t ≥ t0;

• uniformly asymptotially stable if it is uniformly stable and there exists a δa > 0

suh that for any η > 0 there exists a T (δa, η) suh that ‖xt0‖C < δa implies

|x(t)| < η for all t ≥ t0 + T (δa, η) and t0 ∈ R.

• globally uniformly asymptotially stable if δa an be an arbitrary large, �nite

number.

The system is uniformly asymptotially stable if its trivial solution is uniformly asymp-

totially stable. �

Note that the stability notions are not di�erent from their ounterparts for systems

without delay (Khalil and Grizzle, 2002).

Now, we are in a position to present the method of Lyapunov-Krasovskii fun-

tionals.

Theorem 3.2 Krasovskii Stability Theorem:(Hale, 1971) Suppose that the funtion

f in (3.3) takes bounded sets of Cn in bounded sets of Rn
, and u, v, w: R+ → R+

are

ontinuous, non-dereasing funtions satisfying u(0) = v(0) = 0 and u(s), v(s) > 0

for s > 0. If there exists a ontinuous funtion V : R × Cn → R+
suh that

(a) u(|x|) ≤ V (t, xt) ≤ v(|xt|c).

(b) The derivative of V (t, xt) along the solution of (3.3) and (3.4), de�ned as

V̇ (t, xt) = lim
s→0+

sup
1

s
(V (t + s, xt+s)− V (t, xt)),

satis�es V̇ (t, xt) ≤ w(|x|), then the trivial solution x = 0 of the time-delay system

in (3.3) and (3.4) is uniformly stable.

If lim
s→∞

u(s) = ∞, the solutions of the time-delay system in (3.3) and (3.4) are

uniformly bounded.

If w(s) = 0 for s = 0, then the solution x = 0 is uniformly asymptotially stable.
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Example 3.3 (Fridman, 2014) Consider the nonlinear autonomous salar equation

ẋ(t) = −ax3(t)− bx3(t− h); a > 0; b ∈ R. (3.24)

Let |b| < a and onsider the following funtional

V (φ) =
φ4(0)

2a
+

0
∫

−h

φ6(s)ds,

in whih, φ is the initial funtion as de�ned in (3.4). Then

V (φ) =
x4(t)

2a
+

0
∫

−h

φ6(t+ s)ds =
x4(t)

2a
+

0
∫

t−h

φ6(s)ds.

derivation gives

V̇ (xt) = d
dt
V (xt) =

2x3(t)

a
ẋ(t) + x6(t)− x6(t− h)

= −[x6(t) + 2b
a
x3(t)x3(t− h) + x6(t− h)]

= [x3(t) x3(t− h)][
−1 − b

a

− b
a

−1
] ≤ α|x(t)|6.

for some α > 0. Thus, the system is delay-independently asymptotially stable if

|b| < a. Note that the linear equation

ẋ(t) = −ax(t) − bx(t− h), a+ b > 0

is delay-independently asymptotially stable i� |b| < a. �

We now reall one of the widely used theorems in TDSs.

Theorem 3.3 Razumikhin Stability Theorem:(Fridman, 2014) Suppose that the fun-

tion f in (3.3) takes bounded sets of Cn in bounded sets of Rn
and suppose that

u, v, w : R+×R+
are ontinuous, nondereasing funtions, u(s), v(s), w(s) are positive
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Figure 3-2: The idea of Razumikhin approah

for s > 0, u(0) = v(0) = 0. Let p : R+ ×R+
be a ontinuous non-dereasing funtion

satisfying p(s) > s for s > 0. If there exists a ontinuous funtion V : R× R+ × R+

suh that

(a) u(|x|) ≤ V (t, x) ≤ v(|x|), ∀t ∈ R, x ∈ Rn
.

(b) The derivative of V (t, x) along the solution of (3.3) and (3.4), de�ned as

V̇ (t, xt) = lim
s→0+

sup
1

s
(V (t + s, xt+s)− V (t, xt)),

satis�es

V̇ (t, xt) ≤ w(|x|)

if

V (t+ θ, xt+θ) < p(V (t, xt)), ∀θ ∈ [−h, 0].

then the trivial solution x = 0 of the time-delay system in (3.3) and (3.4) is

uniformly stable. Furthermore, if u(s) → ∞ as s → ∞, then the trivial solution

is globally uniformly asymptotially stable.

The idea of the Razumikhin method an be explained as follows for the typial hoie

of (quadrati) Lyapunov funtions of the form V (x) = xTPx, P > 0 (see Fig. 3-2).

If a solution begins inside the ellipsoid V (t + θ, xt+θ) = xT
t+θPxt+θ < δ, ∀θ ∈ [−h 0],

and not for any x(t + θ). This guarantees the stability of the system.
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So, the solution will not leave the ellipsoid xT (t)Px(t) ≤ δ if d
dt
V (x(t)) < 0 along

ẋ(t) = f(t, xt) for all xt = x(t+ θ), θ ∈ [−h 0] satisfying the Razumikhin ondition

V (x(t + θ)) ≤ V (x(t)), θ ∈ [−h 0]

The following theorem also plays an important role in the stability analysis of

time-delay systems.

Theorem 3.4 Halanay theorem(Xu and Lam, 2008) Consider that salars k1 and k2

satisfy k1 > k2 > 0, and x(t) governed by equation (3.3) is a non-negative ontinuous

funtion on [t0 − τ, t0] satisfying

ẋ(t) ≤ −k1x(t) + k2x̄(t), (3.25)

for t ≥ t0, where τ ≥ 0 and

x̄(t) = sup
t−τ≤s≤t

x(s)

Then, for t > t0, we have

x(t) ≤ x(t0)e
−α(t−t0),

where α > 0 is the unique solution to the following equation:

α = k1 − k2e
ατ

Both Theorems 3.3 and 3.4 an be used to derive stability onditions for the ase

when the delay is time-varying, whih is ontinuous but not neessarily di�erentiable.

It is also worth pointing out that Theorem 3-2 an be used to obtain delay-dependent

stability onditions for time-delay systems, whih will be shown in the next setion.

3.4 An LMI Approah to Stability

The diret Lyapunov method for linear ordinary di�erential equations leads to sta-

bility onditions in terms of LMIs. Most of the earlier works on stability of linear
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systems via Lyapunov method were formulated in terms of Lyapunov equations and

algebrai Riati equations. This is mostly beause of the unavailability of e�ient

numerial algorithms for the general form of LMI. Solutions of some matrix inequal-

ities have appeared in 1960 (see, e.g., Fridman (2014)). The realization that LMI

is a onvex optimization problem and the development of the e�ient interior point

method led to formulation of many ontrol problems and their solutions in the form

of LMIs (Boyd et al., 1994). The LMI approah is apable to provide the desired

stability/performane analysis and design in spite of signi�ant model unertainties.

Among the model unertainties may be, e.g., unertain delays.

There are e�ient numerial methods to determine whether an LMI is feasible ,

or to solve a onvex optimization problem with LMI onstraints. Many optimization

problems in ontrol theory, system identi�ation and signal proessing an be formu-

lated using LMIs. Also LMIs �nd appliation in Polynomial Sum-Of-Squares. The

prototypial primal and dual semide�nite program is a minimization of a real linear

funtion respetively subjet to the primal and dual onvex ones governing this LMI.

The solution of LMIs is a part of onvex programming. There exist various pakages

that provide e�ient solutions to LMIs, e.g., MATLAB provides an LMI toolbox.

We will review the LMI tehniques in deriving stability results for the single-delay

ase. However, the LMI tehniques presented in the following an be extended to the

multiple-delay ase in a straightforward manner. We onsider a lass of TDSs with

time-varying delays as follows

ẋ(t) = Ax(t) +Bu(t− τ(t)) (3.26)

x(t) = φ(t), ∀t ∈ [−τ̄ 0] (3.27)

where x(t) ∈ Rn
is the state; φ(t) is the ontinuous initial ondition. τ(t) is the

time-varying delay of system (3.26), whih is assumed to be ontinuous and satis�es

0 < τ(t) ≤ τ̄ , (3.28)
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A and B are known real onstant matries.

Note that stability results on (3.26) with a onstant delay obtained by the method

of Lyapunov-Krasovskii funtionals an be easily extended to systems with di�eren-

tiable time-varying delays. Considering this, time-delay systems with di�erentiable

time-varying delays are not onsidered, and attention will be foused on the review of

the LMI tehniques in deriving both delay independent and delay-dependent stability

onditions for the time-delay systems with onstant and time-varying delay.

Generally, the funtionals whih are used as andidate Lyapunov ones are ahieved

by summing up the following terms (Rihard, 2003)

V1(x(t)) = xT (t)Px(t),

V2(xt) = xT (t)

∫ 0

−τi

Qix(t+ θ)dθ,

V3(xt) =

∫ 0

−τi

xT (t+ θ)Six(t + θ)dθ,

V4(xt) =

∫ 0

−τi

∫ t

t+θ

xT (θ)Rix(θ)dθds,

V5(xt) = xT (t)

∫ 0

−τi

Pi(η)x(t + η)dη,

V6(xt) =

∫ 0

−τi

∫ 0

τi

Pi(η, θ)x(θ)dηdθ,

(3.29)

Delay-Independent Conditions for Linear TDSs

For the time-delay system (3.26) with a onstant time delay τ(t) = τ̄ , by hoosing a

Lyapunov-Krasovskii funtional as

V (t, xt) = xT (t)Px(t) +

t
∫

t−τ̄

xT (s)Qx(s)ds (3.30)

and putting it into Theorem 3.2, the following stability ondition an be obtained

Theorem 3.5 (Rihard, 2003) The TDS (3.26) is asymptotially stable if there exist

matries P > 0 and Q > 0 suh that
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PA+ ATP +Q PB

∗ −Q



 < 0. (3.31)

Remark 3.1 Hereafter,

∗
in ij-element indiates the transpose of the ji-element of

the same matrix.

Note that for the general ase in (3.26), sine the time-varying delay τ(t) may not be

di�erentiable, the Lyapunov-Krasovskii funtional similar to (3.30) as

V (t, xt) = xT (t)Px(t) +

t
∫

t−τ(t)

xT (s)Qx(s)ds, (3.32)

annot be used to derive a stability ondition. If we suppose that τ(t) is a di�eren-

tiable funtion with τ̇(t) < dτ < 1, Fridman (2014) provided the following theorem.

Theorem 3.6 The TDS (3.26) is asymptotially stable if there exist matries P > 0

and Q > 0 suh that





PA+ ATP +Q PB

∗ −(1− dτ)Q



 < 0. (3.33)

If τ(t) is not di�erentiable, however, we an use Theorem 3.3 to give a delay

independent stability ondition. Here, we hoose a Lyapunov funtion as

V (t, xt) = xT (t)Px(t), (3.34)

By setting the following onditions

p(s) = δs, w(s) = ǫs, (3.35)

where δ > 1 and ǫ > 0 are salars, we have the following result.
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Theorem 3.7 TDS in (3.26) is asymptotially stable if there exists a matrix P > 0

suh that





PA+ ATP + P PB

∗ −P



 < 0. (3.36)

It is easy to see that the LMI ondition in Theorem 3.7 is a speial ase of that in

Theorem 3.5. Thus, Theorem 3.7 is more onservative than Theorem 3.5. However,

it is worth pointing out that Theorem 3.7 an be applied to the ase when the delay

is time-varying and ontinuous, whih may not be di�erentiable, while in the time-

varying delay ase, the use of Theorem 3.5 usually requires the onsidered delay being

di�erentiable.

Now, we introdue some useful inequalities for TDS. Notie that from (3.26) one

has ẋ(t) − Ax(t) + Bu(t − τ(t)) = 0. Therefore, for any matries Y , W and S with

appropriate dimensions, the following equalities hold:

ẋT (t)Y [ẋ(t) = Ax(t) +Bu(t− τ(t))] = 0 (3.37)

xT (t)W [ẋ(t) = Ax(t) +Bu(t− τ(t))] = 0 (3.38)

xT (t− τ(t))S[ẋ(t) = Ax(t) +Bu(t− τ(t))] = 0 (3.39)

Indeed the above equations add some degrees of freedom to the equations and

provide a wider deision variable spae. By noting these and using the Lyapunov

funtion (3.34), we an obtain the following delay-independent stability result for the

time-delay system (3.26) and (3.27).

Theorem 3.8 The time-delay system (3.26) is asymptotially stable if there exist

matries P > 0, Y , W , and S suh that











WA+ ATW T WB + ATST ATY T + P −W

∗ SB +BTST BT
1 Y

T − S

∗ ∗ −Y − Y T











< 0 (3.40)
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Delay-dependent stability onditions

In this setion we onsider the linear TDSs (3.26) and (3.27). The feasibility of

the delay-independent onditions in (3.33) and (3.36) implies that A and A ± B

are Hurwitz. It means that these onditions annot be applied for stabilization of

unstable plants by a feedbak with delay. For suh systems, the stability depends on

the delay.

In this setion, LMI tehniques in deriving delay-dependent stability onditions

will be reviewed. Generally, these tehniques an be divided into two main groups, i.e.,

the model transformation tehniques and the bounding tehniques. The aim of using

these transformations and boundings is to ahieve some LMIs that are dependent on

delay. Now, we introdue some usual transformation and bounding tehniques.

Transformations and boundings

One of the most used tehniques in delay-dependent LMIs is Newton-Leibniz trans-

formation. Using Newton-Leibniz formula, one gets

x(t− τ̄) = x(t)−
t
∫

t−τ̄

ẋ(s)ds,

= x(t)−
t
∫

t−τ(t)

[Ax(s) +Bx(t− τ(t))]ds

Replaing x(t− τ̄ ) in (3.26) gives us

ẋ(t) = (A+B)x(t)−B

t
∫

t−τ

[Ax(s) +Bx(t− τ)]ds (3.41)

Note that the asymptoti stability of the TDS in (3.41) implies that of the system

in (3.26) and (3.27). For this reason, we now turn to study the stability of (3.41). For

a onstant time-delay τ = τ̄ , we hoose a Lyapunov-Krasovskii funtional andidate
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as follows:

V (t, xt) = xT (t)P−1x(t) +

0
∫

−τ̄

t
∫

t+θ

xT (s)BTQ−1
1 Bx(s)dsdθ

+xT (t)P−1x(t) +

0
∫

−τ̄

t
∫

t−τ̄+θ

xT (s)BTQ−1
2 Bx(s)dsdθ

(3.42)

in whih P,Q1, Q2 > 0. Then, by Theorem 3.2, the stability ondition for (3.41) is

obtained in the following theorem.

Theorem 3.9 (Cao et al., 1998b) The TDS in (3.41) is asymptotially stable for any

delay τ satisfying 0 < τ ≤ τ̄ if there exist matries P > 0, Q1 > 0 and Q2 > 0 suh

that











Ψ τ̄PAT τ̄PBT

∗ −Q1 0

∗ ∗ −Q2











, (3.43)

where Ψ = (A+B)P + P (A+B)T +B(Q1 +Q2)B
T .

Using the Lyapunov funtion in (3.34) a system with a time varying delay τ(t),

the following result is ahieved.

Theorem 3.10 (Cao et al., 1998a) The time-delay system in (13) is asymptotially

stable for any delay τ(t), satisfying 0 < τ(t) < τ̄ if there exist matries X1, X2, X3 > 0

suh that

(A+B)X1 +X1(A+B)T + τ̄B(X2 +X3)B
T + 2τ̄X1 < 0,





X1 X1A
T

∗ X2



 ≥





X1 X1B
T

∗ X3



 ≥ 0.
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By the Newton-Leibniz formula, we an also hange system (3.26) to

ẋ(t) = (A +B)x(t)− B

∫ t

t−τ̄

ẋ(s)ds, (3.44)

and

d

dt

[

x(t) +B

∫ t

t−τ̄

x(s)ds

]

= (A +B)x(t.) (3.45)

Remark 3.2 All the time-delay systems in (3.41), (3.44), and (3.45) are transformed

from the time-delay system in (3.26) by using the Newton-Leibniz formula. However,

all of them are not equivalent to (3.26). Compared with (3.26), additional dynamis

are introdued in (3.41), (3.44), and (3.45) (Gu (2000); Kharitonov and Melhor-

Aguilar (2003a,b)), whih may ause onservatism as the delay-dependent onditions

are derived based on the transformed systems.

One of the main purposes in the study of delay-dependent stability for time-

delay systems is to �nd methods to redue onservatism of existing delay-dependent

stability onditions. It is known that the �nding of better bounds on some weighted

ross produts arising in the analysis of the delay-dependent stability problem plays

a key role in reduing onservatism. Note that the delay-dependent stability results

reported by Li and De Souza (1997) and Cao et al. (1998a,b) were obtained by using

the well-known inequality on upper bound for the inner produt of two vetors, that

is,

− 2aT b ≤ aTXa + bTX−1b, (3.46)

where a, b ∈ Rn
and X ∈ Rn×n

. In order to redue the onservatism in the delay-

dependent stability results of Li and De Souza (1997) and Cao et al. (1998a,b), an

improved inequality was proposed by Park (1999) whih is re-stated as follows:

Lemma 3.11 (Park's Inequality)(Park, 1999) Assume that a(α) ∈ Rna
, andb(α) ∈

Rnb
are given for α ∈ Ω. Then, for any X ∈ Rna×na

with X > 0 and any matrix

M ∈ Rna×na
, we have
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−2
∫

Ω
aT (α)b(α)dα

≤
∫

Ω





a(α)

b(α)





T 



X XM

MTX (MTX + I)X−1(MTX + I)T





×





a(α)

b(α)



 dα

(3.47)

Now, we present another important inequality, whih is also e�etive in the deriva-

tion of delay-dependent stability onditions.

Lemma 3.12 Jensen's Inequality (Gu, 2000): For any onstant matrix M ∈ Rm×m

with M > 0, salars b > a, vetor funtion ω : [a, b] → Rm
suh that the integrations

in the following are well-de�ned, then

(b− a)
∫ b

a
ωT (β)Mω(β)dβ

≥
[

∫ b

a
ω(β)dβ

]T

M
[

∫ b

a
ω(β)dβ

]T

.
(3.48)

3.5 Conlusions

In this hapter, we reviewed the stability analysis of TDSs. Eigenvalue-based methods

give quite preise and satisfying results when the delay is onstant and the system is

LTI. However, when the delay beomes time-varying these methods annot be used

easily. Instead, Lyapunov-based methods an provide some su�ient onditions for

the stability of TDSs. Nevertheless, one has to use these methods is most ases.

Among the Lyapunov based-methods, the delay-independent ones are usually an-

not be straightforwardly ahieved. Many researhes have been devoted to improve

the onservativeness of the delay-dependent methods at the expense of inreased om-

plexity of the resulting LMIs.

Due to its importane in our work, in the next hapter, we separately study

sampled-data systems as a speial ase of time-varying TDSs.
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4

Sampled-data systems

�Equipped with his �ve senses, man explores the universe around him and

alls the adventure Siene.�

� Edwin Powell Hubble, The Nature of Siene, 1954

In this hapter we onsider sampled-data systems (SDS) with zero-order hold

(ZOH). We start with preliminaries on main approahes to sampled-data ontrol. We

also review some reent time-dependent Lyapunov funtionals in the framework of the

delayed system approah. Indeed, the orresponding TDS to SDS an be onsidered

as a system with a pieewise-ontinuous time-varying delay.

Introdution

SDSs have been extensively studied over the past years (Chen and Lathman (1995);

Fridman (2010); Liu and Fridman (2012) and the referenes therein). Two main

approahes have been used for the sampled-data ontrol of linear unertain systems

leading to onditions in terms of Linear Matrix Inequalities (LMIs) (Boyd et al.,

1994). The �rst one is the input delay approah, where the system is modeled as a

ontinuous-time system with the delayed ontrol input (Miheev et al., 1988). The

seond approah is based on the representation of the sampled-data system in the

form of impulsive model (see e.g., Hespanha et al. (2008)). The input delay approah
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beame popular in the networked ontrol systems literature, being applied via time-

independent Lyapunov-Krasovskii funtionals or Lyapunov-Razumikhin funtions to

analysis and design of linear unertain systems under unertain sampling with the

known upper bound on the sampling intervals (Fridman et al., 2004; Gao et al., 2008).

In this hapter, we are going to fous on the delayed system approah.

Modern ontrol employs digital tehnology for implementation. SDSs are dynami-

al systems that involve both a ontinuous-time dynamis and a disrete-time ontrol.

Consider the linear system

ẋ(t) = Ax(t) + B̄u(t) (4.1)

where A and B̄ are onstant matries. The ontrol signal is assumed to be gener-

ated by a zero-order hold (ZOH) funtion

u(t) = u(tk), tk ≤ t ≤ tk+1 (4.2)

with a set of hold times {t0, t1, . . .}

0 < t0 < t1 < . . . < lim
k→∞

tk = ∞, (4.3)

where ud is a disrete-time ZOH ontrol signal. The sampling interval an be

either onstant tk+1 − tk = τ̄ or variable with time-varying tk+1 − tk = τ̄ . In the

ontext of NCSs (e.g., due to paket dropout) the sampling interval may be variable

and unertain. Hereafter, we assume that the samplings happen in a bounded time,

i.e.,

tk+1 − tk ≤ τ̄ , τ̄ ∈ R, k ∈ Z+.

Consider a state-feedbak ontroller u(tk) = Kx(tk). Regarding (4.1) and (4.2),

we arrive at

ẋ(t) = Ax(t) +Bx(tk), tk ≤ t < tk+1, (4.4)

where B = B̄K. For the periodi sampling ase with tk+1 − tk = T , the solution is
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ahieved

x(t) = eA(t−tk)x(tk) +

∫ t

tk

eA(t−θ)Bx(tk)dθ, tk ≤ t < tk+1, k ∈ Z
+. (4.5)

Finding the value of x(tk+1) leads us to the following disrete-time system

x(tk+1) = Dx(tk), D = eAT +

∫ T

0

eAτ̄Bdθ, k ∈ Z
+, (4.6)

System (4.4) is asymptotially stable i� the eigenvalues of D are loated inside the

unitary irle (Shur stable matrix). Under variable sampling, the losed-loop system

(4.4) is onverted into a linear time-varying disrete-time system

x(tk+1) = Dkx(tk), Dk = eATk +

∫ Tk

0

eATkBdθ, k ∈ Z+, (4.7)

Assuming Tk = tk+1 − tk ≤ τ̄ , the following bound follows from (4.6):

|x(t)| ≤ γ|x(tk)|, tk ≤ t ≤ tk+1, k ∈ Z+ (4.8)

where

γ = max
θ∈[0,τ̄ ]

|eAθ|+max lim
θ∈[0,τ̄ ]

∫ θ

0

eAζdζ,

Therefore, the stability of the disrete-time linear system (4.7) is equivalent to the

stability of the ontinuous-time system (4.4).

4.1 Stability analysis

SDS in (4.4) an be onsidered as a ontinuous-time system with a pieewise-linear

time-varying delay as (3.3)

ẋ(t) = Ax(t) + B̄x(t− τ(t)), τ(t) = t− tk, tk ≤ t < tk+1. (4.9)

See Fig. 4-1 for the plot of a sawtooth delay orresponding to a variable sampling.
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Figure 4-1: Looking an SDS systems as a time-varying TDS with τ̄ = 1.

As for the general time-varying delay with τ(t) ≤ τ̄ , if the LTI system without delay

(i.e., the ontinuous-time system) is asymptotially stable, then for small enough τ̄

the sampled-data system preserves the stability.

Example 4.1 Consider a simple system as follows

ẋ(t) = −x(tk), tk ≤ t < tk+1, k = 0, 1, . . . . (4.10)

The orresponding ontinuous-time system ẋ(t) = −x(t) is exponentially stable.

It is well known (see Fridman and Shaked (2003); Fridman (2014)) that the equation

ẋ(t) = −x(t − τ(t)) with a onstant delay τ is asymptotially stable for τ < π
2
and

unstable for τ > π
2
, whereas for the fast varying delay it is stable for τ(t) < 1.5 and

there exists a destabilizing delay with an upper bound greater than 1.5.

For the onstant periodi sampling ase, D in the orresponding disrete-time

system (4.6) is given by D = 1 − T . Sine the eigenvalues of D must be inside the

unitary irle, the system remains asymptotially stable for all onstant samplings

less than 2 and beomes unstable for samplings greater than 2. Consider now the

variable sampling with tk+1 − tk = Tk, where the orresponding disrete-time system

is given by (4.6) with Dk = 1 − Tk. For any small ǫ > 0 and Tk ≤ 2 − ǫ we have

|Dk| = |1 − Tk| ≤ 1 − ǫ. Hene, the disrete-time (and, thus, the ontinuous-time

76



SDS) system is asymptotially stable for Tk ≤ 2− ǫ ∀ǫ > 0. �

In the above example, the maximum interval for the sampling that preserves the

asymptoti stability is the same under the onstant and the variable sampling in-

tervals. Usually a maximum upper bound on the unertain variable sampling that

preserves the stability is smaller than the one for the onstant sampling.

Example 4.2 (Constant and time-varying sampling)

Consider System in (4.4) with

A =





1 3

2 1



 , B =





−1 −6

−0.6 −3.6



 .

Note that, for a onstant delay, τ , if x(tk) is hanged by x(t−τ), the above losed-

loop system is asymptotially stable for the onstant delay τ < 0.19 and beomes

unstable for τ > 0.19 (using the phase (3.14) and the magnitude equation (3.15), and

onsidering that all the eigenvalues of the system must be loated in the LHP). In

the ase of a onstant sampling, the equivalent disrete-time system is asymptotially

stable for the onstant sampling interval tk+1− tk = T for T ∈ [0 0.5937]. Therefore,

for the onstant sampling intervals T1 = 0.18 or T2 = 0.54 the system is asymptotially

stable (see Figures 4-2, 4-3). However, if we sample using a sequene of sampling

intervals T1 → T2 → T1 → . . . the system beomes unstable (see Figure 4-4 with the

plot of the state).

In the seond ase, the equivalent disrete-time system over two sampling instants

an be presented as

xk+2 = Dk+1Dkxk, k = 0, 1, 2, l . . . ,

One an see that the system beomes LTV, and therefore the analysis for LTI

systems are not valid anymore. Using the Razumikhin approah and onvex embed-

dings, Fiter et al. (2012) found the following upper bound on the variable sampling

was ahieved τ̄ = 0.4683.

�
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Figure 4-2: The system in Example 4.2 with a onstant sampling T1 = 0.18.
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Figure 4-3: The system in Example 4.2 with a onstant sampling T1 = 0.54.
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Figure 4-4: The system in Example 4.2 with a swithed sampling T1 → T2 → T1 . . ..
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Generally, three main approahes are used for the SDSs, i.e., the disrete-time,

the time-delay, and the impulsive/hybrid system approah.

In the disrete-time approah the system is disretized (Ihikawa and Katayama,

2001). If the SDS is linear time invariant, the disretization is ahieved from (4.6) that

leads to the disrete-time system (4.6). The advantage of the above disretization is in

the simpliity of the stability onditions. Moreover, for LTI systems these onditions

are neessary and su�ient for the stability under the onstant and known sampling

rate. However, it beomes ompliated for systems with unertain matries or/and

unertain variable sampling period. The main drawbak is that disretization loses the

knowledge about the inter-sampling behavior. It an hardly be used to performane

analysis, to ontrol and traking of nonlinear systems. A speial lifting tehnique

was introdued by Yamamoto (1990) and Bamieh et al. (1991) for sampled-data H∞

ontrol.

The seond approah, onverts an SDS to a system with an input delay so that

(4.4) is modeled as a ontinuous-time system (4.9) with the delayed ontrol input

(Fridman, 2014; Seuret, 2009). Robust ontrol of SDS was started by Fridman et al.

(2004) via Lyapunov-Krasovskii funtionals proposed by Fridman and Shaked (2003)

for systems with fast-varying delays (here τ̇ = 1 almost everywhere). The time-

delay approah beame popular in NCSs, being applied to unertain systems under

unertain sampling and network indued delay (Gao et al., 2008; Kim et al., 2010).

The third one is impulsive system approah whih has been desribed by Naghshtabrizi

et al. (2008, 2010). In this thesis this approah is not being utilized in this thesis,

and we only mention it to omplete the disussion.

Consider the augmented system state ξ(t) = [xT (t) uT (t)], and

u̇(t) = 0, t 6= tk, u(tk) = Kx(t−k ),
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With this we arrive at the following impulsive model

ξ̇(t) =





A B

0 0



 ξ(t), t 6= tk,

ξ(t) =





x(t−k )

Kx(t−k )



 , t = tk.

(4.11)

The impulsive approah was extended to the ase of variable sampling with a

known upper bound, where a disontinuous Lyapunov funtion method was intro-

dued (Naghshtabrizi et al., 2008). The latter method improved the existing results,

based on the input delay approah via time-independent Lyapunov funtionals, and

gave an insight to time-dependent Lyapunov funtionals suggested by Fridman (2010).

In the next setion stability analysis based on Lyapunov funtional is disussed.

4.2 Lyapunov based time-dependent methods

One of the earliest works in this framework is the paper of Fridman et al. (2004),

in whih Lyapunov funtionals for stability analysis of (4.4) with external distur-

bane and in the ase of fast-varying delay is addressed. Naghshtabrizi et al. (2008)

introdued a Lyapunov funtion whih depends on tk for the orresponding �nite-

dimensional system with jumps. Following Fridman (2010), we employ below a time-

dependent Lyapunov funtional whih may be disontinuous in time, but it is not

allowed to grow in the jumps.

Lemma 4.1 (Fridman, 2014) Consider a general SDS (4.9). Assume that there exist

positive numbers α, β and a funtional V : R+ × W [−τ̄ , 0] × L2(−τ̄ , 0) → R+
suh

that

α|φ(0)|2 ≤ V (t, φ, φ̇) ≤ β‖φ‖W , (4.12)

where φ indiates the spae of funtions φ : [τ̄ , 0] → R, whih are absolutely ontinuous

on [τ̄ , 0), have a �nite lim
θ→0−

φ(θ) = 0, and have square integrable �rst order derivatives
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Figure 4-5: Disontinuous Lyapunov funtional

is denoted by W [a, b) with the norm

‖φ‖W = max
θ∈[a,b]

|φ(θ)|+
[
∫ b

a

φ̇2(s)ds

]1/2

. (4.13)

Consider the funtion V̄ (t) = V (t, xt, ẋt), whih is ontinuous from the right for

x(t) satisfying (4.9), loally absolutely ontinuous on t ∈ [tk, tk+1), k = 1, 2, . . . and

whih satis�es

lim
t→t−

k

V̄ (t) ≥ V̄ (tk), (4.14)

This has been shown in Figure 4-5. Given α, if along (4.9)

d

dt
V̄ (t) + 2αV̄ (t) ≤ 0, (4.15)

for almost all t, then (4.9) is exponentially stable with a deay rate α.

In the next setion, we introdue the looped-funtional method for SDSs.

81



4.3 Looped funtional Method

Looped-funtionals have been introdued by Briat and Seuret (2012a), Seuret (2012)

and Seuret et al. (2014) for the analysis of sampled-data systems. The main aim was

to reformulate a disrete-time ondition into another ondition devoid of exponential

terms, allowing then for the onsideration of unertain time-varying systems and

nonlinear systems (Peet and Seuret, 2014). They have been further onsidered for

the analysis of impulsive systems (Briat and Seuret, 2014; Hespanha et al., 2008). The

key idea behind the use of looped-funtionals is to enode a disrete-time stability

ondition in a ondition that is onvex in terms of the matries of the systems. Due to

the onvexity property, the resulting onditions an be extended to unertain systems

and linear time-varying systems, unlike the disrete-time stability onditions that are

non-onvex in the matries of the system due to the presene of exponential terms.

In the papers of Briat and Seuret (2012b, 2013), the onsidered looped-funtional

led to su�ient onditions for the feasibility of a ertain disrete-time stability ri-

terion haraterizing the stability of impulsive and swithed systems. They show

here that this very same looped-funtional is omplete in the sense that the result-

ing riterion is atually equivalent to the disrete-time stability ondition aimed to

be represented in a onvex way. This result is proved for a larger lass of systems,

referred to as pseudo-periodi systems, enompassing periodi systems, impulsive sys-

tems, sampled-data systems and swithed systems, proving then the su�ieny and

the neessity of the onditions obtained by Briat and Seuret (2013).

The de�nition of a looped-funtional is given below (Briat and Seuret, 2012a).

De�nition 4.1 (Looped-funtional) A funtional f : [0, T2]×K[T1, T2]×[T1, T2] → R,

where ǫ ≤ T1 ≤ T2 ∞, ǫ > 0, is said to be a looped funtional if the following onditions

are satis�ed

(i) the equality f(0, z, T ) = f(T,Z, T ) holds for all funtions Z ∈ C([0, T ],Rn) ⊂
K[T1, T2] and all T ∈ [T1, T2], and

(ii) it is di�erentiable with respet to the �rst variable with the standard de�nition
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of the derivative.

The idea for proving stability of (4.9) is to look now for a positive de�nite quadrati

funtion, suh that the disrete sequene is monotonially dereasing. This is formal-

ized as the following theorem.

�

Theorem 4.2 Let 0 < T1 ≤ T2 be two salars and V : Rn → R+
be a di�erentiable

funtion for whih there exist positive salars µ1 < µ2 and p suh that

∀x ∈ R
n, µ1|x|p ≤ V (x) ≤ µ2|x|p. (4.16)

Then the following statements are equivalent.

(i) The absolute value of the Lyapunov funtion stritly dereases ∀k ∈ N and

Tk ∈ [T1, T2], or equivalently

∆V (k) = V (x(tk))− V (x(0)) < 0

(ii) There exists a ontinuous and di�erentiable funtional V0 : [0, T2] × K → R

whih satis�es for all z ∈ K

∀T ∈ [T1, T2] V0(T, z(.)) = V0(0, z(.)), (4.17)

and suh that, ∀t ∈ [0Tk],

W0(τ, x(tk)) =
d

dt
[V (x(tk)) + V0(t, x(tk))] < 0. (4.18)

If one of the above statements is satis�ed, then the the system in (4.9) is asymp-

totially stable.

Now we introdue Wirtinger's inequality, whih has a very important role in de-

termining a less onservative upper bound in Lyapunov based methods in SDSs. This
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inequality allows the Lyapunov funtionals to have a negative term.

4.4 Wirtinger based Lyapunov funtionals

In mathematis, historiallyWirtinger's inequality for real funtions was an inequality

used in Fourier analysis. It was named after Wilhelm Wirtinger. It was used in 1904

to prove the isoperimetri inequality. A variety of losely related results are today

known as Wirtinger's inequality.

Wirtinger's inequality is an alternative of Jensen's inequality in delay-dependent

stability analysis of linear systems with onstant disrete and distributed delays or

with disrete time-varying delays via Lyapunov funtionals.

Lemma 4.3 (Liu and Fridman, 2012) For all absolutely ontinuous funtions ω :

[a, b] → Rn
with ω ∈ L2(a, b). and all n× n matries W > 0 the following holds

∫ b

a

ωT (θ)Wω(θ)dθ ≤ 4(b− a)

π2

∫ b

a

ω̇T (θ)Wdotω(θ)dθ. (4.19)

The Wirtinger's inequality an help to derease the onservativeness of the results

in the ontext of the stability analysis of time delay systems using disrete Lyapunov-

Krasovskii funtionals. In this way, the following additive term was suggested by Liu

and Fridman (2012) for SDSs with a onstant ommuniation delay η ∈ R+
:

VW = τ̄ 2
∫ t

tk

ẋT (s)Wẋ(s)ds− π2

4

∫ t−η

tk−η

[x(s)−x(tk−η)]TW [x(s)−x(tk−η)]ds, (4.20)

where W > 0, tk ≤ t ≤ tk+1. Aording to Wirtinger's inequality, in spite of having a

negative term, we get VW ≥ 0 for tk ≤ t ≤ tk+1. By derivation with respet to time,

a negative term appears whih removes the e�et of some positive terms and redues

the onservativeness of the results.
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4.5 Conlusions

In this hapter, some Lyapunov based stability onditions for the SDSs were studied.

Main disussions in this hapter were based on time-dependent funtionals, looped-

funtionals, and Wirtinger based funtionals. The orresponding TDS to SDS was

onsidered as a system with a pieewise-ontinuous time-varying delay.
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5

Consensus in seond-order

multi-agent systems with time-delay

and slow swithing topology

�The sientist is not a person who gives the right answers, he's one who asks

the right questions.�

� Claude Lévi-Strauss

In this hapter, based on the results of Zareh et al. (2013b), we investigate the

problem of deriving su�ient onditions for asymptoti onsensus of seond order

multi-agent systems with slow swithing topology and time delays. The proposed loal

interation protool is PD-like and the stability analysis is based on the Lyapunov-

Krasovskii funtional method. Our approah is based on the omputation of a set

of parameters that guarantee stability under any network topology of a given set.

A signi�ant feature of this method is that it does not require to know the possible

network topologies but only a bound on their seond largest eigenvalue (algebrai

onnetivity).
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5.1 Introdution

As mentions in Chapter 2, in the past years a signi�ant attention has been given

to the onsensus problem in multi-agent systems due to its broad spetrum of ap-

pliations to sensor networks, automated highway systems, mobile robotis, satellite

alignment and several more. The objetive of a onsensus algorithm is to drive the

state variables of all the agents in a networked system toward a ommon value. This

partiular network state is alled onsensus state.

Motivated by the requirement to onsider more omplex agent dynamis, some

researhers now study the onsensus problem for seond-order systems. This makes

the onsensus problem more omplex and its stability properties depend not only

on the interonnetion topology, but also on the parameters of the loal interation

protools. In the work of Tian and Liu (2008), the ase of heterogeneous multi-

agent systems is investigated by means of frequeny-domain analysis. Lin and Jia

(2009) proposed a ontrol strategy for onsensus over a group of agents with disrete-

time seond-order dynamis, operating under a time delayed ommuniation/sensing

struture.

Another hallenge of interest is the topology swithing problem aused by inter-

mittent and time-varying ommuniation links or sensing apabilities. A swithing

network topology may result in instability even if all the topologies produe stable

systems (Liberzon, 2003; Liberzon and Morse, 1999). Xie and Wang (2006); Jia et al.

(2011) investigated seond order multi-agent systems with swithing topology are .

Despite the onsiderable number of ontributions in seond order multi-agent sys-

tems where time delays and swithing topology are onsidered separately, to the best

of our knowledge very few works have investigated both issues simultaneously.

In this hapter we extend the results of Cepeda-Gomez and Olga (2011a) whih

deals with systems with ommuniation/sensing delay but stati topology, to sys-

tems with delay and slow swithing topology. We provide su�ient onditions under

whih the onsensus state is reahed by agents modeled by double integrator dynam-

is a�eted by a ommuniation/sensing time delay for any network topology with
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algebrai onnetivity greater then a given bound. The proposed method is based on

the solution of a set of LMIs and allows to infer stability for slow swithing topolo-

gies by ensuring the existene of a minimum dwell time. The omputation of the

minimum dwell time that ensures onsensus will be the objet of our future researh

in this topi.

The next setions ar organized as follows. In Setion 5.2 the problem statement

is formalized. In Setion 5.3 su�ient onditions based on LMIs for stability of

seond-order multi-agent systems with time delays are given. In Setion 5.4 the main

results are presented. It is a method to solve the LMIs required to infer stability

of the networked system in suh a way that they are independent from the network

topology, thus greatly reduing the omputational burden. In Setion 5.5 simulations

are presented to orroborate the theoretial results. In Setion 5.6 onluding remarks

are given and future works are disussed.

5.2 Problem statement

Consider a group of n autonomous agents with double integrator dynamis

ẍi(t) = ui(t), i = 1 · · ·n.

In the ase of mobile robots xi ∈ R an be onsidered as a salar position and ui ∈ R

as the ontrol law that governs their aeleration.

For simpliity, the motion of eah agent is supposed to be one dimensional, but

sine the protool makes use of only relative positions and veloities the results that

follow an be trivially extended to higher dimensions.

Objetive of the ontrol ation is to ahieve the onsensus state asymptotially,

i.e.,

lim
t→∞

‖xi(t)− xj(t)‖ = 0 ∀ i, j ∈ V.

Eah agent i is supposed to exhange information with a subset Ni ⊂ V of agents,

alled neighbors. The ardinality of Ni is denoted δi whih is referred to as the degree
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of agent i.

Let us assume that all the interations between the agents have a onstant non-

null delay τ , thus agent i at the generi time t knows the position and the veloity of

its informers at time t− τ .

Finally, we assume a PD-like loal interation ontrol logi that makes the dy-

namis of the generi i-th agent of the form:

ẍi(t) = ui(t) = kp

(

∑

j∈Ni

xj(t− τ)

δi
− xi(t)

)

+kd

(

∑

j∈Ni

ẋj(t− τ)

δi
− ẋi(t)

)

(5.1)

where kp, kd ∈ R+
are design parameters.

Cepeda-Gomez and Olga (2011a) provided onditions on kp, kd, τ ∈ R+
under

whih, if the network topology is onneted, all agents reah onsensus. Note that

their protool di�ers from all previously proposed shemes, e.g., Gao et al. (2009); Luo

et al. (2010); Meng et al. (2010) in the fat that the time delay a�ets the information

oming from all the other agents, but not the state of the i-th agent itself.

In the next setion, we extend the results of Cepeda-Gomez and Olga (2011a)

and assume that the set of informers may hange during the system evolution, namely

the topology of the network is time-variant.

The following subsetion realls some equivalene transformations that will be

useful in the rest of this hapter (Cepeda-Gomez and Olga, 2011a).

Equivalene transformations

Let Ad be the n× n adjaeny matrix the elements of whih are aij = aji = 1 if the

orresponding edge (i, j) ∈ E exists and aij = aji = 0 otherwise. Let ∆ be a diagonal

n × n matrix the elements of whih are ∆ii = δi the degrees of the orresponding

agents.

The network dynamis of the multi-agent system, where eah agent has dynamis
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given in equation (5.1), an be written in a ompat form as:

ẋ(t) = Ax(t) +Bx(t− τ) (5.2)

where x(t) = [x1(t), ẋ1(t), · · · , xn(t), ẋn(t)] ∈ R
2n

is the state vetor,

A = In ⊗ A′, A′ =





0 1

−kp −kd



 ,

B = ∆−1Ad ⊗B′, B′ =





0 0

kp kd



 .

(5.3)

In (5.3), ⊗ denotes Kroneker produt, Ad is the adjaeny matrix of graph G and In

is the n-th order identity matrix.

Ad is a real symmetri matrix. If G is onneted then ∆ is invertible and ma-

trix ∆−1Ad, a weighted adjaeny matrix, is symmetrizable (Sergienko et al., 2003).

Therefore, ∆−1Ad is diagonalizable and has n linearly independent eigenvetors.

Thus, there exists a matrix T suh that T−1(∆−1Ad)T = Λ, where Λ is a diago-

nal matrix whose non-zero entries are the eigenvalues of ∆−1Ad,

T−1(∆−1Ad)T = Λ =

















λ1 0 · · · 0

0 λ2 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · λn

















. (5.4)

To ahieve a diagonal realization we hoose as state transformation x(t) = (T ⊗
I2)ξ(t) in (5.2), with

ξ(t) =
[

ξ1(t), ξ̇1(t), · · · , ξn(t), ξ̇n(t)
]

.
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From (5.2) and (5.3), the system dynamis in the new state oordinates beomes:

ξ̇(t) = (T−1 ⊗ I2)
(

In ⊗A′
)

(T ⊗ I2) ξ(t)

+ (T−1 ⊗ I2)
(

∆−1Ad ⊗ B′
)

(T ⊗ I2) ξ(t− τ).
(5.5)

Using the features of the ⊗ operation, we obtain:

ξ̇(t) =
(

In ⊗A′
)

ξ(t) +
(

Λ⊗ B′
)

ξ(t− τ). (5.6)

Sine In and Λ are diagonal matries, equation (5.6) represents a set of n deoupled

seond-order bloks of the form:

ẏi(t) = A′yi(t) + λiB
′yi(t− τ) (5.7)

where

yi(t) = [ξi(t), ξ̇i(t)]
T , i = 1, . . . , n.

Now, from basi integral properties, it holds:

∫ 0

−τ

ξ̇i(s+ t)ds = ξi(t)− ξi(t− τ)

or equivalently

ξi(t− τ) = ξi(t)−
∫ 0

−τ

ξ̇i(s+ t)ds. (5.8)

By substituting (5.8) in (5.7) we obtain:

ẏi(t) = Āiyi(t) + B̄iyi(t− τ) + C̄i

∫ 0

−τ

yi(s+ t)ds (5.9)
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where

Āi =





0 1

−kp(1− λi) −kd



 ,

B̄i =





0 0

0 kdλi



 , C̄i =





0 0

0 −kpλi



 .

(5.10)

Eah time funtion yi(t) is alled a mode of the system.

Using Gershgorin irle theorem on matrix ∆−1Ad it is easy to show that λi ∈
[−1, 1] and λi = 1 always exists beause the matrix is row stohasti. Heneforth,

without loosing generality, in the following we onsider y1(t) as the mode orrespond-

ing to λi = 1.

Swithing dynamis

We assume that the topology of the network is time-variant, onsequently the ad-

jaeny matrix and ∆ hange with time. As a onsequene, equation (5.2) an be

rewritten as:

ẋ(t) = Aσx(t) +Bσx(t− τ) (5.11)

where σ : R≥0 → Ω is the swithing signal and Ω = 1, · · · , N is the index set of all

possible topologies.

In the following the subsript σ is used everywhere to make expliit the dependene

on σ. As an example the adjaeny matrix beomes a funtion of σ and is denoted

as Ad,σ. Analogously, the diagonal matrix ∆ beomes ∆σ, matries Āi, B̄i, and C̄i

de�ned in (5.10) beome Āσ,i, B̄σ,i, and C̄σ,i, respetively. Finally, the i-th mode yi(t)

in equation (5.7) also beomes a funtion of σ and is denoted yσ,i(t).

5.3 Stability analysis

In this setion we prove the main result of this hapter. In partiular, three are

the main steps towards the derivation of onditions on kp, kd and τ that guarantee
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onsensus to a ommon position in a �nite point of the state spae, under arbitrary

swithings, provided that swithings our su�iently slowly.

• Firstly, we prove that under appropriate onditions on kp, kd and τ , the mode

orresponding to the eigenvalue λ1 = 1, namely, y1(t) = yσ,1(t), ommon to all

topologies, regardless of the swithing signal σ, is a non osillating stable mode.

• Seondly, we prove that under appropriate onditions on kp, kd and τ , all modes

yσ,i(t), for i = 2, . . . , n, are asymptotially stable for any network topology with

algebrai onnetivity grater than a given bound. This implies that the stability

is also guaranteed for su�iently slow swithing topologies. However, as already

pointed out in the Introdution, the omputation of the minimum dwell time

that guarantees this, is still an open issue.

• Finally, we prove that if the onditions of the two items above are satis�ed, all

agents reah onsensus both in terms of position and veloity.

The above three points are dealt in the following three subsetions separately.

Stability of the ommon mode

In this subsetion we �rstly reall some results for the stability analysis of time delayed

linear time invariant (LTI) systems that have been �rstly proved by Olga and Sipahi

(2002), and later used by Cepeda-Gomez and Olga (2011a, 2012) in the framework

of multi agent systems.

Consider a generi system whose dynamis is expressed by equation (5.2). Its

harateristi equation is equal to:

det(sIn − A− Be−τs) = 0 (5.12)

or

n
∏

i=1

(

s2 + (kds+ kp)(1− λie
−τs)

)

= 0, (5.13)
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or even equivalently

s2 + kds+ kp − (kds+ kp)λie
−τs = 0 (5.14)

for i = 1, . . . , n. The above transendental equations obviously have an in�nite

number of roots.

Olga and Sipahi (2002) proved that the number of imaginary harateristi roots

are �nite. Let Ωc = {ωc1, ωc2, . . . , ωcm} be the set of rossing frequenies orresponding
to the roots on the imaginary axis. The number of suh frequenies depends on

matries A and B. Moreover to eah of suh frequenies there orrespond in�nitely

many values of τ that are periodially spaed. We denote Υl = {τl0, τl1, . . . , τl∞} the

in�nite set of τ 's assoiated with ωcl, l = 1, . . . , m.

A key parameter in this stability analysis is the root tendeny de�ned as:

RTl = sign
(

Re
(ds

dτ

))

s=jωcl

where sign denotes the sign operator and Re the real part.

It represents the diretion of transition of the roots at ωcl as τ inreases from

τlk − ε to τlk + ε, 0 < ε << 1, for any τlk ∈ Υl. In partiular, if RTl = −1, the root

jωcl moves to the left half plane, stabilizing the system, whereas if RTl = 1, the root

moves to the right half plane, ausing instability. Note that, sine Olga and Sipahi

(2002) proved that for eah rossing frequeny ωcl, RTl is invariant with respet to

the element in the set Υl, Olga and Sipahi (2002) simply propose to analyze the

smallest value of τ for eah rossing frequeny.

Now, the following equation provides an easy proedure to ompute the number

of unstable roots as τ varies from 0 to ∞, for a given ouple of kp and kd:

NU(τ) = NU(0) +
m
∑

l=1

Γ
(τ − τl

∆τl

)

U(τ, τl0)RTl (5.15)

where NU(τ) denotes the number of unstable roots orresponding to a generi delay

τ , NU(0) is equal to the number of unstable roots for τ = 0, τl0 indiates the smallest
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positive delay related to ωl, the funtion Γ(x) gives the smallest integer greater than

or equal to x, ∆τl =
2π

ωcl

, and U(τ, τl0) is the step funtion in τ with the step taking

plae at τl0:

U(τ, τl0) =



















0 0 < τ < τl0

1 τ > τl0 and ωcl = 0

2 τ > τl0 and ωcl 6= 0

Now, the following onsiderations and results an be ahieved.

• Sine we are interested in studying the stability of the mode ommon to all

topologies, namely the one orresponding to λi = 1, we only look at the rossing

frequenies of the transendental equation (5.14) for i = 1, i.e., ω1 = 0 and

ω2 =
√

2kp. For more details we address to Olga and Sipahi (2002). Basially

we simply need to impose s = jω in equation (5.14) and impose that both sides

of the resulting equation in ω have the same magnitude and phase.

• The value of ω1 orresponds to a root in the origin that prevents asymptotial

stability. In partiular it generates a non-osillating mode that stabilizes in a

point di�erent from the origin. The other value of the rossing frequeny may

either lead to stability or instability, depending on the value of τ . In partiular,

as explained above, the values of τ that lead to stability an be omputed

using equation (5.15) onsidering that the number of unstable roots at τ = 0

is NU(0) = 1. Indeed, for τ = 0, the system has two roots in the origin: one is

stable at the limit and the other one is unstable.

• It is easy to show that RT1 = −1 for in�nitesimally small values of τ , while it

is RT2 = 1 relatively to ω2 =
√

2kp. This means that mode yσ,1(t) is stable,

but not asymptotially stable, for τ ∈ (0 τ20] where τ20 is the smallest positive

delay orresponding to ω2 that is equal to

τ20 =
1

ω2
arctan

( −kdω
3
2

k2
p + ω2

2(k
2
d + kp)

)

(5.16)

as proved by Cepeda-Gomez and Olga (2011a). For all the other values of τ
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the mode is unstable.

Note that in the following yσ,1(t) is more simply denoted as y1(t) to emphasize

that it does not depend on the swithing signal σ(t).

Asymptoti stability of the remaining modes

In this setion we introdue a riterion based on LMIs that enables us to prove the

asymptotial stability of all modes yσ,i(t) for all i = 2, . . . , n and any �xed value of

σ ∈ Ω to whih it orresponds a network topology with a su�iently large algebrai

onnetivity.

Theorem 5.1 Consider the multi-agent system (5.11) onsisting of n agents with a

time-invariant time delay τ > 0. Consider the n − 1 modes yσ,i(t) for i = 2, . . . , n

obtained via the equivalene transformation x(t) = (Tσ ⊗ I2)ξ(t), and relative to a

given σ ∈ Ω. If there exist three positive de�nite matries P , Q and S of appropriate

dimensions suh that the following LMI

Mσ,i =












1

τ
(PĀσ,i + ĀT

σ,iP +Q) + S PB̄σ,i PC̄σ,i

B̄T
σ,iP −1

τ
Q 0

C̄T
σ,iP 0 −S













< 0

(5.17)

holds for any σ ∈ Ω, then all modes yσ,i(t) with i = 2, . . . , n are asymptotially stable

for any topology Ω.

Proof Let us denote as yσ,i(t) the generi i-th mode of the system obtained via

the equivalene transformation x(t) = (Tσ ⊗ I2)ξ(t) assuming that σ(t) = σ for any

t ≥ 0.
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Consider the following andidate Lyapunov-Krasovskii funtional:

Vσ,i(t) = yTσ,i(t)Pyσ,i(t) +

∫ 0

−τ

yTσ,i(s+ t)Qyσ,i(s+ t)ds

+

∫ 0

−τ

∫ 0

θ

yTσ,i(r + t)Syσ,i(r + t)drdθ.

Derivation with respet to the time gives

V̇σ,i(t) = yTσ,i(t)(PĀσ,i + ĀT
σ,iP +Q +

∫ 0

τ

Sdθ)yσ,i(t)

+2yTσ,i(t)PB̄σ,iyσ,i(t− τ) + 2yTσ,i(t)PC̄σ,i

∫ 0

−τ

yTσ,i(s+ t)

−yTσ,i(t− τ)Qyσ,i(t− τ)−
∫ 0

−τ

yTσ,i(r + t)Syσ,i(r + t)dr

=

∫ 0

−τ

zTσ,i(t)Mσ,izσ,i(t)dθ

where zσ,i(t) = [yσ,i(t), yσ,i(t− τ), yσ,i(t + θ)]. Obviously if the ondition in (5.17)

holds, then all modes yσ,i(t) for i = 2, . . . , n are asymptotially stable regardless of

the value of σ.

In simple words Vσ,i(t) is a Lyapunov funtion for all i = 2, . . . , n for any network

topology Ω in whih the LMI in eq. (5.17) holds. �

The above LMI has been introdued by Rihard (2003) in a more general form.

Clearly, the requirement that matries P , Q and S exist for any network topology in

Ω is a very omputational demanding task. The dependene on the network topology

in eq. (5.17) onsists in a di�erent set of eigenvalues for every topology. In Setion 5.4

we show how to extend this approah to avoid the veri�ation of the LMI in eq. (5.17)

for any network topology in Ω.

Obviously, the asymptoti stability of the above modes orresponding to a stati

topology does not imply in general the asymptotially stability of the swithed system,

in partiular under the assumption of arbitrary swithing. However, for sure there

exists a minimum dwell time that ensures this (Liberzon, 2003). We onjeture that

suh a dwell time may be omputed appropriately de�ning a ommon Lyapunov

funtion starting from the onsidered Lyapunov-Krasovskii funtion.
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Consensus agreement

Theorem 5.2 Consider the multi-agent system (5.11) onsisting of n agents with a

time-invariant time delay τ > 0 where σ ∈ Ω is onstant. Assume that all modes

yσ,i(t) for i = 2, . . . , n are asymptotially stable and that the mode y1(t) orresponding

to the eigenvalue λ1, ommon to all topologies in Ω by onstrution, is stable. Then

the onsensus state is ahieved asymptotially

lim
t→∞

‖xi(t)− xj(t)‖ = 0 ∀i, j ∈ V.

Proof The asymptoti stability assumption for all modes i = 2, . . . , n implies that

lim
t→∞

yσ,i(t) = 0, i = 2, . . . , n.

Moreover, being by de�nition yσ,i(t) = [ξσ,i(t), ξ̇σ,i(t)], it is

lim
t→∞

ξi(t) = 0, i = 2, . . . , n

and

lim
t→∞

ξ̇i(t) = 0, i = 2, . . . , n.

Now, being by de�nition xσ(t) = (Tσ ⊗ I2)ξσ(t), it holds

[xσ,1(t) . . . , xσ,n(t)] = Tσ[ξσ,1(t), . . . , ξσ,n(t)]

therefore

limt→∞[xσ,1(t) . . . , xσ,n(t)] = Tσ[Lξ1 , 0, . . . , 0]

= Lξ1T [1, 0, . . . , 0] = Lξ1Te1
(5.18)

where

Lξ1 = lim
t→∞

ξσ,1(t) (5.19)

and e1 = [1, 0, . . . , 0]. Note that we removed the dependene on σ in Lξ1 sine it

is related to the mode ommon to all topologies assoiated with λ1 = 1. Moreover,
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the limit in (5.19) exists and is �nite sine by assumption the �rst mode is a non

osillating stable mode.

The term Tσe1 returns the �rst olumn of Tσ or equivalently the eigenvetor as-

soiated to λi = 1 that is equal to [1, . . . , 1]. This means that equation (5.18) an be

rewritten as

lim
t→∞

[xσ,1(t) . . . , xσ,n(t)] = Lξ1 [1, . . . , 1], (5.20)

i.e., all xσ,i(t), for i = 1, . . . , n, reah the same value equal to Lξ1 , thus proving the

statement.

�

From the above theorem the next result follows.

Corollary 5.1 Consider the multi-agent system (5.11) onsisting of n agents with

a time-invariant ommuniation delay τ ∈ (0, τ20] where τ20 is de�ned as in equa-

tion (5.16). Assume that all onditions of Theorem 5.1 are satis�ed. Then, all the

agents reah onsensus. �

5.4 LMI omputation

In this setion we provide a method to solve the LMI introdued in Theorem 5.1

whih is independent from the network topology. To this aim, let us �rst observe

that Mσ,i an be rewritten as

Mσ,i = M̃σ,i + M̂σ,i

where

M̃σ,i =











1
τ
(PĀσ,i + ĀT

σ,iP +Q) + S 0 0

0 − 1
τ
Q 0

0 0 −S











(5.21)
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and

M̂σ,i =











0 PB̄σ,i PC̄σ,i

B̄T
σ,iP 0 0

C̄T
σ,iP 0 0











. (5.22)

Obviously, Mσ,i is negative de�nite if and only if M̃σ,i + M̂σ,i is negative de�nite.

Now, substituting B̄σ,i and C̄σ,i in (5.22), we an rewrite (5.22) as

M̂σ,i =




























0 0 0 kdp12 0 −kpp12

0 0 0 kdp22 0 −kpp22

0 0 0 0 0 0

kdp12 kdp22 0 0 0 0

0 0 0 0 0 0

−kpp12 −kpp22 0 0 0 0





























λσ,i

(5.23)

where pij is the entry of P orresponding to row i and olumn j. Sine M̂σ,i is

symmetri, ‖M̂σ,i‖2 = ρ(M̂σ,i), where ρ(M̂σ,i) is its spetral radius. The eigenvalues

η of matrix M̂σ,i are the solutions of equation

det(M̂σ,i − ηI2) = 0.
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Sine λσ,i is a multiplying salar, we an neglet it and simply solve the following

equation with respet to η:

det





























−η 0 0 kdp12 0 −kpp12

0 −η 0 kdp22 0 −kpp22

0 0 −η 0 0 0

kdp12 kdp22 0 −η 0 0

0 0 0 0 −η 0

−kpp12 −kdp22 0 0 0 −η





























= 0.

This an be solved analytially by exploiting the Laplae rule to ompute the de-

terminant. In partiular there are 4 null eigenvalues plus the following two non null

eigenvalues

η1,2 = ±λσ,i

√

(k2
d + k2

p)(p
2
12 + p222).

Therefore,

‖M̂σ,i‖2 = |λσ,i|
√

(k2
d + k2

p)(p
2
12 + p222).

Now, let us observe that,

M̃σ,i + M̂σ,i ≤ M̃σ,i + ‖M̂σ,i‖2I6 (5.24)

thus, if we prove that

M̃σ,i + ‖M̂σ,i‖2I6 < 0,

we an be sure that M̃σ,i + M̂σ,i < 0 as well, or equivalently, Mσ,i < 0.

Now, equation (5.24) an be rewritten as



















1
τ
(PĀσ,i + ĀT

σ,iP +Q) + S + ‖M̂σ,i‖2I2 < 0

− 1
τ
Q+ ‖M̂σ,i‖2I2 < 0

−S + ‖M̂σ,i‖2I2 < 0

(5.25)

102



where the last two equations are always veri�ed if







τ‖M̂σ,i‖2I2 < Q

‖M̂σ,i‖2I2 < S
(5.26)

therefore, as a partiular ase, they are satis�ed by

Q = τ
(

‖M̂σ,i‖2 + ε
)

I2 (5.27)

and

S =
(

‖M̂σ,i‖2 + ε
)

I2 (5.28)

for any ε > 0.

Let Q = τ |λσ,i|αI2 and S = |λσ,i|αI2 with α >
√

(k2
d + k2

p)(p
2
12 + p222). We need to

solve with respet to P the �rst inequality in (5.25), that beomes equal to

PĀσ,i + ĀT
σ,iP + 3τ |λσ,i|αI2 < 0. (5.29)

Our objetive is to prove that inequality in equation (5.29) holds for any λσ,i ∈
[

−1, λ̄2

]

. Sine matrix PĀσ,i + ĀT
σ,iP + |λσ,i| (3τα) I2 is symmetri, if its eigenvalues

are negative then it is a negative de�nite matrix and equation (5.29) holds.

We now hoose a set of parameters of interest kp, kd, τ, λ̄2. We solve the inequality

in equation (5.17) for this set to determine andidate matrix P . We hoose a value

α >
√

(k2
d + k2

p)(p
2
12 + p222).

To verify that the eigenvalues of matrix PĀσ,i + ĀT
σ,iP + |λσ,i|3τα are negative we

ompute its determinant and trae and verify that they are respetively positive and

negative.

Its trae orresponds to

T = −2p12kp(1− λσ,i) + 6|λσ,i|τα + 2p12 − 2p22kd (5.30)

103



−1 −0,5 0 0,5 0,79 1
−50

−40

−30

−20

−10

0

λ

Tra
ce

 
τ

 

 

0.001
0.03
0.05
0.1
0.2
0.5

Figure 5-1: Trae in equation (5.30) versus λσ,i for di�erent values of τ

and its determinant orresponds to

∆ =

λ2
σ,i (3τα

2 − p222kp
2 + 2p12kp3τα)

+λσ,i

(

2p222k
2
p − 2p12kpp22kd + 4p212kp − 2p11p22kp

)

+|λσ,i| (−2p12kp3τα− 4p212kp + 6ταp12 − 6ταp22kd)

+2p12kpp22kd − p211 + 2p12kdp11 + 2p11p22kp

−p212kd
2 − p222k

2
p.

(5.31)

The above quantities an be evaluated numerially for λσ,i ∈ [−1, 1]. Thus, for

any value of τ onstraints on the spetrum for any network topology an be given.

For a su�iently small τ a onstraint involving only the algebrai onnetivity λ̄2

an be omputed so that the proposed onsensus protool is stable for all network

topologies with algebrai onnetivity smaller than λ̄2. As an example in Figure 5-1

and Figure 5-2 the determinant and trae given in equation (5.30) and (5.31) are

omputed versus λσ,i ∈ [−1, 1] for di�erent values of τ . Simulations are performed

with parameters kp = 10, kd = 50 and a andidate P = [35 0.65; 0.65 0.15]. Consider

as an example the simulation with τ = 0.1: the trae is negative for all λσ,i ∈ [−1, 0.79]

while the determinant is positive for all λσ,i ∈ [−1, 0.54]. This implies that the

proposed onsensus protool is stable for any network topology with λ̄2 = 0.54. Thus,

there exists a minimum dwell time suh that onsensus is ahieved even with slow

arbitrary swithings between any topology satisfying suh onstraint.
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Figure 5-2: Determinant in equation (5.31) versus λσ,i for di�erent values of τ

5.5 Simulations

In this setion we present a simulation of the onsensus protool in (5.1). We onsider

a network of six agents with ontrol parameters kp = 10, kd = 50 and a time delay

τ = 0.1. As shown in Setion 5.4 these parameters guarantee stability of the onsen-

sus protool for any topology with seond largest eigenvalue (algebrai onnetivity)

smaller than λ̄2 ≤ 0.54. Furthermore, the hosen value of τ guarantees the stability

of the ommon mode as explained in Setion 5.3, in fat to the above parameters it

orresponds a value τ20 = 0.6827 as in equation (5.16). In Figure 5-3 we onsider

a network that swithes randomly among 6 randomly generated onneted network

topologies whih satisfy the bound on the algebrai onnetivity. In this ase the

simulation shows that with a dwell time of one seond the system remains stable.

5.6 Conlusions

In this hapter we investigated the onsensus problem for networks of agents with

double integrator dynamis a�eted by time-delay in their oupling. We provided

a stability result based on the Lyapunov-Krasovskii funtional method and a nu-

merial proedure based on an LMI ondition whih depends only on the algebrai

onnetivity of the onsidered network topologies, thus reduing greatly the ompu-

tational omplexity of the proedure. Obviously, this result implies the existene of

a minimum dwell time suh that the proposed onsensus protool is stable for slow
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Figure 5-3: Simulation of the onsensus protool for a swithing network topology

swithings between network topologies with su�ient algebrai onnetivity. Future

work will involve atually omputing this dwell time by adopting a multiple Lyapunov

funtion method and evaluating the worst ase onvergene rate. Furthermore we will

evaluate novel onsensus protools that onsider only delayed relative measurements

instead of delayed absolute values of the neighbors' state variables.
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6

Average onsensus in arbitrary

direted networks with time-delay

�The noblest pleasure is the joy of understanding�

� Leonardo da Vini

In this hapter, based on the results of Zareh et al. (2013a), we study the stability

property of a onsensus on the average algorithm in arbitrary direted graphs with re-

spet to ommuniation/sensing time-delays. The proposed algorithm adds a storage

variable to the agents' states so that the information about the average of the states

is preserved despite the algorithm iterations are performed in an arbitrary strongly

onneted direted graph. We prove that for any network topology and hoie of de-

sign parameters the onsensus on the average algorithm is stable for su�iently small

delays. We provide simulations and numerial results to estimate the maximum delay

allowed by an arbitrary unbalaned direted network topology.

6.1 Introdution

The onsensus problem in multi-agent systems onsists in the design of a oupling

law between dynamial systems (agents) suh that the state of eah one onverges to

the same value in absene of external referene signals. Multi-agent systems are on-
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sidered to be omplex systems sine the pattern of interonnetions between agents

is often arbitrary and unknown at the ontroller design stage. This learly makes

hallenging the design of interation rules between agents that exploit only loal in-

formation. For these reasons agents modeled by simple single integrators or seond

order systems are usually investigated. One of the major works from whih we take

inspiration is the one by Olfati-Saber and Murray (2004) where the onsensus problem

for networks of �rst order agents for swithing topologies or time-delays is investi-

gated. In this hapter, we prove that simple averaging loal interation rules an

ahieve onsensus on the average, i.e., the state of eah agent onverges to the aver-

age of the initial states only if the direted graph that enodes the network topology

is strongly onneted and balaned (eah agent reeives and sends information to the

same number of agents). They also explored the onsensus problem in the ase of

time-delays for undireted network topologies.

Sine then several authors have explored ways to design onsensus on the average

algorithms that work on general direted graphs not neessarily balaned. In the

work of Franeshelli et al. (2008, 2009) the idea to use an augment state spae to add

robustness to a networked system represented by an undireted graph that exeutes

a onsensus algorithm was proposed. The proposed algorithms aim at reovering the

orret network average one maliious or faulty agents have been removed from the

network.

Franeshelli et al. (2009, 2011) presented a disrete time onsensus on the average

algorithm for arbitrary strongly onneted direted graph based on asynhronous state

updates , based on the idea to augment the state of eah agent with an additional

variable to preserve the information about the initial average of the states in the

network. Simulations were used to haraterize the onvergene properties and the

performane of the algorithm.

Cai and Ishii (2012) haraterized a disrete time onsensus on the average algo-

rithm based on additional state variables was in terms of a tuning parameter. It was

proven that there always exist su�iently small values of suh tuning parameter so

that the proposed algorithm onverges to the average of the initial state in arbitrary
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strongly onneted direted graphs.

Dominguez-Garia et al. (2012) addressed the ontrol of distributed energy re-

soures by developing a onsensus on the average protool based on the so alled

ratio onsensus. Their algorithm is based on two independent distributed dynami-

al systems, one with arbitrary initial onditions and one with predetermined initial

values. The authors onsider time-varying network topologies desribed by direted

graphs and show that for eah agent the ratio of the output of these two dynamial

systems onverges to the average of the initial states.

Chen et al. (2010b, 2011) proposed the Corretive Consensus algorithm. It on-

sists in a loal state update rule where eah agent keeps trak of several additional

variables orresponding to the number of its neighbors whih are used to periodi-

ally steer the average of the network state to the orret value orresponding to the

average of the states at the initial instant of time.

Aysal et al. (2009) proposed the broadast gossip algorithm . This algorithm is

based upon disrete time and asynhronous state updates with direted information

�ow, it makes eah agent agree upon a random variable whose expetation is the

average of the initial states.

Most of the literature on onsensus on the average in direted graphs deals with

methods and tehniques to ahieve onsensus on the average in networks of agents

desribed by single integrators. On the other hand the literature on onsensus with

time-delays in direted graphs usually deals with the problem of making the state of

eah agent onverge to the same value whih an be time-varying and not related to

the initial state of the network in an expliit way.

Yu et al. (2010) haraterized neessary and su�ient onditions for onvergene

of seond-order multi-agent systems with veloity feedbak are given and the e�et

of time-delays in direted graphs while the onsensus value is arbitrary.

In the work of Sun and Wang (2009) several instanes of onsensus problems with

time-delays are investigated. In partiular the ases of swithing direted topologies,

paket data dropouts, and �nite time onsensus are all haraterized separately by

onsidering the e�et of time-delays for the ahievement of onsensus on an arbitrary
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value.

In this hapter, we propose a ontinuous time onsensus algorithm inspired from

the disrete time algorithms of Franeshelli et al. (2009, 2011); Cai and Ishii (2012).

We onsider a desription in ontinuous time to desribe a network of n vehiles with

a loal interation rule that ontrols the instantaneous speed of eah vehile. Then

we extend the proof method of Cai and Ishii (2012) to the ase at hand and study

the onvergene properties of the resulting system onsidering a time-delay in the

state update of eah agent. We �nally provide simulation results to orroborate the

theoretial analysis.

The main ontributions of this hapter an be summarized in the following three

items.

• We provide a ontinuous time version of a onsensus on the average algo-

rithm for arbitrary direted strongly onneted graphs derived from results of

Franeshelli et al. (2009, 2011) and Cai and Ishii (2012).

• We provide a haraterization of the onvergene properties of the algorithm

with respet to time-delays.

• We present simulations to haraterize numerially the performane of the pro-

posed protool with respet to di�erent time-delays and tuning parameters.

The next setions are strutured as follows. In Setion 6.2 we introdue a on-

sensus on the average protool and the orresponding model onsidering time-delays.

In Setion 6.3 we haraterize the onvergene properties of the proposed algorithm

with respet to time-delays. In Setion 6.4 we orroborate the theoretial analysis

with a numerial example and simulations. Conluding remarks are �nally given in

Setion 6.5.

6.2 Consensus on the average protool

We now introdue a onsensus protool stated in ontinuous time that takes inspira-

tion from protools addressed by Franeshelli et al. (2011) and Cai and Ishii (2011b)
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in a disrete time setting. In the protool under onsideration eah agent is a single

integrator with an additional state variable alled surplus or storage. This additional

variable is used to preserve information about the average value of the agents' states

at the initial instant of time, that is a time-varying quantity in direted graphs that

are not balaned, i.e., graphs in whih the in-degree and out-degree of eah node are

not neessarily equal.

The loal state update rule implemented by eah node is the following:































ẋi(t) = −∑j∈Ni,in
(xi(t)− xj(t)) + εzi(t),

żi(t) =
∑

j∈Ni,in
(xi(t)− xj(t))

−∑j∈Ni,in
(zi(t)− zj(t))

− (ε− δi,in + δi,out) zi(t),

(6.1)

where xi, zi ∈ R are the states of agent i and ε ∈ R
+
is a tuning parameter of

the algorithm. It is lear that to implement protool (6.1) eah agent requires only

relative state information with respet to variable xi, absolute state information with

respet to variable zi, and knowledge of its own out-degree.

The network dynamis that emerges when eah agent implements the loal state

update rule in eq. (6.1) an be formulated in matrix form as follows:





ẋ(t)

ż(t)



 =





−Lin εI

Lin −Lout − εI









x(t)

z(t)





(6.2)

where x = [x1, x2, . . . , xn] and z = [z1, z2, . . . , zn] are a ompat representation of

the agents' state.

The proposed loal interation sheme an be interpreted as a network of n vehiles

eah modeled as a ontinuous time single integrator ẋ(t)i = ui(t) where eah xi(t)

represents a position in spae and variables zi(t) are software variables whih enable

the interation sheme to onverge to the initial average position.

In this hapter, we study protool (6.2) under the assumption that ommunia-

tion/sensing delays a�et the multi-agent system. The network dynamis are thus
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desribed by





ẋ(t)

ż(t)



 = M(ε)





x(t− τ)

z(t− τ)





(6.3)

with x(θ) = x0, z(θ) = z0, −τ ≤ θ ≤ 0, where

M(ε) =





−Lin εI

Lin −Lout − εI





(6.4)

and τ ∈ R+
denotes a time-delay. We study system (6.3) in the approximation that

the delay for all the agent is the same.

6.3 Convergene properties

In this setion we study the onvergene properties of system (6.3).

We preliminary observe that by onstrution matrix M(ε) satis�es

[

1
T
n 1

T
n

]

M(ε) =
[

0
T
n 0

T
n

]

,

for any ε ∈ R. Therefore, sine

1
T
n ẋ(t) + 1

T
n ż(t) = 0, ∀t ≥ 0

it holds

1
T
nx(t) + 1

T
nz(t) = 1

T
nx(0) + 1

T
nz(0), ∀t ≥ 0. (6.5)

Now onsider matrix M(ε) for ε = 0, namely

M(0) =





−Lin 0

Lin −Lout



 . (6.6)

It is lear that sine matrix M(0) is a 2n × 2n blok lower triangular matrix it has

2n eigenvalues equal to the eigenvalues of matries −Lin and −Lout. If graph G is
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strongly onneted, then M(0) has one null eigenvalue with algebrai multipliity 2

and geometri multipliity 2, all other eigenvalues have stritly negative real part.

In the following we denote as λi(0), i = 1, . . . , 2n, the eigenvalues of matrix M(0)

and assume that

0 = λ1(0) = λ2(0) > ℜ(λ3)(0) ≥ . . . ≥ ℜ(λ2n(0)).

Eigenvalues of matrix M(ε) are denoted as λi(ε), i = 1, . . . , 2n, and ordered as

ℜ(λ1)(ε) ≥ . . . ≥ ℜ(λ2n(ε)).

We now prove some properties of the eigenvalues of matrix M(ε) for small values

of ε > 0, that an be derived from the results of Cai and Ishii (2011b).

Proposition 6.1 Let matrix M(ε) be de�ned as in eq. (6.4). If G is strongly on-

neted, there exists ε̄ ∈ R+
suh that if ε ∈ (0, ε̄] then M(ε) has one null eigenvalue

and 2n− 1 eigenvalues with stritly negative real part.

Proof: Matrix M(ε) depends smoothly on parameter ε ≥ 0, therefore if eigenvalues

λ3(0), . . . , λ2n(0) of M(0) have stritly negative real part, there exists ε̄ > 0 suh that

if ε ∈ [0, ε̄] then for i = 3, . . . , 2n, it holds ℜ(λi(ε)) < 0. Therefore, aording to Cai

and Ishii (2011b), we only have to show that for ε su�iently small it is λ1(ε) = 0

and ℜ(λ2(ε)) < 0.

Sine the null eigenvalue of M(0) is semi-simple

1

and Rank(M(0)) = 2n − 2

it has two linearly independent right eigenvetors r1, r2 and left eigenvetors l1, l2

orresponding to the null eigenvalue. It holds

M ′ =
dM(ε)

dε
=





0 I

0 −I



 . (6.7)

Then, as shown by Cai and Ishii (2011b), dλ1(ε)/dε|ε=0 and dλ2(ε)/dε|ε=0 are the

eigenvalues of the following matrix

1

An eigenvalue is semi-simple if its algebrai and geometri multipliity are equal.

113







lT1 M
′r1 lT1 M

′r2

lT2 M
′r1 lT2 M

′r2



 . (6.8)

If graph G is strongly onneted then l1 = α112n and r1 = α2

[

1
T
n , 0

T
n

]

where α1, α2 ∈ R

an be hosen suh that lT1 r1 = 1. By substituting l1 and r1 in (6.8) it an be shown

by simple omputations that

dλ1(ε)/dε|ε=0 = 0, dλ2(ε)/dε|ε=0 = lT2 M
′r2.

The �rst equality enables us to onlude that for su�iently small values of ε, it

is λ1(ε) = 0.

Now, let νr,out be the right eigenvetor orresponding to the null eigenvalue of

matrix Lout and νl,in be the left eigenvetor orresponding to the null eigenvalue of

matrix Lin. It is possible to verify by substitution that we an hoose r2 =
[

0
T
n , ν

T
r,out

]

and l2 =
[

νT
l,in, 0

T
n

]

. Therefore,

dλ2(ε)/dε|ε=0 = −νT
l,inνr,out.

Sine Lin and Lout are Metzler matries (Berman and Plemmons (1979)), the

eigenvetors νl,in and νr,out orresponding to the null eigenvalue have only positive

elements. Therefore

dλ2(ε)/dε|ε=0 = −νT
l,inνr,out < 0

and λ2(ε) < 0 for ε > 0 su�iently small, thus proving the statement. �

We are now ready to study the stability of system (6.3) with respet to time-delays.

Let Y (s) =
[

X(s)T Z(s)T
]T

denote the Laplae transform of y(t) =
[

x(t)T z(t)T
]T
.

Then the Laplae transform of system (6.3) is

Y (s) =
(

sI −M(ε)e−sτ
)−1

Y (0)

and the stability property of system (6.3) depends upon the roots of the quasi-
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polynomial

det
(

sI −M(ε)e−sτ
)

. (6.9)

By simple manipulations it holds

det
(

sI −M(ε)e−sτ
)

= e−2nsτdet (sesτI −M(ε)) (6.10)

thus the roots of (6.9) orrespond to the solutions of

sesτ = λi(ε), i = 1, . . . , 2n. (6.11)

Theorem 6.2 Let matrix M(ε) be de�ned as in eq. (6.4) and ε ∈ (0, ε̄] as in Propo-

sition 6.1. If G is strongly onneted and

τ ≤ τc(ε) = min
i=2,...,2n

θi(ε)− π
2

Ri(ε)
, (6.12)

where Ri(ε) = |λi(ε)| and θi(ε) = ∠λi(ε) with λi(ε) the i-th eigenvalue of M(ε), then

the roots of

det
(

sI −M(ε)e−sτ
)

(6.13)

have all stritly negative real part exept one in s = 0.

Proof: By Proposition 6.1 sine G is strongly onneted by assumption, there exists

ε̄ suh that for ε ∈ (0, ε̄], M(ε) has a single null eigenvalue and 2n − 1 eigenvalues

with stritly negative real part. Sine the roots of eq. (6.13) depend ontinuously on τ

and for τ = 0 they oinide with the roots of M(ε), we ompute the smallest positive

value of τ , denoted as τc, for whih at least one non-null root rosses the imaginary

axis. By eq. (6.11), assuming s = jω it holds

jωejωτ = Ri(ε)e
jθi(ε).

By simple manipulations the above equation an be rewritten as

jω = Ri(ε) cos(θi(ε)− ωτ) + jRi(ε) sin(θi(ε)− ωτ),
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therefore







Ri(ε) cos(θi(ε)− ωτ) = 0,

ω = Ri(ε) sin(θi(ε)− ωτ).

This implies that







θi(ε)− ωτ =
π

2
+ kπ, k ∈ N

ω = Ri(ε) sin(
π

2
+ kπ) = Ri(ε)(−1)k.

Finally, onsidering only the top-half of the Gauss plane, θi(ε) ∈
(

π
2
, π
]

for i =

1, . . . , 2n. Thus

τc(ε) = min
i=2,...,2n

min
k∈N

θi(ε)− π
2
− kπ

Ri(ε)(−1)k

= min
i=2,...,2n

θi(ε)− π
2

Ri(ε)
,

(6.14)

proving the statement. �

Next we give bounds on the maximum length of the time delay that ensures

stability as funtion of known network parameters omputed for ε = 0. If the atual

time delay is smaller than the proposed bound then we are sure that there exist ε > 0

su�iently small suh that the system is stable and ahieves onsensus.

Theorem 6.3 Consider a multi-agent system that implements protool (6.1) in graph

G = {V, E}, with tuning parameter ε > 0, initial ondition z(0) = 0n and time-delay

τ > 0. If G is strongly onneted, there exists ε̃ suh that if ε ∈ (0, ε̃] and

τ < τ̃ =
1

2δ̄
arctan

(ℜ{λ3(0)}
δ̄

)

where

δ̄ = max
i∈V

{δi,in, δi,out}
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and λ3(0) is the rightmost non-null eigenvalue of matrix M(0), then

lim
t→∞

x(t) =
1
T
nx(0)

n
1n.

Proof: By de�nition it holds

M(ε) = M(0) + εM ′,

where M ′
is de�ned as in eq. (6.7). Sine M(ε) an be seen as a perturbation of matrix

M(0) its eigenvalues depend ontinuously on parameter ε. This implies that the ratio

in eq. (6.12) an be bounded for an arbitrary small ε as a funtion of the eigenvalues

of M(0). In partiular, for ε = 0 by the Gershgorin dis theorem applied to matries

Lin and Lout we have Ri(ε) ≤ maxi=1,...,2n |λi(ε)| ≤ 2maxi∈V{δi,in, δi,out} = 2δ̄, thus it

holds

min
i=2,...,2n

θi(ε)− π
2

Ri(ε)
≥ mini=2,...,2n θi(ε)− π

2

maxi=2,...,2n Ri(ε)

≥ 1

2δ̄
arctan

(

min
i=1,...,2n

ℜ(λi(ε))

ℑ(λi(ε))

)

.

Finally, sine for ε = 0, it is ℑ(λ2(ε)) = 0 and maxi=1,...,2n |ℑ(λi(ε))| ≤ δ̄, it holds

min
i=2,...,2n

θi(ε)− π
2

Ri(ε)
≥ 1

2δ̄
arctan

(ℜ{λ3(ε)}
δ̄

)

.

Therefore, sine by Theorem 6.2 we may onlude that for τ ≤ τc(ε) all the roots of

eq. (6.9) have stritly negative real part exept one, this also holds for a su�iently

small value of ε provided that

τ <
1

2δ̄
arctan

(ℜ{λ3(0)}
δ̄

)

= τ̃ ≤ τc(ε).

Therefore, the solutions x(t) and z(t) of system (6.3) onverge to the null spae

of matrix M(ε), i.e.,

lim
t→∞





x(t)

z(t)



 = r1 = α





1n

0n



 .
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Figure 6-1: The direted graph onsidered in Setion 6.4.
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Figure 6-2: Evolution of x(t) for ε = 1.3 and τ = 0.19.

Sine 1
T
nx(t) + 1

T
nz(t) = 1

T
nx(0) + 1

T
nz(0) for any t ≥ 0 we have that

α =
1
T
nx(0) + 1

T
nz(0)

n
.

Sine by assumption z(0) = 0n, it holds

lim
t→∞

x(t) =
1
T
nx(0)

n
1n,

thus proving the statement. �

6.4 Numerial example and simulations

In this setion we onsider a numerial example to orroborate the theoretial results

presented in the previous setion.
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Figure 6-3: Evolution of z(t) for ε = 1.3 and τ = 0.19.
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Figure 6-4: Real part of the rightmost non-null eigenvalue of matrixM(ε) with respet
to ε.
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Figure 6-5: Real part of rightmost non-null root of eq. (6.9) with respet to τ , for
ε = 1.1.
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Figure 6-6: The value of τc(ε) with respet to ε.

We onsider the network of 6 agents whose topology is shown in Fig. 6-1. Suh a

network is enoded by the adjaeny matrix

A =





























0 1 0 1 0 1

0 0 1 0 1 0

0 1 0 1 0 1

1 0 0 0 1 0

0 1 0 0 0 1

1 0 1 0 0 0





























(6.15)

The in and out-Laplaian matries are, respetively

Lin =





























3 −1 0 −1 0 −1

0 2 −1 0 −1 0

0 −1 3 −1 0 −1

−1 0 0 2 −1 0

0 −1 0 0 2 −1

−1 0 −1 0 0 2
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Figure 6-7: Value of the real part of the rightmost non-null root λR of eq. (6.9) versus

inreasing ε and time delay τ .

and

Lout =





























2 −1 0 −1 0 −1

0 3 −1 0 −1 0

0 −1 2 −1 0 −1

−1 0 0 2 −1 0

0 −1 0 0 2 −1

−1 0 −1 0 0 3





























.

Fig. 6-2 shows the evolution of system (6.3) when ε = 1.3 and τ = 0.18. Initial

onditions x(0) are hosen uniformly at random while initial onditions z(0) = 0n.

Fig. 6-2 shows how onsensus on the average of the initial state x(0) is ahieved.

Fig. (6-3) presents the evolution of the storage variables z(t). All storage variables

are initially set to zero and then vary during the dynamial evolution of the system

so that the quantity 1
T
nx(t) + 1

T
nz(t) remains onstant.

We now present the results of a series of numerial simulations whose aim is that

of showing how the onsensus ahievement is related to parameters ε and τ . In

partiular, Fig. 6-4 shows how the rightmost non-null eigenvalue λR of matrix M(ε)

varies for ε ∈ [0.2, 1.8]. Fig. 6-4 shows that there exists an optimal value at ε = 1.1

for whih matrix M(ε) in the given example has the smallest rightmost non-null

eigenvalue.

In Fig. 6-5 we show how the rightmost non-null root of eq. (6.9) varies for inreas-

ing values of the time-delay τ when ε = 1.1. Fig. 6-5 shows that despite the time-delay
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an make the system unstable, it an also improve the onvergene speed to average

onsensus. For this example the optimal value of the time-delay is τ = 0.19.

Fig. 6-6 shows the values of τc in eq. (6.14) for whih eq. (6.9) has roots in the imag-

inary axis, i.e., it shows the maximum time delay sustainable by system in eq. (6.3)

for the onsidered network topology in Fig. 6-1.

Finally, in Fig. 6-7 we show a plot of the real part of the rightmost non-null

eigenvalue of eq. (6.9) for ε ∈ (0, 2] and τ ∈ [0, 1]. Fig. 6-7 shows how the onvergene

properties are a�eted by parameters ε and τ : there exists an optimal value at ε = 1.1

and τ = 0.19 for whih λR is the most negative and there exists a onneted region

of the plane de�ned by ε, τ where λR has stritly negative real part.

The rightmost non-null root of eq. (6.9) for a given set of (ε, τ) is omputed using

the spetral method with the heuristi presented by Wu and Mihiels (2012).

6.5 Conlusions

The results of Zareh et al. (2013a) were addressed in this hapter. A ontinuous

time version of a onsensus on the average protool for arbitrary strongly onneted

direted graphs was proposed and its onvergene properties with respet to time

delays in the loal state update were haraterized. The onvergene properties of

this algorithm depend upon a tuning parameter that an be made arbitrary small to

prove stability of the networked system. Simulations were presented to orroborate

the theoretial results and show that the existene of a small time delay an atually

improve the algorithm performane. The future work will inlude an extension of

the mathematial haraterization of the proposed algorithm to onsider possibly

heterogeneous or time-varying delays.
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7

Consensus in multi-agent systems

with seond-order dynamis and

non-periodi sampled-data exhange

�In questions of siene, the authority of a thousand is not worth the humble

reasoning of a single individual.�

� Galileo Galilei

In this hapter based on the results of Zareh et al. (2014a), onsensus in seond-

order multi-agent systems with a non-periodi sampled-data exhange among agents

is investigated. The sampling is random with bounded inter-sampling intervals. It

is assumed that eah agent has exat knowledge of its own state at all times. The

onsidered loal interation rule is PD-type. The haraterization of the onvergene

properties exploits a Lyapunov-Krasovskii funtional method, su�ient onditions for

stability of the onsensus protool to a time-invariant value are derived. Numerial

simulations are presented to orroborate the theoretial results.
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7.1 Introdution

This hapter deals with the problem of onsensus in seond-order MAS with a non-

periodi data sending manner among the agents. We onsider the ase in whih eah

agent has a perfet knowledge of its own state with almost no delay, i.e., it knows its

own speed and position. Information exhanges between neighboring agents happens

at disrete time intervals whih are possibly non-periodi but stritly positive and

bounded.

The network dynamis an thus be modeled as a sampled-data system (SDS), a

lass of systems extensively investigated in the literature.

For interesting ontributions in this area we point the reader to Akermann (1985);

Fridman (2010); Zutshi et al. (2012) and the referenes therein. We also mention the

work by Fridman et al. (2004) who exploited an approah for time-delay systems

and obtained the su�ient stability onditions based on the Lyapunov-Krasovskii

funtional method. Seuret (2012) and Fridman (2010) proposed improved methods

with better upper bounds to the maximum allowed delay. Shen et al. (2012) studied

the sampled-data synhronization ontrol problem for dynamial networks. Qin et al.

(2010) and Ren and Cao (2008) studied the onsensus problem for networks of double

integrators with a onstant sampling period. In the latter two papers, even though

the authors use the sampled-data notation to introdue their novelty, they suppose

that the ommuniation and the loal sensing our simultaneously and this simpli�es

the problem into a disrete state onsensus problem. Xiao and Chen (2012) and Yu

et al. (2011) studied seond-order onsensus in multi-agent dynamial systems with

sampled position data.

We propose a PD-like onsensus algorithm with non-periodi sampled-data ex-

hange among agents with bounded and stritly positive inter-sampling intervals.

A haraterization of the onvergene properties exploiting a Lyapunov-Krasovskii

funtional method is provided and su�ient onditions for exponential stability of

the onsensus protool to a time-invariant value are derived. Numerial simulations

are presented to orroborate the theoretial results.
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This hapter is organized as follows. In Setion 7.2 some notation and preliminar-

ies are introdued. In Setion 7.3 the onsensus problem for seond order multi-agent

systems with non-periodi sampled-data exhange is formalized. In Setion 7.4 the

onvergene properties of the proposed onsensus protool are haraterized. In Se-

tion 7.5 simulation results are presented to orroborate the theoretial analysis. In

Setion 7.6 onluding remarks and diretions for future researh are disussed.

7.2 Notation and Preliminaries

In this setion we reall some basi notions on graph theory and introdue the nota-

tions.

The topology of bidiretional ommuniation hannels among the agents is repre-

sented by an undireted graph G = (V, E) where V = {1, . . . , n} is the set of nodes

(agents) and E ⊆ {V × V} is the set of edges. An edge (i, j) ∈ E exists if there is

a ommuniation hannel between agent i and j. Self loops (i, i) are not onsidered.

The set of neighbors of agent i is denoted by Ni = {j : (j, i) ∈ E ; j = 1, . . . , n}. Let
δi = |Ni| be the degree of agent i whih represents the total number of its neighbors.

The topology of graph G is enoded by the so-alled adjaeny matrix, an n × n

matrix Ad whose (i, j)-th entry is equal to 1 if (i, j) ∈ E , 0 otherwise. Obviously in

an undireted graph matrix Ad is symmetri.

We denote ∆ = diag(δ1, . . . , δn) the diagonal matrix whose non null entries are

the degrees of the nodes. Moreover, matrix Wd = ∆−1Ad is the weighted adjaeny

matrix assoiated with G. The following result holds.

Lemma 7.1 If a graph G is onneted then the eigenvalues of the weighted adjaeny

matrix Wd, namely λi, i = 1, . . . , n, are all loated in the interval [−1, 1], and λ1 = 1

is always a simple eigenvalue of Wd.

Proof: Using Gershgorin theorem sine all the diagonal elements of Wd are zero

and eah row sums up to 1, it immediately follows that λi ∈ [−1, 1]. Now, let

L = ∆−Ad be the Laplaian matrix assoiated with the onsidered graph. If suh a
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graph is onneted, then the origin is a simple eigenvalue of L whih implies that it

is a simple eigenvalue also for −∆−1L = ∆−1Ad − I = Wd − I. Consequently, if the

graph is onneted, λ1 = 1 is a simple eigenvalue of the weighted adjaeny matrix.

�

Finally, in the rest of this hapter we denote with ∗ the symmetri elements of

symmetri matries.

7.3 Problem Statement

Consider a seond-order multi-agent system with an undireted ommuniation topol-

ogy. Consider the PD-type onsensus protool inspired by Cepeda-Gomez and Olga

(2011b) and Zareh et al. (2013b):























ẋi(t) = vi(t),

v̇i(t) =
kp
δi

∑

j∈Ni
xj(t) +

kd
δi

∑

j∈Ni
vj(t)

−kpxi(t)− kdvi(t),

(7.1)

where i = 1, . . . , n, n denotes the number of agents, xi(t) and vi(t) are the position

and the veloity of agent i, and δi indiates its degree.

We suppose that the loal information, i.e., the information that eah agent re-

eives from its own sensors, is measured instantaneously. This obviously makes sense

when the sensor dynamis are fast enough.

Moreover, we assume that the ommuniation between the generi agent i and its

set of neighbors Ni ours in stohasti sampling time instants tk, k = 0, 1, . . . ,∞
that satisfy the following onditions:

0 < tk+1 − tk ≤ τ̄ ∈ R
+

and

lim
k→∞

tk = ∞.
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Under the above assumptions, equation (7.1) an be rewritten as:























ẋi(t) = vi(t),

v̇i(t) =
kp
δi

∑

j∈Ni
xj(tk) +

kd
δi

∑

j∈Ni
vj(tk)

−kpxi(t)− kdvi(t)

(7.2)

or, alternatively, doing some simple manipulations, as:





ẋ(t)

v̇(t)



 = (A⊗ In)





x(t)

v(t)



+ (B ⊗Wd)





x(tk)

v(tk)





(7.3)

where t ∈ [tk, tk+1), x = [x1, x2, . . . , xn], v = [v1, v2, . . . , vn], ∆ = diag{δ1, δ2, . . . , δn},
Ad is the adjaeny matrix, Wd = ∆−1Ad is the weighted adjaeny matrix, and

matries A and B are equal, respetively, to:

A =





0 1

−kp −kd



 , B =





0 0

kp kd



 . (7.4)

A MAS with an undireted ommuniation topology and following equation (7.1),

is said to onverge to a onsensus state if

lim
t→∞

|xi(t)− xj(t)| = 0

and

lim
t→∞

|vi(t)− vj(t)| = 0.

In this hapter, given the value of the maximum admissible di�erene τ̄ between

any two onseutive sampling time instants, and a ommuniation topology with a

given spetrum, we aim at �nding onditions that guarantee onsensus to a �xed

point among agents that evolve aording to equation (7.3).

We will also address the issue of evaluating an upper bound to the deay rate of

onvergene.

We onlude this setion pointing out some di�erenes among our problem for-
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mulation and the ones by Xiao and Chen (2012) and Yu et al. (2011). The most

important di�erene is that we assume that eah agent reeives a message ontaining

its neighbors' positions and veloities in a sampled-data basis. On the ontrary, Xiao

and Chen (2012) and Yu et al. (2011) supposed that the agents gather the sampled

positions of their neighbors and their own at the same time instants.

7.4 Convergene properties

In the following subsetion we �rst introdue a state variable transformation to deou-

ple the dynamis of modes assoiated with the eigenvalues of the weighted adjaeny

matrix. Then, the stability of suh modes is analyzed in detailed.

Stability analysis

Apply the following hange of variables:

x(t) = Tz(t) (7.5)

to eq. (7.3). Then, it holds:

(I2 ⊗ T )





ż(t)

z̈(t)



 = (A⊗ T )





z(t)

ż(t)





+(B ⊗WdT )





z(tk)

ż(tk)





(7.6)

and eq. (7.3) an be rewritten as:





ż(t)

z̈(t)



 = (A⊗ In)





z(t)

ż(t)





+(B ⊗ T−1WdT )





z(tk)

ż(tk)



 .

(7.7)
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Sine Wd is a symmetrizable matrix, then it is also diagonalizable (Cepeda-Gomez

and Olga, 2011b), and the transformation matrix T an be hosen suh that

Λ = T−1WdT = diag(λ1, λ2, . . . , λn)

where

λ1 ≥ λ2 ≥ . . . ≥ λn

are the eigenvalues of the weighted adjaeny matrix Wd. As a result, eq. (7.7) an

be rewritten as:





ż(t)

z̈(t)



 = (A⊗ In)





z(t)

ż(t)



+ (B ⊗ Λ)





z(tk)

ż(tk)



 ,

or alternatively, as





żi(t)

z̈i(t)



 = A





zi(t)

żi(t)



+ λiB





zi(tk)

żi(tk)





(7.8)

where i = 1, . . . , n, and zi(t) is the i-th element of vetor z(t).

Now, if we de�ne

yi(t) = [zi(t) żi(t)]
T

(7.9)

the i-th mode of the system, we an say that its dynamis follows equation:

ẏi(t) = Ayi(t) + λiByi(tk). (7.10)

Moreover, assuming τ(t) = t− tk, the above equation an be rewritten as:

ẏi(t) = Ayi(t) + λiByi(t− τ(t)). (7.11)

The above SDS is a speial ase of a time varying delayed system where the delay

τ(t) is upper bounded by τ̄ , and its derivative is τ̇(t) = 1, while the delay swithes at

times t = tk, k = 0, 1, . . . ,∞.
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In the rest of this hapter we assume that the graph G desribing the ommuni-

ation topology is onneted. By Lemma 7.1 this implies that its largest eigenvalue

is λ1 = 1. We all unitary eigenvalue mode (UEM) the mode assoiated with λ1 = 1.

The following lemma haraterizes the dynamis of the UEM. In partiular it

shows that the UEM onverges asymptotially to a vetor whose �rst entry z1(t) is

equal to a onstant value and the seond entry ż1(t) is null.

Lemma 7.2 Consider a system whose dynamis in the time interval t ∈ [tk, tk+1),

k = 0, 1, . . . ,∞, follows eq. (7.10) with λi = 1. Assume tk+1 − tk > 0 for any

k = 0, 1, . . . ,∞. It holds

lim
k→∞

z1(tk) = γ, γ ∈ R. (7.12)

Proof: To prove this lemma we observe that by eq. (7.10) and by de�nition of

matries A and B, it follows that

z̈1(t) + kdż1(t) + kpz1(t) = kdż1(tk) + kpz1(tk), (7.13)

for t ∈ [tk tk+1]. We onsider two ases separately.

Case A

The harateristi polynomial assoiated with eq. (7.13) has two distint roots. This

orresponds to

σ =
k2
d

4
− kp 6= 0.

In suh a ase the solution of the above ordinary linear di�erential equation is

equal to:

z1(t) = c1ż1(tk)e
s1(t−tk) − c2ż1(tk)e

s2(t−tk)

+z1(tk) +
kd
kp

ż1(tk),
(7.14)
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where

s1,2 =
−kd
2

±
√

k2
d

4
− kp,

c1 =
1

s1 − s2
(1 +

kd
kp

s2),

c2 =
1

s1 − s2
(1 +

kd
kp

s1).

Now, let Tk = tk+1 − tk. From (7.14) we an ompute z1(tk+1) and ż1(tk+1) as:





z1(tk+1)

ż1(tk+1)



 = M(Tk)





z1(tk)

ż1(tk)





(7.15)

where

M(Tk) =





1 µk

0 βk



 , (7.16)

µk = c1e
s1Tk − c2e

s2Tk +
kd
kp

, (7.17)

and

βk = c1s1e
s1Tk − c2s2e

s2Tk . (7.18)

Therefore for all k > 0 it holds:





z1(tk)

ż1(tk)



 = M̄k





z1(0)

ż1(0)





where

M̄k = M(Tk)M(Tk−1) . . .M(T0)

=









1
k
∑

m=0

µm

m−1
∏

j=0

βj

0
k
∏

j=0

βj









.
(7.19)

We now prove that |βk| < 1 where βk is de�ned as in eq. (7.18).

Let

s1 =
−kd
2

+
√
σ, s2 =

−kd
2

+
√
σ, σ =

k2
d

4
− kp.

We onsider separately the ase of σ > 0 and σ < 0.
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Case A1: σ > 0

In this ase it is trivial to show that s1, s2 ∈ R and s2 < s1 < 0. Furthermore, we

have es2Tk < es1Tk
and c1s1 − c2s2 = 1. We an also show that:

c1s1 =
1

s1 − s2
(s1 +

kd
kp

s1s2)

=
1

2
√
σ
(
kd
2

+
√
σ) > 0

and

c2s2 =
1

s1 − s2
(s2 +

kd
kp

s1s2)

=
1

2
√
σ
(
kd
2

−√
σ) > 0.

Let ω =
√
σ and ν = kd/2 =

√

ω2 + kp. We get:

βk =
(ν + ω)eωTk − (ν − ω)e−ωTk

2ωeνTk
. (7.20)

Moreover, sine σ > 0, it is ω ∈ (0, ∞) and therefore ν ∈ (
√

kp, ∞). For any kp > 0

we obtain:

lim
ω→0

βk =
1 +

√

kpTk

e
√

kpTk

,

lim
ω→∞

βk = 1.

Hene due to the ontinuity in (7.20), for any value of kp and kd suh that σ > 0,

knowing that Tk > 0, we ahieve

βk ∈
(

1 +
√

kp

e
√

kp
, 1

)

thus prove the statement.
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Case A2: σ < 0

In suh a ase s1 and s2 are omplex onjugate numbers and

βk = (c1s1 − c2s2)e
−Tkkd/2 cos(

√
σTk)+

j(c1s1 + c2s2)e
−Tkkd/2 sin(

√
σTk).

Being c1s1 + c2s2 = 0 and c1s1 − c2s2 = 1 the seond term vanishes and we get:

βk = e−Tkkd/2 cos(
√
σ) < 1 (7.21)

This leads us to

lim
k→∞

k
∏

j=0

βj = 0.

Therefore, due to the fat that for all m > 0 the norm of µm is bounded by some

µ̄ < ∞, we an onlude that the term

k
∑

m=0

µm

m−1
∏

j=0

βj , whih is obtained multiplying

bounded numbers and exponentially dereasing produts gets a onstant bounded

value Π̄. Hene lim
k→∞

z1(tk) = lim
t→∞

(z1(0) + Π̄ż1(0)) and lim
k→∞

ż1(tk) = 0 whih in turn

implies that there exists γ ∈ R suh that:

lim
k→∞

z1(tk) = γ. (7.22)

Case B

The harateristi polynomial of (7.13) has a single real root s = −kd/2 with multi-

pliity 2.

In suh a ase the solution of eq. (7.13) is:

z1(t) = d1ż1(tk)te
s1(t−tk) − d2ż1(tk)e

s2(t−tk)

+z1(tk) +
kd
kp

ż1(tk),
(7.23)

133



where

d1 =

(

1 +
kd
kp

s

)

= 0

d2 =

(

tk +
kd
kp

tks+
kd
kp

)

=
2

kd
.

Therefore it is





z1(tk+1)

ż1(tk+1)



 = M ′(Tk)





z1(tk)

ż1(tk)



 , (7.24)

where

M ′(Tk) =





1 µ′
k

0 β ′
k



 ,

with µ′
k =

kd
kp

(1 − esTk), and β ′
k = −esTk

. Sine for any Tk > 0, it is |βk| < 1, then,

repeating the same reasoning as in Case A, we onlude that there exists γ ∈ R suh

that

lim
k→∞

z1(tk) = γ. (7.25)

�

We now haraterize the onditions on the design parameters kp, kd, τ̄ under whih

the modes yi(t), i = 2, . . . , n, de�ned in eq. (7.9) are exponentially stable.

To do this we provide the following lemma, whose proof is inspired by Seuret

(2012).

Lemma 7.3 Consider the generi mode yi(t) de�ned in eq. (7.9) whose dynamis

follows eq. (7.11). Matries A, B are de�ned as in eq. (7.4), τ(t) = t − tk, k =

0, 1, . . . ,∞, and λi ∈ [−1, 1).

Assume that the di�erene between any two onseutive sampling times is smaller

than a given τ̄ , i.e., it holds tk+1 − tk ≤ τ̄ for all k = 0, 1, . . . ,∞.

If there exist symmetri positive de�nite matries Pi, Ri, Si ∈ R2×2
, a matrix

Qi =





Qi,1

Qi,2



 ∈ R4×2
and a onstant value α > 0 suh that the following inequalities

are satis�ed:





Ψi,11(τ̄ , α) Ψi,12(τ̄ , α)

∗ Ψi,22(τ̄ , α)



 < 0, (7.26)
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Ψi,11(0, α) Ψi,12(0, α) τ̄Qi,1

∗ Ψi,22(0, α) τ̄Qi,2

∗ ∗ −τ̄ (1− 2ατ̄)Ri











< 0 (7.27)

where

Ψi,11(τ̄ , α) = PiA+ ATPi − Si −Qi,1 −QT
i,1

+τ̄(SiA + ATSi + ATRiA+ 2αSi)

+2αPi − 2αRi,

Ψi,12(τ̄ , α) = λiPiB + Si + 2αRi +Qi,1 −QT
i,2

+τ̄(−ATSi + λiSiB + λiA
TRiB − 2αSi),

Ψi,22(τ̄ , α) = −Si − 2αRi +Qi,2 +QT
i,2

−τ̄ (λiB
TS + λiSiB − λ2

iB
TRiB + 2αSi),

then mode yi(t) is exponentially stable with deay rate α.

Proof: Consider the following funtional:

Vi(t, yi(t), yi(tk)) = yTi (t)Piyi(t)

+ (τ̄ − τ(t)) ξTi (t)Siξi(t)

+ (τ̄ − τ(t))
∫ t

tk
ẏi

T (s)Riẏi(s)ds,

(7.28)

where

ξi(t) = yi(t)− yi(tk). (7.29)

Obviously ξ̇i(t) = ẏi(t). Note that the seond and the third term of the fun-

tional vanish during the jump due to the fat that lim
t→tk

yi(t) = yi(tk) whih leads

to lim
t→tk

V (t) ≤ V (t−k ). Hene we should look the funtional only inside the intervals

without being worried about the jumps.
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Derivating eq. (7.28) with respet to time we get:

V̇i(t, yi(t), yi(tk)) = yTi (t)
(

PiA + ATPi − Si

+
(

τ̄ − τ(t)
)

(SiA+ ATSi + ATRiA)
)

yi(t)

+2yTi (t)
(

λiPiB + Si +
(

τ̄ − τ(t)
)

(SiA

+ATSi + ATRiA)
)

yi(tk)

+yTi (tk)
(

− Si −
(

τ̄ − τ(t)
)

(λiB
TSi + λiSiB

−λ2
iB

TRiB
)

yi(tk)−
∫ t

tk
ẏTi (s)Riẏi(s)ds.

(7.30)

Now onsider the following andidate funtional:

Wi(t, yi(t), yi(tk), α)

= V̇ (t, yi(t), yi(tk)) + 2αVi(t, yi(t), yi(tk))

= yTi (t)
(

PiA+ ATPi − Si + 2αPi

+
(

τ̄ − τ(t)
)

(SiA + ATSi + ATRiA+ 2αSi)
)

yi(t)

+2yTi (t)
(

λiPiB + Si +
(

τ̄ − τ(t)
)

(SiA

+ATSi + ATRiA− 2αSi)
)

yi(tk)

+yTi (tk)
(

− Si −
(

τ̄ − τ(t)
)

(λiB
TSi + λiSiB

−λ2
iB

TRiB + 2αSi

)

yi(tk)

−(1 − 2α(τ̄ − τ(t)))
∫ t

tk
ẏTi (s)Riẏi(s)ds.

(7.31)

To ensure the exponential stability of mode yi(t) with deay rate α it is su�ient to

prove that:

Wi(t, yi(t), yi(tk), α) < 0.

We manipulate the integral term

− (1− 2α(τ̄ − τ(t)))

∫ t

tk

ẏTi (s)Riẏi(s)ds (7.32)

to ahieve a bound on that based on a funtion of yi(t) and yi(tk). To this aim, we
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rewrite the above term as the summation of two terms

− (1− 2ατ̄)

∫ t

tk

ẏTi (s)Riẏi(s)ds (7.33)

and

− 2ατ(t)

∫ t

tk

ẏTi (s)Riẏi(s)ds (7.34)

and provide an upper bound to eah term separately.

To provide an upper bound to (7.33), we introdue the following inequality for

two vetors ω1 and ω2 and an arbitrary matrix Γ with ompatible dimensions:

2ωT
1 ω2 ≤ ωT

1 Γ
−1ω1 + ωT

2 Γω2.

Rewriting the above inequality assuming ω1 = QT
i





yi(t)

yi(tk)





, ω2 = ẏi(s) and Γ =

(1− 2ατ̄)Ri, we get:

2[yTi (t) yTi (tk)]Qiẏi(s) ≤
[

yTi (t) yTi (tk)
]

Qi
R−1

i

1− 2ατ̄
QT

i





yi(t)

yi(tk)





+(1− 2ατ̄)ẏi
T (s)Riẏi(s).

Integrating it in the interval [tk, t] in whih ẏi(t) is ontinuous we obtain:

−(1 − 2ατ̄)
∫ t

tk
ẏTi (s)Rẏi(s)ds ≤

−2[yTi (t) yTi (tk)]Qiξi(t)

+τ(t)
[

yTi (t) yTi (tk)
]

Qi
R−1

i

1− 2ατ̄
QT

i





yi(t)

yi(tk)



 .

(7.35)

To provide an upper bound to (7.34) we use Jensen integral inequality (Xu and
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Lam, 2008):

−2ατ(t)
t
∫

tk

ẏTi (s)Riẏi(s)ds ≤

−2α
t
∫

tk

ẏTi (s)dsRi

t
∫

tk

ẏi(s)ds

= −2α(yi(t)− yi(tk))
TRi(yi(t)− yi(tk))

(7.36)

Introduing inequalities (7.35) and (7.36) in (7.31), the following inequality is

ahieved for t ∈ [tk, tk+1):

Wi(t, yi(t), yi(tk)) ≤ [yTi (t) yTi (tk)]

(





Ψi,11(τ̄ − τ(t), α) Ψi,12(τ̄ − τ(t), α)

∗ Ψi,22(τ̄ − τ(t), α)





+
τ(t)

1− 2ατ̄
QiR

−1
i QT

i

)





yi(t)

yi(tk)



 .

(7.37)

The above inequality orresponds to an LMI that is linear with respet to τ(t). There-

fore, aording to Sherer and Weiland (2000), in order to be sure that it holds for

all τ(t) ∈ [0, τ̄ ] we only need to hek it at the boundary of the interval, namely for

τ(t) = 0 and τ(t) = τ̄ .

Now, if we partiularize eq. (7.37) with τ(t) = 0 this obviously leads to the LMI

in eq. (7.26).

To omplete the proof we need to show that partiularizing eq. (7.37) with τ(t) = τ̄

we get the LMI in eq. (7.27). But this follows from the fat that





Ψi,11(0, α) Ψi,12(0, α)

∗ Ψi,22(0, α)



 +
τ̄

1− 2ατ̄
QiR

−1
i QT

i (7.38)

is the Shur omplement of matrix −τ̄ (1− 2ατ̄)Ri in eq. (7.27). Thus, if the LMI in

eq. (7.27) is de�nite negative, also it is matrix in eq. (7.38). �

Consensus among agents

We now prove the main result, namely the onsensus of agents to a ommon position.
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Theorem 7.4 Consider a MAS evolving aording to equation (7.2) where τ̄ is suh

that 0 < tk+1 − tk < τ̄ < ∞. Let λi, i = 2, . . . , n be the eigenvalues of the weighted

adjaeny matrix assoiated with the undireted onneted graph G modeling the om-

muniation topology. If there exists a positive onstant α suh that the LMIs de�ned

in eq. (7.26) and (7.27) are satis�ed for all λi, i = 2, . . . , n, then there exists a γ ∈ R

suh that x(t) exponentially onverges to γ~1 and v(t) exponentially onverges to

~0.

Moreover, the rate of onvergene is greater than or equal to α.

Proof: By Lemma 7.3, if the LMIs in eq. (7.26) and (7.27) hold, all modes exept

the UEM are stable, i.e., lim
t→∞

yi(t) = 0 and thus lim
t→∞

zi(t) = 0 for i = 2, . . . , n with

rate of onvergene of at least α. Furthermore, by Lemma 7.2, there exists a positive

onstant γ ∈ R suh that lim
t→∞

z1(t) = γ.

Now, the �rst olumn of T is the eigenvetor orresponding to the unitary eigen-

value of Wd, therefore it is equal to

~1 = [1 1 . . . , 1]T . Thus, being x(t) =

T [z1(t) 0 . . . 0]T , it is trivial to show that when t → ∞ it is xi(t) = xj(t), for all

i, j = 1, . . . , n. The same alulations an be repeated for the veloities, thus proving

that for t → ∞, it is vi(t) = vj(t), i, j = 1, . . . , n. �

7.5 Simulation results

In this setion we present the results of some numerial simulation that shows the

e�etiveness of the onsensus protool in eq. (7.3). To this aim we onsider a system

with 6 agents and adjaeny matrix:

Ad =





























0 1 0 1 0 0

1 0 0 1 0 0

0 0 0 1 0 1

1 1 1 0 1 0

0 0 0 1 0 1

0 0 1 0 1 0





























.
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Figure 7-1: Positions and veloities when the proposed protool is implemented.

Assume kp = 1, kd = 2 and τ̄ = 1. Using the above LMIs with α = 0.38 we an

prove that the system reahes onsensus to a �xed point.

Fig. 7-1 shows the evolution of positions and veloities when the proposed al-

gorithm is implemented, while Fig. 7-2 shows the sampled positions and veloities

aperiodially transmitted to neighbors by eah agent.

We onlude this setion presenting the results of another numerial simulation

arried out under the assumption that only sampled positions are transmitted to

neighbors, i.e., the seond term is removed in eq. (7.2) that is equivalent to rede�ne

B as B′ = [0 0; kp 0].

It an be proved that in suh a ase the onsensus to a �xed point is still reahed,

but with deay rate bounded by 0.21 that is almost the half of the previous ase.

Suh a onlusion an also be drawn by looking at Fig. 7-3.
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Figure 7-2: Aperiodi sampled positions and veloities when the proposed protool

is implemented.
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Figure 7-3: Positions and veloities when the proposed protool is modi�ed in order

to only onsider sampled positions.
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7.6 Conlusions and future work

The ontribution of this hapter onsists in a PD-like onsensus algorithm for a

seond-order multi-agent system where, at non-periodi sampling times, agents trans-

mit to their neighbors information about their position and veloity, while eah agent

has a perfet knowledge of its own state at any time instant. Conditions have been

given to prove onsensus to a ommon �xed point, based on LMIs veri�ation. More-

over, we also show how it is possible to evaluate an upper bound on the deay rate

of exponential onvergene of stable modes.

The main diretions of our future researh in this framework are

(i) We want to also study the ase where agents do not have a perfet knowledge

of their own state.

(ii) Finally, we plan to relax the assumption that all ommuniations among agents

our simultaneously.
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8

Non-periodi sampled-data onsensus

in seond-order multi-agent systems

with ommuniation delays over an

unertain network

�Give me a lever long enough and a fulrum on whih to plae it, and I shall

move the world.�

� Arhimedes

In this hapter onsensus in seond-order multi-agent systems with a non-periodi

sampled-data exhange among agents is investigated. The sampling is random with

bounded inter-sampling intervals. It is assumed that eah agent has exat knowledge

of its own state at any time instant. The onsidered loal interation rule is PD-

type. Su�ient onditions for stability of the onsensus protool to a time-invariant

value are derived based on LMIs. Suh onditions only require the knowledge of the

onnetivity of the graph modeling the network topology. Numerial simulations are

presented to orroborate the theoretial results.
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8.1 Introdution

Due to its broad spetrum of appliations, in the past years, a large attention has

been devoted to the onsensus problem in multi-agent systems (MAS) Qin et al.

(2011); Ren et al. (2005a); Yu et al. (2010); Zareh et al. (2013a). Sensor networks

Yu et al. (2009); Olfati-Saber and Shamma (2005), automated highway systems Ren

et al. (2005a), mobile robotis Khoo et al. (2009), satellite alignment Ren (2007a) and

several more, are some of the potential areas in whih a onsensus problem is taken

into aount. Consensus is a state of a networked multi-agent system in whih all

the agents reah agreement on a ommon value by only sharing information loally,

namely with their neighbors. Several algorithms, often alled onsensus protools,

have been proposed that lead a MAS to onsensus. In partiular, the oordination

problem of mobile robots �nds several appliations in the manufaturing industry in

the ontext of automated material handling. The onsensus problem in the ontext

of mobile robots onsists in the design of loal state update rules whih allow the

network of robots to rendezvous at some point in spae or follow a leading robot

exploiting only measurements of speeds and relative positions between neighboring

robots. Robots are hereafter referred to as agents.

In MAS, heavy omputational loads an interrupt the sampling period of a er-

tain ontroller. A sheduled sampling period an be used to deal with this prob-

lem. In suh a ase robust stability analysis with respet to the hanges in the

sampling time is neessary. For interesting ontributions in this area we address the

reader to Akermann (1985); Fridman (2010); Zutshi et al. (2012) and the referenes

therein. We also mention the work by Fridman et al. (2004) who exploited an ap-

proah for time-delay systems and obtained the su�ient stability onditions based

on the Lyapunov-Krasovskii funtional method. Seuret Seuret (2012) and Fridman

Fridman (2010) proposed methods with better upper bounds to the maximum allowed

sampling. Shen et al. Shen et al. (2012) studied the sampled-data synhronization

ontrol problem for dynamial networks. Qin et al. Qin et al. (2010) and Ren and

Cao Ren and Cao (2008) studied the onsensus problem for networks of double inte-
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grators with a onstant sampling period. In the latter two papers, even though the

authors use the sampled-data notation to introdue their novelty, they suppose that

the ommuniation and the loal sensing our simultaneously and this simpli�es the

problem into a disrete state onsensus problem. Xiao and Chen Xiao and Chen

(2012) and Yu et al. Yu et al. (2011) studied seond-order onsensus in multi-agent

dynamial systems with sampled position data.

In this hapter, we onsider the ase in whih eah agent has a perfet knowl-

edge of its own state with almost no delay, i.e., it knows its own speed and position.

Information exhanges between neighboring agents happen at disrete time inter-

vals whih are possibly non-periodi but stritly positive and bounded. The network

dynamis an thus be modeled as a sampled-data system (SDS), a lass of systems

extensively investigated in the literature. Using PD-like algorithm we guarantee that

all the agents reah onsensus. We proposed suh a protool in Chapter 7 where

we provided a haraterization of the onvergene properties exploiting a Lyapunov-

Krasovskii funtional method. In partiular in Chapter 7 we provided su�ient on-

ditions for exponential stability of the onsensus protool to a time-invariant value

under the assumption that the spetrum of the weighted adjaeny matrix is known.

With respet to Chapter 7, in this hapter we relax suh assumption and provide

su�ient onditions for onsensus under the assumption that the only information

on the network topology is its onnetivity, i.e., the seond largest eigenvalue of the

weighted adjaeny matrix. This is obviously a signi�ant improvement with respet

to the previous hapter, not only beause muh less information on the network topol-

ogy is needed, but also beause, despite of Chapter 7, the number of LMIs that have

to be omputed does not depend on the number of agents.

The hapter is organized as follows. In Setion 8.2 the onsensus problem for se-

ond order multi-agent systems with non-periodi sampled-data exhange is formal-

ized. In Setion 8.3 the onvergene properties of the proposed onsensus protool

are haraterized. In Setion 8.4 simulation results are presented to orroborate the

theoretial analysis. Finally, in Setion 8.5 onluding remarks and diretions for

future researh are disussed.

145



8.2 Problem Statement

Consider a seond-order multi-agent system with an undireted ommuniation topol-

ogy. Consider the PD-type onsensus protool introdued in (7.1).

We suppose that the loal information, i.e., the information that eah agent re-

eives from its own sensors, is measured instantaneously. This obviously makes sense

when the sensor dynamis are fast enough.

Moreover, we assume that the ommuniation between the generi agent i and its

set of neighbors Ni ours in stohasti sampling time instants tk, k = 0, 1, . . . ,∞,

that satisfy the following onditions:

0 < tk+1 − tk ≤ τ̄ ∈ R
+

and

lim
k→∞

tk = ∞.

Under the above assumptions, equation (7.1) an be rewritten as:























ẋi(t) = vi(t),

v̇i(t) =
kp
δi

∑

j∈Ni
xj(tk) +

kd
δi

∑

j∈Ni
vj(tk)

−kpxi(t)− kdvi(t)

(8.1)

or, alternatively, doing some simple manipulations, as:





ẋ(t)

v̇(t)



 = (A⊗ In)





x(t)

v(t)



+ (B ⊗Wd)





x(tk)

v(tk)





(8.2)

where x = [x1, x2, . . . , xn], v = [v1, v2, . . . , vn], ∆ = Diag{δ1, δ2, . . . , δn}, Ad is the

adjaeny matrix, Wd is the weighted adjaeny matrix, and matries A and B are
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equal, respetively, to:

A =





0 1

−kp −kd



 , B =





0 0

kp kd



 . (8.3)

A MAS with an undireted ommuniation topology and following equation (7.1),

is said to onverge to a onsensus state if

lim
t→∞

|xi(t)− xj(t)| = 0

and

lim
t→∞

|vi(t)− vj(t)| = 0.

In this hapter, given the value of the maximum admissible di�erene τ̄ between

any two onseutive sampling time instants, and a ommuniation topology whose

onnetivity is known to be smaller than or equal to a given value λ̄, we aim at

�nding onditions that guarantee onsensus to a �xed point among agents that evolve

aording to equation (8.2).

8.3 Convergene properties

In the following subsetion we reall a state variable transformation, �rstly introdued

in Chapter 7, to deouple the dynamis of modes assoiated with the eigenvalues of

the weighted adjaeny matrix. Then, the stability of suh modes is analyzed in

detail.

Stability analysis

Apply the following hange of variables:

x(t) = Tz(t) (8.4)

147



to eq. (8.2). Then, it holds:

(I2 ⊗ T )





ż(t)

z̈(t)



 = (A⊗ T )





z(t)

ż(t)





+(B ⊗WdT )





z(tk)

ż(tk)





(8.5)

and eq. (8.2) an be rewritten as:





ż(t)

z̈(t)



 = (A⊗ In)





z(t)

ż(t)





+(B ⊗ T−1WdT )





z(tk)

ż(tk)



 .

(8.6)

Sine Wd is a symmetrizable matrix, then it is also diagonalizable, and the transfor-

mation matrix T an be hosen suh that

Λ = T−1WdT = diag(λ1, λ2, . . . , λn)

where

λ1 ≥ λ2 ≥ . . . ≥ λn

are the eigenvalues of the weighted adjaeny matrix Wd. As a result, eq. (8.6) an

be rewritten as:





ż(t)

z̈(t)



 = (A⊗ In)





z(t)

ż(t)



+ (B ⊗ Λ)





z(tk)

ż(tk)



 ,

or alternatively, as





żi(t)

z̈i(t)



 = A





zi(t)

żi(t)



+ λiB





zi(tk)

żi(tk)





(8.7)

where i = 1, . . . , n, and zi(t) is the i-th element of vetor z(t).
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Now, if we de�ne

yi(t) = [zi(t) żi(t)]
T

(8.8)

the i-th mode of the system, we an say that its dynamis follows equation:

ẏi(t) = Ayi(t) + λiByi(tk). (8.9)

Moreover, assuming τ(t) = t− tk, the above equation an be rewritten as:

ẏi(t) = Ayi(t) + λiByi(t− τ(t)). (8.10)

The above SDS is a speial ase of a time varying delayed system where the delay

τ(t) is upper bounded by τ̄ , and its derivative is τ̇(t) = 1, while the delay swithes at

times t = tk, k = 0, 1, . . . ,∞.

We assume that the graph G desribing the ommuniation topology is onneted.

By Lemma 7.1 this implies that its largest eigenvalue is λ1 = 1. We all unitary

eigenvalue mode (UEM) the mode assoiated with λ1 = 1.

Based on Lemma 7.2, we an haraterize the dynamis of the UEM. In partiular

it shows that the UEM onverges asymptotially to a vetor whose �rst entry z1(t) is

equal to a onstant value and the seond entry ż1(t) is null. In other words

lim
k→∞

z1(tk) = γ, γ ∈ R. (8.11)

We now provide the main ontribution of this hapter, i.e., we haraterize the

onditions on the design parameters kp, kd, τ̄ , λ̄ under whih the modes yi(t), i =

2, . . . , n, de�ned in eq. (8.8) are asymptotially stable provided that λi ≤ λ̄ for all

i = 2, . . . , n.

Theorem 8.1 Consider the generi mode yi(t) de�ned in eq. (8.8) whose dynamis

follows eq. (8.10) where λi is an unertain parameter in [−1, λ̄], and obviously λ̄ < 1.

If there exist positive de�nite matries P and R and square matries Q1 and Q2
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suh that the following inequalities hold:

M1 =

















QT
1 (A− B)+

(A− B)TQ1

P −QT
1+

(A− B)TQ2

∗ −Q2 −QT
2 + τ̄R

















< 0 (8.12)

M2 =

















QT
1 (A+ λ̄B)+

(A+ λ̄B)TQ1

P −QT
1+

(A+ λ̄B)TQ2

∗ −Q2 −QT
2 + τ̄R

















< 0 (8.13)

M3 =





























QT
1 (A−B)+

(A−B)TQ1

P −QT
1+

(A− B)TQ2

τ̄QT
1B

∗ −Q2 −QT
2 τ̄QT

2B

∗ ∗ −τ̄R





























< 0

(8.14)
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M4 =





























QT
1 (A+ λ̄B)+

(A+ λ̄B)TQ1

P −QT
1+

(A+ λ̄B)TQ2

−τ̄ λ̄QT
1B

∗ −Q2 −QT
2 −τ̄ λ̄QT

2B

∗ ∗ −τ̄R





























< 0

(8.15)

then the system with dynamis (8.10) is asymptotially stable.

Proof: Consider the Lyapunov funtion

V (t, yi(t), yi(tk)) = yTi (t)Pyi(t)

+ (τ̄ − τ(t))

∫ t

tk

ẏi
T (s)Rẏi(s)ds.

(8.16)

It holds:

V̇ (t, yi(t), yi(tk)) = 2ẏTi (t)Pyi(t)

−
∫ t

tk

ẏi
T (s)Rẏi(s)ds+

(τ̄ − τ(t))
(

ẏi
T (t)Rẏi(t)− ẏi

T (tk)Rẏi(tk)
)

.

(8.17)

To provide an upper bound to (8.17) we use Jensen integral inequality:

t
∫

tk

ẏTi (s)Rẏi(s)ds ≤
t
∫

tk

ẏTi (s)dsR

t
∫

tk

ẏi(s)ds. (8.18)

De�ne ξi(t) =
1

τ(t)

t
∫

tk

ẏi(s)ds.

We get:

t
∫

tk

ẏTi (s)Rẏi(s)ds ≤ τ(t)ξTi (t)Rξi(t) (8.19)
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From the desriptor method (Fridman and Shaked, 2002) we know:

[yi(t) ẏi(t)]





Q1

Q2



 ·

·((A+ λiB)yi(t)− τ(t)ξi(t)− ẏi(t)) = 0

(8.20)

Adding this to the right side of the inequality in (8.17) and using the inequality (8.19)

we obtain:

V̇ ≤ ηTi (t)Ψ(τ(t), λi)ηi(t)− (τ̄ − τ(t))ẏi
T (tk)Rẏi(tk),

where

η=[y
T
i (t) ẏTi (t) ξTi (t)]

T

and:

Ψ(τ(t), λi) =



































QT
1 Γi + ΓT

i Q1

P −QT
1

+ΓT
i Q2

−τ(t)λiQ
T
1B

∗
−Q2 −QT

2+

(τ̄ − τ(t))R
−τ(t)λiQ

T
2B

∗ ∗ −τ(t)R



































(8.21)

where

Γi = (A+ λiB).

Notie that (τ̄ − τ(t))ẏi
T (tk)Rẏi(tk) is always positive. Thus:

V̇ ≤ ηTi (t)Ψ(τ(t), λi)ηi(t), (8.22)

Hene to prove the stability one needs to prove that Ψ(τ(t), λi) is negative de�nite.
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Now de�ne the following matries:

Φi,0(λi) =











QT
1 Γi + ΓT

i Q1 P −QT
1 + ΓT

i Q2

∗ Q2 −QT
2 + τ̄R











.

(8.23)

and

Φi,τ̄ =























QT
1 Γi + ΓT

i Q1 P −QT
1 + ΓT

i Q2 −τ̄λiQ
T
1B

∗ Q2 −QT
2 −τ̄λiQ

T
2B

∗ ∗ −τ̄R























(8.24)

De�ne

η′i(t) = [yTi (t) ẏTi (t)]
T .

One an show that:

ηTi (t)Ψ(τ(t), λi)ηi(t) =

τ̄ − τ(t)

τ̄
η′

T

i (t)Φi,0η
′
i(t) +

τ(t)

τ̄
ηTi (t)Φi,τ̄ηi(t) =

τ̄ − τ(t)

τ̄
η′

T

i (t)
( λ̄− λi

λ̄+ 1
M1 +

λi

λ̄+ 1
M2

)

η′i(t)+

τ(t)

τ̄
ηTi (t)

( λ̄− λi

λ̄+ 1
M3 +

λi

λ̄+ 1
M4

)

ηi(t)

(8.25)

De�ne µτ =
τ̄ − τ(t)

τ̄
and µλ =

λ̄− λi

λ̄+ 1
.
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Then

τ(t)

τ̄
= 1− µτ ,

λi

λ̄+ 1
= 1− µλ and

ηTi (t)Ψ(τ(t), λi)ηi(t) =

µτη
′T
i (t)Φi,0η

′
i(t) + (1− µτ )η

T
i (t)Φi,τ̄ηi(t) =

µτη
′T
i (t)

(

µλM1 + (1− µλ)M2

)

η′i(t)+

(1− µτ)η
T
i (t)

(

µλM3 + (1− µλ)M4

)

ηi(t).

(8.26)

Sine µτ ∈ [0, 1] and µλ ∈ [0, 1], oe�ients µτ , 1−µτ , µλ, and 1−µλ are positive.

Moreover, by equations (8.12) to (8.15) it follows that Ψ(τ(t), λi) is negative de�nite

and this proves the stability of the system. �

Consensus among agents

We now prove the onsensus of agents to a ommon position.

Theorem 8.2 Consider a MAS evolving aording to equation (8.1) where τ̄ is suh

that 0 < tk+1 − tk < τ̄ < ∞. Assume that the undireted onneted graph G modeling

the network topology is suh that the seond largest eigenvalue of its weighted adja-

eny matrix is smaller than or equal to λ̄. If the LMIs de�ned in eq. (8.12) to (8.15)

are satis�ed, then there exists a γ ∈ R suh that x(t) asymptotially onverges to γ~1

and v(t) asymptotially onverges to

~0.

Proof: By Theorem 8.1, if the LMIs in eq. (8.12) to (8.15) hold, all modes exept

the UEM are asymptotially stable, i.e., lim
t→∞

yi(t) = 0 and thus lim
t→∞

zi(t) = 0 for

i = 2, . . . , n. Furthermore, by Lemma 7.2, there exists a positive onstant γ ∈ R suh

that lim
t→∞

z1(t) = γ.

Now, the �rst olumn of T is the eigenvetor orresponding to the unitary eigen-

value of Wd, therefore it is equal to

~1 = [1 1 . . . , 1]T . Thus, being x(t) =

T [z1(t) 0 . . . 0]T , it is trivial to show that when t → ∞ it is xi(t) = xj(t), for all
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i, j = 1, . . . , n. The same alulations an be repeated for the veloities, thus proving

that for t → ∞, it is vi(t) = vj(t), i, j = 1, . . . , n. �

8.4 Simulation results

In this setion we present the results of some numerial simulations that show the

e�etiveness of the proposed onsensus protool. To this aim we onsider a system

with 8 agents and assume kp = 1 and kd = 1.

In Fig. 8-1 the area under the urve shows the stability region in the λ̄− τ̄ plane.

Suh an area has been omputed using the LMIs (8.12) to (8.15).

We now onsider a graph with adjaeny matrix (randomly generated) equal to:

Ad =









































0 0 0 1 0 0 0 1

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

1 1 1 0 1 0 0 1

0 0 0 1 0 1 1 0

0 0 0 0 1 0 1 0

0 0 0 0 1 1 0 0

1 0 0 1 0 0 0 0









































. (8.27)

Fig. 8-2 shows the positions and veloities of the agents, while Fig. 8-3 shows

the sampled positions and veloities aperiodially transmitted to neighbors by eah

agent.

8.5 Conlusions and future work

In this hapter we onsidered a PD-like onsensus algorithm for a seond-order multi-

agent system where, at non-periodi sampling times, agents transmit to their neigh-

bors information about their position and veloity, while eah agent has a perfet

knowledge of its own state at any time instant. The main ontribution onsists in
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Figure 8-1: The stability area in the λ̄− τ̄ plane.
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Figure 8-2: Positions and veloities when the proposed protool is implemented.
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Figure 8-3: Positions and veloities when the proposed protool is implemented.
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proving onsensus to a ommon �xed point, based on LMIs veri�ation, under the

assumption that the network topology is not known and the only information is an

upper bound on the onnetivity.

Two are the main diretions of our future researh in this framework. First, we

want to ompute analytially an upper bound on the value of the seond largest

eigenvalue of the weighted adjaeny matrix that guarantees onsensus, as a funtion

of the other design parameters. Seond, we plan to study the ase where agents do

not have a perfet knowledge of their own state.

158



9

Conlusions and open issues

�Give me a lever long enough and a fulrum on whih to plae it, and I shall

move the world.�

� Martin H. Fisher

Di�erent onsensus problems in multi-agent systems have been addressed in this

thesis. They represent improvements with respet to the state of the art.

In the �rst part of the thesis inluding Chapters 2, 3, and 4, the state of the art of

the representation and stability analysis of onsensus problems, time-delay systems,

and sampled-data systems have been presented.

Novel ontributions have been illustrated in Chapters 5-8. Partiularly, in Chapter

5 we reported the results of Zareh et al. (2013b), where we investigated the onsensus

problem for networks of agents with double integrator dynamis a�eted by time-delay

in their oupling. We provided a stability result based on the Lyapunov-Krasovskii

funtional method and a numerial proedure based on an LMI ondition whih de-

pends only on the algebrai onnetivity of the onsidered network topologies, thus

reduing greatly the omputational omplexity of the proedure. Obviously, this re-

sult implies the existene of a minimum dwell time suh that the proposed onsensus

protool is stable for slow swithings between network topologies with su�ient al-

gebrai onnetivity. Future work will involve atually omputing suh a dwell time

by adopting a multiple Lyapunov funtion method and evaluating the worst ase
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onvergene rate. Furthermore we will evaluate novel onsensus protools that on-

sider only delayed relative measurements instead of delayed absolute values of the

neighbors' state variables.

The results of Zareh et al. (2013a) were addressed in Chapter 6, in whih a on-

tinuous time version of a onsensus on the average protool for arbitrary strongly

onneted direted graphs is proposed and its onvergene properties with respet to

time delays in the loal state update are haraterized. The onvergene properties

of this algorithm depend upon a tuning parameter that an be made arbitrary small

to prove stability of the networked system. Simulations have been presented to or-

roborate the theoretial results and show that the existene of a small time delay an

atually improve the algorithm performane. Future work will inlude an extension

of the mathematial haraterization of the proposed algorithm to onsider possibly

heterogeneous or time-varying delays.

In Chapter 7 we proposed a PD-like onsensus algorithm for a seond-order multi-

agent system where, at non-periodi sampling times, agents transmit to their neigh-

bors information about their position and veloity, while eah agent has a perfet

knowledge of its own state at any time instant. Conditions have been given to prove

onsensus to a ommon �xed point, based on LMIs veri�ation. Moreover, we also

show how it is possible to evaluate an upper bound on the deay rate of exponential

onvergene of stable modes.

In Chapter 8, mainly based on our paper Zareh et al. (2014b), we onsidered the

same problem as in Chapter 7. The main ontribution onsists in proving onsensus

to a ommon �xed point, based on LMIs veri�ation, under the assumption that the

network topology is not known and the only information is an upper bound on the

onnetivity. Two are the main diretions of our future researh in this framework.

First, we want to ompute analytially an upper bound on the value of the seond

largest eigenvalue of the weighted adjaeny matrix that guarantees onsensus, as a

funtion of the other design parameters. Seond, we plan to study the ase where

agents do not have a perfet knowledge of their own state.
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Appendix A

Laplaian matrix
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In the mathematial �eld of graph theory, the Laplaian matrix, sometimes alled

admittane matrix, Kirhho� matrix or disrete Laplaian, is a matrix representation

of a graph. Together with Kirhho�'s theorem, it an be used to alulate the number

of spanning trees for a given graph. The Laplaian matrix an be used to �nd many

other properties of the graph. Cheeger's inequality from Riemannian geometry has

a disrete analogue involving the Laplaian matrix; this is perhaps the most impor-

tant theorem in spetral graph theory and one of the most useful fats in algorithmi

appliations. It approximates the sparsest ut of a graph through the seond eigen-

value of its Laplaian. Given a simple graph G with n verties, its Laplaian matrix

L := (li,j)n×n is de�ned as:

L = ∆−A,

where ∆ is the degree matrix and A is the adjaeny matrix of the graph. In the ase

of direted graphs, either the in-degree or out-degree might be used, depending on

the appliation.

From the de�nition it follows that:

lij =



















deg(vi) ifi = j

−1 i 6= j and vi is adjaent to vj

0 otherwise

where deg(vi) is degree of the vertex i.

The normalized Laplaian matrix is de�ned as (Bollobás, 1998):

L := D−1/2LD−1/2 = I −D−1/2AD−1/2 = (ℓ̃ij),

where:
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6

45

1 2

3

ℓ̃i,j :=



























1 if i = j and deg(vi) 6= 0

− 1√
deg(vi) deg(vj)

if i 6= j and vi is adjaent to vj

0 otherwise.

We note that L an be written as

L = SS∗,

where S is the matrix whose rows are indexed by the verties and whose olumns

are indexed by the edges of G suh that eah olumn orresponding to an edge e =

u, v has an entry 1/
√
du in the row orresponding to u, an entry 1/

√
dv in the row

orresponding to v, and has zero entries elsewhere. (As it turns out, the hoie of

signs an be arbitrary as long as one is positive and the other is negative.)

Here is a simple example of a labeled graph and its Laplaian matrix. Consider a

6-vertex graph as shown in �g. A
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In this example the weight matrix is

∆ =





























2 0 0 0 0 0

0 3 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 1





























,

The adjaeny matrix

A





























0 1 0 0 1 0

1 0 1 0 1 0

0 1 0 1 0 0

0 0 1 0 1 1

1 1 0 1 0 0

0 0 0 1 0 0





























,

and the Laplaian matrix

L =





























2 −1 0 0 −1 0

−1 3 −1 0 −1 0

0 −1 2 −1 0 0

0 0 −1 3 −1 −1

−1 −1 0 −1 3 0

0 0 0 −1 0 1





























.

Some properties of Laplaian matrix is provided below (Bollobás, 1998; Anderson Jr

and Morley, 1985).

For an undireted graph G and its Laplaian matrix L with eigenvalues λ0 ≤ λ1 ≤
· · · ≤ λn−1:

• L is symmetri.

• L is positive-semide�nite (that is λi ≥ 0 for all i). This an also be seen from
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the fat that the Laplaian is symmetri and diagonally dominant.

• L is an M-matrix (its o�-diagonal entries are non-positive, yet the real parts of

its eigenvalues are nonnegative).

• Every row sum and olumn sum of L is zero. Indeed, in the sum, the degree of

the vertex is summed with a "-1" for eah neighbor.

• In onsequene, λ0 = 0, beause the vetor v0 = (1, 1, . . . , 1) satis�es Lv0 = 0.

• The number of times 0 appears as an eigenvalue in the Laplaian is the number

of onneted omponents in the graph. The smallest non-zero eigenvalue of L

is alled the spetral gap.

• The seond smallest eigenvalue of L is the algebrai onnetivity (or Fiedler

value) of G.

• The Laplaian is an operator on the n-dimensional vetor spae of funtions

f : V → R, where V is the vertex set of G, and n = |V |.

• When G is k-regular, the normalized Laplaian is: L = 1
k
L = I − 1

k
A, where A

is the adjaeny matrix and I is an identity matrix.

• For a graph with multiple onneted omponents, L is a blok diagonal ma-

trix, where eah blok is the respetive Laplaian matrix for eah omponent,

possibly after reordering the verties (i.e. L is permutation-similar to a blok

diagonal matrix).

• For a graph G on n verties, we have

∑

i

λi ≤ n.

with equality holding if and only if G has no isolated verties.

• For n ≥ 2,

λ1 ≤
n

n− 1
,

167



with equality holding if and only if G is the omplete graph on n verties. Also,

for a graph G without isolated verties, we have

λn−1 ≥
n

n− 1
.
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Appendix B

Perturbation bounds on matrix

eigenvalues

169



In this setion, the goal is the exposition of bounds for the distane between the

eigenvalues of two matries A and B in terms of expressions involving ‖A−B‖. The
prototype of suh bounds is H. Weyl's inequalityBhatia (2007).

For several years the most prominent onjeture on perturbation inequalities,

whih attrated the attention of several mathematiians, was that the inequality

d(eig(A), eig(B)) ≤ ‖A− B‖,

would be true for all normal matries A and B. d(eig(A), eig(B)) indiates the

maximum distane between the eigenvalues of matries A and B. In 1992, J. Holbrook

published a ounterexample to this with 3 × 3 matries. It is now known that the

inequality

d(eig(A), eig(B)) ≤ c‖A− B‖,

is true for all n × n normal matries A and B with c < 2.904 and that the best

onstant c here is bigger than 1.018.

We now give a brief summary of the major inequalities whih are proved (oa-

sionally just stated) below. Let A,B be n × n Hermitian matries with eigenvalues

α1 ≥ . . . ≥ αn and β1 ≥ . . . ≥ βn respetively. Then

max lim
j

|αj − βj| ≤ ‖A− B‖.

Kahan (1975), showed that

d(eig(A), eig(B)) ≤ (γn + 2)‖A− B‖,

where γn is a onstant depending on the size n of the matries. Further they showed

that the optimal onstant for this inequality is bounded as

2

π
ln(n)− 0.1 ≤ γn ≤ log2(n) + 0.038.

Based on the results of an extended work, an see that if A is normal and B
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arbitrary then

d(eig(A), eig(B)) ≤ (2n− 1)‖A−B‖.

If, in addition, B is Hermitian then the fator (2n− 1) an be replaed by

√
2 in the

above inequality.

When A,B are arbitrary n× n matries the situation is not so simple. Results of

this type in the general ase were obtained by Ostrowski et al. (1960); Henrii (1962);

Bhatia (2007). This latest result says that for A, B arbitrary n× n matries

d(eig(A), eig(B)) ≤ n(2M)1−1/n‖A−B‖,

where M = max(‖A‖, ‖B‖).
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Appendix C

Properties of weighted adjaeny

matrix
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Let ν1 be a right eigenvetor of Wd = ∆−1Ad then ∆−1Adν1 = λν1. Using the

transformation ν1 = ∆− 1

2 ν2 one gets:

∆−1Ad∆
− 1

2 ν2 = λ∆− 1

2ν2 → ∆− 1

2Ad∆
− 1

2 ν2 = λ∆− 1

2ν2

This shows that matries ∆− 1

2Ad∆
− 1

2
and Wd = ∆−1Ad have the same eigenvalues

and sine the former is a symmetri matrix, they possess real eigenvalues. From

Courant-Fisher theorem (Horn and Johnson, 2012) the largest eigenvalue whih is a

simple one is ahieved from the following equation:

λ1 = max{νT
2 ∆

− 1

2Ad∆
− 1

2 ν2}, νT
2 ν2 = 1.

Suppose the vetor ν†
2 is a solution to the above optimization problem. In order to

�nd the seond largest eigenvalue we must searh in a subspae whih is perpendiular

to the one in whih the largest eigenvalue is loated:

λ2 = max{νT
2 ∆

− 1

2Ad∆
− 1

2ν2}, νT
2 ν2 = 1, νT

2 ν
†
2 = 0.

Sine ∆− 1

2
is diagonal we get:

λ2 = max{(∆− 1

2 ν2)
TAd(∆

− 1

2ν2)} = max{νT
1 Adν1)},

We know that the orresponding eigenvetor of λ1 = 1 is parallel to 1 so ν†
2 = ∆− 1

21.

The onstraints beome:

n
∑

i=1

δiν
2
1i = 1,

n
∑

i=1

δiν1i = 0.

Notie that:

νT
1 Adν1 =

n
∑

i=1

n
∑

j=1

aijν1iν1j =
∑

(i,j)∈E

2ν1iν1j ,
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It should be noted that 2ν1iν1j = ν2
1i + ν2

1j − (ν1i − ν1j)
2
. Hene:

νT
1 Adν1 =

n
∑

i=1

δiν
2
1i −

∑

(i,j)∈E

(ν1i − ν1j)
2 = 1−

∑

(i,j)∈E

(ν1i − ν1j)
2,

Consequently

max{νT
1 Adν1} = max{1−

∑

(i,j)∈E

(ν1i − ν1j)
2} = 1−min{

∑

(i,j)∈E

(ν1i − ν1j)
2},

The minimum of the last term is ahieved when the number of the edges set is the

minimum possible whih allows the graph to be onneted. Trivially suh a graph is

a tree graph.

By looking at the matrix W̄ = ∆− 1

2Ad∆
− 1

2
we an see that it an be onverted to

the well known shape normalized Laplaian matrix, Ld, as follows:

Ld = I − W̄ ,

It an be easily observed that the eigenvalues of Ld are equal to 1−λ. In order to �nd

the seond largest eigenvalue of W̄ (orWd) we an hek the seond largest eigenvalue

of Ld for tree graphs.

Now we introdue the following onjeture whih gives a relationship between the

seond largest eigenvalue of the weighted adjaeny matrix and the number of agents.

Conjeture C.1 For a given number of agents, n, the seond largest eigenvalue of

the weighted adjaeny matrix (Wd and equivalently that of W̄ ) over whole possible

onneted graphs is upper bounded by cos( π
n−1

).

The above onjeture has been validated by many di�erent simulations, and we

are trying to �nd a proof for it.
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