576 research outputs found

    Uncertainty reduction in reservoir parameters prediction from multiscale data using machine learning in deep offshore reservoirs.

    Get PDF
    Developing a complete characterization of reservoir properties involved in subsurface multiphase flow is a very challenging task. In most cases, these properties - such as porosity, water saturation, permeability (and their variants), pressure, wettability, bulk modulus, Young modulus, shear modulus, fracture gradient - cannot be directly measured and, if measured, are available only at small number of well locations. The limited data are then combined with geological interpretation to generate a model. Also increasing the degree of this uncertainty is the fact that the reservoir properties from different data sources - like well logs, cores and well test - often produce different results, thus making predictions less accurate. The present study focussed on three reservoir parameters: porosity, fluid saturation and permeability. These were selected based on literature and sensitivity analysis, using Monte Carlo simulations on net present value, reserve estimates and pressure transients. Sandstone assets from the North Sea were used to establish the technique for uncertainty reduction, using machine learning as well as empirical models after data digitization and cleaning. These models were built (trained) with observed data using other variables as inputs, after which they were tested by then using the input variables (not used for the training) to predict their corresponding observed data. Root Mean Squared Error (RMSE) of the predicted and the actual observed data was calculated. Model tuning was done in order to optimize its key parameters to reduce RMSE. Appropriate log, core and test depth matching was also ensured including upscaling combined with Lorenz plot to identify the dominant flow interval. Nomographic approach involving a numerial simulation run iteratively on multiple non-linear regression model obtained from the dataset was also run. Sandstone reservoirs from the North Sea not used for developing the models were then used to validate the different techniques developed earlier. Based on the above, the degree of uncertainty associated with porosity, permeability and fluid saturation usage was demonstrated and reduced. For example, improved accuracies of 1-74%, 4-77% and 40% were achieved for Raymer, Wyllie and Modified Schlumberger, respectively. Raymer and Wyllie were also not suitable for unconsolidated sandstones while machine learning models were the most accurate. Evaluation of logs, core and test from several wells showed permeability to be different across the board, which also highlights the uncertainty in their interpretation. The gap between log, core and test was also closed using machine learning and nomographic methods. The machine learning model was then coded into a dashboard containing the inputs for its training. Their relationship provides the benchmark to calibrate one against the other, and also to create the platform for real-time reservoir properties prediction. The technology was applied to an independent dataset from the Central North Sea deep offshore sandstone reservoir for the validation of these models, with minimum tuning and thus effective for real-time reservoir and production management. While uncertainties in measurements are crucial, the focus of this work was on the intermediate models to get better final geological models, since the measured data were from the industry

    Dynamic data driven investigation of petrophysical and geomechanical properties for reservoir formation evaluation

    Get PDF
    Petrophysical and geomechanical properties of the formation such as Young’s modulus, bulk modulus, shear modulus, Poisson’s ratio, and porosity provide characteristic description of the hydrocarbon reservoir. It is well-established that static geomechanical properties are good representatives of reservoir formations; however, they are non-continuous along the wellbore, expensive and determining these properties may lead to formation damage. Dynamic geomechanical formation properties from acoustic measurements offer a continuous and non-destructive means to provide a characteristic description of the reservoir formation. In the absence of reliable acoustic measurements of the formation, such as sonic logs, the estimation of the dynamic geomechanical properties becomes challenging. Several techniques like empirical, analytical and intelligent systems have been used to approximate the property estimates. These techniques can also be used to approximate acoustic measurements thus enable dynamic estimation of geomechanical properties. This study intends to explore methodologies and models to dynamically estimate geomechanical properties in the absence of some or all acoustic measurements of the formation. The present work focused on developing empirical and intelligent systems like artificial neural networks (ANN), Gaussian processes (GP), and recurrent neural networks (RNN) to determine the dynamic geomechanical properties. The developed models serve as a cost-effective, reliable, efficient, and robust methods, offering dyanmic geomechanical analysis of the formation. This thesis has five main contributions: (a) a new data-driven empirical model of estimating static Young’s modulus from dynamic Young’s modulus, (b) a new data-driven ANN model for sonic well log prediction, (c) a new data-driven GP model for shear wave transit time prediction, (d) a new dynamic data-driven RNN model for sonic well log reproduction, and (e) an assessment on the ANN as a reliable sonic logging tool

    Artificial Intelligence and Cognitive Computing

    Get PDF
    Artificial intelligence (AI) is a subject garnering increasing attention in both academia and the industry today. The understanding is that AI-enhanced methods and techniques create a variety of opportunities related to improving basic and advanced business functions, including production processes, logistics, financial management and others. As this collection demonstrates, AI-enhanced tools and methods tend to offer more precise results in the fields of engineering, financial accounting, tourism, air-pollution management and many more. The objective of this collection is to bring these topics together to offer the reader a useful primer on how AI-enhanced tools and applications can be of use in today’s world. In the context of the frequently fearful, skeptical and emotion-laden debates on AI and its value added, this volume promotes a positive perspective on AI and its impact on society. AI is a part of a broader ecosystem of sophisticated tools, techniques and technologies, and therefore, it is not immune to developments in that ecosystem. It is thus imperative that inter- and multidisciplinary research on AI and its ecosystem is encouraged. This collection contributes to that

    APPLICATIONS OF MACHINE LEARNING METHODS IN THE GENERATION OF SUBSURFACE MEASUREMENTS

    Get PDF
    Machine learning methods have been used in the Oil and Gas industry for about thirty years. Applications range from interpretations of geophysical, well and seismic responses, identification of minerals, analysis of rock samples and cores, fluid properties characterization, formation damage control, risk analysis, to well control (Alegre, 1991). In my thesis, I apply various machine learning methods for generating three well logs in shale formations, namely Nuclear Magnetic Resonance (NMR) T2 log, Dielectric Dispersion (DD) logs, and sonic travel time logs. NMR log acquired in geological formations contains information related to fluid-filled pore volume, fluid phase distribution, and fluid mobility. Raw NMR responses of the formation are inverted to generate the NMR T2 distribution responses in the geological formation, which is further processed to compute the effective porosity, permeability, bound fluid volume, and irreducible saturation of the formation under investigation. I developed two neural-network models that process conventional, easy-to-acquire logs to generate the in-situ NMR T2 distribution along 300-feet depth interval of a shale reservoir in Bakken Petroleum System (BPS). Following that, we generated DD logs. DD logs acquired in subsurface geological formations generally comprise conductivity (σ) and relative permittivity (ε_r) measurements at 4 discrete frequencies in the range of 10 MHz to 1 GHz. Acquisition of DD logs in subsurface formation is operationally challenging and requires hard-to-deploy infrastructure. I developed three supervised neural-network-based predictive methods to process conventional, easy-to-acquire subsurface logs for generating the 8 DD logs acquired at 4 frequencies. These predictive methods will improve reservoir characterization in the absence of DD logging tool. The predictive methods are tested in three wells intersecting organic-rich shale formations of Permian Basin (PB) and Bakken Shale (BS). Finally, we generated compressional and shear travel time logs (DTC and DTS, respectively) acquired using sonic logging tools. DTC and DTS logs are used to estimate connected porosity, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, brittleness coefficient, and Biot’s constant for purposes of geomechanical characterization. Six shallow learning models, namely Ordinary Least Squares (OLS), Partial Least Squares (PLS), Least Absolute Shrinkage and Selection Operator (LASSO), ElasticNet, Multivariate Adaptive Regression Splines (MARS) and Artificial Neural Network (ANN) models, suitable for function approximation problems, are trained and tested to predict DTC and DTS logs. 8481 observations along 4240-feet depth interval of a shale reservoir in Permian Basin (PB) are available for the proposed data-driven application. ANN model performs the best among the six models. Generation of NMR T2 is the computationally most challenging and we had the least amount for data from 220-feet depth interval that made the task even more challenging; nonetheless, we obtained prediction performance of 0.85 in terms of R2. On the other hand, the generation of dielectric permittivity and conductivity dispersion logs was slightly lower in terms of computational cost as compared to NMR T2 generation, we had data from 2200-feet depth interval, and prediction performance for this log generation task was 0.79 in terms of R2 in average. Generation of DTC and DTS logs is computationally easiest among the three tasks, we had data from 4240-feet depth interval, and the prediction performance was 0.86 in terms of R2 in average

    Storage Capacity Estimation of Commercial Scale Injection and Storage of CO2 in the Jacksonburg-Stringtown Oil Field, West Virginia

    Get PDF
    Geological capture, utilization and storage (CCUS) of carbon dioxide (CO2) in depleted oil and gas reservoirs is one method to reduce greenhouse gas emissions with enhanced oil recovery (EOR) and extending the life of the field. Therefore CCUS coupled with EOR is considered to be an economic approach to demonstration of commercial-scale injection and storage of anthropogenic CO2. Several critical issues should be taken into account prior to injecting large volumes of CO2, such as storage capacity, project duration and long-term containment. Reservoir characterization and 3D geological modeling are the best way to estimate the theoretical CO 2 storage capacity in mature oil fields. The Jacksonburg-Stringtown field, located in northwestern West Virginia, has produced over 22 million barrels of oil (MMBO) since 1895. The sandstone of the Late Devonian Gordon Stray is the primary reservoir.;The Upper Devonian fluvial sandstone reservoirs in Jacksonburg-Stringtown oil field, which has produced over 22 million barrels of oil since 1895, are an ideal candidate for CO2 sequestration coupled with EOR. Supercritical depth (\u3e2500 ft.), minimum miscible pressure (941 psi), favorable API gravity (46.5°) and good water flood response are indicators that facilitate CO 2-EOR operations. Moreover, Jacksonburg-Stringtown oil field is adjacent to a large concentration of CO2 sources located along the Ohio River that could potentially supply enough CO2 for sequestration and EOR without constructing new pipeline facilities.;Permeability evaluation is a critical parameter to understand the subsurface fluid flow and reservoir management for primary and enhanced hydrocarbon recovery and efficient carbon storage. In this study, a rapid, robust and cost-effective artificial neural network (ANN) model is constructed to predict permeability using the model\u27s strong ability to recognize the possible interrelationships between input and output variables. Two commonly available conventional well logs, gamma ray and bulk density, and three logs derived variables, the slope of GR, the slope of bulk density and Vsh were selected as input parameters and permeability was selected as desired output parameter to train and test an artificial neural network. The results indicate that the ANN model can be applied effectively in permeability prediction.;Porosity is another fundamental property that characterizes the storage capability of fluid and gas bearing formations in a reservoir. In this study, a support vector machine (SVM) with mixed kernels function (MKF) is utilized to construct the relationship between limited conventional well log suites and sparse core data. The input parameters for SVM model consist of core porosity values and the same log suite as ANN\u27s input parameters, and porosity is the desired output. Compared with results from the SVM model with a single kernel function, mixed kernel function based SVM model provide more accurate porosity prediction values.;Base on the well log analysis, four reservoir subunits within a marine-dominated estuarine depositional system are defined: barrier sand, central bay shale, tidal channels and fluvial channel subunits. A 3-D geological model, which is used to estimate theoretical CO2 sequestration capacity, is constructed with the integration of core data, wireline log data and geological background knowledge. Depending on the proposed 3-D geological model, the best regions for coupled CCUS-EOR are located in southern portions of the field, and the estimated CO2 theoretical storage capacity for Jacksonburg-Stringtown oil field vary between 24 to 383 million metric tons. The estimation results of CO2 sequestration and EOR potential indicate that the Jacksonburg-Stringtown oilfield has significant potential for CO2 storage and value-added EOR
    corecore