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The oil and gas industry has an increasing volume of geological and petrophysical data 

that can be utilized to enhance reservoirs simulation models. Due to their inherent spatial 

heterogeneities, the description of carbonate reservoirs poses great challenges. The most 

accurate way for evaluating their critical parameters such as permeability is through 

coring and laboratory experiments, but this process requires extensive labor and high 

costs. 

This study presents the utilization of hybrid Artificial Intelligence (AI) to address 

heterogeneity challenges and predict flow zone indicator (FZI) in carbonate reservoirs. 

The proposed model will use eight conventional and 20 nuclear magnetic resonance 

(NMR) logs data as input. The input datasets have 487 data points for each log. First, five 

non-hybrid systems were developed using different AI techniques. The five AI 

techniques are Feedforward Neural Networks (FFNN), Radial Basis Function Neural 

Networks (RBFNN), Generalized Regression Neural Networks (GRNN), Support Vector 

Machines (SVM), and Type-2 Fuzzy Logic (T2FL). Next, SVM, T2FL, and the best 

performer of the three neural networks techniques, FFNN, were considered for 

hybridization. Nine hybrid systems were then developed, and the one with the best 



 

xix 

 

performance were selected. All the hybrid systems consisted of two stages in sequence. 

The first stage acts as feature selection from input data. Three different algorithms were 

used and compared for performance, namely Functional Networks, Decision Tree, and 

Fuzzy Information Entropy. The second stage employed the three selected techniques, 

which used the selected parameters, to predict the target values for flow zone indicator. 

All nine developed hybrid systems were benchmarked with their respective non-hybrid 

models. Fusion of additional inputs was utilized to further improve the FZI prediction 

models. To select the best model, the performance of all developed models was compared 

using both statistical error and graphical analysis. Finally, super hybrid prediction models 

for permeability were built utilizing predicted values of FZI. 

Results showed that flow zone indicator prediction models can be further improved by 

hybridization and Data Fusion. This improvement in FZI prediction also led to 

improvement in permeability prediction. This work provides more accurate prediction 

models for flow zone indicators and permeability in carbonate reservoirs. 
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 ملخص الرسالة

 
 

 أحمد يوسف الصحاف  :الاسم الكامل
 

 التنبؤ بمؤشرات مناطق التدفق في المكامن الكربونيه بواسطة نماذج الذكاء الاصطناعي المهجنة :عنوان الرسالة
 

 هندسة بترول التخصص:
 

  5201 :العلميةتاريخ الدرجة 
 

الحاجة المستمرة أصبحت مع التزايد المستمر في حجم البيانات الجيولوجية والبتروفيزيائية المتاحة في صناعة النفط والغاز، 

تحديات  يهالكربون تواجه عملية المحاكاة للمكامن، المتغيرة المكانية  لطبيعتها نظرابارزة. للمكامن  لتعزيز نماذج المحاكاة 

تتطلب  الطرقمن خلال الحفر ومختبر التجارب، ولكن هذه  تتم الأكثر دقة لتقييم المعلمات الحرجة مثل النفاذية الطرقكبيرة. 

 .العمل المكثف وارتفاع التكاليف

 المكامنفي   تدفقال مناطق مؤشر بلمعالجة هذه التحديات والتنبؤ   الذكاء الاصطناعيفي تقدم هذه الدراسة استخدام الهجين 

بيانات ال عدد. كبيانات إدخالسجلات للرنين المغناطيسي النووي و  سجلات تقليدية  يستخدم. النموذج المقترح سوف يهربونالك

مختلفة. التقنيات  ذكاء اصطناعي باستخدام تقنيات مهجنه. أولا، سيتم وضع خمسة أنظمة غير نقطة 784 لكل سجل تتكون من 

 ، الشبكات العصبية الأساس ةشعاعي ذات الوظيفة  ، الشبكات العصبيةتغذية المسبقة  ةالشبكات العصبي :هي المستخدمة خمسةال

 المدعمة ت المتجهاتياآل في  بعد ذلك، سيتم النظر  .منطق الضبابيلل 2-، ونوع المدعمة المتجهاتت ياآل،  العام الانحدار ذات

 وضع. سيتم بعد ذلك الثلاثة الغير مهجنهأفضل أداء من تقنيات الشبكات العصبية النموذج صاحب ، ومنطق الضبابيلل 2-نوع، 

ستبدأ  . من مرحلتين في التسلسلستتكون . جميع النظم الهجينة النموذج ذو الاداء الأفضلتسعة أنظمة هجينة، وسيتم اختيار 

،  الشبكات الوظيفية :ثلاثة خوارزميات مختلفة هياستخدام  من بيانات الادخال عبر بإختيار السجلات المميزةالمرحلة الأولى 

، والتي تستخدم المعلمات  المختارة ثلاثالتقنيات ال بتوظيفستبدأ المرحلة الثانية   .الانتروبيا ة، ومعلومات ضبابي شجرة القرار

الأنظمة الهجينة المتقدمة مع تسعة للإجراء مقارنة معيارية  سوف يتم، للتنبؤ القيم المستهدفة لمؤشر منطقة التدفق. وةالمحدد

لتحديد أفضل نموذج، سيتم مقارنة أداء  .مدخلات إضافية لزيادة تحسين نماذج التنبؤ ايضاو سيتم استخدام. ههجينالغير  هانماذج

طور المت الخطأ الإحصائي والتحليل البياني. وأخيرا، سيتم بناء نموذج التنبؤ الهجين من جميع النماذج المطورة باستخدام كل

 مؤشر مناطق التدفق.تخدام القيم المتوقعة لوبإس بالنفاذيه للتنبؤ

. الإضافيه البيانات و إضافة مدخلاتبواسطة التهجين  هاتدفق يمكن زيادة تحسينال مناطقمؤشر بأظهرت النتائج أن نماذج التنبؤ 

 وصفلأكثر دقة  تنبؤنماذج يوفر هذا العمل  النفاذية. بإلى التحسن في التنبؤ   بمؤشر مناطق التدفق أدى هذا التحسن في التنبؤ

.الكربونيه للمكامن
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1 CHAPTER 1 

INTRODUCTION 

1.0 Introduction  

Reservoir characterization is a process for determining reservoir regionalized properties 

through the integration of available data. These properties vary spatially from one region 

to another and include porosity, permeability, hydrocarbon content, water saturation, 

lithology, and thickness. Available data utilized for this process can be geological 

information, core data, well-log data, seismic data, and engineering data. Each data 

source differs in acquisition tools, resolution, reservoir coverage, and in whether they 

provide direct or indirect measurements. 

Knowledge of the rock characteristics for hydrocarbon-bearing reservoirs is vital for the 

successful initial assessment and development of a field. Porosity and permeability are 

the two most important properties in reservoir characterization and simulation. Porosity is 

defined as the fraction of void space in a rock volume. It governs the capacity of a rock to 

store water or hydrocarbons. Permeability is defined as the capacity of the rock to pass 

through fluids. It determines how much hydrocarbon can be recovered (recovery factor) 

and assists in well placement optimization. Porosity can be obtained from well logs but 

proper evaluation of permeability has always been a challenge, especially in carbonate 

reservoirs, due to the lack of direct evaluation. The most accurate measurements for both 
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properties are obtained in labs using cores. This process is labor-intensive, time-

consuming, and costly. 

In recent decades, Artificial Intelligence (AI) techniques have gained considerable 

attention in the oil and gas industry. This popularity is attributed to their capabilities in 

providing solutions to non-conventional problems. Their common utilization falls mostly 

in the area of petrophysical and geological parameters prediction. This work aims at 

providing a better prediction model for the Flow Zone Indicator (FZI) in carbonate 

reservoirs using several AI techniques. 

The report is composed of eight chapters. Chapter 2 focuses on the literature review that 

briefly describes the concepts of hydraulic rock typing. Chapter 3 presents the basic 

concepts of AI techniques and their use in the oil and gas industry. In Chapter 4, the 

development of non-hybrid prediction models for FZI with their results is presented. 

Performance improvement of developed models through hybridization of AI systems and 

fusion of data are discussed in Chapter 5 and 6 respectively. Chapter 7 provides results 

and analyses permeability prediction improvements as a result of improved FZI 

prediction. Lastly, the conclusions and recommendations are provided in Chapter 8. 

1.1 Statement of the Problem 

In carbonate reservoirs, it is always a challenging task to evaluate properties that best 

characterize the rocks. This difficulty is attributed to the various depositional and 

digenetic controls over different parameters including reservoir porosity, permeability, 

and pore geometry. The inherent heterogeneity makes it impossible to correlate porosity 
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and permeability in these rocks. AI techniques and algorithms provide very useful tools 

in addressing such non-linear problems.   

 

1.2 Study Objectives 

There are five objectives for this study: 

 Predict flow zone indicators in carbonate reservoirs using non-hybrid models. 

 Utilize feature selection algorithms that produce a best subset, of all the available 

features in the acquired data, which will best predict flow zone indicators.  

 Use selected subsets to improve the predictions of the flow zone indicator. The 

second and third objectives will result in developing hybrid models. 

 Enhance the hybrid models with the fusion of extra data.  

 Predict permeability utilizing predicted FZI values as well as other input data.  

1.3 Proposed Approach 

In total, 14 artificial intelligence models were developed in this study to predict flow 

zone indicator in carbonate reservoirs using MATLAB software. Nine of them were 

hybrid. Core and log data were collected from several wells in a giant carbonate reservoir 

in the Middle East. Log data consisting of both conventional and nuclear magnetic 

resonance (NMR) logs were used as input while measured core data, flow zone indicator 

and permeability, were used as target. All hybrid developed models used feature selection 

algorithms in their first stage and utilize selected features to build the prediction model in 

the second stage using Feedforward Neural Networks (FFNN), Support Vector Machines 
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(SVM), and Type-2 Fuzzy Logic (T2FL). Each system will use a different algorithm viz. 

Functional Networks (FN), Decision Tree (DT), and Fuzzy Information Entropy (FIE). 

Fusion of additional input data was utilized to further enhance the hybrid models. Five 

non-hybrid AI models were developed for performance comparison to determine whether 

any of the feature selection algorithms improves the prediction model using performance 

measurements, correlation coefficient (CC), root mean-squared error (RMSE), and mean 

absolute error (MAE). Lastly, super hybrid prediction models for permeability were 

developed utilizing predicted FZI values as well as other input data.  
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2 CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

Reservoir description is very important in understanding hydrocarbon reservoirs. 

Advances in porosity and permeability predictions contribute significantly to improving 

reservoir simulations.  Carbonate reservoirs are inherently heterogeneous.  Rock typing 

helps define a hydrocarbon-bearing formation as a limited set of volumes or elements, 

each having unique characteristics.  There are three rock typing categories: depositional, 

petrographic and hydraulic. This chapter discusses the main concepts and equations for 

two hydraulic rock typing methods in reservoir description. 

2.2 Hydraulic Flow Units 

 Amaefule (1993) defined the hydraulic unit (HU) as the representative elementary 

volume (REV) of total reservoir rock within which geological and petrophysical 

properties that affect fluid flow are internally consistent and predictably different from 

properties of other rock volumes. They are defined by geological attributes of texture, 

mineralogy, sedimentary structures, bedding contacts and nature of permeability barriers 

and by petrophysical properties of porosity, permeability and capillary pressure. Each 

hydraulic unit has distinctive fluid-flow characteristics. Davis et al. (1996) defined 

hydraulic units as a mappable interval of rock with the following characterization: (1) 

Sufficient thickness and areal extent to be recognized on logs and mapped across the field 
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(2) Similar averages of rock properties that influence fluid flow (3) All fluids in 

hydrodynamic communication. Hearn et al. (1984) defined hydraulic units as a reservoir 

zone that is laterally and vertically continuous, and has similar permeability, porosity, 

and bedding characteristics. Bear (1972) defined the hydraulic unit as the representative 

elementary volume of the total reservoir rock within which the geological and 

petrophysical properties of the rock volume are the same. Ebank (1987) defined it as a 

mappable portion of the reservoir within which the geological and petrophysical 

properties that affect the flow of fluid are consistent and predictably different from the 

properties of other reservoir rock volume. Gunter et al. (1997) defined the flow unit as 

stratigraphically continuous interval of similar reservoir process that honors the geologic 

framework and maintains the characteristics of the rock type.  

Slatt and Hopkins (1988) stated that the flow unit model provides the most complete 

reservoir description since it allows for the interpretation of many of the geological and 

petrophysical properties into the reservoir description leading to improved recovery and 

reservoir management. Hydraulic units provide superior porosity-permeability 

transforms, compared to facies, geologiczones,Winland’stechnique,andporegeometry

transforms, to determine permeability from well log-derived porosity in uncored oil and 

gas wells (Shenawi, 2009). 

In the petroleum literature, there are a number of proposed techniques for the 

identification of flow units. Testerman (1962) proposed a statistical reservoir zonation 

technique to identify naturally occurring zones in a reservoir. This technique starts with 

dividing the reservoir into two zones and then subdividing these zones until they have 

minimum internal permeability variation and maximum variation between the zones, 
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externally. Cant (1984) proposed arbitrarily slicing the sedimentary intervals but these 

arbitrary slices may cut across depositional units and facies. Other methods such as 

graphicalprobability,nonlinearregression,Ward’sanalyticalalgorithm,andaBayesian-

based probabilistic approach were covered by Abbaszadeh et al. (1996). Amaefule 

described an analytical technique for identifying flow units as follows: If a bundle of 

straight capillary tubes were used to simulate a porous medium, rock permeability can be 

obtained by combiningbothDarcy’slawforflowinporousmediaandPoiseuille’s law

for flow in tubes: 

𝐾 =  
𝑟2

8
𝜑𝑒  (2.1) 

where 𝐾 is the permeability, 𝑟 is the tube radius, and 𝜑𝑒 is the effective porosity. 

Equation 2.1 shows that a pore characteristic of sedimentary rock, pore radius, is an 

important factor that relates permeability to porosity. Kozeny-Carmen added a tortuosity 

factor and used mean pore radius in their generalized equation: 

𝐾 =  
𝜑𝑒

3

(1 − 𝜑𝑒)2

1

𝐹𝑠𝜏2𝑆𝑔𝑣
2

  (2.2) 

where, K is the permeability inμm
2 

and 𝑆𝑔𝑣 is specific surface inμm
-1

.   𝐹𝑠 is the shape 

factor and it is 2 for circular cylinder. Kozeny constant is defined as 𝐹𝑠𝜏2. The geological 

aspect of the HU is captured in the 𝐹𝑠𝜏2𝑆𝑔𝑣
2  term. The ability to determine or discriminate 

this term is the central part of the HU classification technique. Amaefule et al. (1993) 

developed this technique to identify and characterize HUs. It was based on both the 

Kozeny-Carmen modified equation and the mean hydraulic radius. 
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0.0314 √𝐾
𝜑𝑒

⁄ =
𝜑𝑒

1 − 𝜑𝑒

1

√𝐹𝑠𝜏𝑆𝑔𝑣

  (2.3) 

𝐹𝑍𝐼 =
1

√𝐹𝑠𝜏𝑆𝑔𝑣

  (2.4) 

The equation indicates that for any hydraulic unit, a log-log plot of a Reservoir Quality 

Index (RQI) versus the pore volume to solid volume ratio (φz) should yield a straight line 

with a unit slope. 

𝑅𝑄𝐼 = 0.0314 √𝐾
𝜑𝑒

⁄   (2.5) 

𝜑𝑧 =
𝜑𝑒

(1 − 𝜑𝑒)
 

 (2.6) 

where, K is in millidarcies (0.0314istheconversionfactorfromμm
2
 to md) andφis the 

effective porosity in fractions. Flow Zone Indicator (FZI) is the intercept of the slope unit 

line (45°) withφz=1, which is a unique parameter for each hydraulic unit, Figure . 

𝐹𝑍𝐼 =  
𝑅𝑄𝐼

𝜑𝑧
  (2.7) 

Knowledge of both porosity and FZI leads to the possibility of evaluating permeability 

for that HU using Equation 2.8. 

𝐾 = 1014 (𝐹𝑍𝐼2)𝜑𝑅 

where, 
 (2.8) 

𝜑𝑅 =  
𝜑𝑒

3

(1 − 𝜑𝑒)2
 

 (2.9) 
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Figure 2.1 - Plot of RQI vs. Porosity, FZI is the Y-valuewhenPorosityΦ=1 (Source: Amaefule et al. (1993))  

Flow zonation is independent of depth ordering such that volumes of similar hydraulic 

properties can appear far apart (Kazeem Lawal, 2005). Desouky (2003) used the 

hydraulic flow unit (HFU) approach for the identification of six rock types. To achieve 

this, he used statistical analysis on core data. HFUs helped him to developed better 

permeability correlation. Desouky also reported that applying the pore level 

heterogeneity index concept proved the existence of the identified six flow units. Syed 

Shujath et al. (2013) used Support Vector Machines (SVM), Functional Networks, and 

Adaptive Network Fuzzy Inference Systems (ANFIS) to estimate hydraulic units from 5 

conventional well logs. SVM outperformed the other two. They concluded that predicting 

HUs directly from logs yielded better classification results than estimating it from 
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predicted porosity and permeability. Cumulative prediction error of the porosity and 

permeability was suspected to be the reason.   Guangming Ti et al. (1995) demonstrated 

the application of using flow units for reservoir description. They proposed the use of 

transmissibility, storability, and the net-to-gross ratio as quantitative indicators for the 

identification of flow units. Peralta (2013) also demonstrated the application of flow units 

as one of the rock typing methods in both static and dynamic reservoir modelling. He 

provided a workflow in utilizing identified flow units in the upscaling process, a part in 

building a reservoir simulation model. Haghighi et al. (2011) improved the permeability 

prediction in an Iranian tight gas reservoir using hydraulic flow unit based statistical 

models. In their work, they converted the continuous FZI values to discrete rock typing 

(DRT) using Equation 2.10. 

𝐷𝑅𝑇 = 𝑅𝑜𝑢𝑛𝑑 [2 ln(𝐹𝑍𝐼) + 10.6]  (2.10) 

Izadi and Ghalambor (2012) proposed a new approach for the determination of hydraulic 

flow units. They modified the reservoir quality index (MRQI) by multiplying it by 
1

1−𝑆𝑤𝑖𝑟
, 

accounting for the connate water in the pore network, Equation 2.11. They reported that 

the new approach gave better results for petrophysical properties distribution. 

𝑀𝑅𝑄𝐼 = 0.0314 √𝐾
𝜑𝑒

⁄ ×
1

1 − 𝑆𝑤𝑖𝑟
  (2.11) 

Davis et al. (1996) utilized integrated pore geometry attributes with wireline logs for the 

identification of hydraulic units in a mature and heterogeneous carbonate reservoir. They 

reported improved permeability and permeability predictions in partially-cored and in 

adjacent un-cored wells. Aminian et al. (2003) developed an unsupervised artificial 

neural networks classification model to predict flow units using only well logs as input.  
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They used the plot of cumulative flow capacity versus cumulative storage capacity as the 

primary tool to identify flow units for the model target data. The deflection points on this 

plot are potential indicators of flow units’ boundaries (Gunter, 1997). Hussain Baker et 

al. (2013) utilized statistical regression to correlate flow zone indicator with well logs in a 

carbonate reservoir. They then used FZI values to compute permeability. Good 

agreement between actual and computed permeability values was reported. 

Flow units identification techniques rely on the availability of permeability and porosity 

from core analysis. However, not all wells are cored. Porosity can be obtained from well 

logs. Permeability is the challenging parameter since there is no direct way to measure it 

from logs. This limits the identification of hydraulic units statistically.  

2.3 Global Hydraulic Element 

Corbett et al. (2004) suggested the term “petrotyping” to define a specific set of 

petrophysical rock types. The term is based on pre-defined set of Global Hydraulic 

Elements (GHE). Figure 2.2 shows the GHE“basemap” template. GHE1 is at the base of 

the template while GHE10 is at the top.  For a range of porosities, Equation 2.12 is used 

to define the lower boundaries of GHEs. Table 2.1 lists the 10 FZI values that are used 

for each GHE.  

𝐾 =  (
𝐹𝑍𝐼 × (

𝜑
1 − 𝜑)

0.0314
)

2

  (2.12) 
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Table 2.1 FZI values used for 10 Global Hydraulic Elements (GHEs) lower boundaries 

FZI GHE 

48 10 

24 9 

12 8 

6 7 

3 6 

1.5 5 

0.75 4 

0.375 3 

0.1875 2 

0.0938 1 

 

 

Figure 2.2 - Global Hydraulic Element "basemap" Template (Source: Corbett et al. (2004)) 
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Corbett et al. (2004) reported the following advantages for plotting petrophysical data on 

the GHE basemap: 

 It makes it easy to identify data trends 

 It gives a constant reference frame for comparisons between reservoirs, wells, 

fields, core data and simulation data 

 It helps in selecting a minimal and representative training data 

The 10 GHEs are used as reservoir quality indicators. Salaheddin et al. (2010) reported 

that GHE1, GHE2, and GHE3 indicate poor reservoir quality. GHE4 and GHE5 indicate 

medium reservoir quality. Good reservoir quality is indicated by GHE6 and GHE7 

whereas GHE8, GHE9 and GHE10 point towards excellent reservoir quality.  

Corbett and Mousa (2010) demonstrated how GHE method can be used to select 

representative data for saturation exponent screening from a limited dataset. Astudillo 

and Porlles (2010), in a case study, also used GHE basemap to select representative 

samples as part of a multidisciplinary workflow for reservoir characterization in a heavy 

oil field. Salaheddin et al. (2010) presented a case study where they utilized GHEs in 

their reservoir characterization of Ordovician sandstones in Libya. They concluded that 

the GHE method is a good permeability tracer due to its adherence to grain-size 

distribution. Elarouci et al. (2012) utilized the global hydraulic elements method as part 

of their integrated evaluation of an Algerian tight gas reservoir for permeability 

prediction.  

In this work, Equations 2.5 to 2.7 were used to compute continuous flow zone indicator 

values from core porosity and permeability data.  Calculated Flow zone indicator values 
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were then used as model targets. Also, porosity and permeability data from cores were 

used to classify each data points using the global hydraulic elements basemap.  The 

numerical part of each class was then used as additional input to enhance models 

performance.   
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3 CHAPTER 3 

ARTIFICIAL INTELLIGENCE 

3.1 Introduction 

Artificial Intelligence is the theory of developing computer systems to be able to perform 

tasks that normally require human intelligence, such as visual perception, speech 

recognition, decision-making, and translation between languages. One of its subfields, 

machine learning, deals with the construction and study of systems that can learn from 

data, rather than follow explicitly programmed instructions. For machine learning, data 

must be available. It becomes convenient when there is no direct and obvious relationship 

between the available data. With recent advances of the computation powers, algorithms 

are now more optimized to build systems for forecasting and prediction, such as the 

Artificial Neural Networks (ANNs), Fuzzy Logic Systems (FLS), and Support Vector 

Machines (SVM). Other algorithms help identify those data features contributing the 

most in the model prediction process. Examples of the later algorithms are the Functional 

Networks (FN), Decision Trees (DT), and Fuzzy Information Entropy (FIE). 

Chapter 2 covered the fundamental information about the concepts and formulizations of 

flow zone indicator. This chapter provides technical review for the five artificial 

intelligence techniques that were used in this work. 
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3.2 Artificial Neural Networks 

Artificial Neural Networks (ANNs) are computational models inspired by biological 

nervous systems (in particular the brain) which are capable of machine learning as well as 

pattern recognition. “Thecentral idea is to extract linear combinationsof the inputs as

derived features, and then model the target as a nonlinear function of these features” 

(Hastie et al., 2011). The basic architecture of ANNs consists of three layers. The first 

layer, named the input layer, takes in the feature dataset from which the algorithm will 

learn. The second one, called the set of hidden layers, is where the model computation 

occurs. The third layer, called the output layer, produces the predicted parameters. 

Figure 3.1 shows the basic architecture for ANNs. 

 

Figure 3.1  - Basic ANN Architecture 
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The fundamental building block in each layer is the neuron. Each neuron is connected to 

all other neutrons in the adjacent layers. Neuron activation requires three functional 

operations. The first function, the weight function, multiplies the single R-element input 

vector by the weight vector using the dot product. The second function, the net input 

function, adds the scalar value of bias to the weighted input vector. The last function, the 

transfer function, takes the net input and produces the scalar output for the neuron. Linear 

transfer function and log-sigmoid function are the two most commonly used transfer 

functions. Different Neural networks can be constructed using different weight functions, 

net input functions, and transfer functions in their neutron layers. Figure 3.2 and Equation 

3.1 show the three functional operations that are used to calculate a neuron output. 

𝑎 = 𝑓(𝑾𝒑 + 𝑏)  (3.1) 

 

where, 

𝑾𝒑  : Weight function 

𝑾𝒑 + 𝑏 : Net input function 

𝑓( )  : Transfer function 

𝑎  : Neuron output 
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Figure 3.2 - Fundamental Operations in a neuron (Source: Matlab Documentations) 

 

To optimize neural networks, the number of hidden layers, the number of neutrons in 

each layer, the bias value assigned to each layer, and the initial weights assigned to each 

connection need to be evaluated. The number of neutrons in the input and output layers 

equals the number of input features and desired outputs, respectively. 

3.2.1 Feedforward Neural Networks 

Feedforward Neural Networks (FFNN) consist of one or more hidden layers with sigmoid 

neurons followed by an output layer that has linear neurons. Its ability to learn non-linear 

relationships between input and output vectors is attributed to having multiple layers of 

non-linear transfer functions neurons. The linear output layer is mostly used in function 

fitting and non-linear regression applications. Figure 3.3 shows a plot of the sigmoid 

function.  
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𝜎(𝑣) =
1

(1 + 𝑒−𝑣)
  (3.2) 

 

Figure 3.3 - Plot of Sigmoid Function 

 

For a set of inputs x where x={x1,x2,…..,xn1}, output set y ,and a neural network that has 

n2 neutrons in its hidden layer, connection weights (w and v) will be iteratively 

calculated. In each iteration, the error which is the difference between the target value y 

and the calculated one y’, is determined. This iteration process will continue and 

connection weights will be adjusted until the minimum error value is reached. The 

mathematical representation of the function used in the back-propagation neural network 

is: 

𝑦 = 𝑓 [𝑤0 + ∑ 𝑤𝑗𝑓𝑗 (𝑣0𝑗 + ∑ 𝑣𝑗𝑖𝑥𝑖

𝑛1

𝑖=1

)

𝑛2

𝑗=1

]  (3.3) 
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3.2.2 Radial Basis Function Neural Networks 

Developing Radial Basis Function Neural Networks (RBFNN) often requires more 

neurons than standard feedforward back-propagation network. Their best performance is 

obtained when many training vectors are available. 

The radial basis neutron uses the vector input between its input vector p and its weight 

vector w, all multiplied by the bias b for the calculation of its net input function. It then 

uses the radial basis transfer function (radbas) to generate the neutron output from the net 

input.  Figure 3.4 shows a plot of the radbas function. 

𝑟𝑎𝑑𝑏𝑎𝑠(𝑛) =  𝑒−𝑛2
  (3.4) 

 

Figure 3.4 - Plot of radbas Function 
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The basic architecture for this type of networks consists of a hidden radial basis layer and 

an output linear layer.  

3.2.3 Generalized Regression Neural Networks 

Generalized Regression Neural Networks (GRNN) has a similar architecture to the radial 

basis network except it has a special linear layer. In the output layer, its net input function 

consists of multiplying the input vector, which is the output of the radial layer, by the 

weights vector using the dot product. Then, all values are normalized using the sum of 

the elements of the input vector.  

Since GRNN has the same RBFNN architecture in the first layer, there are as neutrons as 

many the number of input vectors in the dataset.  

3.3 Type-2 Fuzzy Logic Systems 

Fuzzy Logic is about the relative importance of precision. It deals with the trade-off 

between significance and precision. It maps an input space to an output space using If-

Then statements called rules. During its execution, all rules are evaluated in a parallel 

manner. So, the order of these rules does not matter. These rules are important because 

they refer to the system variables and the adjectives that describe them. Variables are 

either input variables or output ones depending on the values to which they refer. They 

are based on the concept of fuzzy sets. A fuzzy set is defined as a set without a crisp and 

clear boundary. Its members have a partial degree of membership. 
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Fuzzy Inference Systems (FIS) are systems that interpret the values in the input vector, 

input space, and utilize sets of rule-based statements to assign values to the output vector, 

output space.  They consist of three primary components: 

 Membership Functions (MF) 

A membership function is a curve that defines how each value or point in the input space 

is mapped to a membership value. Itisoftendesignatedbyμ.Membershipvaluesmust

be between zero and one. This is the only condition membership functions need to 

satisfy. Points that have zero membership value are completely excluded from the set. 

However, points that have a membership value of 1.0 are completely included in the set. 

Any value in-between represents partial membership.  

Mathematically, if Z is the input space and its elements are denoted by z, then a fuzzy set 

F in Z is defined as a set of ordered pairs: 

𝐹 =  {𝑧, 𝜇𝐹(𝑧)| 𝑧 ∈ 𝑍} (3.5) 

Here, 𝜇𝐹(𝑧) is the membership function of z in F 

 Fuzzy logic operators 

For its reasoning, Fuzzy Logic systems use three sets of operations: fuzzy intersection, 

fuzzy union, and fuzzy complement. Fuzzy intersection corresponds to the Boolean AND 

operator. Its general function for two fuzzy sets A and B is defined as: 

𝜇𝐴 ∩ 𝐵(𝑋) = 𝜇𝐴(𝑋) ⊗  𝜇𝐵(𝑋) (3.6) 
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Where, ⊗ is a binary operator. Fuzzy union corresponds to the Boolean OR operator. Its 

general function for a two fuzzy sets A and B is defined as: 

𝜇𝐴 ∪ 𝐵(𝑋) = 𝜇𝐴(𝑋) ⊕  𝜇𝐵(𝑋) (3.7) 

Where, ⊕ is also a binary operator. Lastly, the fuzzy complement corresponds to the 

Boolean NOT operator which negates the input to produce its output. 

 If-Then rules 

If-Then rules are what make fuzzy logic useful. Their general form is: 

If x is A, then y is B 

The If-part of the statement is called the antecedent or promise, while the second part, 

Then-part, is called the consequent or conclusion. The antecedent is an interpretation that 

returns a single number between 1 and 0, whereas the consequent is an assignment that 

assigns the entire fuzzy set B to the output variable y. 

Fuzzy inference systems go through a five-step process. This process is depicted in 

Figure 3.5. 
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Figure 3.5 - Process Steps for Fuzzy Inference System 

3.4 Support Vector Machines 

Support Vector Machines (SVM) is a supervised machine learning methodology. It uses 

kernel functions to explore input data and recognize patterns. It was first proposed by 

Vapnik (Vapnik et al., 1995). It has been used in many applications, including pattern 

recognition, regression estimation, and other areas. 

Support Vector Machines classify data by finding the best hyperplane that separates data 

from one class from those of the other class. Data points closer to the separating 

hyperplane are called support vectors. The best hyperplane is one with the largest margin 

between the different classes, Figure 3.6. 
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Figure 3.6 - Separating Hyperplane in Support Vector Machine (Source: www.mathworks.com) 
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4 CHAPTER 4 

MODEL DEVELOPMENT AND RESULTS 

4.1 Introduction 

In this work, the model development went through three phases: Data pre-processing, 

Model building, and Model improvement. Each phase consists of three stages. The data 

pre-processing phase covers the required stages to ensure that the data are ready for the 

planned models. The model building stage covers the work from deciding on which 

measurements parameters to use to having the initial models optimized by parametric 

analysis. The first two stages of the third phase, model improvement, cover the additional 

efforts that were taken to further improve the initial models. The last stage examines 

whether all the previously completed stages led to improvements in permeability 

prediction. Figure 4.1 shows all three phases with their stages. 

 

Figure 4.1 - Stages of Model Development 
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In Chapter 3, the technical aspects of five AI techniques were reviewed. In this chapter, 

the first two phases are discussed in details, which cover the non-hybrid implementation 

of these techniques. Statistical and graphical comparisons of all models are provided. 

Then, each stage in the third phase will be discussed in a new chapter. 

4.2 Data Acquisition 

AI techniques are considered to be data-driven. This means that the performance of 

models built on them depends on the quality of utilized data. As a result, the collection 

and pre-processing of these data are vital steps to the success of any AI model 

development. For this work, conventional and NMR well logs data from several wells in 

a giant carbonate reservoir were collected. Also, the values for both porosity and 

permeability were obtained from core data. The resulting dataset included 487 data 

points. Eight conventional logs with their indices and statistics are compiled in Table 4.1 

and 20 NMR parameters logs are listed in Table 4.2. All 28 logs were used as input 

dataset. 

Continuous flow zone indicator values were then computed from equations 2.5 to 2.7. 

Flow zone indicator values were used as model targets, with their statistics compiled in 

Table 4.3. 
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Table 4.1 Statistical Description of Conventional Logs for Input 

Index 1 2 3 4 5 6 7 8 

Log Name Gamma 

Ray 

(GR) 

Laterolog 

Deep 

Resistivity  

(LLD) 

Laterolog 

Medium 

Resistivity 

(LLM) 

Laterolog 

Shallow 

Resistivity 

(LLS) 

Neutron 

(NEUT) 

Spontaneous 

Potential 

(SP) 

Acoustic 

Log (DT) 

Bulk 

Density 

(DRHO)  

Units GAPI Log(OHM

M) 

Log(OHM

M) 

Log(OHM

M) 

NAPI/MA

X(NAPI) 

MV (US/F)/ 

MAX(US/

F) 

G/C3 

Minimum 11.95 -0.16 -1.54 -0.19 0.45 44.82 0.69 -0.01 

Maximum 34.53 2.91 2.57 2.01 1.00 82.99 1.00 0.35 

Arithmetic 

Average 

20.22 1.13 0.80 0.93 0.61 60.88 0.74 0.04 

Median 19.93 1.19 1.07 1.09 0.56 60.20 0.72 0.01 

Variance 14.28 1.00 1.84 0.41 0.02 51.63 0.00 0.00 

Standard 

Deviation 

3.78 1.00 1.36 0.64 0.12 7.19 0.06 0.06 

Skewness 0.88 0.22 -0.18 -0.08 1.05 0.18 2.17 3.10 

Kurtosis 2.17 -1.48 -1.63 -1.44 0.16 -0.12 4.36 9.57 

 

 

 

 

 

 

 

 



 

29 

 

Table 4.2 NMR logs 

Index Log Name Index Log Name 

9 Bound Fluid Volume 19 Computed Regularization Parameter 

Gamma 

10 CMR Free Fluid 20 Gamma Ray 

11 CMR Porosity with T2 values greater than 3 

ms 

21 High Resolution Gamma Ray 

12 CMR Porosity using Maximum T1/T2 Ratio 22 Integrated Permeability 

13 CMR Porosity using Minimum T1/T2 Ratio 23 Integrated Porosity 

14 CMR Porosity using T1/T2 Ratio of Zero 24 Signal Phase 

15 Environmentally Corrected Gamma Ray 25 Irreducible Water Saturation 

16 R Component of Spin Echoes 26 Computed T1/T2 

17 X Component of Spin Echoes 27 T2 Logarithmic Mean 

18 High Resolution Corrected Gamma Ray 28 Total CMR Porosity 

 

Table 4.3 Statistical Description of Core Values for Targets 

 Minimum Maximum Arithmetic 

Average 

Median Variance Standard 

Deviation 

Skewness Kurtosis 

FZI 0.000 18.796 1.920 1.394 5.309 2.304 3.120 14.392 
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4.3 Data Preparation and Processing 

Quality measures were performed on all acquired data to ensure that they were complete. 

Outliers in target data were removed, using 3.0 standard deviations as a cut-off value. 

Around 20 Nuclear Magnetic Resonance (NMR) logs were included in the input data set. 

The primary reason for adding such extra logs was to add some degree of lithology 

independence to the other eight conventional logs. Another reason for their addition was 

to examine NMR logs contribution to FZI prediction and determine if improvements 

occurred. 

By examining the logs that were selected by the different feature selection algorithms 

during models runs, some NMR logs were part of the selected input datasets in hybrid 

models. Table 4.4 summarizes the names of selected NMR logs when all logs were used. 

Table 4.4 Selected NMR Logs by Feature Selection Algorithms 

Feature Selection Algorithm Selected NMR Logs 

Functional Networks  Integrated Permeability 

 Irreducible Water Saturation 

Decision Trees None 

Fuzzy Information Entropy  High Resolution Gamma Ray 

 Integrated Permeability 

 T2 Logarithmic Mean 
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Also, to reduce any effect of large data variances, resistivity logs were converted to log-

base and Gamma ray, Neutron and Acoustic logs were normalized. 

4.4 Data Stratification 

Data stratification refers to how the available data is divided into training and testing 

datasets. Training data sets, commonly around 70% of the original data, is used for 

training AI prediction models. Then, these trained models utilize the remaining unseen 

data, around 30% of original data, to test model generalization.   

Table 4.5 - Data Stratification 

Data Sets 

Percentage of 

Original Data 

Number of Data 

Points 

Total Number of 

Data Points 

Training 70 % 341 

487 

Testing 30 % 146 

 

There are different ways to stratify data. Random stratification was used in this study. All 

data points for training and testing sets were selected randomly from the original one. 

This randomness helped generalize the developed models and mitigate the effects of any 

data bias. 

4.5 Measures of Performance 

Different statistical error measurements were utilized to optimize the performance of all 

AI models and to compare their performance. The first measurement was the correlation 

coefficient (CC). It is a calculated statistics between -1 and 1 to represent the linearity of 
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dependence between two variables or datasets. The second measurement, root mean-

squared error (RMSE), also known as root-mean-square deviation (RMSD), is a measure 

of the difference between a model-predicted values and actual observations. The last 

measurement, the mean absolute error (MAE), is an average of the absolute differences 

between predicted values and desired outcomes.  

𝐶𝐶 =  
𝑛 ∑ 𝑦�̂� − (∑ 𝑦)(∑ �̂�)

√𝑛(∑ 𝑦2) − (∑ 𝑦)2√𝑛(∑ �̂�2) − (∑ �̂�)2
  (4.1) 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑦�̂� − 𝑦𝑖)2𝑛

𝑖=1

𝑛
  (4.2) 

𝑀𝐴𝐸 =  
1

𝑛
 ∑ |𝑦�̂� − 𝑦𝑖|

𝑛

𝑖=1
  (4.3) 

where, 

n : Number of data points 

y : Set of target values 

�̂� : Set of predicted values 

4.6 Parametric Analysis 

Performance optimization for the AI models was achieved by examining variations of 

their design parameters. Values that yielded the highest correlation coefficients were then 

selected as the optimum design parameters. All 28 input logs were utilized in the 

parametric analysis. Table 4.6 provides a summary of all optimization parameters used in 

this work for prediction models. 
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4.6.1 Feedforward Neural Network Model Optimization 

Feedforward Neural Networks models are optimized by evaluating the number of hidden 

neurons parameter, in the hidden layer, at different values. Correlation coefficient values 

for both training and testing were plotted against the number of hidden neurons. Then, the 

optimum value was identified at the point where both curves overlapped with the highest 

CC. 

Figure 4.2 shows the optimum value for the number of hidden neurons parameter, 13.  

 

Figure 4.2 - Optimal Training/Testing Number of Hidden Neurons parameter for FFNN 
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4.6.2 Radial Basis Function Neural Network Model Optimization 

RBFNN models are optimized using two design parameters: GOAL and SPREAD. To 

optimize the RBFNN model, the default value for the GOAL parameter was initially used 

while evaluating the model at different SPREAD values, ranging from 0.5 to 20.0. 

Figure 4.3 shows that SPREAD parameter = 3.0 yielded the highest correlation 

coefficient (CC). Then, spread parameter was assigned the value of 3.0 and the goal 

parameter was varied from 0 to 1. Goal value of 0.1 was identified to be the optimum, 

Figure 4.4. 

 

Figure 4.3 - Optimal Training/Testing spread parameter for RBFNN 
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Figure 4.4 - Optimal Training/Testing goal  parameter for RBFNN 

4.6.3 Generalized Regression Neural Network Model Optimization 

GRNN models are optimized using the SPREAD parameter. To optimize the GRNN 

model for this work, it was evaluated at different SPREAD values ranging from 0.5 to 

500.0. Figure 4.5 shows that SPREAD parameter = 50.0 gives the best performance 

based on correlation coefficient (CC). 
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Figure 4.5 - Optimal Training/Testing spread parameter for GRNN 

4.6.4 Type-2 Fuzzy Logic Model Optimization 

Type-2 Fuzzy Logic Systems (T2FL) are optimized by evaluating the model at different 

learning rates,α.Optimum rates are selected on the base that the prediction model gives 

the highest correlation coefficient for the testing. Figure 4.6 indicates that the optimum 

learning rate for Flow Zone Indicator prediction was 1.75. This value had the smallest 

difference between training and testing and with the highest CC. This value was then 

used in all the Type-2 Fuzzy Logic prediction models. 
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Figure 4.6  - Optimization of T2FL Learning Rate for Flow Zone Indicator Models 

Table 4.6 Summary of Optimization Parameters for AI Techniques 

AI Model Optimization Parameters 

Feedforward Neural Networks Number of hidden neurons = 13 

Radial Basis Function Neural Networks Goal = 0.1 

Spread = 3.0 

Generalized Regression Neural Networks Spread = 50.0 

Type-2 Fuzzy Logic α=1.75 

Support Vector Machines Type of Kernel = Gaussian 

Kernel Step Size = 4.35 

Verbose =  2.0 

Error Allowance, Lambda = 1e-7 

Regularization Parameter, C = 10000  

Penalty of Over fitting, epsilon = 0.1 
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4.7 Flow Zone Indicator Prediction Models Development 

MATLAB software provides a large library of functions and techniques for building most 

of the AI models. For this reason, it was used for designing and optimizing the proposed 

AI models. Five non-hybrid AI models were developed for the prediction of Flow Zone 

Indicator. Each model uses a different AI technique: FFNN, RBFNN, GRNN, SVM, and 

T2FL. They use the optimum parameters that were obtained from the parametric analysis 

performed earlier. They also use all the available 28 data logs. 

 

Figure 4.7 - Tree Representing the Non-hybrid AI Models 

After designing all the five models, data was stratified into training and testing datasets. 

The models were trained using the training dataset, and the rest were for testing.  To 

compare the performance of all non-hybrid AI models, results were compared statistically 

using error analysis and graphically using cross-plots. 

AI Non-Hybrid Model 

Artificial 
Neural 

Networks 
(ANN) 

Feedforward 
Neural Network 

(FFNN) 

Radial Basis 
Function Neural 

Network  
(RBFNN) 

Generalized 
Regression 

Neural Network 
(GRNN) 

Support Vector 
Machines (SVM) 

Type-2 Fuzzy 
Logic (T2FL) 
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4.7.1 Performance of Neural Networks Models 

Statistically, FFNN outperformed both RBFNN and GRNN. It gave the best results for 

prediction in terms of CC, RMSE, and MAE. RBFNN had the lowest CC value.  It might 

be attributed to its bad training performance. GRNN model was the second best 

performer between all non-hybrid models. Figures 4.8 – 4.10 shows the statistical error 

comparison for all non-hybrids neural networks models. 

 

Figure 4.8 - Correlation Coefficient Comparison for Non-hybrid Neural Networks Models 

 

Figure 4.9 - Root Mean-Squared Error Comparison for Non-hybrid Neural Networks Models 
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Figure 4.10 - Mean Absolute Error Comparison for Non-hybrid Neural Networks Models 

Graphically, Figures 4.11 and 4.13 show the FZI prediction crossplots for training. 

Figures 4.12 and 4.14 show similar cross-plots for testing. For FFNN and GRNN, it can 

be seen that for FZI values smaller than 4, the correlation between the values are good. 

But, all models tend to underestimate the FZI values starting from 4 upwards. Bad 

correlation was obvious for RBFNN.  
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Figure 4.11 - FZI Prediction Crossplot using FFNN (Training) 

 

Figure 4.12 – FZI Prediction Crossplot using FFNN (Testing) 
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Figure 4.13 - FZI Prediction Crossplot using GRNN (Training) 

 

Figure 4.14 – FZI Prediction Crossplot using GRNN (Testing) 
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4.7.2 Performance of Support Vector Machine Models 

SVM performance results showed that the model was not better than the one obtained 

with the FFNN model. By looking at the correlation coefficient for SVM compared to the 

other models, Figure 4.17, it can be seen that it was the second worst performer. It was 

due to its bad generalization in the training. Figures 4.18 and 4.19 show RMSE and MAE 

results for both training and testing. Finally, SVM was the fastest model to compute. 

4.7.3 Performance of Type-2 Fuzzy Logic Models 

The Type-2 Fuzzy Logic model was the third best performer, with a correlation 

coefficient of 0.2 for testing. This was also approximately true for RMSE and MAE 

values. T2FL model had the longest computation time. In addition, Figures 4.15 and 4.16 

show that the T2FL followed the same trend in training and testing, where results for FZI 

below 4 are better correlated than the ones with higher FZI values.  
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Figure 4.15 - FZI Prediction Crossplot using T2FL (Training) 

 

Figure 4.16 – FZI Prediction Crossplot using T2FL (Testing) 



 

45 

 

Figures 4.17 – 4.19 shows statistical error comparison for all non-hybrid AI models. The 

FFNN model had the best performance among them all, while the RBFNN model had the 

worst.  

For further performance improvements, the best neural networks model, FFNN, will be 

considered with the SVM and T2FL models. 

 

Figure 4.17 - Correlation Coefficient Comparison for Non-hybrid AI Models 

 

Figure 4.18 - Root Mean-Squared Error Comparison for Non-hybrid AI Models 
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Figure 4.19 - Mean Absolute Error Comparison for Non-hybrid AI Models 
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5 CHAPTER 5 

HYBRIDIZATION OF ARTIFICIAL INTELLIGENCE 

5.1 Introduction 

In Chapter 4, the development of five non-hybrid AI models for FZI prediction was 

covered. Models performance and results were discussed and compared with each other. 

For performance improvement using hybridization, three of them were selected as 

predictive models: FFNN, SVM, and T2FL.  In this chapter, the fundamentals of AI 

hybrid systems are presented. Then, feature selection algorithms are introduced. Next, the 

development of nine hybrid AI models with their results is discussed in details. Lastly, 

performance comparison is presented for the determination of performance improvement. 

5.2 Hybrid Systems 

Hybridization is the integration of more than one technique into one. The primary reason 

for hybridization is to balance one technique’sweakness with the other ones’ strength. 

Hybrids are believed to be more versatile and robust than their individual techniques 

(Anifowose and Abdulazeez, 2010). An example is the Adaptive Neuro Fuzzy Inference 

System (ANFIS), consisting of both Artificial Neural Networks (ANN) and Fuzzy Logic 

(FL). 

Hybrids common practice in AI applications is to integrate the feature selection 

algorithms such as FN, DT, and FIE with the machine learning tools such as ANN. The 

original input dataset is passed through the feature selection algorithm first. Then, the 
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selected features are divided into training, validation, and testing subsets. Next, the 

machine learning algorithm is trained using the training subset and validated using the 

testing subset for model generalization. Performance measurements are finally used to 

select the final predictive model which yields the most accurate results. Figure 5.1 shows 

a schematic for a hybrid AI system process. 

 

Figure 5.1 - Hybrid AI System Process 

5.3 Features Selection Algorithms 

Feature selection is the process of selecting subgroup of related features for the use of 

building predictive models. This process is used in both machine learning and statistics, 

with the general assumption that the original dataset has irrelevant features. These 

redundant features do not add more value than the one provided by the selected ones. 

Feature selection algorithms or techniques are best used in fields where data have many 

features compared to the number of available data points. Main advantages of utilizing 

these algorithms include:  
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 Shortened execution time as a result of reduced input dataset 

 Improved model performance due to the removal of redundancy in data 

 Increase resolution of overfitting by enhancing the model generalization 

Functional Networks, Decision Trees, and Fuzzy Information Entropy are three examples 

of feature selection algorithms. 

5.3.1 Functional Networks 

Functional Networks are considered an extension of ANNs.  Their structure consists of 

different layers having neurons connected together. Each neutron has a scalar fix function 

which sums the weighted inputs. Functions are learned from the input dataset while 

suppressing the weights using algorithms such as the least-squares fitting. To select the 

best subset from an input data, Functional network uses minimum description length 

(MDL) algorithm. The selection criterion is based on the best non-linear relationship 

between the input and the target data. 

Functional Networks differ from neural networks by not only in learning from the data 

about the problem but also in using knowledge about the problem to derive its topology. 

Another difference between them is that during learning, only weights are adapted and 

the network structure is fixed in neural networks while neural functions are also learnt in 

functional networks. Also, functions in functional networks can be multivariate while 

activation functions in neural networks have only one argument. Finally, functional 

networks are feedforward networks only, they do not have back-propagation. 
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5.3.2 Decision Trees 

Decision Trees (DT) can be used as predictive models to map observations about a 

problem to conclusions about the problem’s target outcomes. In these tree structures,

leaves represent class labels, and branches represent conjunctions of features that lead to 

those class labels. There are two types of decision trees: classification trees and 

regression trees. Classification trees are used when the prediction targets are classes of 

variables. Regression trees are used when the predicted outcomes are real numbers. One 

of the main differences between the two types is in splitting procedure (where to split). 

Gini Impurity and Information Gain are two of the algorithms used to construct decision 

trees. Gini impurity is based on squared probabilities of membership for each target 

category in the node. It reaches its minimum (zero) when all cases in the node fall into a 

single target category. 

𝐼𝐺(𝑖) = 1 − ∑ 𝑓(𝑖, 𝑗)2

𝑚

𝑗=1

= ∑ 𝑓(𝑖, 𝑗)𝑓(𝑖, 𝑘)

𝑗≠𝑘

  (5.1) 

The information gain is based on the concept of entropy used in information theory as 

expressed in the equation: 

𝐼𝐸(𝑖) = 1 − ∑ 𝑓(𝑖, 𝑗)2 log2 𝑓(𝑖, 𝑗)

𝑚

𝑗=1

  (5.2) 

During the generation of a decision trees model, the relative importance of each feature in 

the dataset is determined. If the dataset is divided using features values, a finite number 

of subsets will be obtained. In each subset, the information value Ii is computed so that Ii 

< I and the difference (I- Ii) is a measure of how well the parameter has discriminated 

between different subsets. Then, the value that maximizes this difference is selected. This 
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process is carried on until the subset at a node has the same value as the target variable, 

or when splitting no longer adds value to the predictions (Yohannes and Webb, 1999). 

5.3.3 Fuzzy Information Entropy 

Fachao et al. (2008) described the Fuzzy Information Entropy (FIE) algorithm in the 

following manner: 

Let U = {x1, x2, ..., xn} be a non-empty universe, R is a fuzzy equivalence relation on U, 

and let [xi]Rbe the fuzzy equivalence class containing xi generated by R, it follows that: 

|[xi]R| = ∑ 𝑅(𝑥𝑖, 𝑥𝑗)

𝑛

𝑗=1

  (5.3) 

which is called the cardinality of [xi]R. A further relation is given by: 

H(𝑅) = −
1

𝑛
∑ log2

|[xi]R|

𝑛

𝑛

𝑖−1

  (5.4) 

where H is called the information entropy of R. It extracts features in the input dataset 

(such as well logs) that have strong fuzzy relations (i.e. cardinality) with the target 

variables (such as porosity and flow zone indicator in the case of this study). However, 

the main drawback of the information entropy algorithm is its sensitivity to the 

dimensionality of the input data (i.e. the number of attributes) (White and Liu, 1994). 

5.4 Hybrid AI Models Development 

Nine hybrid AI models were developed for the prediction of Flow Zone Indicator. For 

these hybrid models, the first stage utilized three feature selection algorithms: Functional 

Networks, Decision Trees, and Fuzzy Information Entropy. For prediction models in their 
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second stage, Feedforward Neural Networks, Support Vector Machines, and Type-2 

Fuzzy Logic techniques were used.   

  

Figure 5.2 - Tree Representing the Hybrid AI Models 

5.4.1 Selected Features 

The nine hybrid AI models for predicting the flow zone indicator are a combination of 

the three feature selection algorithms and the three prediction models. This combination 

is depicted in Figure 5.2. Based on its algorithm, each feature selection method selected a 

subset of the original 28 data logs and fed the selected ones to the three prediction 

models.  
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FFNN SVM T2FL 



 

53 

 

Table 5.1 - Selected Features by Feature Selection Algorithms 

Algorithm Functional Networks Decision Trees Fuzzy Information 

Entropy 

Selected Features  Neutron (NEUT) 

 Bulk Density 

(DRHO) 

 CMR Free Fluid 

 Computed 

Regularization 

Parameter Gamma 

 Integrated 

Permeability 

 Irreducible Water 

Saturation 

 Total CMR 

Porosity 

 Laterolog Deep 

Resistivity  

(LLD) 

 Neutron 

(NEUT) 

 Laterolog 

Medium 

Resistivity 

(LLM) 

 CMR Porosity 

using T1/T2 

Ratio of Zero 

 Laterolog 

Shallow 

Resistivity 

(LLS) 

 T2 Logarithmic 

Mean 

 Spontaneous 

Potential (SP) 

 High Resolution 

Gamma Ray 

 Integrated 

Permeability 

Total 7 5 4 

 

Looking at Table 5.1, the contribution of NMR data can be easily identified. Five out of 

seven features selected by Functional Networks algorithm were from NMR. For Decision 

Trees and Fuzzy Information Entropy algorithms, NMR data contributions to the selected 

features were at 20% and 75% respectively. 

5.4.2 Performance of FFNN Hybrid Models 

FFNN was selected as the prediction model for the hybrid neural network because it 

outperformed both the RBFNN and GRNN models.  

Figures 5.3, 5.5, and 5.7 show that training was improved in all hybrid models. In Figures 

5.4, 5.6, and 5.8, good correlation for testing between predicted and measured FZI data 

was clearly observed for FZI values less than 4. Models tend to underestimate FZI for 

values greater than 4. Figure 5.9 shows that all the three feature selection algorithms 
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improved the prediction of the FFNN. The highest correlation coefficient for testing, 

0.64, was obtained by using the Decision Trees algorithm. Relative improvement was 

observed in RMSE and MAE for all hybrid models, Figure 5.10 and Figure 5.11.   

 

Figure 5.3 - FZI Prediction Crossplot using FN-FFNN (Training) 
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Figure 5.4 – FZI Prediction Crossplot using FN-FFNN (Testing) 

 

Figure 5.5 - FZI Prediction Crossplot using DT-FFNN (Training) 
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Figure 5.6 – FZI Prediction Crossplot using DT-FFNN (Testing) 

 

Figure 5.7 - FZI Prediction Crossplot using FIE-FFNN (Training) 
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Figure 5.8 – FZI Prediction Crossplot using FIE-FFNN (Testing) 

 

Figure 5.9 - Correlation Coefficient Comparison for FFNN Hybrid AI Models 
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Figure 5.10 - Root Mean-Squared Error Comparison for FFNN Hybrid AI Models 

 

Figure 5.11 - Mean Absolute Error Comparison for FFNN Hybrid AI Models 

5.4.3 Performance of SVM Hybrid Models 

Figures 5.12, 5.14, and 5.16 show that training was improved in hybrid models except for 

the FIE-SVM. Figures 5.13, 5.15, and 5.17 show that hybridization greatly improved the 

prediction of the SVM model. Statistically, the correlation coefficients in Figure 5.18 also 

confirmed the same observation. Figures 5.19 and 5.20 show relative improvement in 

RMSE and MAE for Decision Trees and Fuzzy Information Entropy hybrid models.  
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Figure 5.12 - FZI Prediction Crossplot using FN-SVM (Training) 

 

Figure 5.13 - FZI Prediction Crossplot using FN-SVM (Testing) 
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Figure 5.14 - FZI Prediction Crossplot using DT-SVM (Training) 

 

Figure 5.15 - FZI Prediction Crossplot using DT-SVM (Testing) 
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Figure 5.16 - FZI Prediction Crossplot using FIE-SVM (Training) 

 

Figure 5.17 – FZI Prediction Crossplot using FIE-SVM (Testing) 
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Figure 5.18 - Correlation Coefficient Comparison for SVM Hybrid AI Models 

 

Figure 5.19 - Root Mean-Squared Error Comparison for SVM Hybrid AI Models 

 

Figure 5.20 - Mean Absolute Error Comparison for SVM Hybrid AI Models 
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5.4.4 Performance of T2FL Hybrid Models 

Hybridization did not work well with Type-2 Fuzzy Logic models. Training performance 

was not good and prediction was not satisfactory. Correlation coefficients, RMSE, and 

MAE comparisons are shown in Figures 5.21, 5.22, and 5.23, respectively.  

 

Figure 5.21 - Correlation Coefficient Comparison for T2FL Hybrid AI Models 

 

Figure 5.22 - Root Mean-Squared Error Comparison for T2FL Hybrid AI Models 
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Figure 5.23 - Mean Absolute Error Comparison for T2FL Hybrid AI Models 

5.4.5 Performance Comparison of all Hybrid Models 

The comparison for correlation coefficients in Figure 5.24 shows that in general feature 

selection algorithms improve the performance of the FFNN and SVM predictive models. 

The DT-FFNN yielded the highest value between the nine hybrid models while the FIE-

T2FL had the lowest. Figures 5.25 and 5.26 show the relative variances observed in 

RMSE and MAE between all hybrid models.  

 

Figure 5.24 - Correlation Coefficient Comparison for all Hybrid AI Models 
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Figure 5.25 - Root Mean-Squared Error Comparison for all Hybrid AI Models 

 

Figure 5.26 - Mean Absolute Error Comparison for all Hybrid AI Models 
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6 CHAPTER 6 

Model Improvement through Data Fusion 

6.1 Introduction 

Data Fusion is the process of utilizing combinations of readily-available data and related 

concepts as additional inputs to improve existing models. Three different combinations 

were utilized for the sake of improving the previously developed hybrid models.  

In Chapter 5, the development of nine hybrid AI models for FZI prediction was covered. 

Models performance and results were discussed and compared with each other. For 

performance improvement using data fusion, FFNN was selected as the predictive model. 

This chapter presents and discusses the results of data fusion application to the FFNN 

hybrid models. 

6.2 Global Hydraulic Elements (GHEs) Classification as Input 

Core values for porosity and permeability were utilized to put all data points on the GHE 

basemap, as shown in Figure 6.1. Then, code was developed to classify each data point 

by assigning the GHE numerical value to it. The newly obtained information was then 

added to the input dataset for all nine hybrid models. 

Results showed that the new data column was selected by all the features selection 

algorithms. The cross-plots in Figures 6.2 – 6.10 show that better correlations were 

obtained for almost all models. This improvement was more obvious in models with 

Functional Networks and Decision Trees features selection algorithms. Figures 6.11 and 
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6.12 show the performance comparison for training and testing respectively, in terms of 

correlation coefficient, between the new hybrid models with Fusion AI and the previous 

ones without it. It confirmed the same observation from the cross-plots.   

 

 

Figure 6.1 - Data Points on GHE Basemap 
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Figure 6.2 - FZI Prediction Crossplot using FN-FFNN (GHE Fusion AI) 

 

Figure 6.3 - FZI Prediction Crossplot using DT-FFNN (GHE Fusion AI) 
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Figure 6.4 - FZI Prediction Crossplot using FIE-FFNN (GHE Fusion AI) 

 

Figure 6.5 - FZI Prediction Crossplot using FN-T2FL (GHE Fusion AI) 
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Figure 6.6 - FZI Prediction Crossplot using DT-T2FL (GHE Fusion AI) 

 

Figure 6.7 - FZI Prediction Crossplot using FIE-T2FL (GHE Fusion AI) 
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Figure 6.8 - FZI Prediction Crossplot using FN-SVM (GHE Fusion AI) 

 

Figure 6.9 - FZI Prediction Crossplot using DT-SVM (GHE Fusion AI) 
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Figure 6.10 - FZI Prediction Crossplot using FIE-SVM (GHE Fusion AI) 

 

Figure 6.11 - Correlation Coefficient Comparison for all Hybrid AI Models (GHE Fusion AI) [Training] 
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Figure 6.12 - Correlation Coefficient Comparison for all Hybrid AI Models (GHE Fusion AI) [Testing] 

6.3 Flow Zone Indicator Components as Input 

Equation 2.7 has two components: reservoir quality index (RQI) and pore volume to solid 
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(√𝐾
𝜑⁄ ) and (

𝜑

1−𝜑
). 

Functional Networks algorithm selected both parameters while the other two algorithms 

only selected the (√𝐾
𝜑⁄ ) parameter. Figures 6.13 – 6.21 show that the inclusion of the 

two parameters improved the correlation between the predicted and measured values. 
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correlation coefficient. 
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Figure 6.13 - FZI Prediction Crossplot using FN-FFNN (FZI Components Fusion AI) 

 

Figure 6.14 - FZI Prediction Crossplot using DT-FFNN (FZI Components Fusion AI)  
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Figure 6.15 - FZI Prediction Crossplot using FIE-FFNN (FZI Components Fusion AI) 

 

Figure 6.16 - FZI Prediction Crossplot using FN-T2FL (FZI Components Fusion AI) 
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Figure 6.17 - FZI Prediction Crossplot using DT-T2FL (FZI Components Fusion AI) 

 

Figure 6.18 - FZI Prediction Crossplot using FIE-T2FL (FZI Components Fusion AI) 
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Figure 6.19 - FZI Prediction Crossplot using FN-SVM (FZI Components Fusion AI) 

 

Figure 6.20 - FZI Prediction Crossplot using DT-SVM (FZI Components Fusion AI) 
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Figure 6.21 - FZI Prediction Crossplot using FIE-SVM (FZI Components Fusion AI) 

 

Figure 6.22 - Correlation Coefficient Comparison for all Hybrid AI Models (FZI Components Fusion AI) 
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Figure 6.23 - Correlation Coefficient Comparison for all Hybrid AI Models (FZI Components Fusion AI) 

[Testing] 
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Figure 6.24 - FZI Prediction Crossplot using FN-FFNN (GHE & FZI Components Fusion AI) 

 

Figure 6.25 - FZI Prediction Crossplot using DT-FFNN (GHE & FZI Components Fusion AI) 
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Figure 6.26 - FZI Prediction Crossplot using FIE-FFNN (GHE & FZI Components Fusion AI) 

 

Figure 6.27 - FZI Prediction Crossplot using FN-T2FL (GHE & FZI Components Fusion AI) 
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Figure 6.28 - FZI Prediction Crossplot using DT-T2FL (GHE & FZI Components Fusion AI) 

 

Figure 6.29 - FZI Prediction Crossplot using FIE-T2FL (GHE & FZI Components Fusion AI) 
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Figure 6.30 - FZI Prediction Crossplot using FN-SVM (GHE & FZI Components Fusion AI) 

 

Figure 6.31 - FZI Prediction Crossplot using DT-SVM (GHE & FZI Components Fusion AI) 
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Figure 6.32 - FZI Prediction Crossplot using FIE-SVM (GHE & FZI Components Fusion AI) 

 

Figure 6.33 - Correlation Coefficient Comparison for all Hybrid AI Models (GHE & FZI Components Fusion 

AI) [Training] 
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Figure 6.34 - Correlation Coefficient Comparison for all Hybrid AI Models (GHE & FZI Components Fusion 

AI) [Testing] 
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7 CHAPTER 7 

Permeability Prediction Improvements 

7.1 Introduction 

Permeability is one of the most important petrophysical parameters in reservoir 

characterization. It defines how easy it is for hydrocarbons to flow through the reservoir. 

Flow zone indicator in the two rock typing methods, hydraulic flow units and global 

hydraulic elements, relates permeability to porosity,  by Equations 2.8 and 2.12 

respectively. Chapter 6 covered the improvement of flow zone indicator hybrid models 

using data fusion. This chapter examines whether one could also improve the prediction 

of permeability through super hybridization. Only Feedforward Neural Networks (FFNN) 

hybrid models with Data Fusion were considered here. 

7.2 Development of Permeability Prediction Models 

First, core permeability data was selected as target for the models.  A non-hybrid FFNN 

was coded and run with the original 28 logs as the input dataset. Then, three FFNN super-

hybrid models were developed to predict permeability. Each super-hybrid model uses one 

of the three features selection algorithms for its prediction of the flow zone indicator: FN-

FFNN(FZI), DT-FFNN(FZI), and FIE-FFNN(FZI). Data Fusion was implemented in 

each one through using both GHE classification and FZI components as additional inputs. 

Predicted flow zone indicator values were also added to the input dataset for all the 

FFNN(K) models. Lastly, permeability values were predicted. Figure 7.1 depicts the 
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super-hybrid modeling with Data Fusion process that was used to predict permeability 

values. Figures 7.2 and 7.3 show cross-plots of predicted and measured permeability 

values using the non-hybrid FFNN model for training and testing, respectively. Figures 

7.4 and 7.5 show that the model missed many permeability values along the depth. 

 

Figure 7.1 - Process of Super-Hybrid Modelling with Data Fusion for Permeability Prediction  
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Figure 7.2 – Permeability Prediction Crossplot using FFNN (Training) 

 

Figure 7.3 - Permeability Prediction Crossplot using FFNN (Testing) 
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Figure 7.4 - Actual and Predicted Permeability versus Depth Using FFNN Model (Training) 

 

Figure 7.5 - Actual and Predicted Permeability versus Depth Using FFNN Model (Testing) 
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7.3 Performance of FN-FFNN(FZI)-FFNN(K) Super-Hybrid Model 

Figures 7.6 and 7.7 show improved cross-plots for training and testing with few 

uncorrelated points. This improvement was also obvious when the predicted and 

measured data were plotted along the depth in Figures 7.8 and 7.9.  

 

Figure 7.6 - Permeability Prediction Crossplot using FN-FFNN (GHE & FZI Components Fusion AI) [Training] 
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Figure 7.7 - Permeability Prediction Crossplot using FN-FFNN (GHE & FZI Components Fusion AI) [Testing] 

 

Figure 7.8 - Actual and Predicted Permeability versus Depth Using FN-FFNN Model (GHE & FZI Components 

Fusion AI) [Training] 
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Figure 7.9 - Actual and Predicted Permeability versus Depth Using FN-FFNN Model (GHE & FZI Components 

Fusion AI) [Testing] 

7.4 Performance of DT-FFNN(FZI)-FFNN(K) Super-Hybrid Model 

Figures 7.10 and 7.11 also show improved cross-plots for training and testing with even 

fewer uncorrelated points. Figures 7.12 and 7.13 show improved plots of the predicted 

and measured permeability data points along the depth.  
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Figure 7.10 - Permeability Prediction Crossplot using DT-FFNN (GHE & FZI Components Fusion AI) 

[Training] 

 

Figure 7.11 - Permeability Prediction Crossplot using DT-FFNN (GHE & FZI Components Fusion AI) [Testing] 
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Figure 7.12 - Actual and Predicted Permeability versus Depth Using DT-FFNN Model (GHE & FZI 

Components Fusion AI) [Training] 

 

Figure 7.13 - Actual and Predicted Permeability versus Depth Using DT-FFNN Model (GHE & FZI 

Components Fusion AI) [Testing] 
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7.5 Performance of FIE-FFNN(FZI)-FFNN(K) Super-Hybrid Model 

Figures 7.14 and 7.15 show improved cross-plots for training and testing with few 

uncorrelated points. This improvement was also obvious when the predicted and 

measured data were plotted along the depth in Figures 7.16 and 7.17.  

 

Figure 7.14 - Permeability Prediction Crossplot using FIE-FFNN (GHE & FZI Components Fusion AI) 

[Training] 
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Figure 7.15 - Permeability Prediction Crossplot using FIE-FFNN (GHE & FZI Components Fusion AI) 

[Testing] 

 

Figure 7.16 - Actual and Predicted Permeability versus Depth Using FIE-FFNN Model (GHE & FZI 

Components Fusion AI) [Training] 
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Figure 7.17 - Actual and Predicted Permeability versus Depth Using FIE-FFNN Model (GHE & FZI 

Components Fusion AI) [Testing] 

7.6 Performance Comparison for Permeability Prediction Models 

Figure 7.18 shows the comparison of correlation coefficients between the non-hybrid 

model and the other three super-hybrid ones. Performance improvement is obvious in all 

super-hybrid models. In the prediction, the correlation coefficient jumped from 0.144 for 

non-hybrid model to 0.878 for FN-FFNN(FZI)-FFNN(K), to 0.994 for DT-FFNN(FZI)-

FFNN(K), and to 0.947 for FIE-FFNN(FZI)-FFNN(K). Figure 7.19 shows the root mean-

squared error comparisons for all four models. Table 7.1 provides statistical summary for 

permeability prediction models. 
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Table 7.1 - Statistical Results for Permeability Prediction Models 

Models Training Prediction 

CC RMSE MAE CC RMSE MAE 

FN-FFNN(FZI)-FFNN(K) 0.840 291.541 19.399 0.878 343.63 32.01 

DT-FFNN(FZI)-FFNN(K) 0.501 394.192 41.991 0.994 127.09 34.32 

FIE-FFNN(FZI)-FFNN(K) 0.959 159.494 15.333 0.947 446.20 60.62 

FFNN(K) 0.105 459.431 155.046 0.144 523.70 178.51 

 

 

Figure 7.18 - Correlation Coefficient Comparison for all Permeability AI Models  

 

Figure 7.19 - Root Mean-Squared Error Comparison for all Permeability AI Models 
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8 CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Conclusions 

1. NMR logs were found to be contributing to the prediction of flow zone indicator 

(FZI). They accounted for approximately 70% of the selected logs by functional 

networks and fuzzy information entropy. For decision trees algorithm, only one 

out of five selected logs was from NMR (20%). The work also showed that no 

common NMR log was selected by the three feature selection algorithms. 

2. Feedforward neural network (FFNN) non-hybrid models outperformed the other 

non-hybrid models in the prediction of FZI with a correlation coefficient (CC) of 

0.49. Radial basis function neural networks model was the worst non-hybrid 

performer with only 0.03 in correlation coefficient for testing. 

3. Between the three features selection algorithms, Functional Networks selected the 

largest number of logs (7) while Fuzzy Information Entropy selected the least 

number (4) 

4. The biggest improvement in prediction performance due to hybridization was 

observed in the support vector machines models. The correlation coefficient 

jumped from 0.06 for non-hybrid model to 0.41 for FN-SVM, to 0.56 for DT-

SVM, and to 0.57 for FIE-SVM. 

5. Moderate improvement was observed in feedforward neural network and type-2 

fuzzy logic hybrid models. 
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6. Generally, FFNN hybrid models were the best in terms of correlation coefficient 

for prediction and T2FL were the worst performers. In terms of the correlation 

coefficient for prediction, the DT-FFNN model was the best model with 0.64 and 

the FIE-T2FL model was the worst with 0.17 

7. Generally, data fusion helped improving all the developed hybrid systems. The 

largest improvement was observed with the fusion of all the three new data, GHE 

numerical classification and the two FZI components, together with the 

previously selected logs. All FFNN and T2FL models had correlation coefficients 

for prediction greater than 0.9 

8. When the (√𝐾
𝜑⁄ ) FZI component was fused with the input dataset, it was 

consistently selected by all feature selection algorithms. This indicated that it had 

the largest contribution to the improvement of FZI prediction by data fusion. 

9. Improvement in flow zone indicator prediction also led to improved permeability 

prediction. The non-hybrid FFNN model had only 0.144 as its prediction 

correlation coefficient. The super-hybridization with the fusion of the additional 

input data (GHE numerical classification, FZI components, as well as predicted 

FZI values) made the correlation coefficient jump to greater than 0.87 

10. The DT-FFNN(FZI)-FFNN(K) super-hybrid model for permeability prediction 

was the best model in terms of prediction correlation coefficient 0.994. 

  



 

101 

 

8.2 Recommendations 

The following recommendations can be made to extend the work of this study. 

1. The developed models can be further enhanced by adding more data points with 

wider ranges since AI techniques are data-driven. 

2. The approach may be tested for other formations and rock types, such as naturally 

fractured and vuggy, with suitable code modifications. 

3. The approach should also be tested with additional AI tools such as ANFIS 

4. Hybridization of other AI tools such as RBFNN and GRNN can also be explored 

5. Use of AI classification tools to predict GHEs directly from conventional logs 

6. The application of the developed models for the prediction of permeability in tight 

rocks especially for shales can be explored 

7. Depending on data availability, other hydraulic units identification methods may 

be considered as model targets for permeability prediction improvement 
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