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Abstract 

Machine learning methods have been used in the Oil and Gas industry for about 

thirty years. Applications range from interpretations of geophysical, well and seismic 

responses, identification of minerals, analysis of rock samples and cores, fluid properties 

characterization, formation damage control, risk analysis, to well control (Alegre, 1991). 

In my thesis, I apply various machine learning methods for generating three well logs in 

shale formations, namely Nuclear Magnetic Resonance (NMR) T2 log, Dielectric 

Dispersion (DD) logs, and sonic travel time logs. 

NMR log acquired in geological formations contains information related to fluid-

filled pore volume, fluid phase distribution, and fluid mobility. Raw NMR responses of 

the formation are inverted to generate the NMR T2 distribution responses in the geological 

formation, which is further processed to compute the effective porosity, permeability, 

bound fluid volume, and irreducible saturation of the formation under investigation. I 

developed two neural-network models that process conventional, easy-to-acquire logs to 

generate the in-situ NMR T2 distribution along 300-feet depth interval of a shale reservoir 

in Bakken Petroleum System (BPS). Following that, we generated DD logs. DD logs 

acquired in subsurface geological formations generally comprise conductivity (𝜎) and 

relative permittivity (𝜀𝑟) measurements at 4 discrete frequencies in the range of 10 MHz 

to 1 GHz. Acquisition of DD logs in subsurface formation is operationally challenging 

and requires hard-to-deploy infrastructure. I developed three supervised neural-network-

based predictive methods to process conventional, easy-to-acquire subsurface logs for 

generating the 8 DD logs acquired at 4 frequencies. These predictive methods will 

improve reservoir characterization in the absence of DD logging tool. The predictive 
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methods are tested in three wells intersecting organic-rich shale formations of Permian 

Basin (PB) and Bakken Shale (BS). Finally, we generated compressional and shear travel 

time logs (DTC and DTS, respectively) acquired using sonic logging tools. DTC and DTS 

logs are used to estimate connected porosity, bulk modulus, shear modulus, Young’s 

modulus, Poisson’s ratio, brittleness coefficient, and Biot’s constant for purposes of 

geomechanical characterization. Six shallow learning models, namely Ordinary Least 

Squares (OLS), Partial Least Squares (PLS), Least Absolute Shrinkage and Selection 

Operator (LASSO), ElasticNet, Multivariate Adaptive Regression Splines (MARS) and 

Artificial Neural Network (ANN) models, suitable for function approximation problems, 

are trained and tested to predict DTC and DTS logs. 8481 observations along 4240-feet 

depth interval of a shale reservoir in Permian Basin (PB) are available for the proposed 

data-driven application. ANN model performs the best among the six models. Generation 

of NMR T2 is the computationally most challenging and we had the least amount for data 

from 220-feet depth interval that made the task even more challenging; nonetheless, we 

obtained prediction performance of 0.85 in terms of R2. On the other hand, the generation 

of dielectric permittivity and conductivity dispersion logs was slightly lower in terms of 

computational cost as compared to NMR T2 generation, we had data from 2200-feet 

depth interval, and prediction performance for this log generation task was 0.79 in terms 

of R2 in average. Generation of DTC and DTS logs is computationally easiest among the 

three tasks, we had data from 4240-feet depth interval, and the prediction performance 

was 0.86 in terms of R2 in average.
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Chapter 1: Introduction 

This thesis presents work performed for a Master of Science degree that was 

conducted at Mewbourne School of Petroleum and Geological Engineering of the 

University of Oklahoma. The research presented the application of machine learning 

methods in generation of three well logs, namely Nuclear Magnetic Resonance (NMR) 

T2 log, Dielectric Dispersion (DD) logs, and sonic travel time logs. The research work 

was done in close collaboration and supervision of Dr. Siddharth Misra.  

Machine learning is a subfield of artificial intelligence exploring the study of 

algorithms that can learn from and make predictions on data or images (Russell and 

Norvig, 2016). In oil and gas industry, well logs provide information of formations in the 

subsurface, including data and images (Asquith et al., 2004). In this thesis, different 

models and methods are developed and compared for the various cases and sensitivity 

analyses are done on these models and methods. The following sections present the 

motivation behind the study as well as the objectives, background, approach and outline 

of the thesis. 

1.1 Motivation and Problem Statement 

Oil and gas engineers estimate subsurface properties using well logs. Sometimes, 

it can be financially and operationally challenging to deploy certain logging tools, such 

as nuclear magnetic resonance (NMR), dielectric dispersion (DD) and sonic logging 

tools. More importantly, there does not exist physical or data-driven models that can 

process/combine the easy-to-acquire logs, which individually have lower information 

content, to obtain logs and responses that have higher information content and closer to 



2 

human perception. In this study we will process easy to acquire logs to synthesize hard-

to-acquire logs, such as dielectric dispersion, sonic, and NMR logs. 

NMR log contains information related to fluid-filled pore volume, fluid phase 

distribution, and fluid mobility (Salazar and Romero, 2001). NMR 𝑇2  distribution is 

generated from raw NMR responses in the geological formation, which approximates the 

in-situ pore size distribution. DD log measures conductivity and permittivity dispersion 

at different frequencies, which provides water-filled porosity and formation water salinity 

(Hizem et al., 2008). DTC and DTS logs acquired using sonic logging tools are used to 

estimate connected porosity, bulk modulus, shear modulus, Young’s modulus, Poisson’s 

ratio, brittleness coefficient, and Biot’s constant for purposes of geomechanical 

characterization (Maleki et al., 2014). As a result, all of them are crucial to oil and gas 

industry although it is difficult to obtain them in some wells. Considering the importance 

of these logs, one possible method is to predict them with machine learning methods using 

other conventional, easy-to-acquire logs. People can obtain them without deploying these 

logging tools after building proper and efficient machine learning models. 

1.2 Objective 

(1) Two different ANN models are built to predict NMR 𝑇2 distribution responses 

with conventional, easy-to-acquire logs in Bakken Petroleum System (BPS). 

Prediction performance and computational cost of two models are compared. 

Three set of data are used to verify the ANN models. 

(2) Three predictive methods are proposed to generate conductivity and permittivity 

dispersion logs in three wells in Permian Basin (PB) and Bakken Shale (BS). 

Prediction performance and computational cost of three methods in different cases 
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are compared. Sensitivity analysis of inputs, outputs and noise to the predictive 

methods is done. 

(3) Six shallow learning models are compared to predict compressional and shear 

travel time logs (DTC and DTS, respectively) in PB. All models are trained and 

tested in Well 1 and deployed in Well 2. Prediction performance and 

computational cost of six models are compared. Sensitivity analysis of noise and 

dataset to the ANN model is done. 

1.3 Outline of Thesis 

Chapter 2 is literature review, which provides the former research of machine 

learning methods applied in generation of well logs. 

Chapter 3 predicts NMR 𝑇2 distribution responses by two different ANN models 

with conventional, easy-to-acquire logs in BPS. Flags are assigned using the KNN 

method to add more inputs for two models. Two models are compared in both predictive 

performance and computational time. The first predictive model exhibits better 

performance with higher computational cost. Three NMR-related sets of data (𝜙𝑁, 𝑇2,𝑔𝑚 

and 𝑇2,𝑔𝑚𝜙𝑁
2 ) derived from the generated fluid-filled pore size distribution establish the 

robust performance of the predictive models. 

Chapter 4 predicts DD log by three different predictive methods with 

conventional, easy-to-acquire logs in three wells in PB and BS. the prediction 

performances of the second predictive method are worse for conductivity dispersion logs 

and better for permittivity dispersion logs, respectively, as compared to those of the first 

predictive method. The third method has best prediction performance for both 

conductivity and permittivity dispersion logs. All three methods perform well in Well 1 
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and 2 but perform badly in Well 3 because of fewer samples and higher water salinity in 

Well 3. 

Chapter 5 trains and tests six shallow learning models (OLS, PLS, LASSO, 

ElasticNet, MARS and ANN models) to predict DTC and DTS logs in PB. ANN model 

performs the best among the six models. The trained ANN model is deployed in another 

well drilled in the same reservoir with comparable good prediction performance. The 

complex structure of the ANN model with its multiple neurons and layers make it the best 

performing model among the six models. 

Chapter 6 is the conclusion of this thesis, including the prediction performance of 

all models in different cases, advantages and disadvantages of every model and sensitivity 

analysis results of all cases with respect to the research area. 
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Chapter 2: Background and Literature Review 

2.1 Introduction to the Well Logs 

2.1.1 Nuclear Magnetic Resonance (NMR) Log 

NMR 𝑇2 distribution response of a geological formation is captured during the 

acquisition of NMR log. In hydrocarbon reservoirs, 𝑇2 is the transverse relaxation time 

of hydrogen nuclei of the fluid phases that fill the pores. NMR 𝑇2 distribution response is 

governed by the fluid-filled pore volume, fluid phase distribution, and fluid mobility. 

NMR 𝑇2  distribution approximates the pore size distribution. Concentration of 𝑇2 

distribution around small 𝑇2  times originate due to small-sized pores. Operational 

challenges during NMR tool deployment impedes its extensive application and NMR log 

acquisition. The first objective of this thesis is to synthetically generate NMR 𝑇2 

distribution from conventional and easy-to-acquire logs, so that NMR 𝑇2 distribution can 

be obtained in wells where NMR log is not available due to well conditions or economics, 

such as the lateral well section of a well in a shale reservoir or small-diameter boreholes 

in deep HPHT reservoirs.  

2.1.2 Dielectric Dispersion Logs 

Dielectric dispersion (DD) response of a subsurface geological formation is 

acquired using the wireline DD logging tool that is run in an open-hole well intersecting 

the formation (Han et al., 2017). Conductivity measures the ability of rocks and fluids to 

conduct an electric current while permittivity is determined by the ability of rocks and 

fluids to polarize in response to the electric field. DD logs measure conductivity and 

permittivity dispersion at different frequencies, usually in the range of 10 MHz to 1 GHz. 



6 

Conductivity dispersion and permittivity dispersion can provide water-filled porosity, 

formation water salinity and water saturation. 

2.1.3 Sonic Travel Time Logs 

Sonic logging tools transmit sonic waves that propagate from multiple sources to 

receivers. Compressional and shear travel time logs (DTC and DTS, respectively) can be 

estimated from the waveforms recorded at the receiver, and both the logs have high 

degree of correlation (Willis and Toksoez, 1983). Compressional waves are longitudinal 

waves while shear waves are transverse waves. They travel at different speed in solid, 

liquid and gas so that different lithology, different porosity and different combinations of 

liquid and gas in pores result in different DTC and DTS logging data. Higher speed of 

compressional waves than shear waves lead to smaller DTC values than DTS values. 

DTC and DTS values are affected by porosity the most and they tend to be large under 

the circumstances of large porosity and tend to be small when porosity is small. As a 

result, DTC and DTS can be used to estimate different reservoir properties for 

geomechanical characterization, such as porosity, various moduli (bulk modulus, shear 

modulus and Young’s modulus), Poisson’s ratio and so on. 

2.2 Previously Developed Data-Driven Models for Subsurface Applications 

2.2.1 Nuclear Magnetic Resonance (NMR) Log 

ANN have been applied to improved log-based shale gas and coal reservoir 

characterization. Bhatt and Helle (2002) built committee neural networks for porosity and 

permeability predictions by processing well logs from the North Sea, where porosity-

prediction ANN uses sonic, density and resistivity logs as inputs and permeability-

prediction ANN uses density, gamma ray, neutron porosity and sonic logs as inputs. Al-
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Bulushi et al. (2007) predicted water saturation in the Haradh sandstone formation using 

ANNs with wireline logs as inputs, which included density, neutron, resistivity and 

photoelectric logs. Recently, Mahmoud et al. (2017) built an ANN model to predict TOC 

for Barnett shale based on resistivity, gamma ray, sonic transit time and bulk density logs. 

The model was then applied to estimate TOC for Devonian shale. Several studies applied 

ANN algorithms in predicting NMR-𝑇2-derived parameters. Salazar and Romero (2001) 

predicted NMR porosity and permeability using ANNs with gamma ray, resistivity and 

neutron logs as inputs in a carbonate reservoir. Mohaghegh et al. (2001) synthesized 

magnetic resonance logs such as free fluid, irreducible water and effective porosity using 

ANNs with SP, gamma ray, caliper and resistivity as inputs. Later, Elshafei and Hamada 

(2009) predicted permeability using Bulk Gas model and ANN model separately and 

validated the results against permeability measurements on core samples. Labani et al. 

(2010) estimated free-fluid-filled porosity and permeability using a committee machine 

with intelligent systems (CMIS) in the South Pars gas field. CMIS combines the results 

of Fuzzy Logic, Neuro-Fuzzy and Neural Network algorithms for overall estimation of 

NMR log parameters from conventional log data. Recently, Golsanami et al. (2014) 

predicted eight bin porosities and 𝑇2  Logarithmic Mean ( 𝑇2,𝐿𝑀 ) values of NMR 𝑇2 

distribution using intelligent models for characterization in the Asmari formation. I have 

not come across published research work on developing and applying ANN-based 

predictive models of the generating the entire NMR 𝑇2  spectral response, that 

approximates the fluid-filled pore size distribution in hydrocarbon-bearing reservoir. The 

prediction of NMR 𝑇2 distribution help people estimate porosity, permeability, lithology 

and minerals, quantity of hydrocarbons and so on. The success of predicting NMR 𝑇2 
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distribution will avoid of predicting those formation properties one by one with different 

models. Those properties can be estimated by predicted NMR 𝑇2 distribution. 

In relation to the second predictive model implemented in my thesis, Genty et al. 

(2007) fitted NMR 𝑇2  distribution response acquired in a carbonate reservoir with 

multiple Gaussian (or normal) distributions that can be characterized with three 

parameters (𝛼, 𝜇, 𝜎) for each distribution. In their case, 𝑇2 distributions required three 

Gaussian components that needed 9 parameters for purposes of fitting. Genty et al. (2007) 

utilized these fitted parameters to identify genetic pore types in the carbonate reservoir. 

Di (2015) identified different lithofacies in a tight oil reservoir based on the parameters 

estimated from fitting the 𝑇2 distribution similar to that proposed by Genty et al. (2007). 

I use a similar approach to generate 6 parameters for training and testing the models for 

NMR  𝑇2 prediction.  

2.2.2 Dielectric Dispersion Logs 

Hizem et al. (2008) was first to report the acquisition of borehole-based DD logs 

with a new-generation dielectric tool for the continuous measurement of DD logs at 1-in 

vertical resolution at four discrete frequencies. Pad-based transmitters on the dielectric 

tool remain in contact with the geological formation. The transmitters send 

electromagnetic (EM) waves of known magnitude and phase in the range of 10 MHz to 

1 GHz into the formation. The EM waves travel through the formation, reach the pad-

based receivers, and the attenuation and phase shift of the waves due to the material 

properties of the formation are recorded. Following that, the wave attenuation and phase 

shift are inverted using the tool-physics forward model to compute multifrequency 

conductivity ( 𝜎 ) and relative permittivity ( 𝜀𝑟 ) dispersions of the formation in the 
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frequency range of 10 MHz to 1 GHz. Finally, a valid multifrequency geo-

electromagnetic mixing model or mechanistic polarization-dispersion model is applied 

on the measured conductivity and permittivity dispersion logs to estimate water saturation, 

bound water saturation, salinity, clay-exchange capacity, and textural parameters (Tathed 

et al., 2018;  Han and Misra, 2018).  

Similar, synthetic NMR T2 log generation under constraints was reported by Li 

and Misra (2017a) using variational autoencoder based neural networks (Li and Misra, 

2017b). It should be noted that for generating synthetic DD logs in deviated well, the 

predictive methods need to be trained on logs form deviated wells along with transfer 

learning from methods trained on logs from vertical wells.  

Brovko et al. (2009) proposed an improvement in microwave imaging technique 

by ANN-assisted reconstruction of 2-D complex permittivity profiles in dielectric 

samples placed in a waveguide system. The spatial distributions of the dielectric constant 

were estimated as continuous functions whose parameters were predicted using ANN 

models. Chen et al. (2011) developed a back propagation (BP) ANN model to compute 

the effective complex permittivity of liquid materials (organic solvents) by processing the 

measured scattering parameters, such that the relative errors in prediction were less than 

5%. Hasan et al. (2011) developed two ANN models to separately predict the real and 

imaginary permittivity components of thermos-responsive materials using the magnitude 

and phase of reflection coefficients for different frequencies from 2.5 GHz to 5 GHz. A 

similar dielectric prediction work used Complex-Valued Neural Network (CVNN) 

models. CVNNs were designed specially to predict complex-valued parameters. CVNN 

was first proposed by Aizenberg et al. in former Soviet Union in 1971 (Nitta, 2009). Yang 
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et al. (2005) applied CVNN models to landmine detection and classification applications 

using data predicted by Ground Penetrating Radar. With phase information of scattering 

parameters included as inputs for CVNN, better prediction performance was obtained in 

comparison to real-valued Neural Network models. 

2.2.3 Sonic Travel Time Logs 

Many researchers predicted DTS (or 𝑉𝑠  reciprocal of DTS) with DTC (or 𝑉𝑝 , 

reciprocal of DTC) and other conventional logs as inputs to couple robust relations 

between DTS and DTC. Empirical equations were used to estimate DTS from lithology, 

porosity, 𝑆𝑤 and DTC, verified by two sets of logging data in the offshore Gulf of Mexico 

clastics with accuracy in terms of R2 equal to 0.81 and 0.76 respectively (Greenberg and 

Castagna, 1992).. Intelligent systems including fuzzy logic (FL), neuro-fuzzy (NF) and 

Artificial Neural Network (ANN) models predicted DTS successfully with NPOR, DTC, 

GR, RHOZ, and deep laterolog resistivity (Rlld) as inputs in the sandstone reservoir of 

Carnarvon Basin in Australia (Rezaee et al., 2007). Measured error using mean squared 

error (MSE) was about 0.05 for three models respectively, which were close to each other. 

Empirical correlations and machine learning methods were compared to predict DTS in 

the carbonate reservoir in Iran (Maleki et al., 2014). Empirical correlations used DTC to 

calculate DTS in empirical equations, including Castagna equation, Brocher equation and 

Carroll equation, with accuracy in terms of R2 equal to 0.92, 0.86 and 0.88, respectively. 

Machine learning methods, including SVM and ANN, predicted DTS with DTC, RHOZ, 

GR, effective porosity (PHIT), true formation resistivity (Rt) and DCAL as inputs, with 

accuracy in terms of R2 equal to 0.94 and 0.88 respectively. In addition, some people also 

predicted DTC and DTS together. Empirical equations were implemented to derive DTC 
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and DTS with GR, lithology and porosity in Oregon basin in Wyoming with high 

accuracy (Iverson and Walker, 1992). Xu-White model was proposed to estimate 𝑉𝑝 and 

𝑉𝑠 of shaly sandstones from porosity and shale content with high accuracy (Xu and White, 

1995). A key step in Xu-White model was to estimate dry rock bulk and shear moduli for 

the sand/shale mixture, which was improved in computational time by assuming constant 

Poisson’s ratio (Keys and Xu, 2002). Numerical experiments showed a close match, less 

than 2% in terms of relative error (RE), between velocities obtained with the 

approximations and those computed with the original differential effective medium 

method in Xu-White model. In another work, the Thomas-Stieber approach to 

petrophysical analysis of thin beds and the Dvorkin and Gutierrez Sand/Shale rock 

physics models were applied to predict 𝑉𝑝 and 𝑉𝑠 in thin beds using mineral properties, 

rock porosity and Vsh for initial parameters, which had potential but considerable 

limitations (Baines et al., 2008). Committee machine with intelligent systems (CMIS) 

were used to predict 𝑉𝑝 𝑉𝑠 and stoneley wave velocity (𝑉𝑠𝑡) at the same time in the Asmari 

formation, the carbonate reservoir of Iranian oil field with NPOR, RHOZ, Rt and Vsh as 

inputs (Asoodeh and Bagheripour, 2012). FL, NF and ANN were included in CMIS and 

the system predicted 𝑉𝑝, 𝑉𝑠 and 𝑉𝑠𝑡 with accuracy in terms of R2 equal to 0.93, 0.89 and 

0.74, respectively. However, no research has been done to balance the simplicity of 

models and prediction performance for sonic log so far. 

2.3 Conclusions 

There are several subsurface environments, operational challenges, and project 

economics scenarios where the three logs cannot be acquired, for example in the lateral 

and deviated sections of a well in shale reservoir, high-pressure high-temperature wells 
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in deep reservoirs, and irregularly sized boreholes in carbonate reservoirs. For those 

situations, machine learning methods are applied to generate these logs by processing 

conventional, easy-to-acquire logs in the absence of target logs.  

In the first research, the first predictive model performs more accurately, 

exhibiting median 𝑅2 of 0.8549 during testing, compared to the second one, exhibiting 

median 𝑅2  of 0.7584. However, the second model has lower computational cost 

compared to the first model. In the second research, prediction performance of the second 

method is 8.5% worse for conductivity dispersion and 6.2% better for permittivity 

dispersion than the first one. Prediction performance of the third method is 0.8% better 

for conductivity dispersion and 8.5% better for permittivity dispersion than the first one. 

Training the third predictive method in one well and then deploying it in another well for 

generating the 8 DD logs is feasible, such that the NRMSE of conductivity dispersion 

logs drops by 6% and that of permittivity dispersion logs drops by 4.5% compared to the 

baseline. In the third research, six shallowing learning models are selected to predict DTC 

and DTS at the same time in PB. OLS, PLS, LASSO and ElasticNet models are four 

linear regression models while MARS and ANN can also deal with problems of high non-

linearities. After comparison, ANN model performs the best both in Well 1 and Well 2.  
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Chapter 3: Generation of In-Situ NMR T2 Distribution in Bakken 

Petroleum System Using Neural Networks 

3.1 Theory and Methodology 

3.1.1 Introduction of the Bakken Petroleum System (BPS) 

BPS is a hybrid play composed of both conventional and unconventional elements 

(Simpson et al., 2015), a large portion of which is in northeastern Montana and 

northwestern North Dakota (Figure 3.1). The well under investigation in this thesis is 

drilled in Hawkeye field, North Dakota. The formations intersected by the well under 

investigation are somewhat similar to the distribution shown in Figure 3.1. Conventional 

plays in this well consist of separate reservoir intervals (Middle Bakken shale, Three 

Forks formation), source rock intervals (Lower Bakken and Upper Bakken shales), and 

other intervals.  Upper Bakken Shale (UBS), Middle Bakken Shale (MBS), Lower 

Bakken Shale (LBS) and Three Forks (TF) formation are consecutive intervals in BPS 

from top to bottom, which are my target intervals (Figure 3.2). Oil and gas produced in 

the UBS and LBS got accumulated in the MBS and TF formations. These intervals are 

distinctly different and display highly heterogeneous distributions of reservoir properties. 

7 intervals intersected by the science well are targeted in my research with distinct 

lithologies, which include black shale, siltstone, sandstone, dolostone and dolo-mudstone. 

Different minerals as present in these intervals, such as quartz, K-feldspar, plagioclase 

feldspars, illite, dolomite, calcite, kaolinite, and pyrite.  
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Figure 3.1 The Bakken formation in the Williston basin, underlying sections of 

North Dakota, northern Montana, southern Saskatchewan and southwestern 

Manitoba (Pirie et al., 2016) 

The UBS and LBS formations are black shale formations with deposit time 

spanning from the Late Devonian period to Early Mississippian period. Similar 

depositional conditions produce two similar deposits although they belong to different 

depositional episodes. Siliceous portions, calcareous portions and pyrite are found in both 

these formations. The mineralogical composition of the two formations, based on X-ray 

Diffraction (XRD) analyses, is dominated by quartz, K-feldspar and plagioclase 

feldspars. The clay mineral content is from 13 to 43 vol% dominated by illite; the 

carbonate content is from 2 to 13 vol% dominated by dolomite; and TOC content is from 

10 to 20 wt% (Simpson et al., 2015). The MBS formation displays a range of grain size 

sorting from poorly sorted, argillaceous siltstone to moderately well sorted fine-grained 

sandstone (Simpson et al., 2015) and is more complex than UBS and LBS formations. 

Different grain size, depositional textures and diagenetic calcite cement lead to more 
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detailed division of MBS, which are Upper Middle Bakken (UMB) and Lower Middle 

Bakken (LMB). UMB contains better reservoir quality with well sorted, fine-grained 

sandstone, whereas LMB contains more bioturbated, silt-dominated, shallow-marine 

deposits. The TF formation is a dolostone with alternating porous dolo-siltite facies. The 

interlaminated TF dolostone is interbedded with clay-rich, conglomeratic dolo-mudstone, 

which marks stratigraphic intervals that partition TF formation into four distinct 

sequences from top to bottom. TF1 is the principle oil-bearing interval of TF. TF2 is also 

oil-bearing but only locally charged with oil, mainly in the center of the basin. It is rare 

to find oil in TF3 and the remaining TF4 is non-reservoir dolo-mudstone (Simpson et al., 

2015).  
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Figure 3.2 Seven distinct intervals in BPS, consisting of the UBS, MBS, LBS, TF1, 

TF2, TF3 and TF4 formations, as adapted from Simpson et al. (2015) 

3.1.2  Data Preparation and their Statistical Description 

Data preparation and data preprocessing were done prior to the application of the 

predictive models (Figure 3.3). The first ANN model predicts 𝑇2 distribution discretized 

into 64 bin amplitudes, whereas the second ANN model predicts the six parameters that 

characterize the 𝑇2 distribution as a sum of two Gaussian distributions. The second model 

requires the generation of the six characteristic parameters prior to prediction. Evaluation 
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of the accuracies of the two predictive models is the crucial last step to ensure robustness 

and reliability of the models (Figure 3.3). 

 

Figure 3.3 Flowchart for the predictive models, where the actions represented inside 

the dashed boundary are involved in the second predictive model 

Target depth interval was selected from XX676 ft to XX985 ft comprising 7 

intervals of a shale reservoir system. Overall, inputs to the two predictive models include 

12 conventional logs, 10 inversion-derived logs, and 5 qualitative flags. The conventional 

logs include gamma ray (GR) log sensitive to volumetric shale concentration, induction 

resistivity logs measured at 10-inch (AT10) and 90-inch (AT90) depths of investigation 

sensitive to the volumes of connate hydrocarbon and brine, and neutron (NPOR) and 

density porosity (DPHZ) logs that are influenced by the formation porosity. Other 

conventional logs include photoelectric factor (PEFZ) log indicating the formation 

interval, VCL log measuring the volume of clay, and RHOZ log sensitive to the formation 

density. Finally, sonic logs, including Delta-T Shear (DTS), Delta-T Compressional 

(DTC) and Shear to Compressional Velocity Ratio (VPVS), that sense the geomechanical 

properties of the interval and rock textures are also used as inputs. In addition, 10 input 

logs were generated using a commercial inversion software that processed the 12 

conventional logs. Six of the ten inversion-derived logs are presented in Tracks 8 and 9 

in Figure 3.4, which are mineral content (of quartz, calcite, and dolomite) and fluid 
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saturation logs. NMR 𝑇2 distributions (Track 10) are also used to train and test ANN 

models and to generate the 6 parameters characterizing the 𝑇2  distributions. 

Environmental correlations and depth corrections were performed on all these logs prior 

to processing.  

Table 3.1, 3.2 and 3.3 list statistical descriptions of all the input logs. Median GR 

of UBS and LBS are much higher than those of other intervals, which indicates 

dominance of organic shale in UBS and LBS. AT10 and AT90 are much higher in UBS 

and LBS than those in other intervals, which indicates high hydrocarbon in these two 

intervals. DPHZ and NPOR are also the largest in UBS and LBS for the same reason. 

Statistical parameters for most of the input logs in UBS and LBS are similar, whereas 

those in TF1, TF2, TF3, and TF4 are similar. Statistical parameters for most of the input 

logs in MBS are closer to those of TF formation rather than those in UBS and LBS 

formations. Coefficient of variation is the value of standard deviation over mean value 

(𝑆𝑑/𝜇), which is used to measure the dispersion of data. NaN values in Table 3.2 represent 

mean values of 0 when calculating coefficient of variation. Most input logs in the 7 

intervals have reasonable coefficient of variation. Skewness is the measurement of 

asymmetry of data about its mean. NaN values in Table 3.3 represent all same values 

when calculating skewness. A few inputs have both large coefficient of variation and 

large skewnesses in all intervals such as AT10 and AT90, which indicates both high 

dispersion and high asymmetry of them.  

Table 3.1 Median value of every input in every interval. 

 Median 

UBS MBS LBS TF1 TF2 TF3 TF4 
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GR 446.800 78.520 775.400 89.570 95.260 80.730 90.645 

VPVS 1.625 1.675 1.659 1.716 1.768 1.774 1.776 

DCAL -0.275 -0.243 -0.275 -0.244 -0.248 -0.259 -0.260 

AT10 411.100 8.887 137.500 3.979 2.555 2.268 2.236 

AT90 169.500 8.394 74.280 3.582 2.214 2.167 2.025 

DTC 96.300 63.405 99.080 64.890 63.755 63.040 64.245 

DTS 155.300 107 163.700 113.300 112.100 111.900 114.700 

DPHZ 0.236 0.054 0.248 0.033 0.020 0.004 0.021 

NPOR 0.275 0.073 0.284 0.130 0.142 0.129 0.141 

PEFZ 2.967 3.253 2.850 3.052 3.125 3.572 3.703 

RHOZ 2.307 2.618 2.286 2.653 2.677 2.703 2.675 

VCL 1 0.479 1 0.581 0.583 0.478 0.575 

Illite 0.294 0.003 0.313 0.071 0.074 0.278 0.297 

Chlorite 0.002 0.020 0.010 0.01 0.046 0 0 

Bound water 0.032 0.004 0.033 0.010 0.015 0.046 0.049 

Quartz 0.298 0.340 0.233 0.144 0.129 0.079 0.065 

K-feldspar 0.015 0.173 0.058 0.200 0.225 0.071 0.121 

Calcite 0 0.246 0 0.030 0.058 0.078 0.110 

Dolomite 0 0.132 0 0.419 0.391 0.285 0.258 

Anhydrite 0.037 0 0.069 0 0 0.096 0.031 
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Unflushed 

water 

0.00001 0.029 0.001 0.035 0.049 0.005 0.004 

Unflushed oil 0.007 0.020 0.005 0.017 0 0 0 

 

Table 3.2 Coefficient of variation of each input log in each interval. 

 𝑺𝒅/𝝁 

UBS MBS LBS TF1 TF2 TF3 TF4 

GR 0.287 0.219 0.179 0.260 0.158 0.203 0.195 

VPVS 0.024 0.037 0.023 0.022 0.019 0.025 0.028 

DCAL -0.084 -0.078 -0.060 -0.073 -0.066 -0.060 -0.048 

AT10 1.028 0.618 0.883 1.468 0.290 0.339 4.123 

AT90 0.684 0.323 0.697 0.885 0.319 0.595 3.611 

DTC 0.104 0.069 0.067 0.087 0.034 0.044 0.071 

DTS 0.097 0.046 0.074 0.079 0.035 0.027 0.050 

DPHZ 0.329 0.269 0.179 0.531 0.480 -16.655 3.376 

NPOR 0.321 0.449 0.143 0.337 0.138 0.315 0.307 

PEFZ 0.142 0.116 0.076 0.026 0.087 0.101 0.073 

RHOZ 0.051 0.009 0.031 0.010 0.007 0.018 0.022 

VCL 0.102 0.319 0 0.334 0.170 0.240 0.261 

Illite 0.399 1.461 0.299 0.814 0.856 0.228 0.320 
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Chlorite 1.381 0.782 1.171 1.079 0.659 2.673 1.836 

Bound water 0.411 0.614 0.251 0.650 0.679 0.226 0.315 

Quartz 0.233 0.229 0.220 0.331 0.314 0.398 0.579 

K-feldspar 1.673 0.355 0.963 0.306 0.158 0.616 0.493 

Calcite 2.691 0.510 6.072 0.965 1.004 0.728 0.517 

Dolomite 2.048 0.468 2.333 0.189 0.339 0.270 0.285 

Anhydrite 0.856 NaN 0.338 NaN 1.771 1.002 1.327 

Unflushed 

water 

2.194 0.154 2.151 0.322 0.504 0.449 1.338 

Unflushed oil 0.848 0.604 0.536 0.433 2.802 5.774 5.121 

 

Table 3.3 Skewness of each input log in each interval. 

 Skewness 

UBS MBS LBS TF1 TF2 TF3 TF4 

GR -1.571 -0.835 -1.524 -0.430 0.371 -1.262 -0.130 

VPVS 0.549 0.787 -0.626 0.751 -1.438 2.491 1.095 

DCAL 1.748 0.087 1.407 -0.043 0.046 -0.056 -0.014 

AT10 1.750 2.722 2.835 3.576 1.918 1.799 8.971 

AT90 1.503 2.162 0.473 1.636 2.175 1.830 8.198 

DTC -2.138 0.246 -2.814 -0.744 0.020 -1.078 -0.723 
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DTS -1.816 1.279 -1.499 -0.817 0.026 -0.319 -0.795 

DPHZ -1.676 0.022 -3.190 -0.484 0.312 -2.408 -1.293 

NPOR -1.442 -0.758 -0.477 -0.430 0.238 -0.771 -1.073 

PEFZ 1.180 0.790 2.130 0.277 0.808 2.059 1.079 

RHOZ 1.675 -0.016 3.190 0.490 -0.308 2.409 1.295 

VCL -3.845 -1.113 NaN -0.417 0.687 -0.791 -0.383 

Illite -1.630 1.487 -0.567 0.367 0.658 -1.042 -0.572 

Chlorite 1.073 -0.017 0.888 0.727 0.385 2.870 2.026 

Bound water -1.458 0.799 -0.785 0.191 0.887 -1.053 -0.617 

Quartz 0.081 -0.341 -0.768 0.217 -0.334 -0.322 -0.290 

K-feldspar 2.035 -0.754 1.257 -0.004 -0.204 -0.070 -0.123 

Calcite 2.778 1.007 6.373 0.433 1.224 1.005 0.013 

Dolomite 1.972 0.598 2.857 0.247 -0.574 -0.810 0.913 

Anhydrite 0.495 NaN -0.811 NaN 2.133 1.886 1.425 

Unflushed 

water 

2.992 -0.006 3.852 -0.440 -0.915 0.396 3.434 

Unflushed oil 3.003 -0.201 -0.054 0.604 2.675 6.137 6.364 
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Figure 3.4 Track 1 is depth, Track 2 contains gamma ray and Caliper, Track 3 

contains DTS, DTC and VPVS, Track 4 is induction resistivity logs at 10-inch 

(AT10) and 90-inch (AT90) depth, Track 5 contains density porosity and neutron 

porosity, Track 6 is formation photoelectric factor and volume of clay, Track 7 is  

formation density, Tracks 8 & 9 contains 6 inversion-derived logs of mineral content 

and fluid saturation, and Track 10 is NMR T2 distributions. 

3.1.3  Categorization of Depths Using Flags  

After selecting the primary logs to be used as inputs for the neural-network based 

prediction, I assign five qualitative flags to each depth and use them as synthetic discrete-

valued logs to improve the prediction accuracy. This can be considered as an effort to 

categorize depths based on five lithological/geological/textural features. Refer to Figure 

3.5 for a qualitative understanding of Flags 1-5. The value of Flag-1 is an integer ranging 

from 1 to 7 identifying seven distinct intervals based on different lithologies and 

mineralogical compositions at a given depth. Flag-2 is either 0 or 1 identifying unimodal 

and bimodal pore size distribution, respectively, at the given depth. Flag-3 is an indicator 

of pore sizes in a bimodal system, such that its value is -1, 0, or 1 that identify the 

abundance of small pores, comparable volumes of small and large pores, and abundance 

of large pores, respectively. Similar to Flag-3, Flag-4 is an indicator of relative abundance 

of pores of certain pore size in a bimodal system, such that Flag-4 is assigned a value of 
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1 when certain pore size (either small pores or large pores) is negligible or else it is 

assigned to be 0. Those assigned as 1 of Flag-4 are bimodal distributions but can be 

regarded as unimodal distributions. Flag-5 defines the deviation of pore sizes around the 

two dominant pore sizes of a bimodal distribution, such that 1 indicates that the spreads 

around the two peaks are wide and 0 indicates either a unimodal distribution or a narrow 

spread around the two dominant pore sizes. In brief, Flag-1 classifies intervals based on 

interval and lithology; Flag-2 identifies number of peaks in the pore size distribution; 

Flag-3 identifies the dominant pore sizes in bimodal pore systems; Flag-4 checks if 

certain pore sizes can be neglected; and Flag-5 captures difference in the deviation of 

pore size distributions. These flags help improve the prediction performance as they 

provide supporting information to the predictive models about specific formation 

intervals.  

 

Figure 3.5 Values assigned to each flag and the corresponding NMR T2 distribution 

representations. 
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These flags are created using k-nearest neighbor (KNN) algorithm. My hypothesis 

is Flags 1-5 are required to improve the performance of the predictive models. Flags 2-5 

can be generated relatively easily for depths where 𝑇2 distribution responses have been 

acquired. However, for the 𝑇2  distribution prediction work, Flags 2-5 needs to be 

predicted prior to the primary objective of generating the 𝑇2 distribution. To that end, 

KNN classification models, specially designed for predicting categories, are used to 

generate Flags 2-5. The goal of KNN algorithm is to first relate the available easy-to-

acquire logs to the NMR 𝑇2 distribution, which can then be easily related to Flags 2-5. 

Once the KNN algorithm is well trained and tested for accurately relating the easy-to-

acquire logs to Flags 2-5 in the presence of NMR 𝑇2 distributions, the KNN model can 

be subsequently used to generate Flags 2-5 in the absence of NMR 𝑇2 distribution. 22 

input logs are all used as inputs to predict Flags 2-5 one by one with the KNN 

classification models. KNN algorithm classifies new cases based on a similarity measure, 

and similarity is measured by distances between cases. Based on training data, nearest 

neighbors for all testing data can be found by KNN algorithm, which makes it plausible 

to predict outputs of testing data using these neighbors in KNN classification models. I 

use Hamming Distance Function (𝐷𝐻) to find nearest neighbors that is expressed as 

 

𝐷𝐻 = ∑ |𝑥𝑖 − 𝑦𝑖|
𝑘
𝑖=1 ………………………………………………………………......(3.1)                                                       

 

where x and y are two random cases. k value is selected as 3 among possible 

values ranging from 1 to 10; in other words, Flags 2-5 can be most accurately predicted 
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when 3 nearest neighbors are used to classify the new cases. During the training and 

testing of KNN algorithm, available data is randomly split into two parts, with 80% 

training data and 20% testing data. Four separate KNN models are built to predict the 

four flags in sequential order. Table 3.4 presents the accuracy of flag generation. After 

the prediction of 4 flags, 22 logging data and 5 flags are used together to predict the NMR 

𝑇2 distribution. Out of 416 discrete depths, 354 randomly selected depths are used for 

training and 62 remaining depths are used for testing. 

Table 3.4 Accuracy of flag generation using KNN models. 

Flag 2 3 4 5 

Right 366 358 354 366 

Wrong 50 58 62 50 

 

3.1.4  Fit T2 distribution with Gaussian distributions  

Genty et al. (2007) found that NMR 𝑇2  distribution can be fitted using three 

Gaussian distributions expressed as 

 

𝑓(𝑇2
′) = 𝐴 ∑ (𝛼𝑖)

3
𝑖=1 𝑔𝑖(𝜇𝑖, 𝜎𝑖, 𝑇2𝑖

′ )…………………………………………………...(3.2)                                               

 

where 𝑖 is an index that identifies the Gaussian distribution, 𝑇2
′ = 𝑙𝑜𝑔 (𝑇2), 𝑔𝑖 is 

the probability distribution function of a Gaussian distribution with mean 𝜇𝑖 and standard 

deviation 𝜎𝑖, 𝛼𝑖 represents the proportion of pore volumes representing the constituent 

Gaussian distribution with respect to total pore volume such that 𝛼1 + 𝛼2 + 𝛼3 = 1, and 
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A is the amplitude parameter. In BPS, NMR 𝑇2 distributions have either one or two peaks. 

I fit the 𝑇2 distributions using the modified function expressed as  

 

𝑓(𝑇2
′) = ∑ (𝛼𝑖)

2
𝑖=1 𝑔𝑖(𝜇𝑖, 𝜎𝑖, 𝑇2

′)……………………………………………………...(3.3)                                                                      

 

Compared to Equation 3.2, Equation 3.3 does not implement the amplitude 

parameter A and 𝛼1 + 𝛼2 ≠ 1 . Six parameters are required to fit the 𝑇2  distribution 

response at each depth. 

Furthermore, the reliability of the fitting is expressed in terms of correlation 

coefficient (𝑅2) formulated as 

  

𝑅2 = 1 − 𝑅𝑆𝑆
𝑇𝑆𝑆⁄ …………………………………………………………………..(3.4)                                                                                                 

 

𝑅𝑆𝑆 = ∑ [𝑓𝑖,𝑓𝑖𝑡(𝑇2
′) − 𝑓𝑖(𝑇2

′)]
2𝑛

𝑖=1 …………………………………………………....(3.5)                                                                                          

 

𝑇𝑆𝑆 = ∑ [𝑓𝑖(𝑇2
′) − 𝑓(𝑇2

′)̅̅ ̅̅ ̅̅ ̅]
2𝑛

𝑖=1 ………………………………………………….........(3.6)                                                                                           

 

where n = 64 is the number of discretized samples of the original 𝑇2 distribution 

response of each depth, 𝑓𝑖,𝑓𝑖𝑡(𝑇2
′) is the i-th discretized sample of the 𝑇2  distribution 

response computed using Equation 3.3 and the six corresponding fitting parameters, 

𝑓𝑖(𝑇2
′) is the i-th discretized sample of the original 𝑇2 distribution response, and 𝑓(𝑇2

′)̅̅ ̅̅ ̅̅ ̅ is 

the mean of the original 𝑇2 distribution. RSS is the sum of squares of the residuals and 

TSS is the total sum of squares proportional to the variance of the data. 𝑇2 distribution 
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responses acquired at 416 depth points in BPS were fitted with Equation 3.3 to estimate 

the characteristic six fitting parameters for each depth point. In doing so, six logs are 

generated that can be used for training and testing phases of the second predictive model. 

𝛼2 = 𝜇2 = 𝜎2 = 0 when there is only one peak in the 𝑇2 distribution. Figure 3.6 shows 

the results of fitting for randomly sampled depth points. 𝑇2 distributions were fitted at 

median 𝑅2 of 0.983 (Figure 3.7) Only 12% of the depths were fitted with 𝑅2 lower than 

0.95.  

 

Figure 3.6 Dashed curves are original T2 distributions and solid curves are the best-

fitting T2 distributions obtained using Equation 3.3, such that dashed curve 

identifies original and solid curve identifies fitted data. 
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Figure 3.7 R2 distribution of NMR T2 distribution fitting results. 

In addition, Normalized Root Mean Square Error (NRMSE) is used together with 

𝑅2  to assess the accuracy of NMR 𝑇2  distribution prediction by ANN models.  The 

equation of NRMSE is shown below 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
…..………………………………………………..…….........(3.7)                                                                                           

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛
………………………………………………………….........(3.8)   

                                                                                         

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝑦𝑚𝑎𝑥−𝑦𝑚𝑖𝑛
…………………………………………………………...........(3.9)                                                                                           

 

from the function, it is obvious that the range of NRMSE is from 0 to 1 and I will 

obtain precise prediction performance of my model when it is close to 0. NRMSE is 

opposite to 𝑅2 when evaluating the accuracy since larger 𝑅2 means higher accuracy. 
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3.1.5  Data Preprocessing  

Before building an ANN model, data preprocessing is necessary to make inputs 

and outputs more suitable for the prediction of models. Few outliers are removed. Outliers 

are abnormally large or small compared to other data points. Their existence will change 

weights and bias of ANNs so that they have a negative effect on the accuracy of 

prediction. For example, at some depths, Gamma Ray can be larger than 1000 API unit, 

or DTS can be larger than 800 𝜇𝑠/𝑓𝑡 , which is unrealistic. Furthermore, inputs and 

outputs are normalized so that the minimum values of each input and output are -1 and 

the maximum values are 1. Normalization forces inputs and outputs to lie in the same 

range, which guarantees stable convergence of weights and biases (Genty, 2006). 

Normalization was performed using the following equation 

 

𝑦 = 2
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
− 1……………………………………………….………….........(3.10)                                                                                                                                                      

 

where x is the original value of input or output and y is the normalized value. In 

addition, dataset is split into two parts: training data and testing data. Usually, 80% of 

data are selected as training data and the remaining 20% form the testing data. In my 

models, due to the limited nature of the available data, 85% of the dataset are randomly 

selected to be the part of training data and the remaining 15% form the testing data. 

3.1.6  Build ANN models 

Two ANN models are built following the data preprocessing step. Each ANN 

model is built with two hidden layers, which is enough for most function approximation 

problems. There are no specific equations to calculate the number of neurons in each 
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hidden layer when the number of inputs and outputs are known. Different combinations 

of neurons in each layer were tried for the NMR 𝑇2 prediction. An arithmetic sequence 

of the number of neurons in each hidden layer generates high prediction accuracy 

(Demuth at al. 2014). Consequently, for the first predictive model that takes 27 inputs 

and generates 64 outputs, 39 and 51 neurons were set in the first and second hidden layers 

of the ANN model, respectively, such that 27, 39, 51 and 64 is close to an arithmetic 

sequence. This architecture requires 6460 weights and biases to be computed during each 

training step. Following the same logic, for the second predictive model that has 27 inputs 

and 6 outputs, requires 20 and 13 neurons in the first and second hidden layers of the 

ANN model, respectively, such that the sequence 6, 13, 20 and 27 is nearly an arithmetic 

sequence. This architecture requires 917 weights and biases to be computed during each 

training step.  

Several algorithms can be applied as training functions, which are models to 

adjust weights and biases in order to converge target functions of ANNs. Target functions 

are models to describe errors and it is the goal of ANNs to minimize them using training 

functions. Levenberg-Marquardt (LM) backpropagation (Chamjangali et al., 2007) and 

Conjugate Gradient (CG) backpropagation (Cheng at al., 2005) are two most widely used 

algorithms in ANN models for training function approximation problems, which build a 

relationship between inputs and outputs with weights and biases of every neuron in the 

ANN model. LM backpropagation is suitable for small number of weights and biases, 

whereas CG backpropagation can be applied for large neural networks implementing 

large number of weights and biases. When the number of weights and biases increases, 

the iteration speed of LM algorithm will decrease more than that of CG algorithm. CG 
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backpropagation is applied as the training function of both the ANN models. Training 

time of the models with LM backpropagation was 10 times more than that with CG 

backpropagation in the first model. To be specific, scaled conjugate gradient algorithm 

(Cheng at al., 2005) is selected and tested as the best training function of the ANN models 

specific to the NMR 𝑇2 prediction work.  

In the target function of ANN models, the purpose is to adjust weights and biases 

of all neurons to minimize it so that the error of ANN models is the smallest to ensure 

best prediction performance. Overfitting is the main problem when minimizing the value 

of target function during iterations (Kuhn and Johnson, 2013). ANN models cannot 

recognize the appropriate relationship between inputs and outputs because of overfitting. 

One basic target function is the Sum of Squared Errors (SSE) function expressed as  

 

SSE = ∑ (𝑦𝑖 − 𝑦̂𝑖)
2 + 𝜆 ∑ 𝜎𝑗

2𝑃
𝑗=1

𝑛
𝑖=1 ……………………………….………….........(3.11)                                         

 

where n is the number of samples (416 in this study) and P is the number of 

outputs (64 for the first model and 6 for the second model), 𝜆 is penalty parameter, 𝑦𝑖 is 

original outputs, 𝑦̂𝑖 is estimated outputs, and 𝜎𝑗
2 are variances of outputs. Regularization 

model is utilized to introduce a penalty parameter in the target function to avoid 

overfitting. By sacrificing some bias, variance can be reduced to minimize SSE function 

(Kuhn and Johnson, 2013). Penalty parameter is set at 0.7 in the first model and 0.5 in the 

second model after trial and error. In other models, people also avoid overfitting by 

dividing some samples into validation data. There is no need to divide data as validation 
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data in my models because of regularization. In consequence, more data can be used for 

training models to obtain more robust models. 

3.2 Case Study 

22 conventional logging data and 5 flags are used as inputs to predict 64 

discretized amplitudes in the first model and 6 fitting parameters in the second model that 

characterize the 𝑇2 distributions in BPS. Data from 416 different depths are randomly 

split into 354 (85%) depths to be used as the training data and 62 (15%) depths as the 

testing data. 𝑅2 and NRMSE are used to evaluate the accuracy of 𝑇2 predictions by ANN 

models. All 64 bin amplitudes predicted in the first model can be compared with the 

original discretized amplitudes to evaluate the prediction accuracy. For the second model, 

the predictions of 6 fitting parameters is used to reconstruct the 𝑇2 prediction as a sum of 

two Gaussian distributions for each depth, and then compared with the original  𝑇2 

distribution to evaluate the prediction accuracy. 

3.2.1  Training the first ANN Model 

Figure 3.8 presents prediction performance for the training phase of the first ANN 

model using 25 randomly selected depths. Few peaks are not matched properly during 

the training phase that is indicative of noise in the input logs and the 𝑇2 distributions used 

for training. Low prediction accuracy in Training phase will result in poor performance 

during testing.   
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Figure 3.8 Comparison of original T2 distributions with those predicted using the 

first ANN model during the training phase, such that dashed curve identifies 

original and solid curve identifies predicted data. 

The median 𝑅2 of predictions during the training phase is 0.8574 and the median 

NRMSE is 0.1201, which indicate a good prediction performance. 𝑅2  and NRMSE 

distributions for 354 depths are plotted together in Figure 3.9. 𝑅2  can be negative 

according to Equation 3.4 if 𝑅𝑆𝑆 > 𝑇𝑆𝑆, which indicates that the predicted trend does 

not follow the measured data. When 𝑅2  is equal to 0 or negative, it means that the 

prediction performance of these predicted curves is worse than a mean-value fit 

(Mendenhall and Sincich, 2016). For the 𝑅2  distributions presented in Figure 3.9, I 

include negative 𝑅2  to the histogram at 0 so that all 𝑅2  lie in [0, 1]. In contrast, all 

NRMSE lie in [0, 1]. During the training phase, most 𝑅2 are larger than 0.7 and most 

NRMSE are smaller than 0.2 implying a good prediction performance of the first ANN 

model. 
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Figure 3.9 R2 and NRMSE distributions of prediction performance using the first 

ANN model during the training phase. 

Four examples of prediction performance for different values of 𝑅2 are illustrated 

in Figure 3.10 to aid qualitative understanding of the training results. The first subplot at 

the top left with 𝑅2 = 0.99 is the case with best performance. During the training, all 

depths with single-peak 𝑇2  distribution are trained at a high prediction performance 

compared to those with two peaks. The subplot on top right with 𝑅2 = 0.85 is the median 

performance case, and more than half of all depths will perform better than the one shown 

for 𝑅2 = 0.85. 𝑅2 = 0.50 is a bad prediction performance, and about 7% of all depths 

are trained at lower prediction performance than this one. The bottom right subplot with 

𝑅2 = 0 is a poor performance example. Less than 3% depths will perform as bad as the 

one shown for 𝑅2 = 0.  
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Figure 3.10 Prediction performance of the first ANN model for various R2. 

3.2.2  Testing the first ANN Model 

There are only 62 testing depths, which are comparatively fewer than 354 depths 

for training. The prediction accuracy during the testing phase is similar to that attained 

during the training phase. The median 𝑅2 of testing is 0.8549 and the median NRMSE is 

0.1218 obtained after using noisy and limited inputs and outputs to train and test the ANN 

model. Figure 3.12 presents prediction performance for the testing phase of the first ANN 

model using 25 randomly selected depths from the testing depths. all testing depths have 

prediction performance higher than 𝑅2 = 0.6 except for one case and about 90% of 

testing depths have prediction performance lower than NRMSE=0.2 (Figure 3.13). 
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Figure 3.11 Comparison of original T2 distributions with those predicted using the 

first ANN model during the testing phase, such that dashed curve identifies original 

and solid curve identifies predicted data. 

 

Figure 3.12 R2 and NRMSE distributions of prediction performance using the first 

ANN model during the testing phase. 
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Figure 3.13 R2 and NRMSE distributions of prediction performance using the first 

ANN model during the testing phase (without flags). 

3.2.3  Training the second ANN Model 

Prediction performance in second model is affected by the fact that prior to 𝑇2 

prediction six parameters need to be computed that characterize the 𝑇2 distribution as sum 

of two Gaussian distributions. This introduces error prior to prediction. 

The median 𝑅2 of predictions during the training phase is 0.7634 and the median 

NRMSE is 0.1571 for the second ANN model, compared to 0.8574 and 0.1201, 

respectively, for the first ANN model. It is of high accuracy although only limited and 

noisy data are used in the model. Consequently, the prediction performance of the first 

ANN model is superior to that of the second model, but the computational time of the 

first ANN model is 1.3 times as compared to that of the second model. 𝑅2 and NRMSE 

distributions for 354 depths are plotted together in Figure 3.14. During the training phase, 

most 𝑅2  are larger than 0.7 and most NRMSE are smaller than 0.25 implying an 

acceptable prediction performance of the second ANN model. 𝑅2 = 0.5  is a bad 

prediction performance, and about 22% of all depths are trained at lower prediction 

performance than this one, which is higher than that for the first model by 5%. Less than 
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5% depths will perform as bad as the one shown for 𝑅2 = 0, which is also higher than 

that for the first model by 2%. 

 

Figure 3.14 R2 and NRMSE distributions of prediction performance using the 

second ANN model during the training phase. 

3.2.4  Testing the second ANN Model 

The prediction accuracy during the testing phase is similar to that attained during 

the training phase. The median 𝑅2 of testing is 0.7584 and the median NRMSE is 0.1609, 

which is high accuracy with noisy and limited data used in the ANN model.  29% of 

testing depths have prediction performance lower than 𝑅2 = 0.5  and 37% of testing 

depths have prediction performance higher than 𝑅2 = 0.8 (Figure 3.15). 

 

Figure 3.15 R2 and NRMSE distributions of prediction performance using the 

second ANN model during the testing phase. 
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3.2.5  Validation of the first Model 

NMR 𝑇2 distributions are generally used to estimate the formation porosity and 

permeability, which are the two most important hydrocarbon-reservoir parameters. In this 

section, I derive few reservoir properties from the predicted and original NMR T2 

distribution to test the robustness of the predicted NMR T2. The first model is validated 

by comparing 𝜙𝑁  and 𝑇2,𝑔𝑚 derived from the original NMR 𝑇2 distribution with those 

derived from the synthetically generated T2 distribution.  𝜙𝑁 is the sum of all amplitudes 

of the 64 bins of a T2 distribution at a single depth,  𝑇2,𝑔𝑚 is the 64-th root of the product 

of the 64 discretized  𝑇2  amplitudes at a single depth. Schlumberger-Doll-Research 

(SDR) model is a popular model for the estimation of permeability based on 𝜙𝑁  and 

𝑇2,𝑔𝑚, which is expressed as   

 

𝑘𝑆𝐷𝑅 = 𝐶 ∗ 𝑇2,𝑔𝑚
2 ∗ 𝜙𝑁

4 = 𝐶 ∗ (𝑇2,𝑔𝑚𝜙𝑁
2 )

2
……………………….…………...........(3.11)                                                                                                                                                      

 

where 𝑘𝑆𝐷𝑅  is the permeability computed using the SDR model. I derived the 

SDR-model term, 𝑇2,𝑔𝑚𝜙𝑁
2 , in Equation 3.11 from the original and predicted NMR T2 

distribution and then compare them to test the prediction performance of the permeability 

estimation using the SDR model on the generated NMR T2. Comparison results are 

presented in Figure 3.16. Table 3.5 indicates that the NMR T2 generated using the first 

predictive method can be used to compute the three reservoir parameters of interest with 

good accuracy.  
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Table 3.5 Accuracy of  𝛟 N, T2,gm and T2,gm  𝛟 N
2 derived from the synthetically 

generated NMR T2 distribution. 

 𝛟𝑵 𝑻𝟐,𝒈𝒎 𝑻𝟐,𝒈𝒎𝝓𝑵
𝟐  

𝑹𝟐 0.7685 0.8664 0.7587 

NRMSE 0.0909 0.0840 0.0854 

 

 

Figure 3.16 Comparison of 𝛟N, T2,gm and T2,gm 𝛟N
2  computed from the original 

NMR T2 distributions against those computed from the synthetically generated 

NMR T2 distributions. 

3.2.6  Importance Ranking of Inputs 

The importance of every input is also ranked by replacing them one by one with 

0 and train the model again to evaluate the accuracy drop. Large accuracy drop without 

the information of one input means that this input is of much significance to the model. 

In Figure 3.17, flags 1, 2 and 3 are ranked at the top and flags 4 and 5 are ranked in the 

middle level, which proves the necessity of designing these flags. These flags are all very 

important for NMR 𝑇2  distribution because they are designed according to pore size 

distributions. For example, if only the lithology flag is removed, there will be an accuracy 

drop of about 3.5%. 
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Figure 3.17 Ranking importance of inputs in the first ANN model (1-5: flags1-5, 6: 

GR, 7: DPHZ, 8: NOPR, 9: PEFZ, 10: RHOZ, 11: VCL, 12: AT10, 13: AT90, 14: 

DTC, 15: DTS, 16: VPVS, 17: Caliper, 18: Illite, 19: Chlorite, 20: Bound water, 21: 

Quartz, 22: K-Feldspar, 23: Clacite, 24: Dolomite, 25: Anhydrite, 26:Unflushed 

water, 27: Unflushed oil). 

3.3 Conclusions 

22 logs and 5 qualitative flags were processed by two distinct neural network 

models to generate the NMR 𝑇2 distribution responses, which approximate the in-situ 

fluid-filled pore size distribution in BPS. The first predictive model generates 𝑇2 

distribution discretized into 64 bin amplitudes, whereas the second predictive model 

generates the 6 fitting parameters that characterize the 𝑇2 distribution as a sum of two 

Gaussian distributions. The first predictive model performs more accurately, exhibiting 

median 𝑅2 of 0.8549 during testing, compared to the second one, exhibiting median 𝑅2 

of 0.7584. However, the second model has lower computational cost compared to the first 

model. Input data used in my predictive models were limited in quantity and prone to 
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noise and uncertainty due to the subsurface borehole conditions in which they were 

acquired. Nonetheless, the two predictive models exhibit good prediction performance. 

A few reservoir properties, ϕ𝑁, 𝑇2,𝑔𝑚 and 𝑇2,𝑔𝑚𝜙𝑁
2 , were derived from the synthetic 𝑇2 

distribution at reasonable accuracies. 
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Chapter 4: Generation of Synthetic Dielectric Dispersion Logs in 

Organic-Rich Shale Formations Using Neural-Network Models 

4.1 Theory and Methodology 

In this thesis, conventional triple combo logs, sonic logs, and DD logs are 

acquired in three wells. Wells 1 and 2 are in PB formation in Two Georges field, Texas 

and Well 3 is in BS formation in Hawkeye field, North Dakota. Data preparation and data 

preprocessing are performed prior to the application of the three predictive methods 

illustrated in Figures 4.1, 4.2 and 4.3, respectively. Four discrete frequencies at which 

DD logs were acquired in PB formation were 20 MHz, 100 MHz, 300 MHz and 1 GHz 

and those in BS formation were 22 MHz, 100 MHz, 250 MHz, and 0.96 GHz. The first 

predictive method implements an ANN model that processes conventional log data to 

simultaneously predict the 8 DD logs, namely four conductivity and four relative 

permittivity logs at four discrete frequencies in the range of 10 MHz to 1 GHz (Figure 

4.1). The second predictive method involves a two-step process (Figure 4.2) in which the 

four conductivity dispersion logs are simultaneously predicted using one ANN model. 

Subsequently, a second ANN model processes the four previously predicted conductivity 

logs with the conventional logging data to simultaneously predict the four permittivity 

dispersion logs. The third predictive method based on proprietary technique performs the 

best both in predicting conductivity and permittivity dispersion logs. It cannot be 

disclosed in the thesis due to patentable materials. We will demonstrate the improvements 

in the prediction performance when using the third method.   

I developed and compared the three methods to demonstrate the effects of 

architecture of neural networks on the generative capabilities. The three predictive 

methods use different arrangements of neural networks, inputs, outputs, and number of 
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neurons in hidden layers. General practitioner uses neural network architecture similar to 

that implemented in the first predictive method involving simultaneous generation. - 

Multivariate Linear Regression (MLR) model, which is the classical regression model, 

can also be used for such generative work. In Well 1, the prediction performance of the 

MLR model is 9.6% worse for conductivity dispersion and 11.2% worse for permittivity 

dispersion than that of the first predictive method, which is the worst performing method 

out of the three methods studied in this thesis. The first method performs simultaneous 

generation using a single ANN and serves as the baseline for the prediction performance. 

 

Figure 4.1 Flowchart for the first predictive method. 
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Figure 4.2 Flowchart for the second predictive method. 

4.1.1  Data Preparation 

The predictive methods are applied to following depth intervals: (a) 2200 ft in 

Well 1 intersecting 6 different intervals in PB formation and (b) 1300 ft in Well 2 

intersecting 4 different intervals in PB formation, containing shale, siltstone and 

sandstone; and (c) 500 ft intersecting 7 different intervals in BS formation containing 

shale, siltstone, sandstone and dolostone. Gamma ray log (GR), density porosity log 

(DPHZ), neutron porosity log (NPOR), photoelectric factor log (PEFZ), bulk density log 

(RHOZ), volume of clay log (VCL), delta-T compressional sonic log (DTC), delta-T 

shear sonic log (DTS) and laterolog resistivity logs at 6 depths of investigation (RLA0, 

RLA1, RLA2, RLA3, RLA4, RLA5) are selected as the easy-to-acquire conventional logs 

that are fed into the three predictive models. These conventional logs (Tracks 2-5, Figure 

4.3) and the DD logs (Tracks 7 & 8, Figure 4.3) are used to train and test the predictive 

methods. DD logs comprise 4 conductivity dispersion logs (Track 7) and 4 permittivity 
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dispersion logs (Track 8) acquired at four discrete frequencies in the frequency range of 

10 MHz to 1 GHz.  

The main criteria for selecting the easy-to-acquire logs chosen for the proposed 

prediction are as follows: (a) the easy-to-acquire logs and the 8 DD logs should be 

influenced by similar petrophysical properties, and (b) the easy-to-acquire logs should be 

acquired in most of the wells as a part of the conventional logging plan. For example, I 

use resistivity logs as inputs because the properties influencing resistivity also affect 

permittivity and conductivity dispersions of a material, such that the DD logs and 

resistivity logs are influenced by porosity, saturation, volume of clay and pyrite, invasion, 

presence of interfacial polarization, texture of pore surfaces, tortuosity, and pore 

topology. There may be redundancies in the 15 “easy-to-acquire” conventional logs, for 

example, DPHZ and NPOR. However, I performed extensive sensitivity analysis and 

found that the absence of any one of the l5 logs lowers the prediction performance. 

Redundancies and dependencies among the input logs lowers the adverse effects of noise 

in the logs. I observe a 3% improvement in accuracy when using both the DPHZ and 

NPOR logs.  

One synthetic discrete-valued log is computed in each well. This flag indicates 

lithology/formation-type of an interval. Flag improves the prediction accuracy. Flag 

assumes an integer between [1, 6] in Well 1, [1, 4] in Well 2, and [1, 7] in Well 3 

depending on the numbers of distinct lithology or formation type intersected by the well. 

Flag log can be developed based on cores, offset logs, logs, seismic boundaries, clustering 

algorithms, or knowledge about the reservoir. For the first predictive method, the 

prediction performances without the flag in Well 1 is 8.0% worse in conductivity 
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dispersion and 9.3% worse in permittivity dispersion than those with the flag. In 

summary, there are 15 conventional log inputs, including one Flag log, and 8 output logs. 

Depth corrections were performed on all the logs prior to the processing.  

 

Figure 4.3 Track 1 is depth, Track 2 is gamma ray log, Track 3 contains density 

porosity and neutron porosity logs, Track 4 contains formation photoelectric factor, 

bulk density and volume of clay logs, Track 5 is laterolog resistivity logs at 3 depths 

of investigation (RLA1, RLA2, RLA3), Track 6 contains DTC and DTS logs, Track 

7 is shallow conductivity dispersion logs, and Tracks 8 is shallow permittivity 

dispersion logs. 

4.1.2  Measurement of Prediction Performance 

Two parameters are used to compare the prediction performances of the predictive 

methods during the training and testing phases. The first parameter is correlation 

coefficient (𝑅2), which is formulated as 

 

𝑅𝑗
2 = 1 − 𝑅𝑆𝑆𝑗 𝑇𝑆𝑆𝑗⁄ ……………………………………….………….....................(4.1) 
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where 

 

𝑅𝑆𝑆𝑗 = ∑ (𝐷𝑝𝑖,𝑗 − 𝐷𝑚𝑖,𝑗)
2𝑛

𝑖=1 ……………………………….………….....................(4.2) 

 

and 

 

𝑇𝑆𝑆𝑗 = ∑ (𝐷𝑝𝑖,𝑗 − 𝐷̅𝑗)
2𝑛

𝑖=1 ……………………………………………….…..............(4.3) 

 

such that n is the number of depths for which prediction needs to be performed, j 

= 1, 2, 3, and 4 indicates the four conductivity dispersion logs and j = 5, 6, 7, and 8 

indicates the four permittivity dispersion logs, 𝐷𝑝𝑖,𝑗 is the 𝜀𝑟 or 𝜎 response predicted at 

depth i, 𝐷𝑚𝑖,𝑗 is the log j (𝜀𝑟 or 𝜎) response measured at depth i, and 𝐷̅𝑗  is the mean of log 

j (𝜀𝑟  or 𝜎 ) responses measured at all depths for which training or testing is being 

performed. 𝑅𝑆𝑆𝑗 is the sum of squares of the residuals and 𝑇𝑆𝑆𝑗 is the total sum of squares 

proportional to the variance of the corresponding log j responses. As a result, 𝑅2 will be 

affected by the variance of data. If 𝑇𝑆𝑆𝑗 is small, 𝑅𝑗
2 is more likely to be small, which 

represents a bad prediction performance and it may not be true. When most data are close 

to the mean value, which represents low variance of data, even good prediction 

performance can predict a low 𝑅𝑗
2 (Vapnik, 2013). In conclusion, 𝑅𝑗

2 is not very suitable 

for estimating accuracy when measured logs have low variance. 

The second parameter is Normalized Root Mean Square Error (NRMSE) 

formulated as  
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𝑅𝑀𝑆𝐸𝑗 = √
∑ (𝐷𝑝𝑖,𝑗−𝐷𝑚𝑖,𝑗)2𝑛

𝑖=1

𝑛
……………………………….………….......................(4.4) 

 

𝑁𝑅𝑀𝑆𝐸𝑗 =
𝑅𝑀𝑆𝐸𝑗

𝐷𝑚𝑖,𝑗,𝑚𝑎𝑥−𝐷𝑚𝑖,𝑗,𝑚𝑖𝑛
…………………………….………….........................(4.5) 

 

High prediction accuracy is indicated by NRMSE less than 0.1. NRMSE measures 

the error with respect to the range of data. Using NRMSE, the percentage of error to the 

range of data can be known, which facilitates better assessment of accuracy in comparison 

to RMSE. If there are some data much larger or smaller than the rest, they need to be 

deleted as outliers in the data preprocessing step. In doing so, 𝐷𝑚𝑖,𝑗,𝑚𝑎𝑥 − 𝐷𝑚𝑖,𝑗,𝑚𝑖𝑛 

cannot attain large inconsistent values. When outliers are not removed, NRMSE will 

disguise as a low prediction performance despite large RMSE. In comparison between 

𝑅2  and NRMSE, 𝑅2  will not be trustworthy when measuring data of low variance, 

whereas NRMSE is trustworthy for all cases once outliers are removed. 

4.1.3  Data Preprocessing 

Before building an ANN model, data preprocessing is necessary to make inputs 

and outputs more suitable for purposes of prediction. On an average, 2% of depth points 

used for training and testing exhibited outlier responses and were removed during data 

preprocessing. For example, at few depths, Gamma Ray responses were close to 1000 

API units and for few DTS responses were higher than 800 𝜇𝑠/𝑓𝑡. Data from such depths 

will change weights and bias of ANN models; thereby having an adverse effect on the 

prediction performance. Following that, input and output logs were normalized so that all 

data are within [-1, 1]. 
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80% of data are selected as training data randomly and the remaining 20% form 

the testing data in three wells. During supervised learning, dataset can be divided into 

three parts for training, validating and testing phases. In this thesis, I divide the data into 

training and testing dataset. Validation data reduces overfitting. Instead of using a 

validation dataset, I use a penalty parameter to prevent overfitting. Validation data is not 

required when using the penalty parameter, as a result more data is available for the 

training and testing phases.   

4.1.4  Neural Network Architectures 

For the first method, only one ANN model is built with 15 inputs and 8 output 

DD log predictions. For the second method, the first ANN model contains 15 inputs and 

4 output conductivity dispersion log predictions and the second ANN model contains 19 

inputs, including the 4 predicted conductivity dispersion logs, and 4 output permittivity 

dispersion log predictions. An arithmetic sequence of the number of neurons in each 

hidden layer typically predicts a high prediction accuracy (Demuth et al., 2014). For 

example, 12 and 10 neurons are used in the first and second hidden layers, respectively, 

for the ANN model implemented in the first method. In the second predictive method, 11 

and 7 neurons are used in the first and second hidden layers, respectively, of the first 

ANN model, whereas 14 and 9 neurons are used in the first and second hidden layers, 

respectively, of the second ANN model. 

CG backpropagation is applied as the training function after comparison of 

training time with Levenberg-Marquardt (LM) backpropagation algorithm. Training time 

of the ANN models with LM backpropagation was 2-5 times more than that with CG 

backpropagation. To be specific, scaled CG backpropagation (Cheng et al., 2005) is 
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selected and tested as the best training function for the ANN models implemented in this 

thesis.  

Overfitting is the main problem when minimizing the value of target function 

during iterations. ANN model cannot recognize the appropriate relationship between 

inputs and outputs because of overfitting. One basic target function is Sum of Squared 

Errors (SSE) function, which is expressed as 

 

SSE = ∑ (𝐷𝑚𝑖,𝑗 − 𝐷𝑝𝑖,𝑗)2𝑛
𝑖=1 + 𝜆 ∑ 𝜎𝑗

2𝑃
𝑗=1 ………………….………….......................(4.6) 

 

where n is the number of depths in a well, j = 1, 2, …, 8 represents the 8 output 

DD logs, P=8 is the total number of output logs, 𝜆 is the penalty parameter, 𝐷𝑚𝑖,𝑗 is the 

value of measured DD log j at depth i, 𝐷𝑝𝑖,𝑗 is the value of predicted output log j at depth 

i, and 𝜎𝑗
2 is the variance of the predicted output log j, such that 

 

𝜎𝑗
2 =

1

𝑛
∑ (𝐷𝑝𝑖,𝑗 − 𝜇𝑗)2𝑛

𝑖=1 ………………………………….………….......................(4.7) 

 

where 𝜇𝑗  is the mean of the predicted output log j. Regularization method is 

utilized to introduce a penalty parameter in the target function to avoid overfitting and 

ensure a balanced bias-variance tradeoff. 𝜆 ranges from 0 to 1, which is set based on 

extensive numerical experiments. For example, it is 0.1 for the ANN in the first method, 

0.05 for the two ANNs in the second method, and 0.2, 0.3, 0.2, 0.15, 0.3, 0.2, 0.2, and 0.2 

for the 8 ANNs in the third method. For the training in a single well, the first method 

requires on an average 5 seconds. Computational cost of the second method is twice that 
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of the first method, whereas the computational cost of the third methodis 7-8 times that 

of the first method. 

4.2 Case Study 

I compare prediction performances of the three predictive methods by applying 

them to three wells, with Wells 1 and 2 in PB formation and Well 3 in BS formation. 

There are several petrophysical differences between the two formations. Water salinity is 

about 360,000 ppm in BS (Simpson, 2015) and less than 50,000 ppm in PB (McNeal, 

1965). As a result, water salinity from Well 3 in BS is much higher than that from Wells 

1 and 2 in PB. There are 4293, 2456, and 920 depth points selected in Well 1, Well 2, and 

Well 3, respectively, for purposes of training and testing the neural network models.  

4.2.1  Prediction Performance of the first Predictive Method 

In Well 1, I test the performances of ANN models with and without NMR logs as 

inputs. 859 depth points in Well 1 were used for testing the trained ANN model of the 

first method in Well 1. When using NMR logs as additional inputs, I include 8 NMR-bin 

porosity logs and NMR 𝑇2-logarithmic mean log. With NMR logs as inputs, 24 inputs 

and 8 outputs are required to train and test the ANN model in the first predictive method. 

Following the principle of arithmetic sequence in number of neurons in an ANN model, 

18 and 13 neurons are used in the first and second hidden layers, respectively. As shown 

in Table 4.1, there is no improvement in the prediction accuracy when using NMR logs 

as additional conventional log inputs. This is counterintuitive because both NMR and DD 

logs are sensitive to porosity and pore-filling fluids. However, DD logs sense storage and 

conductance of electric charges in pore-filling fluid, whereas NMR logs sense mobility 

and relaxation of H1 nuclei. Most likely, this difference between two logs impedes the 
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improvement of prediction performance. Consequently, all predictions from here on do 

not use NMR logs as inputs. Another noticeable feature is prediction performances of 

conductivity dispersion logs are better than permittivity dispersion logs, which may be a 

consequence of larger noise in permittivity dispersion logs due to tool physics and 

inversion methodologies and greater sensitivity of the permittivity dispersion logs to 

interfacial polarization mechanisms. Well 2 intersects a geological formation that is very 

similar to the one intersected by Well 1. However, in comparison to Well 1, prediction 

accuracy of first method is lower in Well 2 (Table 4.1) due to fewer samples available for 

the training in Well 2, which was a 43% reduction in number of samples. Interestingly 

for both the wells, the prediction performances for conductivity dispersions decrease with 

increase in frequency.  

The first predictive method fails in DD log prediction in Well 3 intersecting the 

BS formation (Table 4.1). In Well 3, the prediction performance of the first method is 

90.6% worse in conductivity dispersion and 65.6% worse in permittivity dispersion in 

terms of NRMSE, compared with that in Well 1. One reason for bad prediction 

performance of the first method in Well 3 is the number of samples. There are 4293, 2456, 

and 920 depth points selected in Well 1, Well 2, and Well 3, respectively. For Well 2, 

there is only about 57% of data compared to Well 1 that led to the decrease of prediction 

accuracy (Table 4.1). Depth points in Well 3 are even fewer than those in Well 2, which 

leads to low prediction performance in Well 3. Another possible reason for the poor 

prediction performance in Well 3 is the high water salinity in BS formation. From 

electromagnetic measurement standpoint, increase in salinity predominantly increases 

transport of electrical energy and also increases the storage of electromagnetic energy due 



55 

to interfacial polarization phenomena. Among the conventional logs, resistivity logs are 

highly sensitive to water salinity due to the enhancement of charge transport. However, 

the increase in salinity masks the physical relationship between 𝜀𝑟 and water content and 

enhances the effects of interfacial polarization mechanisms on permittivity dispersions, 

which do not have as high a physical correlation with other conventional logs. As a result, 

high water salinity masks the physical relationships between DD logs and the 

conventional logs resulting in the poor prediction performance in Well 3. Interestingly, 

the prediction performances of conductivity dispersion are always better than those of 

permittivity dispersion because conductivity dispersion is tied to the charge transport 

resulting in stronger physical relationships with conventional logs, especially resistivity 

logs, than permittivity dispersion. In addition, for most inputs and outputs in Well 3, 𝑆𝑑/𝜇 

and skewness are higher than those in Wells 1 and 2 (Table 4.2). 𝑆𝑑/𝜇, referred as the 

coefficient of variation, is the standard deviation over mean value of data that represents 

the relative spread and skewness is a measure of the asymmetry of data. High values of 

both indicate that the logs in Well 3 are either noisier or the formations exhibit more 

geological/petrophysical variability compared to those in Wells 1 and 2. This will also 

lead to poor prediction performance in Well 3. Notably, the prediction performances of 

permittivity dispersion logs increase with increase in frequency, unlike Wells 1 and 2.  

Table 4.1 Comparison of prediction performances of the first predictive method in 

Wells 1, 2 & 3 with and without NMR logs. 

 NRMSE 𝑹𝟐 

f0 f1 f2 f3 f0 f1 f2 f3 

Well 1 without 

NMR 

Conductivity 0.056 0.063 0.074 0.087 0.93 0.92 0.90 0.86 

Permittivity 0.096 0.112 0.091 0.097 0.70 0.71 0.65 0.62 
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Well 1 with 

NMR 

Conductivity 0.069 0.077 0.091 0.098 0.90 0.89 0.86 0.82 

Permittivity 0.104 0.097 0.088 0.086 0.62 0.66 0.60 0.55 

Well 2 without 

NMR 

Conductivity 0.075 0.081 0.098 0.104 0.91 0.90 0.85 0.81 

Permittivity 0.136 0.150 0.140 0.141 0.67 0.67 0.63 0.52 

Well 3 without 

NMR 

Conductivity 0.150 0.128 0.129 0.102 0.71 0.76 0.72 0.76 

Permittivity 0.192 0.175 0.154 0.133 0.04 0.18 0.33 0.54 

 

Table 4.2 Variances and skewnesses of input and output logs, Sd/𝝁 is the standard 

deviation over mean value of data and skewness is a measure of the asymmetry of 

data. 

 𝑺𝒅/𝝁 Skewness 

Well 1 Well 2 Well 3 Well 1 Well 2 Well 3 

Interval 0.477 0.466 0.286 -0.050 -0.143 -1.192 

GR 0.348 0.281 1.466 0.473 -0.121 3.745 

DPHZ 0.597 0.578 3.050 -0.413 -0.388 0.834 

NPOR 0.558 0.416 0.852 0.069 -0.144 0.393 

PEFZ 0.249 0.168 0.170 1.368 0.602 0.235 

RHOZ 0.030 0.015 0.051 0.413 0.327 -0.833 

VCL 0.536 0.405 0.699 0.095 -0.043 -0.005 

RLA0 0.063 0.044 0.205 0.555 -0.726 3.235 

RLA1 0.594 0.497 0.735 -0.010 -0.449 4.433 

RLA2 1.080 0.989 1.023 1.967 1.418 1.573 

RLA3 1.303 1.314 1.586 2.079 2.593 1.915 

RLA4 1.969 1.468 2.104 4.969 3.553 0.157 

RLA5 2.159 1.496 2.073 6.495 3.805 0.797 

DTC 0.134 0.078 0.210 -0.290 -0.436 1.994 

DTS 0.101 0.713 0.162 0.110 -12.604 1.302 

𝝈𝒇𝟎 1.207 0.837 1.277 1.307 1.264 1.073 

𝝈𝒇𝟏 1.037 0.703 1.361 1.131 1.068 0.980 

𝝈𝒇𝟐 0.863 0.616 1.112 0.879 0.775 1.056 
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𝝈𝒇𝟑 0.747 0.577 0.968 0.677 0.561 0.717 

𝝐𝒓,𝒇𝟎 0.393 0.452 1.066 0.346 0.299 2.497 

𝝐𝒓,𝒇𝟏 0.271 0.253 0.607 0.392 0.448 2.366 

𝝐𝒓,𝒇𝟐 0.208 0.165 0.496 0.464 0.668 2.057 

𝝐𝒓,𝒇𝟑 0.151 0.096 0.372 0.175 0.482 1.023 

 

4.2.2  Prediction Performance of the second Predictive Method 

The second method is applied to Wells 1 and 2. Based on the NRMSE, the second 

method performs better in predicting permittivity dispersion logs compared to the first 

method. In second method, the first ANN model is first trained to predict the conductivity 

dispersion without the constraint of matching the permittivity dispersions; consequently, 

there is some sacrifice in the prediction accuracy for conductivity dispersion, which are 

7.6%, 10.4%, 9.3% and 6.8% higher for the frequencies f0, f1, f2, and f3, respectively, in 

terms of NRMSE when compared to the first method (Table 4.3). Higher NRMSE 

represents lower accuracy. However, the second ANN model is trained to predict 

permittivity dispersion using the measured conductivity dispersion. In doing so, there is 

an improvement in the accuracy of predicting permittivity dispersion logs, which are 

7.8%, 10.7%, 3.1% and 3.4% lower for f0, f1, f2, and f3, respectively, in terms of NRMSE 

when compared to the first method. In comparison to permittivity dispersions, 

conductivity dispersions have stronger physical relationships with conventional logs, 

especially with resistivity logs. Therefore, I first predict conductivity dispersion (Table 

4.3), following that the predicted conductivity dispersion is used to predict the 

permittivity dispersion. Owing to the low variance of 𝜖𝑟,𝑓3 log, 𝑅2 is not a good indicator 

for evaluating prediction accuracy of permittivity dispersion.  
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Table 4.3 Comparison of prediction performances of the second predictive method 

in Wells 1 & 2. 

 NRMSE 𝑹𝟐 

f0 f1 f2 f3 f0 f1 f2 f3 

Well 1 

Second method 

Conductivity 0.063 0.075 0.086 0.093 0.94 0.92 0.89 0.85 

Permittivity 0.095 0.090 0.088 0.090 0.65 0.69 0.59 0.49 

Well 2 

Second method 

Conductivity 0.078 0.084 0.102 0.111 0.90 0.89 0.83 0.78 

Permittivity 0.119 0.144 0.136 0.140 0.59 0.56 0.49 0.33 

 

4.2.3  Prediction Performance of the third Predictive Method 

In comparison to first method, the prediction performance of the third method for 

permittivity dispersion decreases by 9.1%, 13.3%, 5.6%, and 5.9% for f0, f1, f2, and f3, 

respectively, in terms of NRMSE (Table 4.4). Prediction accuracy for 𝜎𝑓0 drops and the 

rest increases in the third method compared to the first and second methods. Further, in 

comparison to first method, the prediction performance of the third method for 

conductivity dispersion changes by 6.1%, -0.7%, -4.1%, and -4.8% for f0, f1, f2, and f3, 

respectively, in terms of NRMSE (Table 4.4). All three predictive methods have decent 

accuracy although the dataset is prone to noise and is limited in terms of sample size. 

Table 4.4 Comparison of prediction performances of the third predictive method in 

Wells 1 & 2. 

 NRMSE 𝑹𝟐 

f0 f1 f2 f3 f0 f1 f2 f3 

Well 1 

Third method 

Conductivity 0.067 0.066 0.071 0.077 0.92 0.92 0.90 0.87 

Permittivity 0.093 0.088 0.089 0.086 0.69 0.72 0.66 0.62 

Well 2 

Third method 

Conductivity 0.072 0.077 0.094 0.105 0.92 0.91 0.87 0.83 

Permittivity 0.118 0.139 0.129 0.138 0.71 0.70 0.65 0.52 
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Figure 4.4 Comparison of the 8 original (dashed) dielectric dispersion logs with those 

predicted (solid) using the third prediction method in Well 1 (1-300 testing data). 
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4.2.4  Application of the third Predictive Method Trained and Tested in Well 1 to 

Well 2 and that in Well 2 to Well 1 

In the first case, 8 ANN models implemented in the third method are trained and 

tested in Well 1. Following that the third predictive method is deployed in Well 2. In the 

second case, the training and testing is performed in Well 2 and then deployed in Well 1. 

For both the cases, prediction performances of the third method when trained/tested and 

deployed in separate wells (Table 4.5) are lower than those obtained when trained and 

deployed in the same well, as described in Section 3.3. In comparison to the third method 

applied in Well 2, the prediction performances of the third method trained in Well 1 and 

deployed in Well 2 for conductivity dispersion logs change by 8.3%, 19.5%, 0% and -

3.8% and those for permittivity dispersion logs change by 5.1%, -5.0%, 15.5%, 2.2% for 

f0, f1, f2, and f3, respectively, in terms of NRMSE. In Wells 1 & 2, the formations have 

similar sequence of intervals but the thicknesses of the intervals vary between the two 

wells. On an average, prediction performance for conductivity dispersion logs drops by 

6% and permittivity dispersion logs drops by 4.5% compared to those obtained when the 

predictive method is trained and deployed in the same well. However, the results 

presented in this section show the feasibility of training the third predictive method in one 

well and then deploying it in another well for predicting DD logs. 

Table 4.5 Comparison of prediction performances of the third predictive method 

when trained/tested and deployed in separate wells. 

 NRMSE 𝑹𝟐 

f0 f1 f2 f3 f0 f1 f2 f3 

Method trained 

and tested in 

Conductivity 0.078 0.092 0.094 0.101 0.89 0.86 0.85 0.80 
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Well 1 and 

deployed in Well 

2 

Permittivity 0.124 0.132 0.131 0.141 0.67 0.67 0.63 0.48 

Method trained 

and tested in 

Well 2 and 

deployed in Well 

1 

Conductivity 0.103 0.092 0.105 0.116 0.85 0.84 0.82 0.79 

Permittivity 0.124 0.131 0.141 0.138 0.66 0.65 0.60 0.55 

 

4.2.5  Sensitivity Analysis 

For purposes of the sensitivity analysis, first I study the importance of the 15 

conventional logs, including the one synthetic discrete-valued log denoting the lithology 

type. NRMSEs for the generation of each conductivity and permittivity dispersion logs 

are summed together to compute the accuracy drop. Sensitivity of the ANN model for 

simultaneous generation to the conventional input logs are reported in Figure 4.5. ANN 

model is the most sensitive to the removal of sonic (DTC & DTS), neutron porosity 

(NPOR), discrete-valued lithology flag, medium resistivity (RLA3), and clay volume 

(VCL) log. ANN model is the least sensitive to the removal of shallow resistivity (RLA1 

and RLA2), rock density logs (RHOZ), and photoelectric factor (PEFZ). There are 6 

resistivity logs that sense different reservoir volumes, such that RLA0 is shallowest and 

RLA5 is deepest sensing resistivity log. Figure 4.5 indicates that the DD log generation 

is the most affected when RLA3 is removed and the least affected with RLA2 is removed. 

Resistivity logs should be the most important when predicting DD logs because of 

physical relations between resistivity, conductivity and permittivity. However, none of 

the resistivity logs with different depth of investigations were ranked high (Figure 4.5) 
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because of the high correlations between the various resistivity logs. In other words, no 

matter which resistivity log is removed to test its importance, the other five will provide 

sufficient information preventing the accuracy drop. The accuracy drop of removing all 

resistivity logs together is about 10.2% indicating highest dependence of dielectric 

dispersion logs on resistivity logs. 

 

Figure 4.5 Comparison of reduction in prediction performance when one of the 15 

conventional logs is removed one at a time. Each integer on y-axis identifies the 

removal of a specific log, such that 1: Lithology Flag; 2: GR; 3: DPHZ; 4: NPOR; 

5: PEFZ; 6: RHOZ; 7: VCL; 8: DTC; 9: DTS; 10-15: Resistivity at different depths 

of investigation (10: RLA0; 11: RLA1; 12: RLA2; 13: RLA3; 14: RLA4; 15: RLA5). 

After identifying the importance of each input log for the proposed log generation, 

I determine the smallest set of inputs required for maintaining the desirable prediction 

accuracy. This is determined by deleting inputs one by one starting with the least 

important input (Figure 4.6). I found that at least 11 most important inputs should be 

retained to maintain an accuracy drop less than 10%. This smallest set of 11 log inputs is 

obtained by removing RLA2, RHOZ, PEFZ and RLA1 (Figure 4.7). As shown in Figure 

4.7 (bottom-most bar), a set of inputs containing the 6 most important inputs results in 

17% drop in prediction accuracy. Notably, when the 6 resistivity logs of different depths 

of investigation are retained and other logs are deleted one by one based on their 
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importance, I observe accuracy drop less than 10% upon the deletion of the 6 least 

important logs, namely RHOZ, PEFZ, GR, DPHZ, VCL and Lithology. I conclude that 

the correlations of inputs with outputs and the correlations among the inputs control the 

prediction performance.   

 

Figure 4.6 Comparison of reduction in prediction performance by deleting inputs 

one by one based on the importance of an input for the proposed log generation. 

 

Figure 4.7 Comparison of reduction in prediction performance by deleting inputs 

(other than the 6 resistivity logs) one by one based on the importance of an input for 

the proposed log generation. 

 

To study the sensitivity of the prediction performance to noise in training/testing 

data, 20% Gaussian noise is added one a time to each conventional log input, to the 6 

resistivity log inputs together (i.e. 3.33% noise is added to each resistivity log), and to 8 

DD log outputs together (i.e. 2.5% noise is added to each DD log). The sensitivity to noise 
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in input log is ranked from top to bottom: Resistivity, DTS, GR, RHOZ, NPOR, VCL, 

DPHZ, DTC, and PEFZ (Figure 4.8). 20% of overall noise in the six resistivity logs 

results in maximum reduction in the prediction performance by 4.5%. Prediction 

performance is also highly sensitive to noise in GR, DTS, and DD logs. Sensitivity to 

noise in data and that to input itself follows similar trends for few logs, e.g. PEFZ, which 

is least important for the log generation.  

 

Figure 4.8 Comparison of reduction in prediction performance when 20% Gaussian 

noise is added to inputs and outputs one at a time. Integer-valued log indices are 

similar to those listed in Figure 4.7. Log #16 represents 6 resistivity logs together 

and Log #17 represents the 8 dielectric dispersion logs together. 

4.3 Conclusions 

Three predictive methods are developed to process 15 conventional logs and 

generate 8 synthetic DD logs, comprising 4 conductive dispersion and 4 permittivity 

dispersion logs. The first method simultaneously predicts the 8 DD logs. The second 

method first processes the 15 conventional logs to predict the 4 conductivity dispersion 

logs, which are then processed along with the 15 conventional logs to predict the 4 

permittivity dispersion logs. In comparison to the first method, prediction performance 

of the second method is 8.5% worse for conductivity dispersion and 6.2% better for 

permittivity dispersion. The third proprietary method exhibits the best predictive 
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performance for the generation of the 8 synthetic DD logs. In comparison to the first 

method, prediction performance of the third method is 0.8% better for conductivity 

dispersion and 8.5% better for permittivity dispersion. Performances of these models are 

adversely affected by the noise in the logs and the limited amount of data available for 

the training purposes. Training the third predictive method in one well and then deploying 

it in another well for generating the 8 DD logs is feasible, such that the NRMSE of 

conductivity dispersion logs drops by 6% and that of permittivity dispersion logs drops 

by 4.5% compared to the baseline. 
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Chapter 5: Comparative Study of Shallow Learning Models for Sonic 

Log Prediction 

5.1 Data Preparation and Processing 

5.1.1  Data Preparation 

In this thesis, six shallow learning models are applied to a shale reservoir in PB. 

Gamma ray log (GR), caliper log (DCAL), density porosity log (DPHZ), neutron porosity 

log (NPOR), photoelectric factor log (PEFZ), bulk density log (RHOZ), and laterolog 

resistivity logs at 6 depths of investigation (RLA0, RLA1, RLA2, RLA3, RLA4, RLA5) 

are selected as the easy-to-acquire conventional logs fed into the six models. Those input 

logs (Tracks 2-6, Figure 5.1) and DTC and DTS logs (Track 7, Figure 5.1) are used to 

train and test these models. One synthetic discrete-valued log is obtained from the 

lithology information of specific depth intervals. The formation is divided into several 

intervals according to lithology. The flag improves the prediction accuracy by setting an 

integer between [1, 13] along the well of 4240-feet. In summary, 13 inputs and 2 output 

logs were used for the training and testing purposes. 

There are two main criteria for selecting the logs as inputs: (1) the input logs and 

sonic logs should be influenced by similar petrophysical properties, and (2) the easy-to-

acquire input logs should be available in most of the wells as a part of the conventional 

logging plan. For example, DPHZ and NPOR are two logs measuring the porosity of the 

reservoir, which will affect DTC and DTS logs as well, and GR and DCAL are 

implemented in almost every well.  
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Figure 5.1 Track 1 is depth, Track 2 contains gamma ray and caliper logs, Track 3 

contains density porosity and neutron porosity logs, Track 4 contains formation 

photoelectric factor and bulk density logs, Track 5 is laterolog resistivity logs at 

shallow depths of investigation (RLA0, RLA1, RLA2), Track 6 is laterolog resistivity 

logs at deep depths of investigation (RLA3, RLA4, RLA5), Track 7 contains DTC 

and DTS logs. 

5.1.2  Data Preprocessing  

Before using logging data to train models, data preprocessing is necessary to make 

input and output logs more suitable for purposes of prediction. No obvious outliers are 

detected in logging data. Normalization is necessary to transform all the data to the range 

of [-1, 1].  

The dataset is split into two parts: training data and testing data. 80% of data are 

randomly selected as training data and the remaining 20% form the testing data for all 

models investigated in this thesis. The correlation coefficient (𝑅2) is used to compare the 

prediction performance of all models. 

5.2 Methodology 

Six shallow learning models are implemented for a comparative study of their 

prediction performances for generating the DTC and DTS logs by processing easy-to-

acquire conventional logs. The first four models are linear regression models with 
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different learning algorithms while the last two models are non-linear models with 

different structures. 

5.2.1  Ordinary Least Squares (OLS) Model 

OLS model is a linear regression model which optimizes the parameters of every 

input for the linear function (Draper and Smith, 2014). Parameters are calculated by 

minimizing the Sum of Squared Errors (SSE) between original outputs and predicted 

outputs in the model. The function of OLS model is formulated as  

 

𝑦𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖………………………………….....................(5.1) 

 

where 𝑦𝑖 are original outputs of the model, i is an integer ranging from 1 to n 

indicating distinct depth points, n is the number of observations (depth points along the 

length of the well, in this case),  𝑥𝑖 are inputs of the model, p is the number of inputs 

(easy-to-accquire conventional logs, in this case), 𝛽 are parameters of the OLS model, 

and 𝜀 is the error term. 𝛽 and ε are determined by the OLS algorithm in the model. The 

loss function SSE is formulated as 

 

SSE = ∑ (𝑦̂𝑖 − 𝑦𝑖)
2 = ∑ 𝜀𝑖

2𝑛
𝑖=1

𝑛
𝑖=1 ……………………….…………...........................(5.2) 

 

𝑦̂𝑖 = 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝……………………….…………...........................(5.3) 

 

where 𝑦̂𝑖  are predicted outputs of the model. Smaller SSE leads to better 

prediction performance. OLS model is such a simple model that people can use it for well 
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log prediction easily and quickly. However, due to its simplicity, it also has some 

weaknesses. OLS model will be unduly influenced by outliers if they cannot be deleted 

before model construction. SSE is sensitive to outliers because all errors will be squared. 

Besides, it is impossible for the OLS model to detect high correlation between inputs and 

reduce dimensions before the model construction, which adversely affects the 

computational time. 

5.2.2  Partial Least Squares (PLS) Model 

PLS model is also a regression model, which constructs linear combinations of 

original inputs as new ones for prediction in order to reduce dimension (Draper and 

Smith, 2014). It is a supervised technique designed specifically for regression. New inputs 

combined with original ones are called components. The number of components m (no 

more than inputs) are chosen to maximally summarize the covariance with outputs. The 

determination of m build a simple PLS model with fewer inputs than OLS model when 

there are high correlations of inputs between each other. The flowchart of PLS algorithm 

is designed in Figure 5.2. 
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Figure 5.2 Flowchart of the PLS algorithm. 

In Figure 5.2, X is the input matrix, Y is the original output matrix, m is the 

number of components,  𝛽̂  is the parameter of the model, 𝒁𝒎  is the iteration term, 

𝐵̂ 𝑎𝑛𝑑 𝛾 are the iteration parameters.  In the PLS algorithm, 𝛽̂ and 𝑦̂ are optimized for 

every m and the prediction performance will be measured and recorded for comparison. 

Smallest m with the best prediction performance is selected in the model. Sonic logs are 

predicted in the PLS model with constructed components, which are combinations of 

original inputs. 

PLS model is good at dealing with inputs with high correlations because it can 

decrease the number of inputs after combination. It will also outperform other regression 

models in some cases where the number of inputs is larger than that of observations 

(Draper and Smith, 2014). However, it may lose useful information for prediction when 
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constructing components from inputs, which leads to worse prediction performance than 

other models when there are no apparent redundant inputs. 

In this case, Figure 5.3 shows the result of tuning the number of components. 

When the number of components is equal to 13, the best prediction performance is 

obtained. The results show that there are no obvious redundant inputs in the PLS model. 

Theoretically, m=13 and the prediction accuracy is the same as that of OLS model. In 

addition, when m=8, the prediction accuracy of PLS model will drop to 0.80 and 0.78 for 

DTC and DTS prediction respectively, in terms of R2. 

 

Figure 5.3 Tuning the parameter of number of components in the PLS model. 

5.2.3  Least Absolute Shrinkage and Selection Operator (LASSO) Model 

LASSO model is a regression model combined with a penalty term λ (Kuhn and 

Johnson, 2013), which is introduced to constrain the number of nonzero parameters. The 

loss function of LASSO model is similar to SSE, which is formulated as 

 

𝐿 = ∑ (𝑦𝑖 − 𝑥𝑖
𝑇𝛽)2𝑛

𝑖=1 + 𝜆 ∑ |𝛽𝑞|𝑝
𝑞=1 = ∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1 + 𝜆 ∑ |𝛽𝑞|𝑝

𝑞=1 ………............(5.4) 
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As 𝜆 increases, the number of nonzero parameters of 𝛽 will decrease. LASSO 

model is designed for redundant inputs as well. larger 𝜆 in the loss function results in 

more zero parameters of 𝛽, which will eliminate the negative effect of redundant inputs 

when building the model. So LASSO model is similar to PLS model in dealing with large 

quantity of inputs. Unlike PLS model, which construct new components for better 

prediction performance, LASSO model just sets zero parameters to some inputs, which 

is easier to be understood and implemented. However, when there are no redundant 

inputs, LASSO model can fail to fully use all inputs for the best prediction performance 

unless 𝜆 is tuned to be 0. 

𝜆 is tuned from large to small numbers. Decreasing 𝜆 will increase ∑ |𝛽𝑞|𝑝
𝑞=1  in 

the model (Figure 5.4). In this case, when 𝜆 is smaller than 4.83, ∑ |𝛽𝑞|𝑝
𝑞=1  will increase 

significantly. So 𝜆 is optimized to be 4.83. For 𝜆 = 4.83, the prediction accuracy of 

LASSO model is 0.79 and 0.75 for DTC and DTS prediction respectively, in terms of R2.  
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Figure 5.4 Tuning the parameter of 𝛌 in the LASSO model. 

5.2.4  ElasticNet Model 

ElasticNet model is a generalization of LASSO model (Kuhn and Johnson, 2013), 

which introduces two penalty terms (𝜆1 and 𝜆2) in the loss function 

 

𝐿 = ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑛

𝑖=1 + 𝜆1 ∑ |𝛽𝑞|𝑝
𝑞=1 + 𝜆2 ∑ 𝛽𝑞

2𝑝
𝑞=1 ……………………….…..............(5.5) 

 

ElasticNet model is a stronger model than LASSO model for eliminating the 

effect of redundant inputs because there are two penalty terms in the loss function. Two 

parameters should be tuned when building the model. Similar to the LASSO model, it 

may not fully use all inputs for prediction when there are no redundant inputs in the case. 

It can also fail to make full use of all inputs for better prediction performance when there 

are no redundant inputs in the case. 
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In this case, 𝜆1 is tuned to be 4.8, which is close to 𝜆 in the LASSO model and 𝜆2 

is tuned to be 0.1, which is very small. The prediction accuracy of ElasticNet model is 

0.79 and 0.75 for DTC and DTS prediction respectively, in terms of R2. When there is 

no need to set stronger penalties in the loss function (𝜆2 ≈ 0), LASSO and ElasticNet 

will be close. When stronger penalties are needed in the loss function for a large number 

of redundant inputs. ElasticNet model will outperform LASSO model. 

5.2.5  Multivariate Adaptive Regression Splines (MARS) Model 

The first four models are all linear regression models. MARS model is a 

regression model but it is not based on simple linear combinations of inputs (Kuhn and 

Johnson, 2013). MARS model can fit separate linear regressions  for different ranges with 

every input. The slopes as well as the number and range of the separate regions are 

estimated in the model. The combination of linear regressions for different ranges with 

all inputs will provide a curve for every predicted output, which takes non-linearities into 

consideration. The function of MARS model is formulated as 

 

𝑦̂ = ∑ 𝛼𝑞𝐵𝑞(𝑥𝑞)𝑝
𝑞=1 ……………………….…………………....................................(5.6) 

 

where 𝐵𝑞(𝑥𝑞) are hinge functions and 𝛼𝑞  are parameters of 𝐵𝑞(𝑥𝑞). A hinge 

function has the form of max (0, x − C) and max(0, C − x), where C is called knot of 

hinge functions, which is a constant for every hinge function. MARS model automatically 

estimates 𝛼𝑞 and knots of hinge functions for the best prediction performance in the case. 

If the hinge function is a constant for one input, it means that this input is not used in the 

model. As a result, there is one term (the constant) for the input if it is not used and there 
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are two terms (𝛼𝑞1 max(0, x − C), 𝛼𝑞2 max(0, C − x)) for the input if it is used in a 

simple MARS model. The number of terms in MARS model as well as its 𝛼𝑞 and knots 

will be determined when training the model. MARS model performs better than linear 

regression models when there are strong non-linearities between inputs and outputs. 

However, it can also be negatively affected by outliers since it is sensitive to them. After 

deleting outliers, MARS model will not perform worse than linear regression models 

theoretically because it can also deal with redundant inputs with the constant term, which 

is suitable for both linear and non-linear problems. 

In this case, 21 terms and 10 inputs are tuned (RLA0, RLA4, RLA5 are not used) 

with the highest prediction accuracy of MARS model to be 0.85 and 0.83 for DTC and 

DTS prediction respectively, in terms of R2. Although three inputs (RLA0, RLA4, 

RLA5) of high correlation with other inputs (RLA1, RLA2, RLA3) are not used in MARS 

model, it still performs better than four linear regression models.  

 

Figure 5.5 Tuning the parameter of number of terms in the MARS model. 
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5.2.6  Artificial Neural Network (ANN) Model 

ANN model is a widely-used machine learning model with various structures, 

algorithms and applications.  In the ANN model, the first layer is input layer and the last 

layer is output layer. The number of hidden layers in the middle and the number of 

neurons in each hidden layer should be decided according to the number of inputs, outputs 

and the complexity of the problem. An arithmetic sequence of the number of neurons in 

each hidden layer generates high prediction accuracy (Demuth at al. 2014). In my case, 

there are 13 inputs and 2 outputs for sonic log prediction, two hidden layers is set in my 

model, which is enough for function approximation problems, so that there are 9 neurons 

in the first hidden layer and 5 neurons in the second hidden layer. The ANN model with 

3 hidden layers does not outperform the one with 2 hidden layers (Figure 5.6). 

 

Figure 5.6 Comparison of prediction performances of ANN models with different 

number of hidden layers. 

Several algorithms can be utilized as the training function to adjust weights and 

biases of the neurons for minimizing certain loss functions of the ANN model. Best 

performing ANN model requires the minimization of the loss functions using the training 

functions. Levenberg-Marquardt (LM) backpropagation (Chamjangali et al., 2007) and 
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Conjugate Gradient (CG) backpropagation (Cheng et al., 2005) are the two most widely 

used training functions. CG backpropagation is applied as the training function after 

comparison of training time with two algorithms. Training time of CG backpropagation 

is about the half compared with that of LM backpropagation. To be specific, scaled CG 

backpropagation (Cheng et al., 2005) is selected and tested as the best training function 

for the ANN models implemented in this thesis.  

Overfitting is the main problem when minimizing the value of loss function 

during iterations. ANN model cannot recognize the appropriate relationships between 

inputs and outputs because of overfitting. The following loss function is designed to avoid 

overfitting, which is expressed as 

 

𝐿 = ∑ (𝑦𝑖,𝑗 − 𝑦̂𝑖,𝑗)2𝑛
𝑖=1 + 𝜆 ∑ 𝜎𝑗

2𝑜
𝑗=1 ……………………….…………........................(5.7) 

 

where n is the number of depths in a well, j = 1 and 2 represents DTC and DTS, 

respectively, o = 2 is the total number of output logs, 𝜆 is the penalty parameter, 𝑦𝑖,𝑗 is 

the sonic log j measurement at depth i, 𝑦̂𝑖,𝑗 is the of output log j prediction at depth i, and 

𝜎𝑗
2 is the variance of the predicted output log j, such that 

 

𝜎𝑗
2 =

1

𝑛
∑ (𝑦̂𝑖,𝑗 − 𝜇𝑗)2𝑛

𝑖=1 ……………………….…………..........................................(5.8) 

 

where 𝜇𝑗  is the mean of the predicted output log j. Regularization method is 

utilized to introduce a penalty parameter in the loss function to avoid overfitting and 

ensure a balanced bias-variance tradeoff. 𝜆 ranges from 0 to 1, which is set based on 
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extensive numerical experiments. After tuning 𝜆, 0.01 is selected, which is a very small 

number because of simplicity of the model.  

In this case, the prediction performance of ANN model is 0.87 and 0.85 for DTC 

and DTS prediction respectively, in terms of R2. Although it is more accurate than MARS 

model, ANN model takes more computational time as well. 

5.3 Case Study 

5.3.1  Prediction Results of Six Models 

The comparison of prediction performance of six models are shown in Table 5.1 

and visualized in Figure 5.7. In Well 1, ANN model performs the best for predicting DTC 

and DTS logs with 𝑅2  of 0.87 and 0.85, respectively (Figure 5.8). MARS performs 

second among all models, followed by OLS and PLS. LASSO and ElasticNet perform 

the worst. Six models are then deployed in the 1460-feet depth interval of Well 2 in the 

same reservoir. The prediction accuracy ranking does not change much. But PLS 

performs worse than OLS and ElasticNet performs worse than LASSO. Every model has 

a different accuracy drop when trained in Well 1 and deployed in Well 2 but there 

accuracy ranking keep almost the same, for example, ANN performs the best both in Well 

1 and Well 2. The accuracy drop of PLS is much larger than that of others, especially 

LASSO and ElasticNet, which show that the combination of original inputs may not be a 

stable method to decrease dimension of inputs. 

Computational time of six models is also compared for the balance of the 

simplicity of models and their accuracy (Table 5.2). ANN cost the most in computational 

time. PLS is the second because the combination of inputs cost a lot of time. The rest 

models all cost little time in training. 
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Table 5.1 Prediction performance of six models trained and tested in Well 1 and 

applied in Well 2. 

Accuracy OLS PLS LASSO ElasticNet MARS ANN 

Well 1 DTC 0.830 0.830 0.791 0.791 0.847 0.870 

DTS 0.803 0.803 0.756 0.753 0.831 0.848 

Well 2 DTC 0.804 0.790 0.778 0.774 0.816 0.850 

DTS 0.794 0.769 0.763 0.755 0.806 0.840 

 

 

Figure 5.7 The comparison of prediction performance of six models trained and 

tested in Well 1 and deployed in Well 2. 

Table 5.2 Comparison of computational time for training the six models in Well 1. 

 OLS PLS LASSO ElasticNet MARS ANN 

Computational 

time (s) 

0.09 3.57 0.03 0.04 0.14 4.17 
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Figure 5.8 Comparison of original (dashed) and predicted (solid) DTC and DTS logs 

in Well 1, when an ANN model is trained and tested in Well 1 to generate the DTC 

and DTS logs. 

 

Figure 5.9 Comparison of original (dashed) and predicted (solid) DTC and DTS logs 

in Well 2, when an ANN model is trained and tested in Well 1 and deployed in Well 

2 to generate the DTC and DTS logs. 

5.3.2  Analysis of the Results 

ANN model performs the best among six models, following by MARS model the 

second, OLS and PLS models with medium accuracy, and LASSO and ElasticNet models 
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with low accuracy. There are several reasons for the prediction performance of six models 

being like that: 

The complex structure of the ANN model with its multiple neurons and layers 

make it the best performing model among the six models. 

MARS model performs better than the other four regression models because 

MARS model take non-linearities into consideration while the other four models are all 

linear regression models. 

OLS and PLS models have the same prediction performance because m is tuned 

to be equal to p in PLS model, which implies that there are no obvious redundant inputs. 

When the number of constructed components is the same as the number of original inputs, 

the prediction performance of the two models must be the same theoretically. 

The accuracy of LASSO and ElasticNet models are the same because their penalty 

parameters are tuned to be close to each other (𝜆 ≈ 𝜆1 and 𝜆2 ≈ 0). When 𝜆2 = 0, the 

ElasticNet model becomes the LASSO model. 

OLS and PLS models outperform LASSO and ElasticNet models because the 

former two utilize all inputs to build models while the latter two penalize inputs by 

different parameters.  There are no obvious redundant inputs so that penalty is not 

necessary. 

The prediction performances of six models for DTC are always better than those 

for DTS. One possible reason is that the higher speed of compressional wave leads to 

cleaner acquisition of DTC without the interference of shear waves. Another possible 

reason is that DTC is less affected by cracks, unconsolidated formations and borehole 

fluids than DTS, which makes DTC more reliable with less noise (Cheng et al., 1992).  
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The structure of models is more important than algorithms for good prediction 

performance. For example, both non-linear models perform better than four linear models 

although similar loss functions are applied in them. 

5.3.3  Error Distribution Comparison of Prediction Performance for Six Models 

Relative Error (RE) is used to evaluate the prediction performance as well. RE is 

formulated as 

 

𝑅𝐸 =
|𝑃−𝑀|

𝑀
……………………….…………..............................................................(5.9) 

 

where P is the predicted value and M is the measured value. Mean RE for DTC 

and DTS are calculated at all depths, resulting in one RE at each depth. When mean RE 

is less than 0.1, the depth belongs to the category of good prediction performance. When 

mean RE is at the range of [0.1, 0.2], the depth belongs to the category of medium 

prediction performance. When mean RE is larger than 0.2, the depth belongs to the 

category of poor prediction performance. Poor prediction performance happens in every 

model from around 1250 to 1800 ft below the top of the formation depth under 

investigation. Medium prediction performance happens in every model from around 3800 

to 4240 ft in depth. In conclusion, all models perform similarly at same depths. At the 

depths corresponding to 1250 to 1800 ft in depth, there should be noise either in inputs 

or outputs. 

Three statistical measurements are used to analyze the relationship between 

statistical properties of logs and prediction performance. The 4240-feet depth interval in 

Well 1 is divided into four big parts (I: 0-1250 ft; II: 1250-1800 ft; III: 1800-3800 ft; IV: 
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3800-4240 ft below the top of the formation depth under investigation). From prediction 

performance of six models in Figure 5.10, part I and III belong to good prediction 

performance, part II belongs to poor prediction performance and part IV belongs to 

medium prediction performance. Three statistical measurements are selected for analysis 

including mean (𝜇), coefficient of variation (𝑆𝑑/𝜇) and the absolute value of skewness 

(|s|). 𝑆𝑑/𝜇 is standard deviation over mean value. In this case, larger 𝜇 of GR, porosity, 

DTC, DTS and smaller 𝜇 of bulk density tend to result in poorer prediction performance. 

𝑆𝑑/𝜇 and skewness do not affect prediction performance much. High absolute value of 

skewness of porosity tends to result in poorer prediction performance. 
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Figure 5.10 Comparison of RE distribution in six models all through the 4240-feet 

depth interval in Well 1, black represents good prediction performance depths, gray 

represents medium prediction performance depths, white represents poor 

prediction performance depths. 
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Table 5.3 Statistical description of all inputs and outputs (I: 0-1250 ft; II: 1250-1800 

ft; III: 1800-3800 ft; IV: 3800-4240 ft).  

 𝝁 𝑺𝒅/𝝁 |s| 

I II III IV I II III IV I II III IV 

GR 68.217 95.620 70.666 83.113 0.430 0.361 0.364 0.259 1.430 0.402 0.616 0.779 

DCAL 1.909 0.786 0.765 0.120 0.543 0.132 0.412 1.565 1.511 0.166 1.332 0.222 

DPHZ 0.089 0.141 0.064 0.082 0.468 0.353 0.550 0.347 0.183 0.533 0.191 1.214 

NPOR 0.095 0.177 0.092 0.116 0.427 0.410 0.513 0.312 0.237 0.403 0.166 0.396 

PEFZ 3.194 3.303 3.467 2.923 0.305 0.184 0.243 0.147 1.668 1.043 1.278 1.763 

RHOZ 2.566 2.483 2.607 2.578 0.026 0.032 0.022 0.018 0.183 0.533 0.191 1.213 

RLA0 0.031 0.035 0.033 0.033 0.120 0.024 0.059 0.033 0.075 0.667 0.481 0.049 

RLA1 11.670 15.717 23.007 16.533 0.618 0.412 0.476 1.101 0.703 0.754 0.168 2.279 

RLA2 33.677 47.158 86.168 21.517 1.369 0.940 0.932 1.714 2.378 1.310 1.865 5.541 

RLA3 61.603 82.055 143.065 23.881 1.825 1.222 1.148 1.967 3.193 1.956 1.929 6.489 

RLA4 134.719 117.122 228.613 24.890 2.781 1.555 1.828 2.190 5.710 3.326 4.705 7.641 

RLA5 187.924 129.367 247.366 24.707 2.894 1.472 2.084 2.108 6.013 3.541 6.018 7.229 

DTC 64.040 78.444 64.504 71.172 0.080 0.132 0.103 0.064 0.065 0.753 0.187 0.572 

DTS 109.783 126.857 108.676 118.544 0.080 0.100 0.076 0.058 1.251 0.419 0.191 0.423 

 

5.4 Sensitivity Study 

5.4.1  Noise of Inputs and Outputs  

Every input log except the flag is added with 10% Gaussian noise separately. The 

flag obtained from interval depths is not included because they are classified into 13 
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categories with 13 integers. All data of the flag will be meaningless when 10% noise is 

added to them because they will be real numbers instead of integers. 10% means that the 

standard deviation of the noise distribution, which is Gaussian distribution, is equal to 

10% of the input value itself. For every single value of every input, the noise distribution 

is not the same and one value of noise is selected randomly from the Gaussian 

distribution. In addition, the noise of every input value is different every time the noise 

the randomly selected from the noise distribution. As a result, parallel computing is used 

in this case to set random noise on logs for 50 times and average the result. The effect of 

noise of every input log on prediction accuracy is recorded and their ranking sequence is 

shown in Figure 5.11. Generally, GR is affected the most by noise and the rest are 

similarly affected by noise. This does not mean that GR is the most important and the rest 

are of similar importance. For example, RLA0-5 are of high correlation between each 

other and one of them with noise will not affect the prediction performance much when 

others exist. So are DPHZ and NPOR. The accuracy drop comparison show that all input 

logs are important to prediction performance and they are all sensitive to noise.  

DTC and DTS logs are added with 10% and 20% Gaussian noise separately as 

well. When DTC is added with noise, the prediction accuracy of DTS will not drop, and 

vice versa. 10% noise is added to DTC and DTS logs and accuracy is dropped by 41.4% 

and 52.8% respectively. 20% noise is then added to DTC and DTS logs as well and 

accuracy is dropped by 73.3% and 81.0% respectively. In conclusion, outputs are much 

more sensitive to noise than inputs. DTS is more sensitive to noise than DTC. 
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Figure 5.11 Comparison of reduction in prediction performance when 10% 

Gaussian noise is added to inputs one at a time in the ANN model. Each integer on 

y-axis identifies the removal of a specific log (2: GR; 3: DCAL; 4: DPHZ; 5: NPOR; 

6: PEFZ; 7: RHOZ; 8: RLA0; 9: RLA1; 10: RLA2; 11: RLA3; 12: RLA4; 13: 

RLA5). 

5.4.2  Comparison of Models with Noisy Inputs 

10% Gaussian noise is added to all inputs together before training and testing six 

shallow learning models. Accuracy drop of OLS, LASSO and ElasticNet models are 

lower than that of PLS, MARS and ANN models. The former three models (OLS, LASSO 

and ElasticNet) are less sensitive to noise because they are all simple linear regressions 

with simple model structures. In LASSO and ElasticNet models, penalty parameters are 

introduced into loss functions without change of model structures. As a result, when noise 

is added to inputs, weights and biases of these models will not change much (around 3% 

accuracy drop in terms of 𝑅2). The latter three models (PLS, MARS and ANN) are, 

however, more sensitive to noise. PLS model constructs a set of linear combinations of 

original inputs in order to reduce dimension, which will be negatively affected by noise 

of inputs. MARS and ANN models both consider non-linearities during the training step. 

Noise of inputs will be more detected by them, treating noise as possible relationship 

between inputs and outputs, which is overfitting. In conclusion, simple linear regression 
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models are more robust against noise while complicated models tend to be more sensitive 

to noise. 

 

Figure 5.12 Comparison of reduction in prediction performance when 10% 

Gaussian noise is added to all inputs in six models. 

5.4.3  Comparison of Models with Fewer Data 

Three different sizes of dataset are used to train and test the six models separately. 

8481 data are the entire dataset in Well 1. About half (4000 data) of them are randomly 

selected from the entire dataset as the second dataset. One quarter (2000 data) dataset are 

randomly selected from the second one as the third one to train six models. Accuracy in 

terms of 𝑅2  drops each time when the size of dataset decreases in six models. OLS, 

LASSO and ElasticNet models are less sensitive to dataset size while PLS, MARS and 

ANN models will be more affected by it. 2000 data is not a small size in a linear regression 

problem with 13 inputs and 2 outputs. As a result, the prediction performance of the 

former three mentioned models will not change much when dataset enlarges more than 

that. However, the prediction performance of the latter three mentioned models will 

improve apparently when dataset enlarges, in which more data are needed for robust non-

linear models or the linear model with construction of new inputs. It is similar to their 
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performance to noise of inputs. models which are more robust to noise tend to be more 

robust to dataset size, and vice versa. 

 

Figure 5.13 Comparison of reduction in prediction performance when different sizes 

of dataset are used in six models. 

5.5 Conclusions 

Six shallowing learning models are selected to predict DTC and DTS logs at the 

same time processing 13 conventional and easy-to-acquire logs from the well in PB. OLS, 

PLS, LASSO and ElasticNet models are four linear regression models while MARS and 

ANN can also deal with problems of high non-linearities. It is the first time that a data-

driven method for purposes of shale reservoir geomechanical characterization was 

proposed based on an extensive comparison of the prediction performances of six shallow 

learning models. After comparison, ANN model performs the best for predicting DTC 

and DTS logs, with 𝑅2 of 0.87 and 0.85 in Well 1 and with 𝑅2 of 0.85 and 0.84 in Well 

2, respectively. In this case, larger 𝜇  of GR, porosity, DTC, DTS, smaller 𝜇  of bulk 
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density and larger absolute value of skewness of porosity tend to result in poorer 

prediction performance. Prediction performance for DTC is always better than that for 

DTS because of higher speed and more reliability. Simple linear regression models tend 

to be more robust to both noise and dataset size while complicated models tend to be 

more sensitive to them.  
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Chapter 6: Conclusions, Limitations and Recommendations 

The objective of this research is to apply machine learning methods to 

synthetically generate certain well logs, such as NMR, dielectric dispersion and sonic 

logs.  

In the first part, 12 conventional logs, 10 inversion-derived logs, and 5 qualitative 

log-derived flags were processed by two distinct neural network models to generate the 

NMR 𝑇2  distribution responses, which approximate the in-situ fluid-filled pore size 

distribution in hydrocarbon-bearing BPS. The first predictive model generates 𝑇2 

distribution discretized into 64 bin amplitudes, whereas the second predictive model 

generates the 6 fitting parameters that characterize the 𝑇2 distribution as a sum of two 

Gaussian distributions. The first predictive model performs more accurately, exhibiting 

median 𝑅2 of 0.8549 during testing, compared to the second one, exhibiting median 𝑅2 

of 0.7584. However, the second model has lower computational cost compared to the first 

model. Input data used in my predictive models were limited in quantity and prone to 

noise and uncertainty due to the subsurface borehole conditions in which they were 

acquired. Nonetheless, the two predictive models exhibit good prediction performance. 

A few reservoir properties, ϕ𝑁, 𝑇2,𝑔𝑚 and 𝑇2,𝑔𝑚𝜙𝑁
2 , were derived from the synthetic 𝑇2 

distribution at reasonable accuracies. Complicated pore size distribution caused by 

complex grain size distribution and textures can impede good prediction performance of 

NMR 𝑇2  distribution. Different thickness of intervals is also one reason for different 

prediction accuracy. This study provides a first-of-its-kind technique to generate in-situ 

fluid-filled pore size distribution, approximated as NMR 𝑇2 distribution, in hydrocarbon-

bearing shale reservoirs using neural network models that process conventional easy-to-
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acquire logs and inversion-derived mineral volume fractions and fluid saturations. The 

proposed method holds value in the absence of NMR logging tool due to financial and 

operational challenges.  

In the second part, three neural-network-based predictive methods are developed 

to process 15 conventional logs and generate 8 synthetic dielectric dispersion (DD) logs, 

comprising 4 conductive dispersion and 4 permittivity dispersion logs. The first method 

simultaneously predicts the 8 DD logs. The second method first processes the 15 

conventional logs to predict the 4 conductivity dispersion logs, which are then processed 

along with the 15 conventional logs to predict the 4 permittivity dispersion logs. In 

comparison to the first method, prediction performance of the second method is 8.5% 

worse for conductivity dispersion and 6.2% better for permittivity dispersion. The third 

method exhibits the best predictive performance for the generation of the 8 synthetic DD 

logs. In comparison to the first method, prediction performance of the third method is 

0.8% better for conductivity dispersion and 8.5% better for permittivity dispersion. 

Performances of these models are adversely affected by the noise in the logs and the 

limited amount of data available for the training purposes. High water salinity in 

formations impedes good predictive performance. Inclusion of NMR logging data does 

not improve the predictive performance. NRMSE is a better indicator of predictive 

performance compared to 𝑅2 in this case. Low resistivity, high porosity, high relative 

dielectric permittivity, large dielectric dispersion, and low skewness and large coefficient 

of variation of conventional log inputs facilitate high prediction performance for the 8 

synthetic dielectric dispersion logs. Training the third predictive method in one well and 

then deploying it in another well for generating the 8 DD logs is feasible, such that the 
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NRMSE of conductivity dispersion logs drops by 6% and that of permittivity dispersion 

logs drops by 4.5% compared to the baseline. Resistivity logs of various depths of 

investigation, neutron porosity log, and compressional and shear travel time logs are the 

most important inputs for the DD log generation. Deep resistivity logs are more important 

than the shallow ones for the prediction. Noise in resistivity, gamma ray, shear travel 

time, and dielectric dispersion logs adversely influences the prediction performance. 

In the third part, six shallowing learning models are selected to predict DTC and 

DTS at the same time processing 13 conventional and easy-to-acquire logs from the well 

in a shale reservoir in PB. OLS, PLS, LASSO and ElasticNet models are four linear 

regression models while MARS and ANN can also deal with problems of high non-

linearities. It is the first time that a data-driven method for purposes of shale reservoir 

geomechanical characterization was proposed based on an extensive comparison of the 

prediction performances of six shallow learning models. After comparison, ANN model 

performs the best both in Well 1 and Well 2. Some conclusions can be made after result 

analysis and sensitivity analysis: (1) in this case, larger 𝜇 of GR, porosity, DTC, DTS, 

smaller 𝜇 of bulk density and larger absolute value of skewness of porosity tend to result 

in poorer prediction performance; (2) the structure of models is more important than 

algorithms for good prediction performance; (3) prediction performance for DTC is 

always better than that for DTS because of higher speed and more reliability; (4) simple 

linear regression models tend to be more robust to both noise and dataset size while 

complicated models tend to be more sensitive to them. This study will enable people to 

obtain improved geomechanical characterization under data constraints by developing 

and identifying the best performing machine-learning model for the prediction of DTC 
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and DTS logs when sonic logging tool is not available due to operational and financial 

challenges. 

However, there are also some limitations and recommendations for future work: 

(1) Inputs are selected when they are available and easy to be acquired. The most related 

inputs are selected according to physical properties. The most related inputs can be 

selected with the combination of other algorithms and statistical methods for prediction 

of specific well logs. 

(2) The number of wells and the size of data are limited in this thesis. If more wells in a 

reservoir are available, models can be trained and tested in one well and deployed in other 

wells for verification. 

(3) Limited analyzation is done for the importance of inputs as well as the effect of noise. 

Further research can be done to analyze the importance of inputs to prediction 

performance and effect of noise on prediction performance for different well logs as well 

as their theoretical supporting reasons. 

(4) Limited analyzation is done for the statistical characteristics of both inputs and 

outputs. Further research can be done to analyze the relationship between statistical 

characteristics of both inputs and outputs and prediction performance of well logs. 

(5) Only different ANN models are compared in the first and second research. More 

models can be built and compared together for predicting NMR 𝑇2 distribution and DD 

logs. The structures and algorithms of models should be analyzed to find theoretical 

supporting reasons to select the best model. 
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Appendix 

ANN: Artificial Neural Network 

AT10: Induction Resistivity Logs at 10-inch 

AT90: Induction Resistivity Logs at 90-inch 

BP: Back Propagation 

BPS: Bakken Petroleum System 

BS: Bakken Shale 

CG: Conjugate Gradient algorithm 

CMIS: Committee Machine with Intelligent Systems 

CVNN: Complex-Valued Neural Network 

DCAL: Caliper Log 

DD: Dielectric Dispersion 

DPHZ: Density Porosity Log 

DTC: Delta-T Compressional Log 

DTS: Delta-T Shear Log 

EM: Electromagnetic (waves) 

GR: Gamma Ray Log 

KNN: K-Neareat Neighbor algorithm 

LASSO: Least Absolute Shrinkage and Selection Operator 

LBS: Lower Bakken Shale 

LM: Levenberg-Marquardt algorithm 

MARS: Multivariate Adaptive Regression Splines 

MBS: Middle Bakken Shale 

NMR: Nuclear Magnetic Resonance 

NPOR: Neutron Porosity Log 

NRMSE: Normalized Root Mean Square Error 

OLS: Ordinary Least Squares 

PB: Permian Basin 

PEFZ: Photoelectric Factor Log 

PLS: Partial Least Squares 

RE: Relative Error 

RHOZ: Bulk Density Log 

RLA0-5: Laterolog resistivity at different depths of investigation 

SSE: Sum of Squared Errors 

TF: Three Forks 

TOC: Total Organic Carbon 

UBS: Upper Bakken Shale 

VCL: Volume of Clay Log 
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VPVS: Shear to Compressional Velocity Ratio 

 


