767 research outputs found

    Scalable parallel communications

    Get PDF
    Coarse-grain parallelism in networking (that is, the use of multiple protocol processors running replicated software sending over several physical channels) can be used to provide gigabit communications for a single application. Since parallel network performance is highly dependent on real issues such as hardware properties (e.g., memory speeds and cache hit rates), operating system overhead (e.g., interrupt handling), and protocol performance (e.g., effect of timeouts), we have performed detailed simulations studies of both a bus-based multiprocessor workstation node (based on the Sun Galaxy MP multiprocessor) and a distributed-memory parallel computer node (based on the Touchstone DELTA) to evaluate the behavior of coarse-grain parallelism. Our results indicate: (1) coarse-grain parallelism can deliver multiple 100 Mbps with currently available hardware platforms and existing networking protocols (such as Transmission Control Protocol/Internet Protocol (TCP/IP) and parallel Fiber Distributed Data Interface (FDDI) rings); (2) scale-up is near linear in n, the number of protocol processors, and channels (for small n and up to a few hundred Mbps); and (3) since these results are based on existing hardware without specialized devices (except perhaps for some simple modifications of the FDDI boards), this is a low cost solution to providing multiple 100 Mbps on current machines. In addition, from both the performance analysis and the properties of these architectures, we conclude: (1) multiple processors providing identical services and the use of space division multiplexing for the physical channels can provide better reliability than monolithic approaches (it also provides graceful degradation and low-cost load balancing); (2) coarse-grain parallelism supports running several transport protocols in parallel to provide different types of service (for example, one TCP handles small messages for many users, other TCP's running in parallel provide high bandwidth service to a single application); and (3) coarse grain parallelism will be able to incorporate many future improvements from related work (e.g., reduced data movement, fast TCP, fine-grain parallelism) also with near linear speed-ups

    Telemetry downlink interfaces and level-zero processing

    Get PDF
    The technical areas being investigated are as follows: (1) processing of space to ground data frames; (2) parallel architecture performance studies; and (3) parallel programming techniques. Additionally, the University administrative details and the technical liaison between New Mexico State University and Goddard Space Flight Center are addressed

    Optimal Guaranteed Services Timed Token (OGSTT) Media Access Control (MAC) Protocol for Networks That Support Hard Real-Time and Non Real-Time Traffic

    Get PDF
    In networks that support real-time traffic and non-real-time traffic over the same physical infrastructure, the challenge to the Media Access Control (MAC) protocol of such network is the ability to support  the different traffic without compromising quality of service (QoS) for any of them. Generally, timed-token MAC protocols group the diverse real-time traffic into one category and then dedicate certain portion of the available bandwidth to them. At the same time, some bandwidth are left unassigned but available to the non real-time traffic. The unassigned bandwidth, and in some cases, the unused bandwidth left by the real-time traffic are assigned to the non-real-time traffic on best effort basis. In this paper, Optimal Guaranteed Services Timed Token (OGSTT) MAC protocol is developed and analyzed. In order to provide better support for both real-time traffic and non-real-time on the same local area network, OGSTT employs the timed-token mechanisms in the Timely-Token protocol along with that of Budget Sharing Token (BuST) protocol. Some bounds on the behavior of OGSTT protocol are discussed along with the ability of OGSTT protocol to support real-time and non-real time traffic. In particular, the paper demonstrated that the performance achieved by OGSTT is better than the Timely-Token and BuST. Furthermore, OGSTT protocol can be incorporated into the Ethernet network to provide real-time performance guarantees to multimedia applications and hard and soft real-time traffic

    Deep Space Network information system architecture study

    Get PDF
    The purpose of this article is to describe an architecture for the Deep Space Network (DSN) information system in the years 2000-2010 and to provide guidelines for its evolution during the 1990s. The study scope is defined to be from the front-end areas at the antennas to the end users (spacecraft teams, principal investigators, archival storage systems, and non-NASA partners). The architectural vision provides guidance for major DSN implementation efforts during the next decade. A strong motivation for the study is an expected dramatic improvement in information-systems technologies, such as the following: computer processing, automation technology (including knowledge-based systems), networking and data transport, software and hardware engineering, and human-interface technology. The proposed Ground Information System has the following major features: unified architecture from the front-end area to the end user; open-systems standards to achieve interoperability; DSN production of level 0 data; delivery of level 0 data from the Deep Space Communications Complex, if desired; dedicated telemetry processors for each receiver; security against unauthorized access and errors; and highly automated monitor and control

    Quality of Service over Specific Link Layers: state of the art report

    Get PDF
    The Integrated Services concept is proposed as an enhancement to the current Internet architecture, to provide a better Quality of Service (QoS) than that provided by the traditional Best-Effort service. The features of the Integrated Services are explained in this report. To support Integrated Services, certain requirements are posed on the underlying link layer. These requirements are studied by the Integrated Services over Specific Link Layers (ISSLL) IETF working group. The status of this ongoing research is reported in this document. To be more specific, the solutions to provide Integrated Services over ATM, IEEE 802 LAN technologies and low-bitrate links are evaluated in detail. The ISSLL working group has not yet studied the requirements, that are posed on the underlying link layer, when this link layer is wireless. Therefore, this state of the art report is extended with an identification of the requirements that are posed on the underlying wireless link, to provide differentiated Quality of Service

    Design and Analysis of RT-Ring: A Protocol for Supporting Real-Time Communications

    Get PDF
    Distributed applications with quality of service (QoS) requirements are more and more used in several areas (e.g., automated factory networks, embedded systems, conferencing systems). These applications produce a type of traffic with hard timing requirements, i.e., transmissions must be completed within specified deadlines. To handle these transmissions, the communication system must use real-time protocols to provide a communication service that is able to satisfy the QoS requirements of the distributed applications. In this paper, we propose a new real-time protocol, called RT-Ring, able to support transmissions of both real-time and generic traffic over a ring network. RT-Ring provides both network guarantees and high network resource utilization, while ensuring the compatibility with the emerging differentiated service architectures. Network guarantees are fully proved and high network utilization is highlighted by a comparative study with the FDDI protocol. This comparison shows that RT-Ring network capacities are greater than the corresponding FDDI capacities. In fact, by assuming the FDDI frames with a length equal to the RT-Ring slot size and by using the same traffic load we show that the capacities of FDDI are equal to the lower bound capacities of RT-Ring. Index Terms Real-time protocol, quality of service (QoS) traffic, worst case analysis

    Space Station Freedom data management system growth and evolution report

    Get PDF
    The Information Sciences Division at the NASA Ames Research Center has completed a 6-month study of portions of the Space Station Freedom Data Management System (DMS). This study looked at the present capabilities and future growth potential of the DMS, and the results are documented in this report. Issues have been raised that were discussed with the appropriate Johnson Space Center (JSC) management and Work Package-2 contractor organizations. Areas requiring additional study have been identified and suggestions for long-term upgrades have been proposed. This activity has allowed the Ames personnel to develop a rapport with the JSC civil service and contractor teams that does permit an independent check and balance technique for the DMS

    Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)

    Get PDF
    An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined

    Static-Threshold-Limited on-Demand Guaranteed Service for Asynchronous Traffic in Timely-Token Protocol

    Get PDF
    In this paper, an improved Timely-Token protocol with enhanced best-effort service for improved capacity allocation to the asynchronous (that is, non real-time) traffic is proposed. Through analytical approach and the use of computer simulations, the improved Timely-Token protocol is compared with the existing Timely-Token protocol. In particular, if AT denotes a threshold value, then, when compared to the existing Timely-Token protocol, the improved protocol will allocate additional average of AT time units to the asynchronous traffic in every cycle
    corecore