1,456 research outputs found

    Improved local search approaches to solve the post enrolment course timetabling problem

    Get PDF
    In this work, we are addressing the post enrollment course timetabling (PE-CTT) problem. We combine different local search algorithms into an iterative two stage procedure. In the first stage, Tabu Search with Sampling and Perturbation (TSSP) is used to generate feasible solutions. In the second stage, we propose an improved variant of Simulated Annealing (SA), which we call Simulated Annealing with Reheating (SAR), to improve the solution quality of feasible solutions. SAR has three features: a novel neighborhood examination scheme, a new way of estimating local optima and a reheating scheme. SAR eliminates the need for extensive tuning as is often required in conventional SA. The proposed methodologies are tested on the three most studied datasets from the scientific literature. Our algorithms perform well and our results are competitive, if not better, compared to the benchmarks set by the state of the art methods. New best known results are provided for many instances

    A hybrid genetic algorithm and tabu search approach for post enrolment course timetabling

    Get PDF
    Copyright @ Springer Science + Business Media. All rights reserved.The post enrolment course timetabling problem (PECTP) is one type of university course timetabling problems, in which a set of events has to be scheduled in time slots and located in suitable rooms according to the student enrolment data. The PECTP is an NP-hard combinatorial optimisation problem and hence is very difficult to solve to optimality. This paper proposes a hybrid approach to solve the PECTP in two phases. In the first phase, a guided search genetic algorithm is applied to solve the PECTP. This guided search genetic algorithm, integrates a guided search strategy and some local search techniques, where the guided search strategy uses a data structure that stores useful information extracted from previous good individuals to guide the generation of offspring into the population and the local search techniques are used to improve the quality of individuals. In the second phase, a tabu search heuristic is further used on the best solution obtained by the first phase to improve the optimality of the solution if possible. The proposed hybrid approach is tested on a set of benchmark PECTPs taken from the international timetabling competition in comparison with a set of state-of-the-art methods from the literature. The experimental results show that the proposed hybrid approach is able to produce promising results for the test PECTPs.This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and Grant EP/E060722/02

    Effective Solution of University Course Timetabling using Particle Swarm Optimizer based Hyper Heuristic approach

    Get PDF
    عادة ما تكون مشكلة الجدول الزمني للمحاضرات الجامعية (UCTP) هي مشكلة تحسين الإندماجية. يستغرق الأمر جهود يدوية لعدة أيام للوصول إلى جدول زمني مفيد ، ولا تزال النتائج غير جيدة بما يكفي. تُستخدم طرق مختلفة من (الإرشاد أو الإرشاد المساعد) لحل UCTP بشكل مناسب. لكن هذه الأساليب عادةً ما تعطي حلول محدودة. يعالج إطار العمل الاسترشادي العالي هذه المشكلة المعقدة بشكل مناسب. يقترح هذا البحث استخدام محسن سرب الجسيمات استنادا على منهجية الإرشاد العالي (HH PSO) لمعالجة مشكلة الجدول الزمني للمحاضرات الجامعية (UCTP) . محسن سرب الجسيمات PSO يستخدام كطريقة ذات مستوى عالي لتحديد تسلسل الاستدلال ذي المستوى المنخفض (LLH) والذي من ناحية أخرى يستطيع توليد الحل الأمثل. لنهج المقترح يقسم الحل إلى مرحلتين (المرحلة الأولية ومرحلة التحسين). قمنا بتطوير LLH جديد يسمى "أقل عدد ممكن من الغرف المتبقية"  لجدولة الأحداث. يتم استخدام مجموعتي بيانات مسابقة الجدول الزمني الدولية (ITC)  ITC 2002 و ITC 2007 لتقييم الطريقة المقترحة. تشير النتائج الأولية  إلى أن الإرشاد منخفض المستوى المقترح يساعد في جدولة الأحداث في المرحلة الأولية. بالمقارنة مع LLH الأخرى ، الطريقة LLH المقترحة جدولت المزيد من الأحداث لـ 14 و 15 من حالات البيانات من 24 و 20 حالة بيانات من ITC 2002 و ITC 2007 ، على التوالي. تظهر الدراسة التجريبية أن HH PSO تحصل على معدل خرق أقل للقيود في سبع وستة حالات بيانات من ITC 2007 و ITC 2002 ، على التوالي. واستنتج هذا البحث أن LLH المقترحة يمكن أن تحصل على حل معقول وملائم إذا تم تحديد الأولوياتThe university course timetable problem (UCTP) is typically a combinatorial optimization problem. Manually achieving a useful timetable requires many days of effort, and the results are still unsatisfactory. unsatisfactory. Various states of art methods (heuristic, meta-heuristic) are used to satisfactorily solve UCTP. However, these approaches typically represent the instance-specific solutions. The hyper-heuristic framework adequately addresses this complex problem. This research proposed Particle Swarm Optimizer-based Hyper Heuristic (HH PSO) to solve UCTP efficiently. PSO is used as a higher-level method that selects low-level heuristics (LLH) sequence which further generates an optimal solution. The proposed approach generates solutions into two phases (initial and improvement). A new LLH named “least possible rooms left” has been developed and proposed to schedule events. Both datasets of international timetabling competition (ITC) i.e., ITC 2002 and ITC 2007 are used to evaluate the proposed method. Experimental results indicate that the proposed low-level heuristic helps to schedule events at the initial stage. When compared with other LLH’s, the proposed LLH schedule more events for 14 and 15 data instances out of 24 and 20 data instances of ITC 2002 and ITC 2007, respectively. The experimental study shows that HH PSO gets a lower soft constraint violation rate on seven and six data instances of ITC 2007 and ITC 2002, respectively. This research has concluded the proposed LLH can get a feasible solution if prioritized

    DEM Timetabling Project ? Development/implementation of an algorithm to support the creation of timetables

    Get PDF
    This work presents the development of an algorithm to support the process of creating academic timetables, specifically aimed at solving the University Course Timetabling Problem. To date, this problem is solved manually in Instituto Superior de Engenharia do Porto, where professors and engineers face the complex task of creating timetables based on schedules from previous years. The proposed solution aimed to support the process of creating timetables at ISEP, reducing the time and human resources required for this task. The developed algorithm uses an integer programming approach and can consider a variety of constraints and preferences of both faculty and students. It was designed to adapt and optimize the timetable creation process as needs evolve, ensuring future demands can be easily accommodated. The algorithm implementation was based on the Python programming language and the Pyomo library, offering a flexible and efficient approach to optimizing resource allocation. Additionally, the system is designed to import data from real-world sources, simplifying the integration of crucial information. The result assigned all the 128 one-hour classes among the week, presenting the faculty member, the classroom assigned and the type of class according to each course. This research presents feasible solutions that need improvement on the demanding conditions and restrictions imposed by ISEP. The computational results obtained offered a significantly decrease in the time resource used, compared to the manual work previously done

    A methodology for determining an effective subset of heuristics in selection hyper-heuristics

    Get PDF
    We address the important step of determining an effective subset of heuristics in selection hyper-heuristics. Little attention has been devoted to this in the literature, and the decision is left at the discretion of the investigator. The performance of a hyper-heuristic depends on the quality and size of the heuristic pool. Using more than one heuristic is generally advantageous, however, an unnecessary large pool can decrease the performance of adaptive approaches. Our goal is to bring methodological rigour to this step. The proposed methodology uses non-parametric statistics and fitness landscape measurements from an available set of heuristics and benchmark instances, in order to produce a compact subset of effective heuristics for the underlying problem. We also propose a new iterated local search hyper-heuristic usingmulti-armed banditscoupled with a change detection mechanism. The methodology is tested on two real-world optimisation problems: course timetabling and vehicle routing. The proposed hyper-heuristic with a compact heuristic pool, outperforms state-of-the-art hyper-heuristics and competes with problem-specific methods in course timetabling, even producing new best-known solutions in 5 out of the 24 studied instances

    Global Optimization Using Local Search Approach for Course Scheduling Problem

    Get PDF
    Course scheduling problem is a combinatorial optimization problem which is defined over a finite discrete problem whose candidate solution structure is expressed as a finite sequence of course events scheduled in available time and space resources. This problem is considered as non-deterministic polynomial complete problem which is hard to solve. Many solution methods have been studied in the past for solving the course scheduling problem, namely from the most traditional approach such as graph coloring technique; the local search family such as hill-climbing search, taboo search, and simulated annealing technique; and various population-based metaheuristic methods such as evolutionary algorithm, genetic algorithm, and swarm optimization. This article will discuss these various probabilistic optimization methods in order to gain the global optimal solution. Furthermore, inclusion of a local search in the population-based algorithm to improve the global solution will be explained rigorously

    Decomposition, Reformulation, and Diving in University Course Timetabling

    Full text link
    In many real-life optimisation problems, there are multiple interacting components in a solution. For example, different components might specify assignments to different kinds of resource. Often, each component is associated with different sets of soft constraints, and so with different measures of soft constraint violation. The goal is then to minimise a linear combination of such measures. This paper studies an approach to such problems, which can be thought of as multiphase exploitation of multiple objective-/value-restricted submodels. In this approach, only one computationally difficult component of a problem and the associated subset of objectives is considered at first. This produces partial solutions, which define interesting neighbourhoods in the search space of the complete problem. Often, it is possible to pick the initial component so that variable aggregation can be performed at the first stage, and the neighbourhoods to be explored next are guaranteed to contain feasible solutions. Using integer programming, it is then easy to implement heuristics producing solutions with bounds on their quality. Our study is performed on a university course timetabling problem used in the 2007 International Timetabling Competition, also known as the Udine Course Timetabling Problem. In the proposed heuristic, an objective-restricted neighbourhood generator produces assignments of periods to events, with decreasing numbers of violations of two period-related soft constraints. Those are relaxed into assignments of events to days, which define neighbourhoods that are easier to search with respect to all four soft constraints. Integer programming formulations for all subproblems are given and evaluated using ILOG CPLEX 11. The wider applicability of this approach is analysed and discussed.Comment: 45 pages, 7 figures. Improved typesetting of figures and table

    A hybrid meta-heuristic for the generation of feasible large-scale course timetables using instance decomposition

    Full text link
    This study introduces a hybrid meta-heuristic for generating feasible course timetables in large-scale scenarios. We conducted tests using our university's instances. The current commercial software often struggles to meet constraints and takes hours to find satisfactory solutions. Our methodology combines adaptive large neighbourhood search, guided local search, variable neighbourhood search, and an innovative instance decomposition technique. Constraint violations from various groups are treated as objective functions to minimize. The search focuses on time slots with the most violations, and if no improvements are observed after a certain number of iterations, the most challenging constraint groups receive new weights to guide the search towards non-dominated solutions, even if the total sum of violations increases. In cases where this approach fails, a shaking phase is employed. The decomposition mechanism works by iteratively introducing curricula to the problem and finding new feasible solutions while considering an expanding set of lectures. Assignments from each iteration can be adjusted in subsequent iterations. Our methodology is tested on real-world instances from our university and random subdivisions. For subdivisions with 400 curricula timetables, decomposition reduced solution times by up to 27%. In real-world instances with 1,288 curricula timetables, the reduction was 18%. Clustering curricula with more common lectures and professors during increments improved solution times by 18% compared to random increments. Using our methodology, viable solutions for real-world instances are found in an average of 21 minutes, whereas the commercial software takes several hours

    Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem

    Full text link
    We consider the university course timetabling problem, which is one of the most studied problems in educational timetabling. In particular, we focus our attention on the formulation known as the curriculum-based course timetabling problem, which has been tackled by many researchers and for which there are many available benchmarks. The contribution of this paper is twofold. First, we propose an effective and robust single-stage simulated annealing method for solving the problem. Secondly, we design and apply an extensive and statistically-principled methodology for the parameter tuning procedure. The outcome of this analysis is a methodology for modeling the relationship between search method parameters and instance features that allows us to set the parameters for unseen instances on the basis of a simple inspection of the instance itself. Using this methodology, our algorithm, despite its apparent simplicity, has been able to achieve high quality results on a set of popular benchmarks. A final contribution of the paper is a novel set of real-world instances, which could be used as a benchmark for future comparison
    corecore