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Abstract

In this work, we are addressing the post enrollment course timetabling (PE-

CTT) problem. We combine different local search algorithms into an itera-

tive two stage procedure. In the first stage, Tabu Search with Sampling and

Perturbation (TSSP) is used to generate feasible solutions. In the second

stage, we propose an improved variant of Simulated Annealing (SA), which

we call Simulated Annealing with Reheating (SAR), to improve the solution

quality of feasible solutions. SAR has three features: a novel neighborhood

examination scheme, a new way of estimating local optima and a reheating

scheme. SAR eliminates the need for extensive tuning as is often required in

conventional SA. The proposed methodologies are tested on the three most

studied datasets from the scientific literature. Our algorithms perform well

and our results are competitive, if not better, compared to the benchmarks

set by the state of the art methods. New best known results are provided

for many instances.
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1. Introduction

University course timetabling problems involve assigning a set of courses

to a limited set of time slots, and rooms, whilst satisfying a set of constraints

[1]. It is an NP-complete problem, meaning that approaches which are

guaranteed to provide an optimal solution are often too time consuming so

that heuristic and meta-heuristic approaches are often utilized. Assigning

courses to time slots alone is equivalent to that graph coloring problem which

is also NP-complete. de Werra shows the reduction of timetabling to graph

coloring problem [2]. Timetabling construction has also been shown to be

NP-complete in several other ways [3]. Timetabling has an increased level of

difficulty as courses have to be assigned to rooms in addition to time slots.

In this work, Tabu Search with Sampling and Perturbation (TSSP) is

used to find feasible solutions. The feasible solution is then improved in

terms of soft constraint violations by using an enhanced version of Simulated

Annealing (SA) called SAR which eliminates the need for tuning as is often

the case for a conventional SA. We do not use Tabu Search (TS) to improve

the soft cost of the solutions in stage 2 as we feel TS is too restrictive and

may affect the connectivity of search space. The proposed method is tested

on three benchmark datasets for university course timetabling problems and

the results are compared with other state of the art methods.

In this paper, the problem description is given in Section 2. Related work

is reviewed in Section 3. In Section 4, we provide details of the base algo-

rithm that we use as the basis for our proposed algorithm (the refinements

are presented in Section 5.1.1). The proposed methodology is described in

Section 5 and the experimental results are presented in Section 6. Perfor-

mance and behavior of the algorithms are discussed in section 7. Concluding

remarks are given in Section 8. Finally, suggestions for future work are given

in Section 9.

2. Problem Description

There are many variants of the course timetabling problem, with differ-

ent requirements expressed as either hard or soft constraints, across institu-
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tions of higher learning around the globe. Different implementations have

reported varying degrees of success. However, it is difficult to compare the

effectiveness of different algorithms if they are executed on different problem

instances. Researchers have shared datasets so that algorithm comparison is

more objective. The datasets utilized in this research are publicly available

and regarded as the standard benchmarks:

• Socha with 11 instances1. The instances (5 small, 5 medium and

1 large) are generated using an algorithm developed by Ben Paechter.

The time limit for the small, medium, and large instances is set to

90, 900, 9000 seconds respectively [4]. Even this is problematical as

different machine specifications means that running for 900 seconds is

not a fair comparison. Refer to Table 1 for the benchmark statistics.

• International Timetabling Competition 2002 (ITC2002) with

20 instances2. This competition was organized by the Metaheuris-

tic Network and the instances were generated by Ben Paechter. The

time limit is benchmarked by running a program on the host machine,

which enables a fair comparison. Refer to Table 2 for the benchmark

statistics.

• International Timetabling Competition 2007 (ITC2007) with

24 instances3. The time limit is benchmarked in the same way as

ITC2002. Refer to Table 3 for the benchmark statistics.

Instance S M L

Event 100 400 400
Room 5 10 10

Feature 5 5 10
Student 80 200 400

Table 1: Statistics for the Socha dataset

1http://iridia.ulb.ac.be/supp/IridiaSupp2002-001/index.html Last accessed: May 23,
2017.

2http://www.idsia.ch/Files/ttcomp2002/ Last accessed: May 23, 2017.
3http://www.cs.qub.ac.uk/itc2007/ Last accessed: May 23, 2017.
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Instance 1 2 3 4 5 6 7 8 9 10

Event 400 400 400 400 350 350 350 400 440 400
Room 10 10 10 10 10 10 10 10 11 10

Feature 10 10 10 5 10 5 5 5 6 5
Student 200 200 200 300 300 300 350 250 220 200

Instance 11 12 13 14 15 16 17 18 19 20

Event 400 400 400 350 350 440 350 400 400 350
Room 10 10 10 10 10 11 10 10 10 10

Feature 6 5 6 5 10 6 10 10 5 5
Student 220 200 250 350 300 220 300 200 300 300

Table 2: Statistics for the ITC2002 dataset

Instance 1 2 3 4 5 6 7 8

Event 400 400 200 200 400 400 200 200
Room 10 10 20 20 20 20 20 20

Feature 10 10 10 10 20 20 20 20
Student 500 500 1000 1000 300 300 500 500

Instance 9 10 11 12 13 14 15 16

Event 400 400 200 200 400 400 200 200
Room 10 10 10 10 20 20 10 10

Feature 20 20 10 10 10 10 20 20
Student 500 500 1000 1000 300 300 500 500

Instance 17 18 19 20 21 22 23 24

Event 100 200 300 400 500 600 400 400
Room 10 10 10 10 20 20 20 20

Feature 10 10 10 10 20 20 30 30
Student 500 500 1000 1000 300 500 1000 1000

Table 3: Statistics for the ITC2007 dataset

Solving the problem involves assigning a set of C courses (with a set of

F features and attended by S students) to 45 time slots (5 days of 9 hours

each) and a set of R rooms. The objective is to satisfy all hard constraints

and minimize soft constraint violations as far as possible. Perfect solutions

are known to exist for the datasets.
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The hard constraints for all the datasets are:

• HC1: No student can be assigned more than one course at the same

time.

• HC2: The room should satisfy the features required by the course.

• HC3: The number of students attending the course should be less than

or equal to the capacity of the room.

• HC4: No more than one course is allowed for each time slot in each

room.

There are two additional hard constraints for ITC2007 namely:

• HC5: A course can only be assigned to some preset time slots

• HC6: Where specified, a course should be scheduled to occur in the

correct order.

The soft constraints for all the datasets are:

• SC1: A student should not have a single course on a day.

• SC2: A student should not have more than two consecutive courses.

• SC3: A student should not have a course scheduled in the last time

slot of the day.

3. Related Work

In this paper we are using a multi-stage approach. Although different to

hybridized approaches, there are good reasons for using multiple algorithms

within an overarching approach. Hybridization has led to good quality re-

sults in previous research (e.g. [5, 6]). More recent work has validated

these earlier findings. For example, [7] hybridized mixed integer linear pro-

gramming, a greedy heuristic, two local search strategies and three meta-

heuristics for a vehicle routing problem, reporting positive results. Zeb et al.
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[8] hybridized simulated annealing (SA) and a genetic algorithm (GA). The

GA was used as an exploration operator, SA was used to intensify the search.

The algorithm was evaluated on 35 cell formulation benchmark instances,

producing 24 best results, and two new best results. A genetic algorithm

was also used in [9]. Their abstract states “Meta-heuristics still suffers from

several problems that remains open as the variability of their performance

depending on the problem or instance being solved. One of the approaches to

deal with these problems is the hybridization of techniques.” They concluded

that their hybridized approach is the best performing method for instances

with high dimensionality.

Metropolis introduced the Metropolis algorithm to simulate the evolu-

tion of solid in a heat bath to thermal equilibrium [10]. Kirkpatrick applied

the concepts of annealing to optimization problems [11]. SA accepts all im-

proving moves or those equivalent to the current solution. It also accepts

worse moves with probability of:

e∆f/T (1)

where ∆f is the change in solution quality and T is the temperature. Usu-

ally, T is initialized with a sufficiently high value and gradually reduced as

the search progresses. In practice, the search ends when the temperature

exceeds a predefined end temperature or any other stopping condition is

met.

Thompson and Dowsland applied simulated annealing for the examina-

tion timetabling problem [12]. The authors mentioned the difficulty of set-

ting weights in a single phased method. Therefore, a multi-phased method

was used where more important objectives were considered in earlier phases,

while other objectives were considered in later phases. The optimized ob-

jectives in the early phases were considered as binding constraints in later

phases. The authors note that their method is not perfect as the solution

space may be disconnected. Three ways were introduced to deal with so-

lution space connectivity, but only two were deemed successful, namely;

using different starting solutions and changing the neighborhood structure
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(Kempe chain operator).

Abramson, Amoorthy and Dang compared two cooling schedules (geo-

metric cooling and multiple cooling) and four reheating schemes (geometric

reheating, enhanced geometric reheating, non-monotonic cooling and re-

heating as cost function) on randomly generated school timetabling prob-

lems [13]. Cost based reheating was found to be superior in finding global

minima and also faster compared to other schemes.

3.1. Specific approaches applied to Socha instances

One of the earliest approaches on these instances was based on an ant

system [4]. In fact, this benchmark is named after the author. Ants follow

a list of ordered events and choose time slots randomly based on proba-

bilities that depend on pheromone and heuristic information. A matching

algorithm was applied for room assignment. The candidate solution was

further improved by a local search as an exploitation mechanism. A global

best solution was maintained. Pheromone corresponding to the global best

was increased while the rest were reduced using an evaporation co-efficient.

The pheromone levels were reduced to allow exploration in the search space.

Parameter tuning was required for each instance type. The method was

reported to be better than random restart local search. Interested readers

can refer to its variants [14] [15].

Ceschia et al. applied simulated annealing on the problem and achieved

breakthrough results in very short time relative to methods used by other

researchers [16]. Two neighborhood structures were used; moving an event

from one space to another and swapping events. Dummy time slots and

dummy rooms were used. The cost function was evaluated based on un-

scheduled events, precedences and conflicts in addition to soft constraint

violations which prompted the need to set the proper weights for each com-

ponent. In addition, parameters specific to simulated annealing had to be

set. The author used an F-race mechanism to tune the related parameters.

The author attributed the good results to the preprocessing and constraint

reformulation step which improved the efficacy of the local search. Their

implementation produced the best results in terms of best and mean results
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as reported in the literature.

3.2. Specific approaches applied to ITC2002 instances

Kostuch employed a simulated annealing based heuristic approach, be-

coming the winner of International Timetabling Competition 2002 (ITC2002)

[17]. In the preprocessing, the author defined the event room matrix and

incidence matrix. The incidence matrix was further updated with 1-room

events. In finding an initial feasible solution, events were ordered and each

assigned a time slot with a minimum number of events, provided that the

number of events in the time slot did not exceed the number of rooms.

Unassigned events were placed in a pool. Maximum matching was run for

room assignment and unassigned events were removed from the time slots

and placed in a pool. Next, in an improvement phase, unplaced events were

refitted into the time slots where events were removed during the room as-

signment phase. In shuffling phase, every event from the pool of unplaced

events was assigned to a random time slot and maximum matching was run

for room assignment. The newly unassigned event was hopefully different

from the initially unassigned event. The improvement phase was rerun.

Next in a blow-up phase, the unassigned events were placed into a time slot

and all current events in that time slot were removed. Then rooms were

assigned and unplaced events were kept in a pool. The improvement and

shuffling phase were rerun. The still unplaced events, if there were any, were

distributed over the last time slots. The feasible solution was then improved

with simulated annealing by sequencing the time slots and exchanging pairs

of events. Finally, simulated annealing was run with lower acceptance prob-

ability on the best solution until the time limit was reached. The search was

confined to the vicinity of solution.

Chiarandini et al. employed a strategy which combined construction

heuristics, variable neighborhood descent and simulated annealing which

outperformed the winner of ITC2002 [18]. The authors used a racing algo-

rithm to iteratively select and configure algorithms. Candidate algorithms

were evaluated and discarded when sufficient statistical evidence was gath-

ered against them. Local search and tabu search were utilized to obtain a
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feasible solution. The feasible solution is improved in terms of soft constraint

violations by using variable neighborhood descent and simulated annealing.

The authors claimed that the method reduced the number of experiments

and was well suited for the engineering of meta-heuristics. Findings high-

lighted the importance of local search in ant colony optimization and ge-

netic algorithms and that variable neighborhoods strongly enhanced the

local search. Solving hard and soft constraints separately was also found

to be preferable than weighting constraints in an evaluation function. The

authors also highlighted that tabu search was not suitable for optimizing

soft constraints. Population based meta-heuristics did not perform better

than a single solution based approach and the importance of problem spe-

cific knowledge was emphasized. The method obtained better results than

the ITC2002 winner on 18 out of 20 instances.

Kostuch further improved his method and achieved the best results on all

20 instances [19]. Feasible solutions were constructed using graph coloring

and maximum matching. The feasible solution was improved by sequencing

the time slots and exchanging pairs of events. To keep the neighborhood

structure simple, the author also introduced 10 dummy events, 2 at each

end of day time slots which were removed in the final timetable. His imple-

mentation is the current state of the art for the problem instances.

3.3. Specific approaches applied to ITC2007 instances

The submission by Cambazard et al. won the post enrolment based

course timetabling of ITC2007 [20]. A few approaches were studied. In the

first approach, local search is performed on randomly generated solutions to

find a feasible one. A tabu list is maintained to prevent an event from being

assigned the same time slots for the last k iterations. Among the neigh-

borhood structures used were; moving an event to empty space, swapping

two events, swapping two time slots, matching where events are reassigned

within a time slot, moving an event with matching and Hungarian move.

The feasible solution is optimized by simulated annealing with reheating.

Moving an event with matching is the only neighborhood structure consid-

ered in this phase. The second approach presented was also based on local
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search but with a relaxation on room allocation. It was termed LS with

coloring. Four stages were involved. In stage 1, a feasible solution is found

ignoring room allocation. In stage 2, soft constraint violations were mini-

mized, again ignoring room allocation. In stage 3, the solution is repaired

into a feasible solution. In stage 4, the solution is improved in terms of

soft constraint violations. The same neighborhood structures were used but

without matching during room allocation. The author reported LS with

coloring was the best approach in finding feasible solutions. Also LS with

coloring worked best for highly constrained problems. Constraint program-

ming was also developed but was less competitive compared to the local

search approach and it was unable to find feasible solutions for instances

1,2,9 and 10.

Nothegger et al. applied Ant Colony Optimization (ACO) to ITC2007

achieving fourth place in the competition [21]. They proposed two separate

matrices to store pheromone information instead of the traditional single

matrix. They showed that a two matrices representation produced better

results in terms of distance to feasibility (DTF) and soft constraints penalty

(SCP) as it is less expensive computationally thus allowing more iterations

per time unit. Events were considered in random order and assigned to time

slots and rooms based on pheromone information. Heuristic information

in a typical ACO was not used to promote randomness. Each constructed

solution were improved locally by an ejection chain. Pheromone information

is updated by solutions with lowest DTF scores and better than average SCP

scores. The pheromone levels were reduced by evaporation. The authors

also presented a parallel ACO with simulated annealing as the local search

procedure.

Lewis and Thompson achieved 100% feasibility on all instances of ITC2007

by using constructive heuristics and followed by their PARTIALCOL algo-

rithm which uses a tabu mechanism for the remaining unassigned events

[22]. The authors further improved the method by performing perturba-

tions in the form of random walk and resetting the tabu list after 5000 idle

iterations. The feasible solution was improved by using simulated annealing.

The initial temperature was set automatically as the standard deviation of
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the cost of sample moves. The cooling rate was altered during the run. The

authors also used the feasibility ratio to gauge the connectivity of the search

space of various neighborhood operators on the instances. A Kempe chain

operator was found to be particularly suitable for the instances. Strong re-

sults were achieved. The authors also showed that the use of dummy rooms

did not improve the results.

4. Tabu Search (TS)

TS was introduced by Glover [23] as an extension to hill climbing to

overcome local optima. TS in general selects the best admissible neighbor-

hood move (non-tabu or allowed by aspiration). The move with the lowest

cost function is selected even if it increases the cost function of the current

solution. If the current solution is better than the best solution, the best

solution is updated. The reversal of the selected move is then set tabu for

some time to prevent cycling.

PARTIALCOL [24], which was initially used for solving graph coloring

problems, was adapted by [25], [26] and [22] in solving course timetabling

problems. The TS procedure, presented in Algorithm 1, is based on PAR-

TIALCOL. A neighbor move involves moving an event from the list of un-

placed events unplacedE to a time slot in the current solution current. At

the start of each iteration, all the neighborhood moves are evaluated (line

7-21) by considering all non-tabu suitable time slots for all the events in

unplacedE.

The event e is temporarily removed from unplacedE. To feasibly move

e into a particular time slot, events conflicting with e (violated clash or

precedence constraint) are temporarily moved from current to unplacedE.

By comparison, [22] only removed events which violated a clash constraint

from the time slots. As maximal matching is computationally expensive, it

is used for room assignment only when necessary. If matching could not find

a room for the event under consideration, a room is chosen randomly from

among the suitable rooms and the related event is moved from current to

unplacedE.

11



Algorithm 1

1: procedure TS(best, unassignedE )
2: unplacedE ← unassignedE
3: current← best
4: f(best)← f(current)
5: while unplacedE is not empty AND time.elapsed() < T do
6: min←∞
7: for all e ∈ unplacedE do
8: unplacedE ← unplacedE − e
9: for all s ∈ S | S non-tabu slot suitable for e do

10: current← current− {events conflicting e}
11: unplacedE ← unplacedE ∪ {events conflicting e}
12: if f(candidate) < min then
13: bestEvent← e
14: bestSlot← s
15: min← f(candidate)
16: end if
17: unplacedE ← unplacedE − {events conflicting e}
18: current← current ∪ {events conflicting e}
19: end for
20: unplacedE ← unplacedE ∪ e
21: end for
22: current← current− {events conflicting bestEvent}
23: current← current ∪ bestEvent . bestSlot
24: f(current)← min
25: if f(current) < f(best) then
26: best← current
27: f(best)← f(current)
28: unassignedE ← unplacedE
29: end if
30: set tabu {events conflicting bestEvent} from original time slots
31: unplacedE ← unplacedE − bestEvent
32: unplacedE ← unplacedE ∪ {events conflicting bestEvent}
33: end while
34: end procedure

The cost function of the candidate solution f(candidate) is based on the
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number of unplaced events: ∑
e∈unplacedE

1 (2)

Effectively, the candidate solution with the lowest number of unplaced events

is preferred. As a comparison, the cost function used in [26] was the number

of students required to attend the unplaced events:∑
e∈unplacedE

size[e] (3)

The events conflicting with e are moved back from unplacedE to current

before evaluating the next non-tabu suitable time slot for the event under

consideration. When all the non-tabu time slots are evaluated, e is placed

back to unplacedE before the next event is considered. Ultimately, the

neighbor move with the lowest candidate cost f(candidate) is recorded as

bestEvent and bestSlot.

Events conflicting with bestEvent are extracted from current (line 22).

The best neighbor move is applied where the bestEvent is moved to the

bestSlot of current (line 23). best, f(best) and unassignedE are updated if

f(current) is better than f(best). The events conflicting with bestEvent are

set tabu from returning to their original time slots for a number of iterations

(line 30) according to the tabu tenure

random[10) + |unplacedE| (4)

where |unplacedE| is the number of unplaced events. A value of 10 is

used in the random element of the tabu tenure length. We use this value

as the same value was used in [24], [22] and [26]. The value works well for

all the datasets that we consider. The value of tabu tenure determines the

level of exploration for the search. When the value of tabu tenure is set too

high, most of the available moves are not reachable and may restrict the

search. When the value is too low, cycling tends to occur which may stall

the search.
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bestEvent is removed from unplacedE while the events conflicting with

bestEvent are added to unplacedE. The iteration continues until unplacedE

is empty (feasible solution is found) or the elapsed time exceeds the allowed

time limit, T.

5. Proposed Methodology

The timetable is constructed by employing a two stage approach. In the

first stage, we attempt to find a feasible solution which satisfies all the hard

constraints. Once a feasible solution is found, it is improved in terms of the

soft constraint violations in the second stage. The algorithm is shown in

Algorithm 2, with further details below.

Algorithm 2

1: procedure timetableConstruction
2: best ← empty
3: E ← list of events
4: unassignedE ← E
5:

6: TSSP(best, unassignedE ) . Stage 1: Finding a feasible solution
7: if unassignedE is empty then
8: SAR(best, E ) . Stage 2: Improving soft constraint violations
9: end if

10: end procedure

5.1. Stage 1: Finding a Feasible Solution

In stage 1, a feasible solution is built constructively by using Tabu Search

with Sampling and Perturbation (TSSP). Only if a feasible solution is found

(unassignedE is empty), is it passed to Simulated Annealing with Reheating

(SAR) for soft constraint improvement.

5.1.1. Tabu Search with Sampling and Perturbation (TSSP)

We propose several enhancements to TS. The procedure is shown in

Algorithm 3. It is important to note that no parameter tuning is required

in this algorithm.
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Algorithm 3

1: procedure TSSP(best, unassignedE )
2: unplacedE ← unassignedE
3: current← best
4: f(best)← f(current)
5: ITER← room3

6: i← 0
7: while unplacedE is not empty AND time.elapsed() < T do
8: sampleE ← select S events randomly from unplacedE
9: min←∞

10: for all e ∈ sampleE do
11: unplacedE ← unplacedE − e
12: for all s ∈ S | S non-tabu slot suitable for e do
13: current← current− {events conflicting e}
14: unplacedE ← unplacedE ∪ {events conflicting e}
15: if f(candidate) < min then
16: bestEvent← e
17: bestSlot← s
18: min← f(candidate)
19: end if
20: unplacedE ← unplacedE − {events conflicting e}
21: current← current ∪ {events conflicting e}
22: end for
23: unplacedE ← unplacedE ∪ e
24: end for
25: current← current− {events conflicting bestEvent}
26: current← current ∪ bestEvent . bestSlot
27: f(current)← min
28: if f(current) < f(best) then
29: best← current
30: f(best)← f(current)
31: unassignedE ← unplacedE
32: end if
33: set tabu {events conflicting bestEvent} from original time slots
34: unplacedE ← unplacedE − bestEvent
35: unplacedE ← unplacedE ∪ {events conflicting bestEvent}
36: if i = ITER then
37: perturb(current)
38: i← 0
39: reset tabu list
40: end if
41: i = i+ 1
42: end while
43: end procedure
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Instead of evaluating all the non-tabu time slots for all the events, we

only evaluate the non-tabu time slots for certain sampled events. At the start

of the iteration, S number of events are selected randomly from unplacedE

and added to sampleE list (line 8). S is set as 0.0025 × number of events.

The event sample size is proportional to the number of events, e.g. event

sample size is 1, 2 and 3 for the number of events between 1-400, 401-800

and 801-1200 respectively.

Rather than using the cost function based solely on the number of un-

placed events, we propose a novel cost function which is based on the number

of unplaced events plus the clash ratio:

∑
e∈unplacedE

1 +
clash[e]

clashSum
(5)

where clash[e] is the clash number of e with other events and clashSum

is the total clash number of all events. Effectively, the candidate solution

with the lowest number of unplaced events is preferred and ties broken using

the clash number.

Unlike other implementations which tracked idle iterations before per-

forming perturbation, we perturbed the current solution at certain iteration

intervals ITER (line 36-40). If i = ITER, current is perturbed, i is reset to 0

and tabu list is reset. In the perturb procedure (Algorithm 4), we attempt

to move each assigned event to each time slot (except the time slot cur-

rently occupied by the event) in slotList (shuffled randomly) by using either

a Swap or a Kempe operator. Maximal matching is used sparingly for room

assignment. The event is moved only if the time slot under consideration is

suitable for the event (not violating any hard constraints). Perturbation is

used to explore the search space and does not affect the current solution as

no event is extracted. However, when used too often it may slow down the

search of a feasible solution. ITER is set as room3 (line 5). Essentially, the

search is allowed to progress longer when the search space is larger before

perturbation is initiated.
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Algorithm 4

1: procedure perturb(solution)
2: for all e ∈ solution do
3: shuffle(slotList)
4: for all slot ∈ slotList do
5: if random[2) = 1 then
6: if swap(solution, e, slot) then
7: break;
8: end if
9: else

10: if kempe(solution, e, slot) then
11: break;
12: end if
13: end if
14: end for
15: end for
16: end procedure

The neighborhood structures used in the perturb procedure are:

• Swap: A swap is attempted between e with event in each room (room

list shuffled randomly) in slot . A swap is carried out if all the hard

constraints are satisfied.

• Kempe: Kempe chain interchange is attempted [12], [18], [22]. A chain

is built between events in time slot occupied by e (time slot A) and

events in slot (time slot B). Initially, e is added to the chain. Next,

events in time slot B clashing with e are added to the chain. Next,

events in time slot A clashing with the chained events in time slot B

are added to the chain. Then, events in time slot B clashing with the

chained events in time slot A are added to the chain. The process is

repeated until a complete chain is obtained. Subsequently, the chained

events in time slot A are moved to time slot B and vice versa, assuming

that all the hard constraints are satisfied.

As in TS, the algorithm is exited when a feasible solution is found or

the time limit is exceeded. Therefore, the time or iteration number to find
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a feasible solution varies for each instance. The time limit is determined

by running a program on the executing machine (our machine is entitled to

190s).

5.2. Stage 2: Improving Soft Constraint Violations

In stage 2, we improved the feasible solution in terms of soft constraint

violations by using a method based on SA. SA has been very effective in

solving combinatorial optimization problems, particularly timetabling prob-

lems. In fact, all state of the art methods for the instances considered in

this work are based on SA.

5.2.1. Simulated Annealing with Reheating (SAR)

The temperature in SA is used to determine the acceptance of uphill

moves. In geometric cooling, as temperature gradually decreases, the search

gradually switches from exploring to exploiting the search space.

We propose an improved SA called Simulated Annealing with Reheating

(SAR). The method is inspired by the idea that when the current cost is

high, the search should explore more and when the current cost is low,

the search should exploit more. In SAR, we rely on the current cost to

determine the initial temperature (rigorous setting of the initial temperature

is bypassed) and how much to reheat when the search is stuck. In fact, we

also rely on the current cost to determine whether the search is stuck in

a local optima (inactive current cost through Markov chains indicates the

search is stuck). As the temperature is reheated when a local optima is

estimated at a certain low temperature, the setting of an end temperature

as required in conventional SA is omitted. If the search is still stuck after the

previous reheating, a higher temperature is applied for the next reheating.

We estimate whether the search is still stuck in the previous local optima

by utilizing the current and best cost. The approach is novel as the closest

cost based reheating in the literature is based on the best cost and specific

heat [13]. The details of SAR is shown in Algorithm 5.
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Algorithm 5

1: procedure SAR(current, E )
2: temp← f(current)× C
3: heat← 0
4: best← current
5: previousCost← f(current)
6: currentStagnantCount← 0
7: stuckedBestCost← f(current)
8: stuckedCurrentCost← f(current)
9:

10: while current is not optimal AND time.elapsed() < T do
11: for all e ∈ E do
12: moved← false
13: for slot = 1 to 45 do
14: ns← selectNeighbourStructure()
15: candidate← getCandidate(current, e, slot, ns)
16: if candidate exists then
17: if random[0,1) ≤ exp(−f(candidate)−f(current)

temp ) then
18: moved← true
19: current← candidate
20: if f(current) < f(best) then
21: best← current
22: end if
23: end if
24: end if
25: if moved then
26: break
27: end if
28: end for
29: end for
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30: if stuck(f(current), previousCost, currentStagnantCount) then
31: if f(best) = stuckBestCost then
32: if f(current)− stuckCurrentCost < 2% then
33: heat = heat+ 1
34: else
35: heat← 0
36: end if
37: else
38: heat← 0
39: end if
40: temp← [heat× 0.2× f(current) + f(current)]× C
41: stuckBestCost← f(best)
42: stuckCurrentCost← f(current)
43: else
44: temp← temp× β
45: end if
46: previousCost← f(current)
47: end while
48: end procedure

Algorithm 6

1: procedure stuck(f(current), previousCost, currentStagnantCount)
2: if f(current)− previousCost < 1% then
3: currentStagnantCount = currentStagnantCount+ 1
4: else
5: currentStagnantCount← 0
6: end if
7: if currentStagnantCount > 5 then
8: return true
9: else

10: return false
11: end if
12: end procedure
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Algorithm 7

1: procedure selectNeighbourStructure( )
2: return a neighbourhood structure selected probalistically (Roulette

Wheel) from a set of neighbourhood structures with predefined compo-
sition.

3: end procedure

At each temperature, a Markov chain is generated by deterministically

trying to move each event e ∈ E into each time slot (except the time slot

currently occupied by e) using a neighbourhood structure selected probalis-

tically from a set of neighbourhood structures with predefined composition

as shown in Table 4. We use maximal matching (only when necessary) for

room assignment.

Candidate solutions are feasible solutions which satisfy all the hard con-

straints. If a candidate solution exists, it is evaluated using the acceptance

criterion where the improving and equal cost solution is accepted while the

worsening solution is accepted with a certain probability. If accepted, the

candidate solution will be set as the current solution. If the current solution

is better than the best, the best solution is updated.

Dataset Neighbourhood Structure Composition (%)

Socha Transfer: 70, Swap: 29, Kempe: 1
ITC02 Transfer: 70, Swap: 29, Kempe: 1
ITC07 Transfer: 70, Swap: 20, Kempe: 10

Table 4: Neighbourhood structure composition for dataset

The neighborhood structures used are:

• Transfer: Attempt to transfer e into slot. A feasible transfer is re-

turned as a candidate for acceptance evaluation.

• Swap: A swap is attempted between e with event in each room (in-

crementing order) in slot. The first feasible swap is returned as a

candidate for acceptance evaluation.
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• Kempe: Same as described in section 5.1.1 except that a candidate is

returned for acceptance evaluation.

In our implementation, a number of variables are maintained, namely

previousCost (cost after each Markov chain is completed), currentStagnant-

Count (number of consecutive times current cost remains the same), stuckBest-

Cost (best cost when the search is stuck) and stuckCurrentCost (current cost

when the search is stuck).

The initial temperature is set as the initial cost multiplied by a constant

C. This bypasses the manual setting of an initial temperature which is critical

in conventional SA. The temperature is cooled according to an update rule

Ti+1 = Ti × β.

After each Markov chain, we check whether the search is stuck in a local

optima. In the stuck procedure (Algorithm 6), we observe the changes

of the current cost between Markov chains. currentStagnantCount is incre-

mented by 1 if the difference between f(current) and previousCost is less

than 1%. Otherwise, currentStagnantCount is set to 0.

If the search is stuck (currentStagnantCount is more than a threshold

value set as 5), the temperature is reheated according to

temp← [heat× 0.2× f(current) + f(current)]× C (6)

where C is a constant and heat is the incremental step. For the first

reheating, heat is usually set to 0 (line 38) thus the temperature is reheated

to f(current) × C before being cooled again until the search is stuck in

another local optima.

If the search is still stuck in the previous local optima (no new best since

the previous reheating AND f(current) − stuckCurrentCost < 2%), heat

is incremented by 1 (line 33). Essentially, a higher temperature is applied

for the next reheating so that the search can explore more in order to escape

from the previous local optima.

If the search has escaped from the previous local optima ([a new best

since the previous reheating] OR [no new best since the previous reheating

AND f(current)− stuckCurrentCost ≥ 2%]), heat is set to 0 (line 35 and
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38). In effect, the temperature is reheated to f(current) × C in order for

the search to escape from the current local optima. Note that the setting of

end temperature is omitted as the temperature is reheated when the search

is stuck.

The series of cooling and reheating is repeated until an optimal solution

is obtained or the elapsed time exceeds the time limit, T. We set the decay

rate β to 0.9995 and the constant C to 0.01. The same values are used

across all instances in our experiments.

6. Experimental Results

The experiments are performed on an Intel Xeon (3.1 GHz) with 4Gb

RAM machine. The algorithms were coded in Java. The computation time

limit allowed by running the benchmark program4 is T=190 seconds for

each single run. When a feasible solution is found, the focus is switched to

minimizing soft constraint violations by using the remaining available time.

Each run will stop when the time limit is reached. A total of 31 runs were

executed for each instance.

6.1. Stage 1: Finding a Feasible Solution

6.1.1. The Effect of Sampling

Here, we present the effect of sampling on TS. Event sampling S ∝ event

number, is compared with no sampling at one continuum end and S = 1

at the other continuum end. TS with sampling is more effective than TS

without sampling for all the datasets in terms of the average number of

unassigned events (Table 5) and average time to feasibility (Table 6). Dash

symbols indicate that average time to feasibility is invalid as feasibility is

not 100%. TS with sampling (S ∝ Event number) achieved 100% feasibility

for all the datasets and therefore is preferred and used onwards.

4http://www.idsia.ch/Files/ttcomp2002/ Last accessed: May 23, 2017.
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Event Sampling
Dataset None S=1 S ∝ Event number

Socha 0.00 0.00 0.00
ITC02 0.01 0.00 0.00
ITC07 0.03 0.00 0.00

Table 5: Average number of unassigned events

Event Sampling
Dataset None S=1 S ∝ Event number

Socha 1.0923 0.0243 0.0326
ITC02 - - 0.0408
ITC07 - 0.8040 0.8007

Table 6: Average time to feasibility (s)

6.1.2. The Effect of Cost Functions and Perturbation

In this section, we present the effect of using different cost functions

with or without perturbation on TS with sampling. The average number of

unassigned events is given in Table 7. 100% feasibility is achieved when per-

turbation is used regardless of cost functions. The average time to feasibility

is shown in Table 8. Dash symbols in the table indicate that the average

time to feasibility is invalid because there are unassigned events. On the

whole, perturbation improves the average time to feasibility. As evident in

Table 8,
∑

e∈unplacedE
1 + clash[e]

clashSum is the most effective cost function when

used with or without perturbation. When the cost function is paired with

perturbation, the average time to feasibility is further improved and in fact

the lowest in a comparison.
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Cost Functions∑
e∈unplacedE

1
∑

e∈unplacedE
size[e]

∑
e∈unplacedE

1 + clash[e]
clashSum

Dataset - Perturbation - Perturbation - Perturbation

Socha 0.00 0.00 0.00 0.00 0.00 0.00
ITC02 0.00 0.00 0.07 0.00 0.00 0.00
ITC07 0.00 0.00 0.00 0.00 0.00 0.00

Table 7: Average number of unassigned events

Cost Functions∑
e∈unplacedE

1
∑

e∈unplacedE
size[e]

∑
e∈unplacedE

1 + clash[e]
clashSum

Dataset - Perturbation - Perturbation - Perturbation

Socha 0.0326 0.0205 0.0139 0.0146 0.0132 0.0133
ITC02 0.0408 0.0197 - 0.0271 0.0211 0.0190
ITC07 0.8007 0.5612 0.2610 0.3113 0.2021 0.1953

Table 8: Average time to feasibility (s)

25



6.1.3. Comparing TS and TSSP

We compare the performance of TS and TSSP in finding feasible so-

lutions. For Socha instances, both algorithms performed well with 100%

feasibility. However, TSSP is faster as shown in Table 9. On average, the

algorithm managed to find feasible solutions in less than one-tenth of a sec-

ond. The p values (less than 0.05) reveal a significant difference between

the means (time to feasibility) of TS and TSSP for all the instances.

Inst. TS TSSP t-test (p value)

S1 0.0361 0.0032 0.000
S2 0.0268 0.0019 0.000
S3 0.0290 0.0013 0.000
S4 0.0397 0.0019 0.000
S5 0.0313 0.0019 0.000
M1 2.2906 0.0210 0.000
M2 2.0184 0.0242 0.000
M3 1.9681 0.0194 0.000
M4 1.8355 0.0203 0.000
M5 2.0655 0.0219 0.000
L 1.6742 0.0287 0.000

Table 9: Average time to feasibility for Socha instances

For ITC02, TSSP is more effective than TS in terms of feasibility and

the number of unassigned events as shown in Table 10. TSSP achieved

100% feasibility for all the instances. As a comparison, TS achieved 100%

feasibility for all the instances except instance 7 (87%). The p value of

0.039 (less than 0.05) revealed a significant difference between the means

(unassigned events) of TS and TSSP for instance 7. Note that, the rest

of the instances are omitted in Table 10 as they have means equivalent to

0. In addition, TSSP is faster than TS as shown in Table 11. On average,

the algorithm managed to find feasible solutions in less than one-tenth of

a second. The p values (less than 0.05) revealed a significant difference

between the means (time to feasibility) of TS and TSSP for all the instances.

Note: dash symbols in Table 11 indicate that the average time to feasibility

is invalid (feasibility is not 100%) and therefore p value is invalid.
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TS TSSP
Unassigned Unassigned t-test

Inst. Fea.(%) best mean Fea.(%) best mean (p value)

7 87 0 0.13 100 0 0.00 0.039

Table 10: Number of unassigned events for ITC02 instances

Inst. TS TSSP t-test (p value)

1 1.7419 0.0239 0.000
2 1.7355 0.0200 0.000
3 1.1168 0.0142 0.000
4 1.7348 0.0203 0.000
5 0.6163 0.0103 0.000
6 0.9790 0.0148 0.000
7 - 0.0181 -
8 1.8723 0.0213 0.000
9 1.9865 0.0319 0.000
10 1.5881 0.0232 0.000
11 1.8161 0.0203 0.000
12 1.5023 0.0226 0.000
13 1.5506 0.0177 0.000
14 1.0461 0.0148 0.000
15 1.0119 0.0135 0.000
16 2.1765 0.0339 0.000
17 0.4819 0.0084 0.000
18 1.5652 0.0187 0.000
19 1.4961 0.0200 0.000
20 1.0377 0.0129 0.000

Table 11: Average time to feasibility for ITC02 Instances

For ITC07, TSSP performed better than TS on average as shown in

Table 12. TSSP managed to achieve 100% feasibility for all the instances.

Meanwhile, TS achieved 100% feasibility for all the instances except instance

11 (87%), instance 19 (81%) and instance 23 (94%). The p value of 0.015

(less than 0.05) revealed a significant difference between the means (unas-

signed events) of TS and TSSP for instance 19. TSSP is also faster than TS

as shown in Table 13. The algorithm managed to obtain feasible solutions
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in less than one second except instance 22. The p values (less than 0.05)

revealed a significant difference between the means (time to feasibility) of

TS and TSSP for all the instances except instance 3.

TS TSSP
Unassigned Unassigned t-test

Inst. Fea.(%) best mean Fea.(%) best mean (p value)

11 87 0 0.26 100 0 0.00 0.053
19 81 0 0.29 100 0 0.00 0.015
23 94 0 0.06 100 0 0.00 0.156

Table 12: Number of unassigned events for ITC07 instances
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Inst. TS TSSP t-test (p value)

1 3.0639 0.1797 0.000
2 10.0226 0.4126 0.000
3 3.1600 0.0055 0.299
4 0.1277 0.0142 0.000
5 1.1787 0.0229 0.000
6 1.1800 0.0281 0.000
7 0.3955 0.0090 0.000
8 0.1310 0.0052 0.000
9 30.1587 0.4516 0.000
10 27.8168 0.8026 0.000
11 - 0.0119 -
12 1.2755 0.0161 0.045
13 1.3423 0.0355 0.000
14 1.2823 0.0313 0.000
15 0.0906 0.0058 0.000
16 0.0855 0.0032 0.000
17 0.0232 0.0013 0.000
18 0.1894 0.0129 0.000
19 - 0.2139 -
20 0.9274 0.0181 0.000
21 1.9823 0.0690 0.000
22 61.9365 2.1113 0.000
23 - 0.1894 -
24 2.0416 0.0371 0.000

Table 13: Average time to feasibility for ITC07 instances

Indeed TSSP is able to always find feasible solutions for all the datasets.

As TSSP is shown to be more effective, our focus will be on TSSP from here

onwards.

6.1.4. Comparing TSSP with State of the Art Methods

Our method performed generally faster on average time (especially in-

stances 10, 19, 23 and 24) than the Improved PARTIACOL by Lewis [22]

while being equally effective (100% feasibility) in finding feasible solutions

as shown in Table 14. As a comparison, the allowed time for Lewis’s method

was 247s.
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LS-Colouring [20] I. PARTIALCOL [22] TSSP
Inst. Time(s) Fea.(%) Time(s) Fea.(%) Time(s) Fea.(%)

1 7.31 100 0.25 100 0.18 100
2 15.80 100 0.79 100 0.41 100
3 0.47 100 0.02 100 0.01 100
4 0.48 100 0.02 100 0.01 100
5 2.77 100 0.06 100 0.02 100
6 3.47 100 0.08 100 0.03 100
7 0.59 100 0.03 100 0.01 100
8 0.49 100 0.01 100 0.01 100
9 14.78 100 0.68 100 0.45 100
10 53.87 98 2.03 100 0.80 100
11 0.63 100 0.03 100 0.01 100
12 0.73 100 0.04 100 0.02 100
13 3.86 100 0.08 100 0.04 100
14 3.75 100 0.11 100 0.03 100
15 0.60 100 0.01 100 0.01 100
16 0.50 100 0.01 100 0.00 100
17 - - 0.00 100 0.00 100
18 - - 0.02 100 0.01 100
19 - - 0.71 100 0.21 100
20 - - 0.01 100 0.02 100
21 - - 0.08 100 0.07 100
22 - - 3.80 100 2.11 100
23 - - 1.10 100 0.19 100
24 - - 0.18 100 0.04 100

Table 14: Comparison of TSSP with state of the art methods on ITC07

6.2. Stage 2: Improving Soft Constraint Violations

6.2.1. The Effect of Reheating in SAR

We run SAR with seed 1 on ITC02-1 instance. To compare the effect

of reheating, we disabled the reheating part and run the algorithm with

the same seed. The variation in temperature, current cost and best cost

for both settings is presented in Figure 1b and 1a. The current cost and

best cost for the algorithm with reheating disabled, becomes idle early in

the search. Meanwhile, the current cost for the algorithm with reheating

is active even towards the end of the search. In a comparison, a lower soft
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constraint violation is achieved by the algorithm with reheating.
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Figure 1: The effect of reheating on ITC02-1 instance

6.2.2. Comparing SAR with State of the Art Methods

We now compare SAR with the best results in the literature. Table 15

summarizes the details of the solvers.
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Solver Reference Technique

A Socha et al. [4] Ant System
B Burke et al. [27] Tabu Search Hyperheuristic
C McMullan [28] Extended Great Deluge
D Abdullah et al. [29] Great Deluge + Tabu Search
E Obit et al. [30] Non Linear Great Deluge + Learning
F Turabieh et al. [31] Fish Swarm
G Shaker and Abdullah [32] Round Robin Multi Algorithms
H Sabar et al. [33] Honey Bee Mating
I Ceschia et al. [16] Simulated Annealing

J1 Kostuch [17] Simulated Annealing
J2 Kostuch [19] Simulated Annealing
K Cordeau et al. [34] Tabu Search
L Burke et al. [35] Great Deluge
M DiGaspero and Schaerf [36] Local Search + Tabu Search
N Chiarandini et al. [18] Hybrid Algorithm
O Cambazard et al. [20] Simulated Annealing
P Nothegger et al. [21] Ant Colony Optimization
Q Lewis and Thompson [22] Simulated Annealing

Table 15: Solver details

SAR outperformed (best results are in bold) all the other solvers for all

Socha instances as shown in Table 16. It is interesting to note that our

averages are far better than the best produced by other solvers over all

instances. We found optimal solutions for 9 out of the 11 instances. Note

that solver A was run according to time limit set initially (small instances:

90s, medium instances: 900s and large instances: 900s). For solver B-H, no

time limit was followed in their implementations.
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Solver
Inst. A B C D E F G H I SAR

S1 1 1 0(0.8) 0 0 0 0 0 0(0.0) 0(0.0)
S2 3 2 0(2.0) 0 0 0 0 0 0(0.0) 0(0.0)
S3 1 0 0(1.3) 0 0 0 0 0 0(0.0) 0(0.0)
S4 1 1 0(1.0) 0 0 0 0 0 0(0.1) 0(0.0)
S5 0 0 0(0.2) 0 0 0 0 0 0(0.0) 0(0.0)
M1 195 146 80(101.4) 78 38 45 117 75 9(26.5) 0(1.5)
M2 184 173 105(116.9) 92 37 40 108 88 15(25.9) 0(2.2)
M3 248 267 139(162.1) 135 60 61 135 129 36(49.0) 7(13.4)
M4 164.5 169 88(108.8) 75 39 35 75 74 12(23.8) 0(0.7)
M5 219.5 303 88(119.7) 68 55 49 160 64 3(10.9) 0(1.2)
L 851.1 1166 730(834.1) 556 638 407 589 523 208(259.8) 165(206.6)

Table 16: Results comparison for Socha instances. Depicted is best(mean) for n=31 runs. Note that some authors only reported their
best results.
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Results comparison for ITC02 is given in Table 17. J1 was the official

winner of ITC02. The solver N appeared post competition and was compet-

itive with the solver J1. Not long after that, J2 was presented and became

the state of the art method with the best known results for all the instances.

J2 was an improvement of J1 by the same author. Since then, no other

solvers are able to beat the results of the solver J2 on any of the ITC02

instances. We have managed to achieve that. Our results are competitive

or better than the other solvers on all the instances. In fact, we managed

to get optimal solutions for 7 out of 20 instances in comparison to the four

of the solver J2.

Solver
Inst. J1 K L M N J2 I SAR

1 45 61 85 63 45 16(30.2) 45(57.1) 23(32.6)
2 25 39 42 46 14 2(11.4) 20(33.2) 7(13.7)
3 65 77 84 96 45 17(31.0) 43(53.2) 26(36.4)
4 115 160 119 166 71 34(60.8) 87(109.9) 50(63.1)
5 102 161 77 203 59 42(72.1) 71(91.7) 38(58.6)
6 13 42 6 92 1 0(2.4) 2(14.1) 0(0.8)
7 44 52 12 118 3 2(8.9) 2(13.7) 0(2.6)
8 29 54 32 66 1 0(2.0) 9(20.0) 0(1.4)
9 17 50 184 51 8 1(5.8) 15(21.9) 0(4.6)
10 61 72 90 81 52 21(35.0) 41(60.7) 28(40.9)
11 44 53 73 65 30 5(12.9) 24(38.2) 10(17.7)
12 107 110 79 119 75 55(76.3) 62(83.7) 53(64.5)
13 78 109 91 160 55 31(47.1) 59(78.0) 38(53.3)
14 52 93 36 197 18 11(22.3) 21(34.2) 5(12.9)
15 24 62 27 114 8 2(8.4) 6(11.8) 0(4.0)
16 22 34 300 38 55 0(3.4) 6(16.7) 0(0.5)
17 86 114 79 212 46 37(54.0) 42(56.5) 26(41.6)
18 31 38 39 40 24 4(9.4) 11(25.9) 2(9.7)
19 44 128 86 185 33 7(16.4) 56(73.0) 11(24.7)
20 7 26 0 17 0 0(0.5) 0(1.8) 0(0.0)

Table 17: Results comparison for ITC02 instances. Depicted is best(mean) for n=31 runs.
Note that some authors only reported their best results.

Table 18 shows the results comparison for ITC07. The solver O was the
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official winner of ITC07. The solver P is based on Ant Colony Optimization

and is the only competitve algorithm which is not SA based. However, SA

was present in their approach and played a critical role in performance. As

presented, our results are competitive compared to the other solvers We

managed to obtain optimal solutions for 15 out of 24 instances. The solver

O and P did not attempt their methods on instances 17-24.

Solver
Inst. O P I Q SAR

1 15(547.0) 0(613.0) 59(399.2) 0(377.0) 0(307.6)
2 9(403.0) 0(556.0) 0(142.2) 0(382.2) 0(63.4)
3 174(254.0) 110(680.0) 148(209.9) 122(181.8) 163(199.4)
4 249(361.0) 53(580.0) 25(349.6) 18(319.4) 242(328.8)
5 0(26.0) 13(92.0) 0(7.7) 0(7.5) 0(2.7)
6 0(16.0) 0(212.0) 0(8.6) 0(22.8) 0(33.2)
7 1(8.0) 0(4.0) 0(4.9) 0(5.5) 5(18.0)
8 0(0.0) 0(61.0) 0(1.5) 0(0.6) 0(0.0)
9 29(1167.0) 0(202.0) 0(258.8) 0(514.4) 0(100.7)
10 2(1297.0) 0(4.0) 3(186.4) 0(1202.4) 0(65.3)
11 178(361.0) 143(774.0) 142(269.5) 48(202.6) 161(244.3)
12 14(380.0) 0(538.0) 267(400.0) 0(340.2) 0(318.2)
13 0(135.0) 5(360.0) 1(120.0) 0(79.0) 0(99.5)
14 0(15.0) 0(41.0) 0(3.6) 0(0.5) 0(0.2)
15 0(47.0) 0(29.0) 0(48.0) 0(139.9) 0(192.0)
16 1(58.0) 0(101.0) 0(50.1) 0(105.2) 10(105.8)
17 - - 0(0) 0(0.1) 0(0.8)
18 - - 0(41.1) 0(2.2) 0(12.5)
19 - - 0(951.5) 0(346.1) 0(516.7)
20 - - 543(700.2) 557(724.5) 586(650.7)
21 - - 5(35.9) 1(32.1) 0(12.5)
22 - - 5(19.9) 4(1790.1) 1(136.0)
23 - - 1292(1707.7) 0(514.1) 11(504.4)
24 - - 0(105.3) 18(328.2) 5(192.6)

Table 18: Results comparison for ITC07 instances. Depicted is best(mean) for n=31 runs.
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6.2.3. Extended Runtime for SAR

Up to this point, all the experiments were conducted according to the

time limit provided by the competition benchmark program. Out of curios-

ity, we also performed some experiments to see the effects of an extended

runtime with regard to soft constraint violations. We selected one hard in-

stance from each dataset namely Socha:Large, ITC02:1, ITC07:1 and ran

for five times time limit or 5 × T. It took around 8 hours to run each in-

stance for 31 times. As shown in Table 19, the algorithm is scalable as the

best and average cost improved significantly when the run time is extended.

In fact, we managed to obtain the best known results for the instances. It

is important to note that we simply reset the run time in the algorithm

without tuning any parameters, as is often required in a conventional SA

e.g. decay rate. The p values (0.000 < 0.05) of t-tests failed to reject the

null hypotheses H0 : µ190s = µ1900s and revealed a statistically difference

between the mean between the runtime of 190s and 1900s.

T=190s 5T t-test
Inst. best mean best mean (p value)

Socha: Large 165 206.61 103 139.39 0.000
ITC02: 1 23 32.61 10 21.03 0.000
ITC07: 1 0 307.55 0 134.94 0.000

Table 19: Comparison between different runtime on selected instances

7. Discussion

TSSP does not require parameter tuning as the values such as event

sample size S and ITER in the algorithm are determined automatically

based on the characteristics of the specific instances.

TSSP is not only effective but also fast in finding feasible solutions.

In our opinion, the sampling of events reduces computational cost as less

evaluation is needed before a move is made, permitting more moves per time

unit.

In our implementation, the sampling ratio (event sample size : number

of unassigned events) increases as more events are assigned. For instance,
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the event sample size for 1000 unassigned events is 3. Initially, the sampling

ratio is 0.0025 (0.25%). When the number of unassigned events decreases to

6, the sampling ratio is 0.5 (50%). When the number of unassigned events

decreases to 3 or below, sampling ratio is 1.0 (100%) where all the events will

be selected for evaluation without sampling. Naturally, the sampling that

we adopted allows the search to switch from diversification (exploration)

to intensification (exploitation) and vice versa depending on the number of

unassigned events.

Meanwhile, the proposed cost function increases the probability of unas-

signed events to be assigned later as they have the least number of clash

with other events.

We believe perturbation enhances the diversification capability of TS,

allowing the algorithm to explore the search space better which in turn

alleviates the phenomena of cycling which is problematic in TS. Instead of

trying to move random assigned events to random time slots, we attempt

to move all assigned events to random time slots. As a result, a solution is

thoroughly perturbed and the search is able to explore other areas of the

search space effectively or possibly escape from local optima (if the search

is stuck).

TSSP assisted SAR in obtaining the good results. As only a fraction of

time is used by TSSP to find feasible solutions, more time is allocated for

SAR to improve the soft constraint violations.

The right neighborhood structure composition used in SAR contributed

to the good results. For Socha and ITC02 instances, the search spaces are

well connected by transfer and swap operators. Therefore, the Kempe op-

erator is redundant for these instances. Furthermore, the Kempe operator

is computationally more expensive, thus reducing the number of transitions

attempted. Meanwhile, for the ITC07 instances, the search space is poorly

connected by transfer and swap operators. Thus, a higher composition of

Kempe operators is worthwhile for these instances as it increases the con-

nectivity of search space. In fact, ITC07 instances are more constrained

compared to the instances of Socha and ITC07 as there are two additional

hard constraints for ITC07 instances (order of events and preset time slots).
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The neighborhood examination scheme applied in SAR, played a key

role in achieving the good results. Attempts were made to deterministically

move each event to each time slot (1-45) in each Markov chain. The scheme

allows neighbors to be examined thoroughly and systematically with lesser

redundancy.

SAR is able to estimate whether the search is stuck in a local optima

precisely, thus allows reheating to be applied at the right time. In addition,

incremental reheating provides exploration opportunities for the search to

escape from local optima while ensuring that the current solution does not

stray too much thus preserving the previous search effort. As a result, the

search is effective in escaping from local optima.

The rigorous setting of initial and end temperature in conventional SA is

bypassed in SAR. We set the decay rate β and the constant C as 0.9995 and

0.01 respectively. Nonetheless, the values work fine for the all the instances

considered in this work.

8. Conclusion

We have presented the effect of sampling on TS. We have compared the

effect of using different cost functions with or without perturbation on TS

with sampling.

TSSP is shown to be more effective in finding feasible solution for the

benchmark timetabling problem compared to TS. The number of unassigned

events and average time to feasibility are presented for all the datasets.

In addition, t-tests are conducted to compare the means for these values

between TS and TSSP. TSSP managed to find 100% feasibility for all Socha,

ITC02 and ITC07 instances in relatively short time compared to existing

methods in the scientific literature.

We also presented SA with reheating (SAR) to improve the soft con-

straint violations of the feasible solution. The effect of reheating in SAR

is displayed. Overall, competitive results in terms of soft constraint viola-

tions are reported in all datasets tested. Moreover, SAR is also shown to be

scalable when the runtime is extended.
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9. Future Work

We are looking forward to utilize the methods on other timetabling in-

stances (ITC2011) or possibly other optimization problems to test the ro-

bustness and general applicability of the algorithms proposed in this paper.

Since the composition of neighborhood structures play an important role

and were set manually, we are looking at the possibility of varying the com-

position automatically as the search progresses.

We are aware of the limitation of using the current cost to determine the

level of reheated temperature as different instances may need different level

of exploration to search effectively. Therefore, we are considering to incor-

porate the average change in cost of all uphill moves into the temperature

reheating function.
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