3,637 research outputs found

    Integral partitioning approach to stability analysis and stabilization of distributed time delay systems

    Get PDF
    In this paper, the problems of delay-dependent stability analysis and stabilization are investigated for linear continuous-time systems with distributed delay. By introducing an integral partitioning technique, a new form of Lyapunov-Krasovskii functional (LKF) is constructed and improved distributed delay dependent stability conditions are established in terms of linear matrix inequalities (LMIs). Based on the criteria, a design algorithm for a state feedback controller is proposed. The results developed in this paper are less conservative than existing ones in the literature, which is illustrated by several examples. © 2011 IFAC.postprintThe 18th World Congress of the International Federation of Automatic Control (IFAC 2011), Milano, Italy, 28 August-2 September 2011. In Proceedings of the 18th IFAC World Congress, 2011, v. 18 pt. 1, p. 5094–509

    Stability and dissipativity analysis of static neural networks with time delay

    Get PDF
    This paper is concerned with the problems of stability and dissipativity analysis for static neural networks (NNs) with time delay. Some improved delay-dependent stability criteria are established for static NNs with time-varying or time-invariant delay using the delay partitioning technique. Based on these criteria, several delay-dependent sufficient conditions are given to guarantee the dissipativity of static NNs with time delay. All the given results in this paper are not only dependent upon the time delay but also upon the number of delay partitions. Some examples are given to illustrate the effectiveness and reduced conservatism of the proposed results.published_or_final_versio

    Combined Convex Technique on Delay-Distribution-Dependent Stability for Delayed Neural Networks

    Get PDF
    Together with the Lyapunov-Krasovskii functional approach and an improved delay-partitioning idea, one novel sufficient condition is derived to guarantee a class of delayed neural networks to be asymptotically stable in the mean-square sense, in which the probabilistic variable delay and both of delay variation limits can be measured. Through combining the reciprocal convex technique and convex technique one, the criterion is presented via LMIs and its solvability heavily depends on the sizes of both time-delay range and its variations, which can become much less conservative than those present ones by thinning the delay intervals. Finally, it can be demonstrated by four numerical examples that our idea reduces the conservatism more effectively than some earlier reported ones

    Stability and synchronization of discrete-time neural networks with switching parameters and time-varying delays

    Get PDF
    published_or_final_versio

    Dissipativity analysis of stochastic fuzzy neural networks with randomly occurring uncertainties using delay dividing approach

    Get PDF
    This paper focuses on the problem of delay-dependent robust dissipativity analysis for a class of stochastic fuzzy neural networks with time-varying delay. The randomly occurring uncertainties under consideration are assumed to follow certain mutually uncorrelated Bernoulli-distributed white noise sequences. Based on the Itô's differential formula, Lyapunov stability theory, and linear matrix inequalities techniques, several novel sufficient conditions are derived using delay partitioning approach to ensure the dissipativity of neural networks with or without time-varying parametric uncertainties. It is shown, by comparing with existing approaches, that the delay-partitioning projection approach can largely reduce the conservatism of the stability results. Numerical examples are constructed to show the effectiveness of the theoretical results

    Robust Stabilization and H

    Get PDF
    This paper is concerned with the problem of robust stabilization and H∞ control for a class of uncertain neural networks. For the robust stabilization problem, sufficient conditions are derived based on the quadratic convex combination property together with Lyapunov stability theory. The feedback controller we design ensures the robust stability of uncertain neural networks with mixed time delays. We further design a robust H∞ controller which guarantees the robust stability of the uncertain neural networks with a given H∞ performance level. The delay-dependent criteria are derived in terms of LMI (linear matrix inequality). Finally, numerical examples are provided to show the effectiveness of the obtained results
    corecore