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This paper is concerned with the problem of robust stabilization and𝐻
∞
control for a class of uncertain neural networks. For the

robust stabilization problem, sufficient conditions are derived based on the quadratic convex combination property together with
Lyapunov stability theory. The feedback controller we design ensures the robust stability of uncertain neural networks with mixed
time delays.We further design a robust𝐻

∞
controller which guarantees the robust stability of the uncertain neural networks with a

given𝐻
∞
performance level.The delay-dependent criteria are derived in terms of LMI (linearmatrix inequality). Finally, numerical

examples are provided to show the effectiveness of the obtained results.

1. Introduction

Neural networks have received a great deal of attention
due to their successful applications in various engineering
fields such as associative memory [1], pattern recognition
[2], adaptive control, and optimization. When designing or
implementing a neural network such as Hopfield neural
networks and cellular neural networks, the occurrence of
time delays is unavoidable in the processing of storage and
transmission. Since the existence of time delays is usually one
of themain sources of instability and oscillations, the stability
problem of neural networks with time delays has been
widely considered by many researchers (see [3–13]). Gener-
ally speaking, stability criteria of neural networks with time
delays are classified into two categories: delay-independent
stability criteria and delay-dependent stability criteria. Delay-
dependent stability criteria are less conservative than delay-
independent ones. Therefore, people always consider the
delay-dependent stability criteria. Neural networks usually
have a spatial extent due to the presence of many parallel
pathways of a variety of axon sizes and lengths [7]. Thus,
there will be a distribution of conduction velocities along
these pathways and a distribution of propagation delays [14],

and both the discrete and the distributed delays should be
considered in the neural network model [6, 7, 15–18].

However, in practical application of neural networks,
uncertainties are inevitable in neural networks because of
the existence of modeling errors and external disturbances.
Parameter uncertainties will destroy the stability, so that
taking uncertainty into account is important when studying
the dynamical behaviors of neural networks (see [12, 19–21]).
To facilitate the design of neural networks, it is important
to consider neural networks with various activation func-
tions, because the conditions to be imposed on the neural
network are determined by the characteristics of various
activation functions as well as network parameters [22]. The
generalization of activation functions will provide a wider
scope for neural network designs and applications [23].
Stability and stabilization results for delayed neural networks
with various activation functions can be found in [22–26].
References [24, 25] investigated the stability problem of
neural networks with various activation functions. Phat and
Trinh [23] dealt with the exponential stabilization problem
for neural networks with various activation functions via
the Lyapunov-Krasovskii functional. Nevertheless, the results
reported therein do not consider the parameter uncertainties
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and disturbances. Sakthivel et al. [26] studied the problem of
robust stabilization and 𝐻

∞
control for a class of uncertain

neural networks with various activation functions andmixed
time delays by employing the Lyapunov functional method
and the matrix inequality technique. In recent years, control
of time-delay systems is a subject of both practical and
theoretical importance. The performance of a neural control
system is influenced by external disturbances. Thus, it is
important to use the 𝐻

∞
robust technique to eliminate the

effect of external disturbances. The 𝐻
∞

control problem for
time-delay systems has been addressed in [6, 26–34]. How-
ever, to the best of our knowledge, the robust stabilization and
𝐻
∞

control for uncertain systems with time-varying delays
have not yet been fully investigated.

In this paper, we consider the problem of robust stabiliza-
tion and𝐻

∞
control for a class of uncertain neural networks

by employing a new augmented Lyapunov-Krasovskii func-
tional and estimating its derivative from a novel viewpoint.
Our aim is to obtain a 𝐻

∞
control law to guarantee the

robust stability of the closed-loop system with parameter
uncertainties and a given disturbance attenuation level 𝛾 >

0. The results employ the quadratic convex combination
technique, which is different from the linear convex combina-
tion and inverse convex combination techniques extensively
used in other literature studies. The criteria are derived with
the framework of LMIs, which can be easily calculated by
the MATLAb LMI control toolbox. Numerical examples are
provided to illustrate the effectiveness of the results.

Notations. The notations used throughout the paper are fairly
standard. 𝑅𝑛 denotes the 𝑛-dimensional Euclidean space;
𝑅
𝑛×𝑚 is the set of all 𝑛 × 𝑚 real matrices; the notation 𝐴 >

0 (<0) means 𝐴 is a symmetric positive (negative) definite
matrix; 𝐴−1 and 𝐴

𝑇 denote the inverse of matrix 𝐴 and
the transpose of matrix 𝐴; 𝐼 represents the identity matrix
with proper dimensions, respectively; a symmetric term in
a symmetric matrix is denoted by (∗); sym(𝐴) represents
(𝐴+𝐴

𝑇

); diag{⋅} stands for a block-diagonalmatrix.Matrices,
if their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

2. Problem Formulation

We consider the following uncertain neural networks with
discrete and distributed time-varying delays:

𝑥̇ (𝑡) = − (𝐴 + Δ𝐴) 𝑥 (𝑡) + (𝑀
0
+ Δ𝑀

0
) 𝑓 (𝑥 (𝑡))

+ (𝑀
1
+ Δ𝑀

1
) 𝑔 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ (𝑀
2
+ Δ𝑀

2
) ∫

𝑡

𝑡−𝑟(𝑡)

ℎ (𝑥 (𝑠)) 𝑑𝑠

+ (𝐵 + Δ𝐵) V (𝑡) + 𝑢 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) ,

𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ [−𝜏, 0] ,

(1)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇

∈ 𝑅
𝑛 is the state

vector of the neural networks, 𝑢(𝑡) ∈ 𝑅
𝑛 is the control input

vector of the neural networks, V(𝑡) ∈ 𝑅
𝑟 is the disturbance

input vector, and 𝑧(𝑡) ∈ 𝑅
𝑚 is the output vector; 𝑓(𝑥(𝑡)),

𝑔(𝑥(𝑡)), and ℎ(𝑥(𝑡)) denote the neuron activation function;
𝐴 = diag{𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
} with 𝑎

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛

is the positive diagonal matrix; 𝐶 ∈ 𝑅
𝑚×𝑛 represent the

output matrix; 𝑀
0
,𝑀
1
,𝑀
2
∈ 𝑅
𝑛×𝑛, and 𝐵 ∈ 𝑅

𝑛×𝑟 denote
the connection weights, the delayed connection weights, the
distributively connection weights, and the disturbance input
weights, respectively. 𝑑(𝑡) and 𝑟(𝑡) represent the discrete and
distributed time-varying delays that satisfy the condition

0 ⩽ 𝑑 (𝑡) ⩽ 𝜏,

̇
𝑑 (𝑡) ⩽ 𝜇,

0 ⩽ 𝑟 (𝑡) ⩽ 𝑟,

(2)

where 𝜏, 𝑟, and 𝜇 are constants. The function 𝜙(𝑡) is continu-
ous, defined on [−𝜏, 0], 𝜏 = max(𝑟, 𝜏).

In order to conduct the analysis, the following assump-
tions are necessary.

Assumption 1. The parametric uncertainties Δ𝐴, Δ𝑀
0
, Δ𝑀
1
,

Δ𝑀
2
, and Δ𝐵 are time-varying matrices and satisfy

[Δ𝐴 (𝑡) , Δ𝑀
0
(𝑡) , Δ𝑀

1
(𝑡) , Δ𝑀

2
(𝑡) , Δ𝐵 (𝑡)]

= 𝑁𝐹 (𝑡) [𝐽
1
, 𝐽
2
, 𝐽
3
, 𝐽
4
, 𝐽
5
] ,

(3)

where𝑁, 𝐽
1
, 𝐽
2
, 𝐽
3
, 𝐽
4
, and 𝐽

5
are some given constantmatrices

with appropriate dimensions and 𝐹(𝑡) satisfies 𝐹𝑇(𝑡)𝐹(𝑡) ≤ 𝐼,
for any 𝑡 ≥ 0.

Assumption 2. The neuron activation functions are bounded
and satisfy

𝐹
−

𝑖
⩽

𝑓
𝑖
(𝑥) − 𝑓

𝑖
(𝑦)

𝑥 − 𝑦

⩽ 𝐹
+

𝑖
, ∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ̸= 𝑦,

𝑓
𝑖
(0) = 0,

𝐺
−

𝑖
⩽

𝑔
𝑖
(𝑥) − 𝑔

𝑖
(𝑦)

𝑥 − 𝑦

⩽ 𝐺
+

𝑖
, ∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ̸= 𝑦,

𝑔
𝑖
(0) = 0,

𝐻
−

𝑖
⩽

ℎ
𝑖
(𝑥) − ℎ

𝑖
(𝑦)

𝑥 − 𝑦

⩽ 𝐻
+

𝑖
, ∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ̸= 𝑦,

ℎ
𝑖
(0) = 0,

(4)

where 𝐹
−

𝑖
, 𝐹+
𝑖
, 𝐺−
𝑖
, 𝐺+
𝑖
, 𝐻−
𝑖
, 𝐻+
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 are known

constants. And we denote

𝐿
1
= diag {𝐹−

1
𝐹
+

1
, 𝐹
−

2
𝐹
+

2
, . . . , 𝐹

−

𝑛
𝐹
+

𝑛
} ,

𝐿
2
= diag{

𝐹
−

1
+ 𝐹
+

1

2

,

𝐹
−

2
+ 𝐹
+

2

2

, . . . ,

𝐹
−

𝑛
+ 𝐹
+

𝑛

2

} ,
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𝐺
1
= diag {𝐺−

1
𝐺
+

1
, 𝐺
−

2
𝐺
+

2
, . . . , 𝐺

−

𝑛
𝐺
+

𝑛
} ,

𝐺
2
= diag{

𝐺
−

1
+ 𝐺
+

1

2

,

𝐺
−

2
+ 𝐺
+

2

2

, . . . ,

𝐺
−

𝑛
+ 𝐺
+

𝑛

2

} ,

𝐻
1
= diag {𝐻−

1
𝐻
+

1
, 𝐻
−

2
𝐻
+

2
, . . . , 𝐻

−

𝑛
𝐻
+

𝑛
} ,

𝐻
2
= diag{

𝐻
−

1
+ 𝐻
+

1

2

,

𝐻
−

2
+ 𝐻
+

2

2

, . . . ,

𝐻
−

𝑛
+ 𝐻
+

𝑛

2

} .

(5)

Definition 3 (see [26]). Given a prescribed level of distur-
bance attenuation 𝛾 > 0, the uncertain neural networks are
said to be robustly asymptotically stable if they are robustly
stable, and the response 𝑧(𝑡) under zero initial condition
satisfies

∫

∞

0

𝑧
𝑇

(𝑡) 𝑧 (𝑡) 𝑑𝑡 ⩽ 𝛾
2

∫

∞

0

V𝑇 (𝑡) V (𝑡) 𝑑𝑡, (6)

for every nonzero V(𝑡) ∈ 𝐿
2
[0,∞).

Lemma 4 (see [35]). For any constant matrix 𝑍 ∈ 𝑅
𝑛×𝑛

, 𝑍 =

𝑍
𝑇

> 0, scalars ℎ
2
> ℎ
1
> 0, and vector function 𝑥: [ℎ

1
, ℎ
2
] →

𝑅
𝑛 such that the following integrations are well defined; then

− (ℎ
2
− ℎ
1
) ∫

𝑡−ℎ
1

𝑡−ℎ
2

𝑥
𝑇

(𝑠) 𝑍𝑥 (𝑠) 𝑑𝑠

⩽ −∫

𝑡−ℎ
1

𝑡−ℎ
2

𝑥
𝑇

(𝑠) 𝑑𝑠𝑍∫

𝑡−ℎ
1

𝑡−ℎ
2

𝑥 (𝑠) 𝑑𝑠.

(7)

Lemma 5 (see [36]). Let 𝑊 > 0, and 𝜔(𝑠) an appropriate
dimensional vector. Then, we have the following facts for any
scalar function 𝛽(𝑠) ≥ 0, 𝑠 ∈ [𝑡

1
, 𝑡
2
]:

− ∫

𝑡
2

𝑡
1

𝜔
𝑇

(𝑠)𝑊𝜔 (𝑠) 𝑑𝑠

⩽ (𝑡
2
− 𝑡
1
) 𝜁
𝑇

𝐹
𝑇

1
𝑊
−1

𝐹
1
𝜁 + 2𝜁

𝑇

𝐹
𝑇

1
∫

𝑡
2

𝑡
1

𝜔 (𝑠) 𝑑𝑠,

− ∫

𝑡
2

𝑡
1

𝛽 (𝑠) 𝜔
𝑇

(𝑠)𝑊𝜔 (𝑠) 𝑑𝑠

⩽ ∫

𝑡
2

𝑡
1

𝛽 (𝑠) 𝑑𝑠𝜁
𝑇

𝐹
𝑇

2
𝑊
−1

𝐹
2
𝜁 + 2𝜁

𝑇

𝐹
𝑇

2
∫

𝑡
2

𝑡
1

𝛽 (𝑠) 𝜔 (𝑠) 𝑑𝑠,

− ∫

𝑡
2

𝑡
1

𝛽
2

(𝑠) 𝜔
𝑇

(𝑠)𝑊𝜔 (𝑠) 𝑑𝑠

⩽ (𝑡
2
− 𝑡
1
) 𝜁
𝑇

𝐹
𝑇

3
𝑊
−1

𝐹
3
𝜁 + 2𝜁

𝑇

𝐹
𝑇

3
∫

𝑡
2

𝑡
1

𝛽 (𝑠) 𝜔 (𝑠) 𝑑𝑠,

(8)

and matrices 𝐹
𝑖
(𝑖 = 1, 2, 3) and vector 𝜁 independent of the

integral variable are appropriate dimensional arbitrary ones.

Lemma 6 ((Schur complement) [26]). Given constant sym-
metric matrices 𝑆

1
, 𝑆
2
, and 𝑆

3
, where 𝑆

1
= 𝑆
𝑇

1
and 𝑆
2
= 𝑆
𝑇

2
> 0,

then 𝑆
1
+ 𝑆
𝑇

3
𝑆
−1

2
𝑆
3
< 0 if and only if

[
𝑆
1

𝑆
𝑇

3

𝑆
3
−𝑆
2

] < 0, or

[

−𝑆
2
𝑆
3

𝑆
𝑇

3
𝑆
1

] < 0.

(9)

Lemma7 (see [36]). For symmetricmatrices𝑍
0
,𝑍
1
, a positive

semidefinite matrix 𝑍
2
≥ 0 and nonzero vector 𝜁

𝑡
, a necessary

and sufficient condition for

𝑓 (𝛼) = 𝜁
𝑇

𝑡
(𝑍
0
+ 𝛼𝑍
1
+ 𝛼
2

𝑍
2
) 𝜁
𝑡
< 0, 𝛼 ∈ [𝛼

1
, 𝛼
2
] (10)

is that the following set of inequalities hold simultaneously
𝑓(𝛼
1
) < 0, 𝑓(𝛼

2
) < 0.

3. Robust Stabilization

We use the following control law to tackle the robust stabi-
lization problem in this paper:

𝑢 (𝑡) = 𝐾
1
𝑥 (𝑡) , (11)

where𝐾
1
are the gain matrix of the controller.

When the disturbance input V(𝑡) = 0, the neural networks
(1) can be rewritten in the form

𝑥̇ (𝑡) = − (𝐴 − 𝐾
1
) 𝑥 (𝑡) + 𝑀

0
𝑓 (𝑥 (𝑡))

+ 𝑀
1
𝑔 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 𝑀
2
∫

𝑡

𝑡−𝑟(𝑡)

ℎ (𝑥 (𝑠)) 𝑑𝑠 + 𝑁𝜑 (𝑡) ,

𝜑 (𝑡) = 𝐹 (𝑡) [−𝐽
1
𝑥 (𝑡) + 𝐽

2
𝑓 (𝑥 (𝑡))

+ 𝐽
3
𝑔 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 𝐽
4
∫

𝑡

𝑡−𝑟(𝑡)

ℎ (𝑥 (𝑠)) 𝑑𝑠] ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) .

(12)

Theorem 8. Under Assumptions 1 and 2, for given scalars 𝜏,
𝜇, and 𝑟, the system (12) is robustly asymptotically stabilizable
via the control law 𝑢(𝑡) if there exist positive diagonal matrices
𝐷 = diag{𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
}, 𝑊
𝑖
> 0, 𝑖 = 1, 2, 3, 4, positive

definite matrices 𝑃
1
∈ 𝑅
2𝑛×2𝑛, 𝑆

𝑖
∈ 𝑅
2𝑛×2𝑛

(𝑖 = 1, 2, 3, 4, 5),
𝑄
𝑖
∈ 𝑅
2𝑛×2𝑛

(𝑖 = 1, 2, 3, 4, 5), 𝑅
𝑖
∈ 𝑅
𝑛×𝑛

(𝑖 = 1, 2), scalar
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matrix 𝑈 > 0, and any matrices with appropriate dimensions
𝐹
𝑖
(𝑖 = 1, 2, . . . , 6), 𝛿 such that the following LMIs hold:

Ω
1
=

[

[

[

[

Φ
0

𝜏𝐹
𝑇

1
𝜏𝐹
𝑇

2
√3𝜏𝐹

𝑇

3

∗ −𝜏𝑄
3

0 0

∗ ∗ −𝑅1 0

∗ ∗ ∗ −𝜏𝑅
2

]

]

]

]

< 0,

Ω
2
=

[

[

[

[

Φ
0
+ 𝜏Φ
1

𝜏𝐹
𝑇

4
𝜏𝐹
𝑇

5
√3𝜏𝐹

𝑇

6

∗ −𝜏𝑄
3

0 0

∗ ∗ −𝑅1 0

∗ ∗ ∗ −𝜏𝑅
2

]

]

]

]

< 0,

(13)

where

Φ
1
= sym (2E1F5 + 3E1F6 − 2E2F2 − 3E2F3)

+ sym ([𝐸
5
, 0] 𝑄
1
[𝐸
1
, 0]
𝑇

) ,

Φ
0
= sym (𝐹

𝑇

1
[𝐸
8
, 𝐸
2
− 𝐸
3
]
𝑇

+ 2𝜏𝐹
𝑇

2
𝐸
𝑇

2
− 2𝐹
𝑇

2
𝐸
𝑇

8

+ 3𝜏𝐹
𝑇

3
𝐸
𝑇

2
− 3𝐹
𝑇

3
𝐸
𝑇

8
+ 𝐹
𝑇

4
[𝐸
9
, 𝐸
1
− 𝐸
2
]
𝑇

− 2𝐹
𝑇

5
𝐸
𝑇

9
− 3𝐹
𝑇

6
𝐸
𝑇

9
)

+ sym ([𝐸
1
, 𝐸
3
] 𝑃
1
[𝐸
5
, 𝐸
23
]
𝑇

+ 𝐸
6
𝐷𝐸
𝑇

5
)

+ [𝐸
10
, 𝐸
6
] (𝑆
1
+ 𝑆
2
+ 𝑆
5
) [𝐸
10
, 𝐸
6
]
𝑇

− (1 − 𝜇) [𝐸
11
, 𝐸
14
] 𝑆
1
[𝐸
11
, 𝐸
14
]
𝑇

+ [𝐸
1
, 𝐸
1
] (𝑄
1
+ 𝑄
2
) [𝐸
1
, 𝐸
1
]
𝑇

+ (𝜇 − 1) [𝐸
1
, 𝐸
2
] 𝑄
1
[𝐸
1
, 𝐸
2
]
𝑇

+ sym ([𝐸
5
, 0] 𝑄
1
[0, 𝐸
9
]
𝑇

) − [𝐸
19
, 𝐸
20
] 𝑆
2
[𝐸
19
, 𝐸
20
]
𝑇

+ [𝐸
5
, 𝐸
7
] (𝑆
3
+ 𝑆
4
) [𝐸
5
, 𝐸
7
]
𝑇

− [𝐸
23
, 𝐸
24
] 𝑆
3
[𝐸
23
, 𝐸
24
]
𝑇

− [𝐸
1
, 𝐸
3
] 𝑄
2
[𝐸
1
, 𝐸
3
]
𝑇

+ sym ([𝐸
5
, 0] 𝑄
2
[𝜏𝐸
1
, 𝐸
8
+ 𝐸
9
]
𝑇

)

− [𝐸
15
, 𝐸
16
] 𝑆
4
[𝐸
15
, 𝐸
16
]
𝑇

− [𝐸
17
, 𝐸
18
] 𝑆
5
[𝐸
17
, 𝐸
18
]
𝑇

+ 𝜏 [𝐸
1
, 𝐸
5
] 𝑄
3
[𝐸
1
, 𝐸
5
]
𝑇

+ 𝐸
5
(𝜏
2

𝑅
1
+ 𝜏
3

𝑅
2
) 𝐸
𝑇

5

+ 𝑟
2

[𝐸
5
, 𝐸
7
] 𝑄
4
[𝐸
5
, 𝐸
7
]
𝑇

− [𝐸
1
− 𝐸
4
, 𝐸
12
] 𝑄
4
[𝐸
1
− 𝐸
4
, 𝐸
12
]
𝑇

+ 𝑟
2

[𝐸
10
, 𝐸
6
] 𝑄
5
[𝐸
10
, 𝐸
6
]
𝑇

− [𝐸
21
, 𝐸
22
] 𝑄
5
[𝐸
21
, 𝐸
22
]
𝑇

− 𝐸
1
𝐿
1
𝑊
1
𝐸
𝑇

1
− 𝐸
6
𝑊
1
𝐸
𝑇

6

+ sym (𝐸
1
𝐿
2
𝑊
1
𝐸
𝑇

6
) − 𝐸
1
𝐺
1
𝑊
2
𝐸
𝑇

1
− 𝐸
10
𝑊
2
𝐸
𝑇

10

+ sym (𝐸
1
𝐺
2
𝑊
2
𝐸
𝑇

10
) − 𝐸
1
𝐻
1
𝑊
3
𝐸
𝑇

1
− 𝐸
7
𝑊
3
𝐸
𝑇

7

+ sym (𝐸
1
𝐻
2
𝑊
3
𝐸
𝑇

7
) − 𝐸
2
𝐺
1
𝑊
4
𝐸
𝑇

2
− 𝐸
11
𝑊
4
𝐸
𝑇

11

+ sym (𝐸
2
𝐺
2
𝑊
4
𝐸
𝑇

11
)

+ sym (− (𝐸
1
+ 𝐸
5
) (𝛿𝐴 − Λ

1
) 𝐸
𝑇

1
+ (𝐸
1
+ 𝐸
5
) 𝛿𝑀
0
𝐸
𝑇

6

+ (𝐸
1
+ 𝐸
5
) 𝛿𝑀
1
𝐸
𝑇

11
+ (𝐸
1
+ 𝐸
5
) 𝛿𝑀
2
𝐸
𝑇

12

+ (𝐸
1
+ 𝐸
5
) 𝛿𝑁𝐸

𝑇

13
− (𝐸
1
+ 𝐸
5
) 𝛿𝐸
𝑇

5
)

+ 𝐽
𝑇

𝑈𝐽 − 𝐸
13
𝑈𝐸
𝑇

13
,

(14)

with

𝐸
𝑖
= [0
𝑛×(𝑖−1)𝑛

, 𝐼
𝑛
, 0
𝑛×(24−𝑖)𝑛

]
𝑇

, 𝑖 = 1, 2, . . . , 24,

Λ
1
= 𝛿𝐾
1
,

𝐽 = [−𝐽
1
, 0, 0, 0, 0, 𝐽

2
, 0, 0, 0, 0, 𝐽

3
, 𝐽
4
,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] .

(15)

Proof. Construct a new class of Lyapunov-Krasovskii func-
tional as follows:

𝑉 (𝑡, 𝑥 (𝑡)) =

6

∑

𝑖=1

𝑉
𝑖
(𝑥 (𝑡)) , (16)

where

𝑉
1
(𝑡, 𝑥 (𝑡)) = 𝜂

𝑇

1
(𝑡, 𝑡 − 𝜏) 𝑃

1
𝜂
1
(𝑡, 𝑡 − 𝜏)

+ 2

𝑛

∑

𝑖=1

𝑑
𝑖
∫

𝑥
𝑖
(𝑡)

0

𝑓
𝑖
(𝑠) 𝑑𝑠,

𝑉
2
(𝑡, 𝑥 (𝑡)) = ∫

𝑡

𝑡−𝑑(𝑡)

[𝜂
𝑇

1
(𝑡, 𝑠) 𝑄

1
𝜂
1
(𝑡, 𝑠) + 𝜂

𝑇

4
(𝑠) 𝑆
1
𝜂
4
(𝑠)] 𝑑𝑠,

𝑉
3
(𝑡, 𝑥 (𝑡)) = ∫

𝑡

𝑡−𝜏

[𝜂
𝑇

1
(𝑡, 𝑠) 𝑄

2
𝜂
1
(𝑡, 𝑠)

+ 𝜂
𝑇

4
(𝑠) 𝑆
2
𝜂
4
(𝑠) + 𝜂

𝑇

3
(𝑠) 𝑆
3
𝜂
3
(𝑠)] 𝑑𝑠,

𝑉
4
(𝑡, 𝑥 (𝑡)) = ∫

𝑡

𝑡−𝑟

[𝜂
𝑇

3
(𝑠) 𝑆
4
𝜂
3
(𝑠) + 𝜂

𝑇

4
(𝑠) 𝑆
5
𝜂
4
(𝑠)] 𝑑𝑠,

𝑉
5
(𝑡, 𝑥 (𝑡)) = ∫

𝑡

𝑡−𝜏

∫

𝑡

𝜃

𝜂
𝑇

2
(𝑠) 𝑄
3
𝜂
2
(𝑠) 𝑑𝑠 𝑑𝜃

+ 2∫

𝑡

𝑡−𝜏

∫

𝑡

𝜃
1

∫

𝑡

𝜃
2

𝑥̇
𝑇

(𝑠) 𝑅
1
𝑥̇ (𝑠) 𝑑𝑠 𝑑𝜃

1
𝑑𝜃
2

+ 6∫

𝑡

𝑡−𝜏

∫

𝑡

𝜃
1

∫

𝑡

𝜃
2

∫

𝑡

𝜃
3

𝑥̇
𝑇

(𝑠) 𝑅
2
𝑥̇ (𝑠) 𝑑𝑠 𝑑𝜃

1
𝑑𝜃
2
𝑑𝜃
3
,

𝑉
6
(𝑡, 𝑥 (𝑡)) = 𝑟∫

0

−𝑟

∫

𝑡

𝑡+𝜃

𝜂
𝑇

3
(𝑠) 𝑄
4
𝜂
3
(𝑠) 𝑑𝑠 𝑑𝜃

+ 𝑟∫

0

−𝑟

∫

𝑡

𝑡+𝜃

𝜂
𝑇

4
(𝑠) 𝑄
5
𝜂
4
(𝑠) 𝑑𝑠 𝑑𝜃,

(17)
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where

𝜂
𝑇

1
(𝑡, 𝑠) = [𝑥

𝑇

(𝑡) 𝑥
𝑇

(𝑠)] ,

𝜂
𝑇

2
(𝑡) = [𝑥

𝑇

(𝑡) 𝑥̇
𝑇

(𝑡)] ,

𝜂
𝑇

3
(𝑡) = [𝑥̇

𝑇

(𝑡) ℎ
𝑇

(𝑥 (𝑡))] ,

𝜂
𝑇

4
(𝑡) = [𝑔

𝑇

(𝑥 (𝑡)) 𝑓
𝑇

(𝑥 (𝑡))] .

(18)

We define a vector 𝜁
𝑡
as

𝜁
𝑇

𝑡
= [𝑥
𝑇

(𝑡) , 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) , 𝑥
𝑇

(𝑡 − 𝜏) , 𝑥
𝑇

(𝑡 − 𝑟 (𝑡)) ,

𝑥̇
𝑇

(𝑡) , 𝑓
𝑇

(𝑥 (𝑡)) , ℎ
𝑇

(𝑥 (𝑡)) , ∫

𝑡−𝑑(𝑡)

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑑𝑠,

∫

𝑡

𝑡−𝑑(𝑡)

𝑥
𝑇

(𝑠) 𝑑𝑠, 𝑔
𝑇

(𝑥 (𝑡)) , 𝑔
𝑇

(𝑥 (𝑡 − 𝑑 (𝑡))) ,

∫

𝑡

𝑡−𝑟(𝑡)

ℎ
𝑇

(𝑥 (𝑠)) 𝑑𝑠, 𝜑
𝑇

(𝑡) , 𝑓
𝑇

(𝑥 (𝑡 − 𝑑 (𝑡))) ,

𝑥̇
𝑇

(𝑡 − 𝑟) , ℎ
𝑇

(𝑥 (𝑡 − 𝑟)) , 𝑔
𝑇

(𝑥 (𝑡 − 𝑟)) , 𝑓
𝑇

(𝑥 (𝑡 − 𝑟)) ,

𝑔
𝑇

(𝑥 (𝑡 − 𝜏)) , 𝑓
𝑇

(𝑥 (𝑡 − 𝜏)) , ∫

𝑡

𝑡−𝑟(𝑡)

𝑔
𝑇

(𝑥 (𝑠)) 𝑑𝑠,

∫

𝑡

𝑡−𝑟(𝑡)

𝑓
𝑇

(𝑥 (𝑠)) 𝑑𝑠, 𝑥̇
𝑇

(𝑡 − 𝜏) , ℎ
𝑇

(𝑥 (𝑡 − 𝜏))] .

(19)

Remark 1. Our paper uses the idea of second-order convex
combination, and the property of quadratic convex function
is given in Lemma 7.

Remark 2. We fully consider the various activation functions
in constructing the Lyapunov-Krasovskii functional. So the
augmented vector 𝜁

𝑡
uses more information about 𝑓(𝑥(𝑡)),

𝑔(𝑥(𝑡)), and ℎ(𝑥(𝑡)) than in [26].The Lyapunov functional in
our paper is more general than that in [26], and the criteria
in our paper may be more applicable.

Remark 3. In our paper, the augmented vector 𝜁
𝑡
utilizesmore

information on state variables than in [26], such as 𝑥̇(𝑡 −
𝜏). This leads to reducing the conservatism of stabilization
condition.

The time derivative of 𝑉(𝑡, 𝑥(𝑡)) along the trajectory of
system is given by

𝑉̇
1
(𝑡, 𝑥 (𝑡))

= 2𝜂
𝑇

1
(𝑡, 𝑡 − 𝜏) 𝑃

1
̇𝜂
𝑇

1
(𝑡, 𝑡 − 𝜏) + 2𝑓

𝑇

(𝑥 (𝑡))𝐷𝑥̇ (𝑡)

= 2𝜁
𝑇

𝑡
[𝐸
1
, 𝐸
3
] 𝑃
1
[𝐸
5
, 𝐸
23
]
𝑇

𝜁
𝑡
+ 2𝜁
𝑇

𝑡
𝐸
6
𝐷𝐸
𝑇

5
𝜁
𝑡

= 𝜁
𝑇

𝑡
sym ([𝐸

1
, 𝐸
3
] 𝑃
1
[𝐸
5
, 𝐸
23
]
𝑇

+ 𝐸
6
𝐷𝐸
𝑇

5
) 𝜁
𝑡
,

𝑉̇
2
(𝑡, 𝑥 (𝑡))

= 𝜂
𝑇

4
(𝑡) 𝑆
1
𝜂
4
(𝑡) + 𝜂

𝑇

1
(𝑡, 𝑡) 𝑄

1
𝜂
1
(𝑡, 𝑡)

− (1 −
̇

𝑑 (𝑡)) 𝜂
𝑇

4
(𝑡 − 𝑑 (𝑡)) 𝑆

1
𝜂
4
(𝑡 − 𝑑 (𝑡))

− (1 −
̇

𝑑 (𝑡)) 𝜂
𝑇

1
(𝑡, 𝑡 − 𝑑 (𝑡)) 𝑄

1
𝜂
1
(𝑡, 𝑡 − 𝑑 (𝑡))

+ 2∫

𝑡

𝑡−𝑑(𝑡)

𝜕𝜂
𝑇

1
(𝑡, 𝑠)

𝜕𝑡

𝑄
1
𝜂
1
(𝑡, 𝑠) 𝑑𝑠

⩽ 𝜁
𝑇

𝑡
[𝐸
10
, 𝐸
6
] 𝑆
1
[𝐸
10
, 𝐸
6
]
𝑇

𝜁
𝑡

− (1 − 𝜇) 𝜁
𝑇

𝑡
[𝐸
11
, 𝐸
14
] 𝑆
1
[𝐸
11
, 𝐸
14
]
𝑇

𝜁
𝑡

+ 𝜁
𝑇

𝑡
[𝐸
1
, 𝐸
1
] 𝑄
1
[𝐸
1
, 𝐸
1
]
𝑇

𝜁
𝑡

+ (𝜇 − 1) 𝜁
𝑇

𝑡
[𝐸
1
, 𝐸
2
] 𝑄
1
[𝐸
1
, 𝐸
2
]
𝑇

𝜁
𝑡

+ 2𝜁
𝑇

𝑡
[𝐸
5
, 0] 𝑄
1
[𝑑 (𝑡) 𝐸

1
, 𝐸
9
]
𝑇

𝜁
𝑡
,

𝑉̇
3
(𝑡, 𝑥 (𝑡))

= 𝜂
𝑇

4
(𝑡) 𝑆
2
𝜂
4
(𝑡) − 𝜂

𝑇

4
(𝑡 − 𝜏) 𝑆

2
𝜂
4
(𝑡 − 𝜏)

+ 𝜂
𝑇

3
(𝑡) 𝑆
3
𝜂
3
(𝑡) − 𝜂

𝑇

3
(𝑡 − 𝜏) 𝑆

3
𝜂
3
(𝑡 − 𝜏)

+ 𝜂
𝑇

1
(𝑡, 𝑡) 𝑄

2
𝜂
1
(𝑡, 𝑡)

− 𝜂
𝑇

1
(𝑡, 𝑡 − 𝜏)𝑄

2
𝜂
1
(𝑡, 𝑡 − 𝜏)

+ 2∫

𝑡

𝑡−𝜏

𝜕𝜂
𝑇

1
(𝑡, 𝑠)

𝜕𝑡

𝑄
2
𝜂
1
(𝑡, 𝑠) 𝑑𝑠

= 𝜁
𝑇

𝑡
[𝐸
10
, 𝐸
6
] 𝑆
2
[𝐸
10
, 𝐸
6
]
𝑇

𝜁
𝑡

− 𝜁
𝑇

𝑡
[𝐸
19
, 𝐸
20
] 𝑆
2
[𝐸
19
, 𝐸
20
]
𝑇

𝜁
𝑡

+ 𝜁
𝑇

𝑡
[𝐸
5
, 𝐸
7
] 𝑆
3
[𝐸
5
, 𝐸
7
]
𝑇

𝜁
𝑡

− 𝜁
𝑇

𝑡
[𝐸
23
, 𝐸
24
] 𝑆
3
[𝐸
23
, 𝐸
24
]
𝑇

𝜁
𝑡

+ 𝜁
𝑇

𝑡
[𝐸
1
, 𝐸
1
] 𝑄
2
[𝐸
1
, 𝐸
1
]
𝑇

𝜁
𝑡

− 𝜁
𝑇

𝑡
[𝐸
1
, 𝐸
3
] 𝑄
2
[𝐸
1
, 𝐸
3
]
𝑇

𝜁
𝑡

+ 2𝜁
𝑇

𝑡
[𝐸
5
, 0] 𝑄
2
[𝜏𝐸
1
, 𝐸
8
+ 𝐸
9
]
𝑇

𝜁
𝑡
,

𝑉̇
4
(𝑡, 𝑥 (𝑡))

= 𝜂
𝑇

3
(𝑡) 𝑆
4
𝜂
3
(𝑡) − 𝜂

𝑇

3
(𝑡 − 𝑟) 𝑆

4
𝜂
3
(𝑡 − 𝑟)

+ 𝜂
𝑇

4
(𝑡) 𝑆
5
𝜂
4
(𝑡) − 𝜂

𝑇

4
(𝑡 − 𝑟) 𝑆

5
𝜂
4
(𝑡 − 𝑟)

= 𝜁
𝑇

𝑡
[𝐸
5
, 𝐸
7
] 𝑆
4
[𝐸
5
, 𝐸
7
]
𝑇

𝜁
𝑡

− 𝜁
𝑇

𝑡
[𝐸
15
, 𝐸
16
] 𝑆
4
[𝐸
15
, 𝐸
16
]
𝑇

𝜁
𝑡

+ 𝜁
𝑇

𝑡
[𝐸
10
, 𝐸
6
] 𝑆
5
[𝐸
10
, 𝐸
6
]
𝑇

𝜁
𝑡

− 𝜁
𝑇

𝑡
[𝐸
17
, 𝐸
18
] 𝑆
5
[𝐸
17
, 𝐸
18
]
𝑇

𝜁
𝑡
,
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𝑉̇
5
(𝑡, 𝑥 (𝑡))

= 𝜏𝜂
𝑇

2
(𝑡) 𝑄
3
𝜂
2
(𝑡) + 𝑥̇

𝑇

(𝑡) (𝜏
2

𝑅
1
+ 𝜏
3

𝑅
2
) 𝑥̇ (𝑡)

+ 𝑉
𝑎
(𝑡, 𝑥 (𝑡))

= 𝜏𝜁
𝑇

𝑡
[𝐸
1
, 𝐸
5
] 𝑄
3
[𝐸
1
, 𝐸
5
]
𝑇

𝜁
𝑡
+ 𝜁
𝑇

𝑡
𝐸
5
(𝜏
2

𝑅
1
+ 𝜏
3

𝑅
2
) 𝐸
𝑇

5
𝜁
𝑡

+ 𝑉
𝑎
(𝑡, 𝑥 (𝑡)) ,

(20)

where

𝑉
𝑎
(𝑡, 𝑥 (𝑡))

= −∫

𝑡

𝑡−𝜏

[𝜂
𝑇

2
(𝑠) 𝑄
3
𝜂
2
(𝑠) + 2 (𝜏 − 𝑡 + 𝑠) 𝑥̇

𝑇

(𝑠) 𝑅
1
𝑥̇ (𝑠)

+ 3 (𝜏 − 𝑡 + 𝑠)
2

𝑥̇
𝑇

(𝑠) 𝑅
2
𝑥̇ (𝑠)] 𝑑𝑠,

𝑉̇
6
(𝑡, 𝑥 (𝑡))

= 𝑟
2

𝜂
𝑇

3
(𝑡) 𝑄
4
𝜂
3
(𝑡)

− 𝑟∫

𝑡

𝑡−𝑟

[𝜂
𝑇

3
(𝑠) 𝑄
4
𝜂
3
(𝑠)] 𝑑𝑠 + 𝑟

2

𝜂
𝑇

4
(𝑡) 𝑄
5
𝜂
4
(𝑡)

− 𝑟∫

𝑡

𝑡−𝑟

[𝜂
𝑇

4
(𝑠) 𝑄
5
𝜂
4
(𝑠)] 𝑑𝑠

⩽ 𝑟
2

𝜂
𝑇

3
(𝑡) 𝑄
4
𝜂
3
(𝑡)

− 𝑟 (𝑡) ∫

𝑡

𝑡−𝑟(𝑡)

[𝜂
𝑇

3
(𝑠) 𝑄
4
𝜂
3
(𝑠)] 𝑑𝑠 + 𝑟

2

𝜂
𝑇

4
(𝑡) 𝑄
5
𝜂
4
(𝑡)

− 𝑟 (𝑡) ∫

𝑡

𝑡−𝑟(𝑡)

[𝜂
𝑇

4
(𝑠) 𝑄
5
𝜂
4
(𝑠)] 𝑑𝑠,

(21)

and according to Lemma 4, we can obtain

𝑉̇
6
(𝑡, 𝑥 (𝑡))

⩽ 𝑟
2

𝜂
𝑇

3
(𝑡) 𝑄
4
𝜂
3
(𝑡)

− (∫

𝑡

𝑡−𝑟(𝑡)

𝜂
3
(𝑠) 𝑑𝑠)

𝑇

𝑄
4
(∫

𝑡

𝑡−𝑟(𝑡)

𝜂
3
(𝑠) 𝑑𝑠)

+ 𝑟
2

𝜂
𝑇

4
(𝑡) 𝑄
5
𝜂
4
(𝑡)

− (∫

𝑡

𝑡−𝑟(𝑡)

𝜂
4
(𝑠) 𝑑𝑠)

𝑇

𝑄
5
(∫

𝑡

𝑡−𝑟(𝑡)

𝜂
4
(𝑠) 𝑑𝑠)

= 𝑟
2

𝜁
𝑇

𝑡
[𝐸
5
, 𝐸
7
] 𝑄
4
[𝐸
5
, 𝐸
7
]
𝑇

𝜁
𝑡

− 𝜁
𝑇

𝑡
[𝐸
1
− 𝐸
4
, 𝐸
12
] 𝑄
4
[𝐸
1
− 𝐸
4
, 𝐸
12
]
𝑇

𝜁
𝑡

+ 𝑟
2

𝜁
𝑇

𝑡
[𝐸
10
, 𝐸
6
] 𝑄
5
[𝐸
10
, 𝐸
6
]
𝑇

𝜁
𝑡

− 𝜁
𝑇

𝑡
[𝐸
21
, 𝐸
22
] 𝑄
5
[𝐸
21
, 𝐸
22
]
𝑇

𝜁
𝑡
.

(22)

It is easy to obtain the following identities:

ℎ − 𝑡 + 𝑠 = [𝑑 (𝑡) − 𝑡 + 𝑠] + [ℎ − 𝑑 (𝑡)] ,

(ℎ − 𝑡 + 𝑠)
2

= [𝑑 (𝑡) − 𝑡 + 𝑠]
2

+ [ℎ
2

− 𝑑
2

(𝑡)]

+ 2 [ℎ − 𝑑 (𝑡)] (𝑠 − 𝑡) .

(23)

Therefore, we can disassemble the integral into two parts as
follows:

𝑉
𝑎
(𝑡, 𝑥 (𝑡))

= −∫

𝑡−𝑑(𝑡)

𝑡−𝜏

[𝜂
𝑇

2
(𝑠) 𝑄
3
𝜂
2
(𝑠) + 2 (𝜏 − 𝑡 + 𝑠) 𝑥̇

𝑇

(𝑠) 𝑅
1
𝑥̇ (𝑠)

+ 3 (𝜏 − 𝑡 + 𝑠)
2

𝑥̇
𝑇

(𝑠) 𝑅
2
𝑥̇ (𝑠)] 𝑑𝑠

− ∫

𝑡

𝑡−𝑑(𝑡)

[𝜂
𝑇

2
(𝑠) 𝑄
3
𝜂
2
(𝑠) + 2 (𝜏 − 𝑡 + 𝑠) 𝑥̇

𝑇

(𝑠) 𝑅
1
𝑥̇ (𝑠)

+ 3 (𝜏 − 𝑡 + 𝑠)
2

𝑥̇
𝑇

(𝑠) 𝑅
2
𝑥̇ (𝑠)] 𝑑𝑠

= −∫

𝑡−𝑑(𝑡)

𝑡−𝜏

[𝜂
𝑇

2
(𝑠) 𝑄
3
𝜂
2
(𝑠) + 2 (𝜏 − 𝑡 + 𝑠) 𝑥̇

𝑇

(𝑠) 𝑅
1
𝑥̇ (𝑠)

+ 3 (𝜏 − 𝑡 + 𝑠)
2

𝑥̇
𝑇

(𝑠) 𝑅
2
𝑥̇ (𝑠)] 𝑑𝑠

− ∫

𝑡

𝑡−𝑑(𝑡)

[𝜂
𝑇

2
(𝑠) 𝑄
3
𝜂
2
(𝑠) + 2 (𝑑 (𝑡) − 𝑡 + 𝑠) 𝑥̇

𝑇

(𝑠) 𝑅
1
𝑥̇ (𝑠)

+ 3 (𝑑 (𝑡) − 𝑡 + 𝑠)
2

𝑥̇
𝑇

(𝑠) 𝑅
2
𝑥̇ (𝑠)] 𝑑𝑠

− ∫

𝑡

𝑡−𝑑(𝑡)

𝑥̇ (𝑠)
𝑇

[2 (𝜏 − 𝑑 (𝑡)) 𝑅
1
+ 3 (𝜏

2

− 𝑑
2

(𝑡)) 𝑅
2
]

⋅ 𝑥̇ (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝑑(𝑡)

6 (𝜏 − 𝑑 (𝑡)) (𝑠 − 𝑡) 𝑥̇
𝑇

(𝑠) 𝑅
2
𝑥̇ (𝑠) 𝑑𝑠

= 𝑉
𝑎1
(𝑡, 𝑥 (𝑡)) + 𝑉

𝑎2
(𝑡, 𝑥 (𝑡)) ,

(24)

where

𝑉
𝑎1
(𝑡, 𝑥 (𝑡))

= −∫

𝑡−𝑑(𝑡)

𝑡−𝜏

[𝜂
𝑇

2
(𝑠) 𝑄
3
𝜂
2
(𝑠) + 2 (𝜏 − 𝑡 + 𝑠) 𝑥̇

𝑇

(𝑠) 𝑅
1
𝑥̇ (𝑠)

+ 3 (𝜏 − 𝑡 + 𝑠)
2

𝑥̇
𝑇

(𝑠) 𝑅
2
𝑥̇ (𝑠)] 𝑑𝑠

− ∫

𝑡

𝑡−𝑑(𝑡)

[𝜂
𝑇

2
(𝑠) 𝑄
3
𝜂
2
(𝑠) + 2 (𝑑 (𝑡) − 𝑡 + 𝑠) 𝑥̇

𝑇

(𝑠) 𝑅
1
𝑥̇ (𝑠)

+ 3 (𝑑 (𝑡) − 𝑡 + 𝑠)
2

𝑥̇
𝑇

(𝑠) 𝑅
2
𝑥̇ (𝑠)] 𝑑𝑠,
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𝑉
𝑎2
(𝑡, 𝑥 (𝑡))

= −∫

𝑡

𝑡−𝑑(𝑡)

𝑥̇ (𝑠)
𝑇

[2 (𝜏 − 𝑑 (𝑡)) 𝑅
1
+ 3 (𝜏

2

− 𝑑
2

(𝑡)) 𝑅
2
]

⋅ 𝑥̇ (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝑑(𝑡)

6 (𝜏 − 𝑑 (𝑡)) (𝑠 − 𝑡) 𝑥̇
𝑇

(𝑠) 𝑅
2
𝑥̇ (𝑠) 𝑑𝑠.

(25)

It is easy to show the following relation:

𝑉
𝑎2
(𝑡, 𝑥 (𝑡))

= −∫

𝑡

𝑡−𝑑(𝑡)

𝑥̇ (𝑠)
𝑇

[2 (𝜏 − 𝑑 (𝑡)) 𝑅
1
+ 3 (𝜏

2

− 𝑑
2

(𝑡)) 𝑅
2
]

⋅ 𝑥̇ (𝑠) 𝑑𝑠

− ∫

𝑡

𝑡−𝑑(𝑡)

6 (𝜏 − 𝑑 (𝑡)) (𝑠 − 𝑡) 𝑥̇
𝑇

(𝑠) 𝑅
2
𝑥̇ (𝑠) 𝑑𝑠

= −2 (𝜏 − 𝑑 (𝑡)) ∫

𝑡

𝑡−𝑑(𝑡)

𝑥̇ (𝑠)
𝑇

𝑅
1
𝑥̇ (𝑠) 𝑑𝑠 − 3 (𝜏 − 𝑑 (𝑡))

⋅ ∫

𝑡

𝑡−𝑑(𝑡)

𝑥̇ (𝑠)
𝑇

[(𝜏 + 𝑑 (𝑡)) + 2 (𝑠 − 𝑡)] 𝑅
2
𝑥̇ (𝑠) 𝑑𝑠

⩽ −2∫

𝑡

𝑡−𝑑(𝑡)

(𝜏 − 𝑑 (𝑡)) 𝑥̇ (𝑠)
𝑇

𝑅
1
𝑥̇ (𝑠) 𝑑𝑠

− 3∫

𝑡

𝑡−𝑑(𝑡)

(𝜏 − 𝑑 (𝑡))
2

𝑥̇ (𝑠)
𝑇

𝑅
2
𝑥̇ (𝑠) 𝑑𝑠 ⩽ 0.

(26)

Applying Lemma 5 to 𝑉
𝑎1
(𝑡, 𝑥(𝑡)), we get

𝑉
𝑎1
(𝑡, 𝑥 (𝑡))

⩽ (𝜏 − 𝑑 (𝑡)) 𝜁
𝑇

𝑡
𝐹
𝑇

1
𝑄
−1

3
𝐹
1
𝜁
𝑡

+ 2𝜁
𝑇

𝑡
𝐹
𝑇

1
[∫

𝑡−𝑑(𝑡)

𝑡−𝜏

𝑥
𝑇

(𝑠) 𝑑𝑠, 𝑥
𝑇

(𝑡 − 𝑑 (𝑡)) − 𝑥
𝑇

(𝑡 − 𝜏)]

𝑇

+ (𝜏 − 𝑑 (𝑡))
2

𝜁
𝑇

𝑡
𝐹
𝑇

2
𝑅
−1

1
𝐹
2
𝜁
𝑡

+ 4𝜁
𝑇

𝑡
𝐹
𝑇

2
[(𝜏 − 𝑑 (𝑡)) 𝑥 (𝑡 − 𝑑 (𝑡)) − ∫

𝑡−𝑑(𝑡)

𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠]

+ 3 (𝜏 − 𝑑 (𝑡)) 𝜁
𝑇

𝑡
𝐹
𝑇

3
𝑅
−1

2
𝐹
3
𝜁
𝑡

+ 6𝜁
𝑇

𝑡
𝐹
𝑇

3
[(𝜏 − 𝑑 (𝑡)) 𝑥 (𝑡 − 𝑑 (𝑡)) − ∫

𝑡−𝑑(𝑡)

𝑡−𝜏

𝑥 (𝑠) 𝑑𝑠]

+ 𝑑 (𝑡) 𝜁
𝑇

𝑡
𝐹
𝑇

4
𝑄
−1

3
𝐹
4
𝜁
𝑡

+ 2𝜁
𝑇

𝑡
𝐹
𝑇

4
[∫

𝑡

𝑡−𝑑(𝑡)

𝑥
𝑇

(𝑠) 𝑑𝑠, 𝑥
𝑇

(𝑡) − 𝑥
𝑇

(𝑡 − 𝑑 (𝑡))]

𝑇

+ 𝑑 (𝑡)
2

𝜁
𝑇

𝑡
𝐹
𝑇

5
𝑅
−1

1
𝐹
5
𝜁
𝑡

+ 4𝜁
𝑇

𝑡
𝐹
𝑇

5
[𝑑 (𝑡) 𝑥 (𝑡) − ∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠]

+ 3𝑑 (𝑡) 𝜁
𝑇

𝑡
𝐹
𝑇

6
𝑅
−1

2
𝐹
6
𝜁
𝑡

+ 6𝜁
𝑇

𝑡
𝐹
𝑇

6
[𝑑 (𝑡) 𝑥 (𝑡) − ∫

𝑡

𝑡−𝑑(𝑡)

𝑥 (𝑠) 𝑑𝑠]

⩽ (𝜏 − 𝑑 (𝑡)) 𝜁
𝑇

𝑡
𝐹
𝑇

1
𝑄
−1

3
𝐹
1
𝜁
𝑡
+ 2𝜁
𝑇

𝑡
𝐹
𝑇

1
[𝐸
8
, 𝐸
2
− 𝐸
3
]
𝑇

𝜁
𝑡

+ (𝜏 − 𝑑 (𝑡))
2

𝜁
𝑇

𝑡
𝐹
𝑇

2
𝑅
−1

1
𝐹
2
𝜁
𝑡

+ 4𝜁
𝑇

𝑡
𝐹
𝑇

2
[(𝜏 − 𝑑 (𝑡)) 𝐸

2
− 𝐸
8
]
𝑇

𝜁
𝑡

+ 3 (𝜏 − 𝑑 (𝑡)) 𝜁
𝑇

𝑡
𝐹
𝑇

3
𝑅
−1

2
𝐹
3
𝜁
𝑡

+ 6𝜁
𝑇

𝑡
𝐹
𝑇

3
[(𝜏 − 𝑑 (𝑡)) 𝐸

2
− 𝐸
8
]
𝑇

𝜁
𝑡

+ 𝑑 (𝑡) 𝜁
𝑇

𝑡
𝐹
𝑇

4
𝑄
−1

3
𝐹
4
𝜁
𝑡
+ 2𝜁
𝑇

𝑡
𝐹
𝑇

4
[𝐸
9
, 𝐸
1
− 𝐸
2
]
𝑇

𝜁
𝑡

+ 𝑑 (𝑡)
2

𝜁
𝑇

𝑡
𝐹
𝑇

5
𝑅
−1

1
𝐹
5
𝜁
𝑡
+ 4𝜁
𝑇

𝑡
𝐹
𝑇

5
[𝑑 (𝑡) 𝐸

1
− 𝐸
9
]
𝑇

𝜁
𝑡

+ 3𝑑 (𝑡) 𝜁
𝑇

𝑡
𝐹
𝑇

6
𝑅
−1

2
𝐹
6
𝜁
𝑡
+ 6𝜁
𝑇

𝑡
𝐹
𝑇

6
[𝑑 (𝑡) 𝐸

1
− 𝐸
9
]
𝑇

𝜁
𝑡
.

(27)

According to Assumption 2, we have

(𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝐹

−

𝑖
𝑥
𝑖
(𝑡)) (𝑓

𝑖
(𝑥
𝑖
(𝑡)) − 𝐹

+

𝑖
𝑥
𝑖
(𝑡)) ⩽ 0,

𝑖 = 1, 2, . . . , 𝑛,

(28)

which is equivalent to

[

𝑥 (𝑡)

𝑓 (𝑥 (𝑡))
]

𝑇
[

[

[

[

𝐹
−

𝑖
𝐹
+

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖
−

𝐹
−

𝑖
+ 𝐹
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖

−

𝐹
−

𝑖
+ 𝐹
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖

]

]

]

]

⋅ [

𝑥 (𝑡)

𝑓 (𝑥 (𝑡))
] ⩽ 0, 𝑖 = 1, 2, . . . , 𝑛,

(29)

where 𝑒
𝑖
is the unit column vector.

Let 𝑊
1

= diag{𝑤
11
, 𝑤
12
, . . . , 𝑤

1𝑛
} > 0, 𝑊

2
=

diag{𝑤
21
, 𝑤
22
, . . . , 𝑤

2𝑛
} > 0, 𝑊

3
= diag{𝑤

31
, 𝑤
32
, . . . , 𝑤

3𝑛
} >

0,𝑊
4
= diag{𝑤

41
, 𝑤
42
, . . . , 𝑤

4𝑛
} > 0; then

𝑛

∑

𝑖=1

𝑤
1𝑖
[

𝑥 (𝑡)

𝑓 (𝑥 (𝑡))
]

𝑇
[

[

[

[

𝐹
−

𝑖
𝐹
+

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖
−

𝐹
−

𝑖
+ 𝐹
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖

−

𝐹
−

𝑖
+ 𝐹
+

𝑖

2

𝑒
𝑖
𝑒
𝑇

𝑖
𝑒
𝑖
𝑒
𝑇

𝑖

]

]

]

]

⋅ [

𝑥 (𝑡)

𝑓 (𝑥 (𝑡))
] ⩽ 0, 𝑖 = 1, 2, . . . , 𝑛,

(30)

and it is equivalent to

[

𝑥 (𝑡)

𝑓 (𝑥 (𝑡))
]

𝑇

[

𝐿
1
𝑊
1

−𝐿
2
𝑊
1

−𝐿
2
𝑊
1

𝑊
1

] [

𝑥 (𝑡)

𝑓 (𝑥 (𝑡))
] ⩽ 0. (31)



8 Mathematical Problems in Engineering

Similarly, we obtain

[

𝑥 (𝑡)

𝑔 (𝑥 (𝑡))
]

𝑇

[

𝐺
1
𝑊
2

−𝐺
2
𝑊
2

−𝐺
2
𝑊
2

𝑊
2

] [

𝑥 (𝑡)

𝑔 (𝑥 (𝑡))
] ⩽ 0,

[

𝑥 (𝑡)

ℎ (𝑥 (𝑡))
]

𝑇

[

𝐻
1
𝑊
3

−𝐻
2
𝑊
3

−𝐻
2
𝑊
3

𝑊
3

] [

𝑥 (𝑡)

ℎ (𝑥 (𝑡))
] ⩽ 0,

[

𝑥 (𝑡 − 𝑑 (𝑡))

𝑔 (𝑥 (𝑡 − 𝑑 (𝑡)))
]

𝑇

⋅ [

𝐺
1
𝑊
4

−𝐺
2
𝑊
4

−𝐺
2
𝑊
4

𝑊
4

] [

𝑥 (𝑡 − 𝑑 (𝑡))

𝑔 (𝑥 (𝑡 − 𝑑 (𝑡)))
] ⩽ 0.

(32)

By using (31)-(32), we have

− 𝑥 (𝑡)
𝑇

𝐿
1
𝑊
1
𝑥 (𝑡) − 𝑓

𝑇

(𝑥 (𝑡))𝑊
1
𝑓 (𝑥 (𝑡))

+ 𝑥 (𝑡)
𝑇

𝐿
2
𝑊
1
𝑓 (𝑥 (𝑡)) + 𝑓

𝑇

(𝑥 (𝑡)) 𝐿
2
𝑊
1
𝑥 (𝑡)

− 𝑥 (𝑡)
𝑇

𝐺
1
𝑊
2
𝑥 (𝑡) − 𝑔

𝑇

(𝑥 (𝑡))𝑊
2
𝑔 (𝑥 (𝑡))

+ 𝑥 (𝑡)
𝑇

𝐺
2
𝑊
2
𝑔 (𝑥 (𝑡)) + 𝑔

𝑇

(𝑥 (𝑡)) 𝐺
2
𝑊
2
𝑥 (𝑡)

− 𝑥 (𝑡)
𝑇

𝐻
1
𝑊
3
𝑥 (𝑡) − ℎ

𝑇

(𝑥 (𝑡))𝑊
3
ℎ (𝑥 (𝑡))

+ 𝑥 (𝑡)
𝑇

𝐻
2
𝑊
3
𝑓 (𝑥 (𝑡)) + ℎ

𝑇

(𝑥 (𝑡))𝐻
2
𝑊
3
𝑥 (𝑡)

− 𝑥 (𝑡 − 𝑑 (𝑡))
𝑇

𝐺
1
𝑊
4
𝑥 (𝑡 − 𝑑 (𝑡)) − 𝑔

𝑇

(𝑥 (𝑡 − 𝑑 (𝑡)))

⋅ 𝑊
4
𝑔 (𝑥 (𝑡 − 𝑑 (𝑡)))+ 𝑥 (𝑡 − 𝑑 (𝑡))

𝑇

𝐺
2
𝑊
4
𝑔 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 𝑔
𝑇

(𝑥 (𝑡 − 𝑑 (𝑡))) 𝐺
2
𝑊
4
𝑥 (𝑡 − 𝑑 (𝑡))

= 𝜁
𝑇

𝑡
[−𝐸
1
𝐿
1
𝑊
1
𝐸
𝑇

1
− 𝐸
6
𝑊
1
𝐸
𝑇

6
+ 𝐸
1
𝐿
2
𝑊
1
𝐸
𝑇

6
+ 𝐸
6
𝐿
2
𝑊
1
𝐸
𝑇

1

− 𝐸
1
𝐺
1
𝑊
2
𝐸
𝑇

1
− 𝐸
10
𝑊
2
𝐸
𝑇

10
+ 𝐸
1
𝐺
2
𝑊
2
𝐸
𝑇

10

+ 𝐸
10
𝐺
2
𝑊
2
𝐸
𝑇

1
− 𝐸
1
𝐻
1
𝑊
3
𝐸
𝑇

1
− 𝐸
7
𝑊
3
𝐸
𝑇

7

+ 𝐸
1
𝐻
2
𝑊
3
𝐸
𝑇

7
+ 𝐸
7
𝐻
2
𝑊
3
𝐸
𝑇

1
− 𝐸
2
𝐺
1
𝑊
4
𝐸
𝑇

2

− 𝐸
11
𝑊
4
𝐸
𝑇

11
+ 𝐸
2
𝐺
2
𝑊
4
𝐸
𝑇

11
+ 𝐸
11
𝐺
2
𝑊
4
𝐸
𝑇

2
] 𝜁
𝑡

≥ 0.

(33)

The following equality holds:

2 (𝑥
𝑇

(𝑡) + 𝑥̇
𝑇

(𝑡))

⋅ 𝛿 {− (𝐴 − 𝐾
1
) 𝑥 (𝑡)+ 𝑀

0
𝑓 (𝑥 (𝑡))+ 𝑀

1
𝑔 (𝑥 (𝑡 − 𝑑 (𝑡)))

+𝑀
2
∫

𝑡

𝑡−𝑟(𝑡)

ℎ (𝑥 (𝑠)) 𝑑𝑠 + 𝑁𝜑 (𝑡) − 𝑥̇ (𝑡)} = 0,

(34)

which is equivalent to

𝜁
𝑇

𝑡
[−2 (𝐸

1
+ 𝐸
5
) 𝛿 (𝐴 − 𝐾

1
) 𝐸
𝑇

1
+ 2 (𝐸

1
+ 𝐸
5
) 𝛿𝑀
0
𝐸
𝑇

6

+ 2 (𝐸
1
+ 𝐸
5
) 𝛿𝑀
1
𝐸
𝑇

11
+ 2 (𝐸

1
+ 𝐸
5
) 𝛿𝑀
2
𝐸
𝑇

12

+2 (𝐸
1
+ 𝐸
5
) 𝛿𝑁𝐸

𝑇

13
− 2 (𝐸

1
+ 𝐸
5
) 𝛿𝐸
𝑇

5
] 𝜁
𝑡
= 0,

(35)

where 𝛿 is any matrix.
From Assumption 1, the following inequality holds:

𝜑
𝑇

(𝑡) 𝜑 (𝑡) ≤ 𝜁
𝑇

𝑡
𝐽
𝑇

𝐽𝜁
𝑡
, where

𝐽 = [−𝐽
1
, 0, 0, 0, 0, 𝐽

2
, 0, 0, 0, 0, 𝐽

3
, 𝐽
4
,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] .

(36)

Furthermore, there exits a positive scalar matrix𝑈, such that
the following inequality holds:

𝜁
𝑇

𝑡
𝐽
𝑇

𝑈𝐽𝜁
𝑡
− 𝜑
𝑇

(𝑡) 𝑈𝜑 (𝑡) ≥ 0. (37)

Combining (16)–(27) and (33), (35), and (37), we obtain

𝑉̇ (𝑡, 𝑥 (𝑡)) ⩽ 𝜁
𝑇

𝑡
[Φ
0
+ 𝑑 (𝑡)Φ

1
+ Φ
𝑑
] 𝜁
𝑡
, (38)

where Φ
0
, Φ
1
are defined in the theorem context, and

Φ
𝑑
= (𝜏 − 𝑑 (𝑡)) 𝐹

𝑇

1
𝑄
−1

3
𝐹
1
+ (𝜏 − 𝑑 (𝑡))

2

𝐹
𝑇

2
𝑅
−1

1
𝐹
2

+ 3 (𝜏 − 𝑑 (𝑡)) 𝐹
𝑇

3
𝑅
−1

2
𝐹
3
+ 𝑑 (𝑡) 𝐹

𝑇

4
𝑄
−1

3
𝐹
4

+ 𝑑 (𝑡)
2

𝐹
𝑇

5
𝑅
−1

1
𝐹
5
+ 3𝑑 (𝑡) 𝐹

𝑇

6
𝑅
−1

2
𝐹
6
.

(39)

Note that 𝜁𝑇
𝑡
[Φ
0
+ 𝑑(𝑡)Φ

1
+ Φ
𝑑
]𝜁
𝑡
is a quadratic function

on 𝑑(𝑡), and the second-order coefficient is 𝜁𝑇
𝑡
[𝐹
𝑇

2
𝑅
−1

1
𝐹
2
+

𝐹
𝑇

5
𝑅
−1

1
𝐹
5
]𝜁
𝑡
:

[Φ
0
+ 𝑑 (𝑡)Φ

1
+ Φ
𝑑
]
𝑑(𝑡)=0

= [Φ
0
+ Φ
𝑑
]
𝑑(𝑡)=0

= Φ
0
+ 𝜏𝐹
𝑇

1
𝑄
−1

3
𝐹
1
+ 𝜏
2

𝐹
𝑇

2
𝑅
−1

1
𝐹
2

+ 3𝜏𝐹
𝑇

3
𝑅
−1

2
𝐹
3
< 0;

(40)

applying Lemma 6, we getΩ
1
< 0:

[Φ
0
+ 𝑑 (𝑡)Φ

1
+ Φ
𝑑
]
𝑑(𝑡)=𝜏

= Φ
0
+ 𝜏Φ
1
+ 𝜏𝐹
𝑇

4
𝑄
−1

3
𝐹
4
+ 𝜏
2

𝐹
𝑇

5
𝑅
−1

1
𝐹
5
+ 3𝜏𝐹

𝑇

6
𝑅
−1

2
𝐹
6

< 0,

(41)

which is equivalent toΩ
2
< 0.

Finally, employing Lemma 7, we get

Φ
0
+ 𝑑 (𝑡)Φ

1
+ Φ
𝑑
< 0, ∀ ∈ [0, 𝜏] . (42)

Thus we can obtain from (38) and (42) that

𝑉̇ (𝑡, 𝑥 (𝑡)) ⩽ 𝜁
𝑇

𝑡
[Φ
0
+ 𝑑 (𝑡)Φ

1
+ Φ
𝑑
] 𝜁
𝑡
< 0, (43)

which means that the system is asymptotically stable. This
completes the proof.
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4. 𝐻
∞

Controller Design

In this section, we study the 𝐻
∞

control for the considered
neural networks with a given disturbance attenuation level
𝛾 > 0. The neural networks (1) can be rewritten in the form

𝑥̇ (𝑡) = − (𝐴 − 𝐾
1
) 𝑥 (𝑡) + 𝑀

0
𝑓 (𝑥 (𝑡)) + 𝑀

1
𝑔 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 𝑀
2
∫

𝑡

𝑡−𝑟(𝑡)

ℎ (𝑥 (𝑠)) 𝑑𝑠 + 𝐵V (𝑡) + 𝑁𝜑 (𝑡) ,

𝜑 (𝑡) = 𝐹 (𝑡) [−𝐽
1
𝑥 (𝑡) + 𝐽

2
𝑓 (𝑥 (𝑡)) + 𝐽

3
𝑔 (𝑥 (𝑡 − 𝑑 (𝑡)))

+𝐽
4
∫

𝑡

𝑡−𝑟(𝑡)

ℎ (𝑥 (𝑠)) 𝑑𝑠 + 𝐽
5
V (𝑡)] ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) .

(44)

Theorem9. Under Assumptions 1 and 2, for given disturbance
attenuation level 𝛾 > 0, scalars 𝜏, 𝜇, and 𝑟, the system (44) is
robustly asymptotically stabilizable under the control law𝑢(𝑡) if
there exist positive diagonal matrices𝐷 = diag{𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
},

𝑊
𝑖
> 0, 𝑖 = 1, 2, 3, 4, positive definite matrices 𝑃

1
∈ 𝑅
2𝑛×2𝑛,

𝑆
𝑖
∈ 𝑅
2𝑛×2𝑛

(𝑖 = 1, 2, 3, 4, 5), 𝑄
𝑖
∈ 𝑅
2𝑛×2𝑛

(𝑖 = 1, 2, 3, 4, 5),
𝑅
𝑖
∈ 𝑅
𝑛×𝑛

(𝑖 = 1, 2), scalar matrix 𝑈 > 0, and any matrices
with appropriate dimensions 𝐹

𝑖
(𝑖 = 1, 2, . . . , 6), 𝛿 such that

the following LMIs hold:

Ω̃
1
=

[

[

[

[

Φ̃
0

𝜏𝐹
𝑇

1
𝜏𝐹
𝑇

2
√3𝜏𝐹

𝑇

3

∗ −𝜏𝑄
3

0 0

∗ ∗ −𝑅1 0

∗ ∗ ∗ −𝜏𝑅
2

]

]

]

]

< 0,

Ω̃
2
=

[

[

[

[

Φ̃
0
+ 𝜏Φ̃
1

𝜏𝐹
𝑇

4
𝜏𝐹
𝑇

5
√3𝜏𝐹

𝑇

6

∗ −𝜏𝑄
3

0 0

∗ ∗ −𝑅1 0

∗ ∗ ∗ −𝜏𝑅
2

]

]

]

]

< 0,

(45)

where

Φ̃
1
= sym (2𝐸

1
𝐹
5
+ 3𝐸
1
𝐹
6
− 2𝐸
2
𝐹
2
− 3𝐸
2
𝐹
3
)

+ sym ([𝐸
5
, 0] 𝑄
1
[𝐸
1
, 0]
𝑇

) ,

Φ̃
0
= sym (𝐹

𝑇

1
[𝐸
8
, 𝐸
2
− 𝐸
3
]
𝑇

+ 2𝜏𝐹
𝑇

2
𝐸
𝑇

2
− 2𝐹
𝑇

2
𝐸
𝑇

8

+ 3𝜏𝐹
𝑇

3
𝐸
𝑇

2
− 3𝐹
𝑇

3
𝐸
𝑇

8
+ 𝐹
𝑇

4
[𝐸
9
, 𝐸
1
− 𝐸
2
]
𝑇

− 2𝐹
𝑇

5
𝐸
𝑇

9
− 3𝐹
𝑇

6
𝐸
𝑇

9
)

+ sym ([𝐸
1
, 𝐸
3
] 𝑃
1
[𝐸
5
, 𝐸
23
]
𝑇

+ 𝐸
6
𝐷𝐸
𝑇

5
)

+ [𝐸
10
, 𝐸
6
] (𝑆
1
+ 𝑆
2
+ 𝑆
5
) [𝐸
10
, 𝐸
6
]
𝑇

− (1 − 𝜇) [𝐸
11
, 𝐸
14
] 𝑆
1
[𝐸
11
, 𝐸
14
]
𝑇

+ [𝐸
1
, 𝐸
1
] (𝑄
1
+ 𝑄
2
) [𝐸
1
, 𝐸
1
]
𝑇

+ (𝜇 − 1) [𝐸
1
, 𝐸
2
] 𝑄
1
[𝐸
1
, 𝐸
2
]
𝑇

+ sym ([𝐸
5
, 0] 𝑄
1
[0, 𝐸
9
]
𝑇

)

− [𝐸
19
, 𝐸
20
] 𝑆
2
[𝐸
19
, 𝐸
20
]
𝑇

+ [𝐸
5
, 𝐸
7
] (𝑆
3
+ 𝑆
4
) [𝐸
5
, 𝐸
7
]
𝑇

− [𝐸
23
, 𝐸
24
] 𝑆
3
[𝐸
23
, 𝐸
24
]
𝑇

− [𝐸
1
, 𝐸
3
] 𝑄
2
[𝐸
1
, 𝐸
3
]
𝑇

+ sym ([𝐸
5
, 0] 𝑄
2
[𝜏𝐸
1
, 𝐸
8
+ 𝐸
9
]
𝑇

)

− [𝐸
15
, 𝐸
16
] 𝑆
4
[𝐸
15
, 𝐸
16
]
𝑇

− [𝐸
17
, 𝐸
18
] 𝑆
5
[𝐸
17
, 𝐸
18
]
𝑇

+ 𝜏 [𝐸
1
, 𝐸
5
] 𝑄
3
[𝐸
1
, 𝐸
5
]
𝑇

+ 𝐸
5
(𝜏
2

𝑅
1
+ 𝜏
3

𝑅
2
) 𝐸
𝑇

5

+ 𝑟
2

[𝐸
5
, 𝐸
7
] 𝑄
4
[𝐸
5
, 𝐸
7
]
𝑇

− [𝐸
1
− 𝐸
4
, 𝐸
12
] 𝑄
4
[𝐸
1
− 𝐸
4
, 𝐸
12
]
𝑇

+ 𝑟
2

[𝐸
10
, 𝐸
6
] 𝑄
5
[𝐸
10
, 𝐸
6
]
𝑇

− [𝐸
21
, 𝐸
22
] 𝑄
5
[𝐸
21
, 𝐸
22
]
𝑇

− 𝐸
1
𝐿
1
𝑊
1
𝐸
𝑇

1
− 𝐸
6
𝑊
1
𝐸
𝑇

6
+ sym (𝐸

1
𝐿
2
𝑊
1
𝐸
𝑇

6
)

− 𝐸
1
𝐺
1
𝑊
2
𝐸
𝑇

1
− 𝐸
10
𝑊
2
𝐸
𝑇

10
+ sym (𝐸

1
𝐺
2
𝑊
2
𝐸
𝑇

10
)

− 𝐸
1
𝐻
1
𝑊
3
𝐸
𝑇

1
− 𝐸
7
𝑊
3
𝐸
𝑇

7
+ sym (𝐸

1
𝐻
2
𝑊
3
𝐸
𝑇

7
)

− 𝐸
2
𝐺
1
𝑊
4
𝐸
𝑇

2
− 𝐸
11
𝑊
4
𝐸
𝑇

11
+ sym (𝐸

2
𝐺
2
𝑊
4
𝐸
𝑇

11
)

+ sym (− (𝐸
1
+ 𝐸
5
) (𝛿𝐴 − Λ

1
) 𝐸
𝑇

1
+ (𝐸
1
+ 𝐸
5
) 𝛿𝑀
0
𝐸
𝑇

6

+ (𝐸
1
+ 𝐸
5
) 𝛿𝑀
1
𝐸
𝑇

11
+ (𝐸
1
+ 𝐸
5
) 𝛿𝑀
2
𝐸
𝑇

12

+ (𝐸
1
+ 𝐸
5
) 𝛿𝑁𝐸

𝑇

13
− (𝐸
1
+ 𝐸
5
) 𝛿𝐸
𝑇

5
)

+ sym ((𝐸
1
+ 𝐸
5
) 𝛿𝐵𝐸
𝑇

25
)

+ 𝐸
1
𝐶
𝑇

𝐶𝐸
𝑇

1
− 𝛾
2

𝐸
25
𝐸
𝑇

25
+ 𝐽
𝑇

𝑈𝐽 − 𝐸
13
𝑈𝐸
𝑇

13
,

(46)

with

𝐽 = [−𝐽
1
, 0, 0, 0, 0, 𝐽

2
, 0, 0, 0, 0, 𝐽

3
, 𝐽
4
,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 𝐽
5
] ,

Λ
1
= 𝛿𝐾
1
,

𝐸
𝑖
= [0
𝑛𝑥(𝑖−1)𝑛

, 𝐼
𝑛
, 0
𝑛𝑥(25−𝑖)𝑛

]
𝑇

, 𝑖 = 1, 2, . . . , 25.

(47)
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Proof. By using the 𝑉̇(𝑡, 𝑥(𝑡)) obtained inTheorem 8, we can
obtain

𝑥
𝑇

(𝑡) 𝐶
𝑇

𝐶𝑥 (𝑡) − 𝛾
2V𝑇 (𝑡) V (𝑡) + 𝑉̇ (𝑡, 𝑥 (𝑡))

⩽ 𝜁

𝑇

𝑡
[Φ̃
0
+ 𝑑 (𝑡) Φ̃

1
+ Φ̃
𝑑
] 𝜁
𝑡
,

(48)

where

𝜁 (𝑡) = [𝜁
𝑇

(𝑡) , V𝑇 (𝑡)]
𝑇

,

Φ̃
0
= Φ
0
+ sym ((𝐸

1
+ 𝐸
5
) 𝛿𝐵𝐸
𝑇

25
) + 𝐸
1
𝐶
𝑇

𝐶𝐸
𝑇

1

− 𝛾
2

𝐸
25
𝐸
𝑇

25
,

Φ̃
1
= Φ
1
,

Φ̃
𝑑
= Φ
𝑑
.

(49)

If (45) holds, the inequality 𝜁
𝑇

𝑡
[Φ̃
0
+𝑑(𝑡)Φ̃

1
+Φ̃
𝑑
]𝜁
𝑡
< 0 holds,

and we can easily obtain

∫

∞

0

[𝑥
𝑇

(𝑡) 𝐶
𝑇

𝐶𝑥 (𝑡) − 𝛾
2V𝑇 (𝑡) V (𝑡) + 𝑉̇ (𝑡, 𝑥 (𝑡))] 𝑑𝑡 < 0,

∫

∞

0

[𝑧
𝑇

(𝑡) 𝑧 (𝑡) − 𝛾
2V𝑇 (𝑡) V (𝑡) + 𝑉̇ (𝑡, 𝑥 (𝑡))] 𝑑𝑡 < 0.

(50)

Since 𝑉(𝑡, 𝑥(𝑡)) > 0, we have

∫

∞

0

𝑧
𝑇

(𝑡) 𝑧 (𝑡) 𝑑𝑡 < 𝛾
2

∫

∞

0

V𝑇 (𝑡) V (𝑡) 𝑑𝑡. (51)

Hence the considered neural networks (44) are robustly
stable for a given disturbance attenuation level 𝛾 > 0

according to Definition 3. This completes the proof.

5. Numerical Examples

In this section, numerical examples are provided to illustrate
effectiveness of the developed method for uncertain neural
networks with discrete and distributed time-varying delays.

Example 1. We consider the neural networks (12) when the
disturbance input V(𝑡) = 0. The parameters are as follows:

𝐴 = (

2 0

0 3
) ,

𝑁 = 𝐶 = diag {0.2, 0.2} ,

𝑀
0
= (

0.5 0.7

0.3 0.2
) ,

𝑀
1
= (

0.2 −0.5

0.3 0.2
) ,

𝑀
2
= (

0.3 0.2

0.4 0.5
) ,

𝐽
1
= (

0.2 0

0 0.5
) ,

𝐽
2
= (

0.2 0.3

0.5 0.1
) ,

𝐽
3
= (

0.1 0

0.3 0.2
) ,

𝐽
4
= (

0.3 0.1

0.1 0.2
) ,

(52)

and the activation functions are

𝑓 (𝑥) = (

tanh (4𝑥
1
)

tanh (4𝑥
2
)
) ,

𝑔 (𝑥) = (

tanh (2𝑥
1
)

tanh (2𝑋
2
)
) ,

ℎ (𝑥) = (

tanh (𝑥
1
)

tanh (𝑥
2
)
) ,

(53)

so that

𝐿
1
= 𝐺
1
= 𝐻
1
= (

0 0

0 0
) ,

𝐿
2
= (

2 0

0 2
) ,

𝐺
2
= (

1 0

0 1
) ,

𝐻
2
= (

0.5 0

0 0.5
) .

(54)

If we set 𝑑(𝑡) = 2.5 + 2.5 sin(0.2𝑡), the upper bound of time
delay 𝜏 = 5 and 𝜇 = 0.5. And we set the upper bounds of time
delays 𝑟 = 5. By solving through the MATLAB LMI toolbox,
we obtain the gain matrix of the stabilization controller:

𝐾
1
= (

−40.9083 −38.3622

−36.8673 −61.2507
) . (55)

Figures 1 and 2 present the state responses of the considered
neural networks. Figure 1 shows the time response of the
state variables 𝑥

1
(𝑡) and 𝑥

2
(𝑡) of the open-loop system from

initial values (1, −1). Figure 2 shows the time response of the
state variables 𝑥

1
(𝑡) and 𝑥

2
(𝑡) of the closed-loop system from

initial values (1, −1).The open-loop systemmeans the system
without feedback control, and the closed-loop system means
the system with the feedback control. It is clear that 𝑥

1
(𝑡)

and 𝑥
2
(𝑡) converge rapidly to zero under the feedback control

law and they cannot converge to zero without the feedback
control. The simulation results reveal that the considered
system with discrete and distributed time-varying delays is
robustly asymptotically stable under the feedback control law.
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Figure 1: State responses of the open-loop system.
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Figure 2: State responses of the closed-loop system.

Example 2. We consider the neural networks (44) with the
disturbance input. The parameters are as follows:

𝐴 = (

2 0

0 3
) ,

𝑁 = 𝐶 = diag {0.2, 0.2} ,

𝑀
0
= (

1 2

3 −1
) ,

𝑀
1
= (

1 −1

1 1
) ,

𝑀
2
= (

0.5 0.2

0.3 0.5
) ,

𝐵 = (

1 0.2

0.5 −1
) ,

𝐽
1
= (

0.2 0

0 0.5
) ,

𝐽
2
= (

0.2 0.3

0.5 0.1
) ,

𝐽
3
= (

0.1 0

0.3 0.2
) ,

𝐽
4
= (

0.3 0.1

0.1 0.2
) ,

𝐽
5
= (

0.2 0

−1 0.1
) ,

(56)

and the activation functions are

𝑓 (𝑥) = (

tanh (4𝑥
1
)

tanh (4𝑥
2
)
) ,

𝑔 (𝑥) = (

tanh (2𝑥
1
)

tanh (2𝑋
2
)
) ,

ℎ (𝑥) = (

tanh (𝑥
1
)

tanh (𝑥
2
)
) ,

(57)

so that

𝐿
1
= 𝐺
1
= 𝐻
1
= (

0 0

0 0
) ,

𝐿
2
= (

2 0

0 2
) ,

𝐺
2
= (

1 0

0 1
) ,

𝐻
2
= (

0.5 0

0 0.5
) .

(58)

If we set 𝑑(𝑡) = 2 + 2 sin(0.15𝑡), the upper bound of time
delay 𝜏 = 4 and 𝜇 = 0.3. And we set the upper bounds of time
delays 𝑟 = 4. By solving through the MATLAB LMI toolbox,
we obtain the gain matrix of the stabilization controller with
the guaranteed𝐻

∞
performance 𝛾 = 0.1:

𝐾
1
= (

−410.5111 −126.6215

−162.0641 −409.5459
) . (59)

Figures 3 and 4 present the state responses of the considered
neural networks with the disturbance input V(𝑡) = [1/(0.5 +

𝑡), 1/(1 + 𝑡
2

)]
𝑇. Figure 3 shows the time response of the

state variables 𝑥
1
(𝑡) and 𝑥

2
(𝑡) of the open-loop system from

initial values (0.5, −0.5). Figure 4 shows the time response of
the state variables 𝑥

1
(𝑡) and 𝑥

2
(𝑡) of the closed-loop system

from initial values (0.5, −0.5). It is clear that 𝑥
1
(𝑡) and 𝑥

2
(𝑡)

converge rapidly to zero under the feedback control law and
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Figure 3: State responses of the open-loop system.
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Figure 4: State responses of the closed-loop system.

they cannot converge to zero without the feedback control.
The simulation results reveal that the considered system
with discrete and distributed time-varying delays is robustly
asymptotically stable under the feedback control law.

6. Conclusions

In this paper, we investigated the robust stabilization problem
and 𝐻

∞
control for a class of uncertain neural networks. By

implementing the quadratic convex combination technique
togetherwith Lyapunov-Krasovskii functional approach, new
delay-dependent conditions were established. The stabiliza-
tion criterion was derived by the augmented Lyapunov-
Krasovskii functional, which ensures the robust stability

of the considered uncertain neural networks with various
activation functions. Furthermore, our result was extended
to the design of a robust 𝐻

∞
controller, which guarantees

the closed-loop system robustly asymptotically stable with a
prescribed 𝐻

∞
performance level. The criteria are derived

in terms of LMIs, which can be easily calculated by the
MATLAB toolbox. Numerical examples are provided to
illustrate the effectiveness of the obtained results.
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