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Abstract. This paper focuses on the problem of delay-dependent robust dissipativity analysis
for a class of stochastic fuzzy neural networks with time-varying delay. The randomly occurring
uncertainties under consideration are assumed to follow certain mutually uncorrelated Bernoulli-
distributed white noise sequences. Based on the Itô’s differential formula, Lyapunov stability
theory, and linear matrix inequalities techniques, several novel sufficient conditions are derived
using delay partitioning approach to ensure the dissipativity of neural networks with or without
time-varying parametric uncertainties. It is shown, by comparing with existing approaches, that the
delay-partitioning projection approach can largely reduce the conservatism of the stability results.
Numerical examples are constructed to show the effectiveness of the theoretical results.
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1 Introduction

Over the past few decades, dynamical behavior of neural networks (NNs)has been studied
much in science and technology area, such as signal processing, parallel computing,
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optimization problems, and so on [5, 8]. This led to significant attraction of many re-
searchers, like mathematicians, physicists, computer scientists, and biologists. So, it is
valuable to investigate the stability of NNs. Time delays are likely to be present due
to the finite switching speed of amplifiers that are the core elements for implementing
artificial neurons in models of NNs. The existence of time delays may lead to instability,
oscillation, and chaos phenomena [1,2,13]. On the basis of this point, it is greatly worthful
that the stability issue of delayed NNs is researched [4,23,37,38], which has aroused much
attention for their potential applications in optimization [6]. Therefore, the study of neural
dynamics with consideration of time delays becomes extremely important to manufacture
high quality neural networks.

In recent years, the control technique based on the so-called T–S fuzzy model has
attracted lots of attention since it is regarded as a powerful solution to bridge the gap
between the fruitful linear control and the fuzzy logic control targeting complex non-
linear systems. It has been efficiently developed to many applications, and it is shown
to be an effective approach to neural network and its stability. Originally, Tanaka and
his colleagues have provided a sufficient condition for the quadratic stability of the T–S
fuzzy systems in [26] by considering a Lyapunov function of the sub-fuzzy systems of
the T–S fuzzy systems, and then it is successfully used in neural network [3, 10]. The
T–S fuzzy model approach is essentially a multimodel approach in which some linear
models are blended into an overall single model through nonlinear membership functions
to represent the nonlinear dynamics. These systems are nonlinear systems described by
a set of IF-THEN rules. Recently, problems of stability analysis for fuzzy systems with
time-varying delays have been discussed in [19, 24, 36].

In nonlinear systems theory [12], connections between achievable dynamic perfor-
mance and some process properties linked to energy-like considerations introduce the
concept of passive systems, that is, systems that cannot store more energy than that
supplied by the environment and/or by other systems connected to them. A more general
system-theoretic viewpoint is the concept of dissipative systems, which is a generalization
of passive systems with more general process internal and supplied energies. Since the
study of dissipative systems was initiated by Willems [29] and further addressed by Hill
and Moylan [9], there has been a steady increase in the interest of dissipative systems
in the past several decades. Many significant advances on this issue have been reported
in the literature. In [31], the dissipativity of singular systems with time delay has been
investigated. In addition, the dissipativity problem has been addressed for continuous-
time neural networks [30, 35] and discrete-time neural networks [15, 22], but there have
appeared a few works on the dissipativity analysis of T–S fuzzy neural networks with time
delays [20] as it essentially generalizes the idea of a Lyapunov functional.

In real nervous systems, due to modeling and measurement errors, neural network
is often disturbed by the parameter uncertainties, which may cause undesirable dynamic
behaviors or poor performance. Recently, a new type of uncertainty named as randomly
occurring uncertainty has been proposed to model the random changes in environmental
circumstances [11], and some results related to this problem have recently published
in [30, 35]. The results in [18] showed that one neural network could be stabilized or
destabilized by certain stochastic inputs. It is shown that the stability analysis of stochastic

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Dissipativity analysis of stochastic fuzzy neural networks 563

neural networks has primary importance in the design and applications of neural networks.
Recently, stability analysis of stochastic neural networks with time-delays has received
much attention; see, for example, [14,41,42]. Although the importance of dissipativity has
been widely recognized, few results have been proposed for the dissipativity of stochastic
fuzzy neural networks with time-varying delay [21]. This motivates the work of this paper.

In this paper, we are concerned with the problem of dissipativity for stochastic fuzzy
neural networks with time delay. By using of the delay partitioning technique and the
stochastic Itô’s formula, some criteria are derived to ensure the dissipativity of the con-
sidered neural networks. The obtained delay-dependent results also depend upon the par-
titioning size. Finally, several numerical examples are given to demonstrate the reduced
conservatism of the proposed methods.

Notations. Throughout this paper, Rn and Rn×m denote the n-dimensional Euclidean
space and the set of all n × m real matrices, respectively. The notation X > 0 (resp.
X > 0), where X is a symmetric matrices, means that X is positive semi-definite (resp.
positive definite). The superscript T denotes the transpose of the matrix. Pr{α}means the
occurrence probability of the event α.

2 Problem formulation

Consider the following T–S fuzzy neural networks:

IF ξ1 is Mi1, . . . , and ξp is Mip,

THEN dx(t) =
[
−Aix(t) +Bif

(
x(t)

)
+ Cif

(
x(t− τ(t)

))
+ u(t)

]
dt

+
[
E1ix(t) + E2ix(t− τ(t))

]
dω(t),

y(t) = f
(
x(t)

)
, i = 1, 2, . . . , r,

(1)

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn is the state vector associated with the
neurons, f(x(t)) = [f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))]T is the activation function,
u(t) = [u1(t), u2(t), . . . , un(t)]T is the input, y(t) = [y1(t), y2(t), . . . , yn(t)] is the out-
put. r is the number of IF-THEN rules. Mij are fuzzy sets and ξ1, ξ2, . . . , ξp are premise
variables. The matrix Ai = diag(a1i, a2i, . . . , ani) is a diagonal matrix with positive
entries. Bi, Ci are the interconnection matrices representing the weight coefficients of
the neurons. E1i ∈ Rn×n and E2i ∈ Rn×n are known constant matrices. τ(t) is the time-
varying delay satisfying 0 6 τ(t) 6 τ̄ . In order to derive some less restrictive stability
criteria, we partition τ(t) into several components, i.e., τ(t) =

∑m
i=1 τi(t), where m is

a positive integer. In this paper, the time-varying delay components τi(t) satisfying the
following case:

Case 1. τi(t) is a differentiable function satisfying

0 < τi(t) 6 τ̄i, τ̇i(t) 6 τi ∀t > 0, (2)

where τ̄i and τi are constants. For convenience, we define τ̄ = min{τ̄1, τ̄2, . . . , τ̄m},
αk(t) =

∑k
i=1 τi(t), and ᾱk =

∑k
i=1 τ̄i with α0(t) = 0, ᾱ0 = 0 in the boundary
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expression of the summation. That is, τi(t) and τ̄i indicate a partition of the lumped time-
varying delay τ(t) and τ , respectively.

Remark 1. It should be pointed out that such delay-partitioning projection approach
is very rational. The reasons are twofold: (i) The properties of τ1(t) and τ2(t) (let the
partitioning number m = 2 for presentation simplicity) may be sharply different in many
practical situations. Thus, it is not reasonable to combine them together. (ii) When τ(t)
reaches its upper bound, we do not necessarily have both τ1(t) and τ2(t) reach their
maxima at the same time. In other words, if we use an upper bound to bound the delay
τ(t), we have to use the sum of the maxima of τ1(t) and τ2(t), however, τ(t) does
not achieve this maximum value usually. Therefore, by adopting the delay-partitioning
projection approach, less conservative conditions can be proposed.

Remark 2. In view of Case 1, the information of every subinterval delay is taken into
account, and the derivative of the time-varying delay may have different upper bounds
in various delay intervals. However, in many previous papers, such as [25, 30, 33–35],
the derivative of the time-varying delay satisfies τ̇(t) 6 µ, where µ is a constant. In
fact, this treatment in [25, 30, 33–35] implies that τ̇(t) in (2) is enlarged to τ̇(t) 6 µ =
max{τ1, τ2, . . . , τm}, which may cause conservativeness inevitably. However, by using
the Lyapunov–Krasovskii functional in this paper, the case above can be taken fully into
account.

The state equation is defined as follows:

dx(t) =

r∑
i=1

λi(ξ(t))
[
−Aix(t) +Bif

(
x(t)

)
+ Cif

(
x
(
t− τ(t)

))
+ u(t)

]
dt

+
[
E1ix(t) + E2ix

(
t− τ(t)

)]
dω(t),

y(t) =

r∑
i=1

λi
(
ξ(t)

)
f
(
x(t)

)
,

(3)

where

λi(ξ) =
βi(ξ)∑r
i=1 βi(ξ)

, βi(ξ) =

p∏
j=1

Mij(ξj),

and Mij(·) is the grade of the membership function of Mij . We assume

βi
(
ξ(t)

)
> 0, i = 1, 2, . . . , r,

r∑
i=1

βi
(
ξ(t)

)
> 0 ∀ξ(t).

Hence λi(ξ(t)) satisfy λi(ξ(t)) > 0, i = 1, . . . , r,
∑r
i=1 λi(ξ(t)) = 1 for any ξ(t). In

the sequel, for simplicity, we use λi to represent λi(ξ(t)).
Throughout this paper, it is assumed that the activation functions satisfy the following

assumption.
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(H1) For any j ∈ 1, 2, . . . , n, fj(0) = 0, and there exist constants F−
j and F+

j such
that

F−
j 6

fj(α1)− fj(α2)

α1 − α2
6 F+

j

for all α1, α2 ∈ R and α1 6= α2.

Remark 3. It is easy to know that assumption (H1) is less conservative than that of
in [25, 33, 34] since the constants are allowed to be positive, negative, or zero, that is to
say, the activation function in assumption (H1) is assumed to be neither monotonic, nor
differentiable, nor bounded.

There are some different definitions of dissipativity. A less restrictive definition of
dissipativity is given in this paper. The quadratic energy supply function E associated
with system (1) is defined by

E(u, y, T ) = 〈y,Qy〉T + 2〈y,Su〉T + 〈u,Ru〉T ,
where

〈y, u〉T =

T∫
0

yTudt, T > 0.

Let L2[0,∞] be the space of square integrable functions on [0,∞]. Q, S, and R are real
matrices of appropriate dimensions with Q andR symmetric. Sometimes, the arguments
of a function will be omitted so that no confusion can arise.

To prove our results, the following definitions and lemmas will be used in the proof
of our main results.

Definition 1. Given a scalar γ > 0, real matrices Q = QT, R = RT, and matrix S.
Neural network (1) is strictly (Q,S,R)-γ-dissipative for any t > 0. Under zero initial
state, the following condition is satisfied:

E
{
E(u, y, t)

}
> γE〈u, u〉t. (4)

Definition 2. The neural network (1) is said to be passive from input u(t) to output y(t)
if there exists a scalar γ > 0 such that the inequality

2

[ tf∫
0

yT(s)u(s) ds

]
> −γ

[ tf∫
0

uT(s)u(s) ds

]
holds for all tf > 0 and under the zero initial condition.

Lemma 1. (See [7].) For any constant symmetric matrix M ∈ Rn×n, M = MT > 0,
scalar r > 0, and vector function g : [0, r] → Rn such that the integrations in the
following are well defined,

r

r∫
0

gT(s)Mg(s) ds >

[ r∫
0

g(s) ds

]T

M

[ r∫
0

g(s) ds

]
.
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Lemma 2 [Schur complement]. (See [32].) For a symmetric matrix

S =

[
S11 S12

ST
12 S22

]
,

the following conditions are equivalent:

(i) S < 0,
(ii) S11 < 0, and S22 − ST

12S
−1
11 S12 < 0,

(iii) S22 < 0, and S11 − S12S
−1
22 S

T
12 < 0.

Lemma 3. (See [32].) For any matrices X , Y , the following matrix inequality holds:

XTY + Y TX 6 XTP−1X + Y TPY,

where P is a given positive matrix.

Lemma 4. (See [7].) Given matrices Q = QT, H , E with appropriate dimensions. Then

Q+HF (t)E + ETFT(t)HT < 0

for all F (t) satisfying FT(t)F (t) 6 I if and only if there exists a scalar λ > 0 such that

Q+ λHHT + λ−1ETE < 0.

3 Main results

In this section, we will present dissipativity criteria for stochastic neural networks us-
ing delay partition approach. Based on Lyapunov functional approach, a novel delay-
dependent dissipativity condition is presented in the following theorem.

Theorem 1. Assume that assumption (H1) is hold. Then for given scalar γ, the stochastic
fuzzy neural network described by (3) is strictly (Q,S,R)-γ-dissipative in the sense of
Definition 1 for any time-varying delay τ(t) satisfying (2) if there exist positive definite
matrices P , Qk (k = 1, 2, . . . ,m), Ri (i = 1, 2, 3), T , X , Z, positive diagonal matrices
U1, U2, and any appropriate dimensional matrices L, M̄1 = [MT

11 . . . M
T
1m]T, M̄2 =

[MT
21 . . . M

T
2m]T, . . . , M̄k = [MT

k1 . . . M
T
km]T (k = 1, 2, . . . ,m) such that the follow-

ing linear matrix inequalities (LMIs) hold:

Γ Θ1 Θ2 ∆1 · · · ∆k

∗ −Z 0 0 · · · 0
∗ ∗ −P 0 · · · 0
∗ ∗ ∗ 0 · · · 0
∗ ∗ ∗ −Z · · · 0
...

...
...

...
. . .

...
∗ ∗ ∗ ∗ · · · −Z


< 0, (5)
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where

Γ =



Γ1 Γ2 · · · 0 Γ3 Γ4 · · · 0 0 Γ5 Γ6 0 Γ7 P
∗ Γ8 · · · 0 0 Γ9 · · · 0 0 0 0 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
...

...
...

...
∗ ∗ · · · Γ10 Γ11 0 · · · 0 Γ12 0 0 0 0 0
∗ ∗ · · · ∗ Γ13 0 · · · 0 0 0 Γ14 0 0 0
∗ ∗ · · · ∗ ∗ −X · · · 0 0 0 0 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
...

...
...

...
∗ ∗ · · · ∗ ∗ ∗ · · · −X 0 0 0 0 0 0
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ −X 0 0 0 0 0
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ Γ15 0 0 Γ16 −S
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ Γ17 0 Γ18 0
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗ −T 0 0
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗ ∗ Γ19 L
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗ ∗ ∗ −R+ γI



,

Γ1 = −PAi −AT
i P +Q1 +R1 − F1U1 +M11 +MT

11, Γ2 = −M11 +M21,

Γ3 = −Mm1, Γ4 = −M11, Γ5 = PBi +R2 + F2U1, Γ6 = PCi,

Γ7 = −AT
i L

T, Γ8 = (τ1 − 1)(Q1 −Q2) +M22 +MT
22, Γ9 = −Mm2,

Γ10 =

(
m−1∑
i=1

τi − 1

)
(Qm−1 −Qm), Γ11 = Γ12 = −Mmm,

Γ13 =

(
m∑
i=1

τi − 1

)
(Qm +R1)− F1U2 +Mmm +MT

mm,

Γ14 =

(
m∑
i=1

τi − 1

)
R2 + F2U2, Γ15 = R3 + τ̄2T − U1 −Q,

Γ16 = BT
i L

T, Γ17 =

(
m∑
i=1

τi − 1

)
R3 − U2, Γ18 = CT

i L
T,

Γ19 = ᾱmX − L− LT,

Θ1 =
[√
ᾱmZE1i 0 . . . 0︸ ︷︷ ︸

m−1

√
ᾱmZE2i 0 . . . 0︸ ︷︷ ︸

m

0 0 0 0 0
]T
,

Θ2 =
[
PE1i 0 . . . 0︸ ︷︷ ︸

m−1

PE2i 0 . . . 0︸ ︷︷ ︸
m

0 0 0 0 0
]T
,

∆1 = col
[
0 M11 M12 . . . M1m 0 . . . 0︸ ︷︷ ︸

m+5

]
,

∆2 = col
[
0 M21 M22 . . . M2m 0 . . . 0︸ ︷︷ ︸

m+5

]
,
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. . .

∆k = col
[
0 Mk1 Mk2 . . . Mkm 0 . . . 0︸ ︷︷ ︸

m+5

]
, k = 1, . . . ,m.

Proof. For simplicity, we denote

g(t) = −Aix(t) +Bif
(
x(t)

)
+ Cif

(
x
(
t− τ(t)

))
+ u(t),

α(t) = E1ix(t) + E2ix
(
t− τ(t)

)
.

Then system (3) can be rewritten as

dx(t) =

r∑
i=1

λi(ξ(t))g(t) dt+ α(t) dω(t),

y(t) =

r∑
i=1

λi
(
ξ(t)

)
f
(
x(t)

)
.

Choose a Lyapunov functional candidate for system (3) as follows:

V (xt) = xT(t)Px(t) +

m∑
k=1

t−αk−1(t)∫
t−αk(t)

xT(s)Qkx(s) ds

+

t∫
t−τ(t)

[
x(s)

f(x(s))

]T [
R1 R2

RT
2 R3

] [
x(s)

f(x(s))

]
ds

+ τ̄

0∫
−τ̄

t∫
t+θ

fT
(
x(s)

)
Tf
(
x(s)

)
dsdθ +

0∫
−ᾱm

t∫
t+θ

gT(s)Xg(s) dsdθ

+

0∫
−ᾱm

t∫
t+θ

Trace
[
αT(s)Zα(s)

]
dsdθ.

Then the stochastic differential of V (xt) along with (3) can be obtained as follows:

dV (xt) = LV (xt) dt+

r∑
i=1

λi2x
T(t)Pg(t) dω(t),

where

LV (xt) =

r∑
i=1

λi

{
2xT(t)P

[
−Aix(t) +Bif

(
x(t)

)
+ Cif

(
x
(
t− τ(t)

))
+ u(t)

]
+ Trace

[
αT(t)Pα(t)

]
+ xT(t)Q1x(t)

http://www.journals.vu.lt/nonlinear-analysis
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−
m−1∑
k=1

[(
1−

k∑
i=1

τ̇i(t)

)
xT
(
t− αk(t)

)
(Qk −Qk+1)x

(
t− αk(t)

)]

−

(
1−

m∑
i=1

τ̇i(t)

)
xT
(
t− αm(t)

)
Qmx

(
t− αm(t)

)
+

[
x(t)

f(x(t))

]T [
R1 R2

RT
2 R3

] [
x(t)

f(x(t))

]
−
(
1− τ̇(t)

) [ x(t− τ(t))
f(x(t− τ(t)))

]T [
R1 R2

RT
2 R3

] [
x(t− τ(t))

f(x(t− τ(t)))

]

+ τ̄2fT
(
x(t)

)
Tf
(
x(t)

)
− τ̄

t∫
t−τ̄

fT
(
x(s)

)
Tf
(
x(s)

)
ds

+ ᾱmg
T(t)Xg(t)−

m∑
k=1

t−αk−1(t)∫
t−αk(t)

gT(s)Xg(s) ds−
t−αm(t)∫
t−ᾱm

gT(s)Xg(s) ds

+ ᾱm Trace
[
αT(t)Zα(t)

]
−

t∫
t−ᾱm

Trace
[
αT(s)Zα(s)

]
ds

}
.

It is clear that Trace[αT(t)Pα(t)] = [αT(t)Pα(t)] and Trace[αT(t)Zα(t)] = [αT(t)×
Zα(t)]. In view of (2) and by Lemma 1, we have

LV (xt) + γuT(t)u(t)−
[
yT(t)Qy(t) + 2yT(t)Su(t) + uT(t)Ru(t)

]
6

r∑
i=1

λi

{
− 2xT(t)PAix(t) + 2xT(t)PBif

(
x(t)

)
+ 2xT(t)PCif

(
x(t− τ(t)

))
+ 2xT(t)Pu(t)

+
[
E1ix(t) + E2ix

(
t− τ(t)

)]T
P
[
E1ix(t) + E2ix

(
t− τ(t)

)]
+ xT(t)Q1x(t)

−
m−1∑
k=1

[(
1−

k∑
i=1

τi

)
xT
(
t− αk(t)

)
(Qk −Qk+1)x

(
t− αk(t)

)]

−

(
1−

m∑
i=1

τi

)
xT
(
t− αm(t)

)
Qmx

(
t− αm(t)

)
+

[
x(t)

f(x(t))

]T [
R1 R2

RT
2 R3

] [
x(t)

f(x(t))

]
−

(
1−

m∑
i=1

τi

)[
x(t− τ(t))

f(x(t− τ(t)))

]T [
R1 R2

RT
2 R3

] [
x(t− τ(t))

f(x(t− τ(t)))

]
+ τ̄2fT

(
x(t)

)
Tf
(
x(t)

)
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−

( t∫
t−τ̄

f
(
x(s)

)
ds

)T

T

( t∫
t−τ̄

f
(
x(s)

)
ds

)
+ ᾱmg

T(t)Xg(t)

−
m∑
k=1

( t−αk−1(t)∫
t−αk(t)

g(s) ds

)T

X

( t−αk−1(t)∫
t−αk(t)

g(s) ds

)

−

( t−αm(t)∫
t−ᾱm

g(s) ds

)T

X

( t−αm(t)∫
t−ᾱm

g(s) ds

)

+ ᾱm
[
E1ix(t) + E2ix

(
t− τ(t)

)]T
Z
[
E1ix(t) + E2ix

(
t− τ(t)

)]
−

m∑
k=1

t−αk−1(t)∫
t−αk(t)

Trace
[
αT(s)Zα(s)

]
ds−

t−αm(t)∫
t−ᾱm

Trace
[
αT(s)Zα(s)

]
ds

}

+ uT(t)[γI −R]u(t)− fT
(
x(t)

)
Qf
(
x(t)

)
− 2fT

(
x(t)

)
Su(t). (6)

From assumption (H1) we have(
fi
(
xi(t)

)
− F−

i xi(t)
)(
fi
(
xi(t)

)
− F+

i xi(t)
)
6 0, i = 1, 2, . . . , n,

which are equivalent to

[
xi(t)

fi(xi(t))

]T
[
F−
i F

+
i eie

T
i −

F−
i +F+

i

2 eie
T
i

−F
−
i +F+

i

2 eie
T
i eie

T
i

] [
xi(t)

fi(xi(t))

]
6 0, i = 1, 2, . . . , n,

where er denotes the unit column vector having 1 on its rth row and zeros elsewhere.
Let U1 = diag{u11, u12, . . . , u1n} and U2 = diag{u21, u22, . . . , u2n}.
Then

n∑
i=1

u1i

[
xi(t)

fi(xi(t))

]T
[
F−
i F

+
i eie

T
i −

F−
i +F+

i

2 eie
T
i

−F
−
i +F+

i

2 eie
T
i eie

T
i

] [
xi(t)

fi(xi(t))

]
6 0.

That is, [
x(t)

f(x(t))

]T [
F1U1 −F2U1

−F2U1 U1

] [
x(t)

f(x(t))

]
6 0. (7)

Similarly, one has

[
x(t− τ(t))

f(x(t− τ(t)))

]T [
F1U2 −F2U2

−F2U2 U2

] [
x(t− τ(t))

f(x(t− τ(t)))

]
6 0. (8)
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By Leibniz–Newton formula, the following equations hold for any matrices L, M̄1, M̄2,
. . . , M̄k (k = 1, 2, . . . ,m) with appropriate dimensions:

0 = 2ξT(t)M̄1

[
x(t)− x

(
t− α1(t)

)
−

t∫
t−α1(t)

g(s) ds−
t∫

t−α1(t)

α(s) dω(s)

]
, (9)

. . .

0 = 2ξT(t)M̄k

[
x
(
t− αk−1(t)

)
− x
(
t− αk(t)

)
−

t−αk−1(t)∫
t−αk(t)

g(s) d(s)

−
t−αk−1(t)∫
t−αk(t)

α(s) dω(s)

]
, (10)

0 = 2gT(t)L
[
−Aix(t) +Bif

(
x(t)

)
+ Cif

(
x
(
t− τ(t)

))
+ u(t)− g(t)

]
, (11)

where

ξ(t) =
[
xT(t) xT

(
t− α1(t)

)
. . . xT

(
t− αm−1(t)

)
xT
(
t− αm(t)

)]T
.

It follows from Lemma 3 that

−2ξT(t)M̄1

t∫
t−α1(t)

α(s) dω(s) 6 ξT(t)M̄1Z
−1M̄T

1 ξ(t) +

( t∫
t−α1(t)

α(s) dω(s)

)T

Z

×

( t∫
t−α1(t)

α(s) dω(s)

)
, (12)

. . .

−2ξT(t)M̄k

t−αk−1(t)∫
t−αk(t)

α(s) dω(s) 6 ξT(t)M̄kZ
−1M̄T

k ξ(t) +

( t−αk−1(t)∫
t−αk(t)

α(s) dω(s)

)T

Z

×

( t−αk−1(t)∫
t−αk(t)

α(s) dω(s)

)
. (13)

On the other hand, by using the Itô isometry in [18], we can obtain

E

{[ t∫
t−α1(t)

α(s) dω(s)

]T

Z

[ t∫
t−α1(t)

α(s) dω(s)

]}

= E
t∫

t−α1(t)

Trace
[
αT(s)Zα(s)

]
ds, (14)
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. . .

E

{[ t−αk−1(t)∫
t−αk(t)

α(s) dω(s)

]T

Z

[ t−αk−1(t)∫
t−αk(t)

α(s) dω(s)

]}

= E
t−αk−1(t)∫
t−αk(t)

Trace
[
αT(s)Zα(s)

]
ds. (15)

Combining (6)–(15), we can obtain

LV (xt)− yT(t)Qy(t)− 2yT(t)Su(t) + uT(t)[γI −R]u(t)

6
r∑
i=1

λiζ
T(t)

[
Γ +Θ1ZΘ

T
1 +Θ2PΘ

T
2 +∆1Z∆

T
1 + · · ·+∆kZ∆

T
k

]
ζ(t), (16)

where

ζ(t) =

[
ξT(t)

t∫
t−α1(t)

gT(s) ds . . .

t−αm−1(t)∫
t−αm(t)

gT(s) ds

t−αm(t)∫
t−ᾱm

gT(s) ds

fT
(
x(t)

)
fT
(
x
(
t− τ(t)

)) ( t∫
t−τ̄

f
(
x(s)

)
ds

)T

gT(t) uT(t)

]T

.

Applying Schur complement, (16) is equivalent to (5). Since Γ < 0, it is easy to get

E
{
yT(t)Qy(t) + 2yT(t)Su(t) + uT(t)Ru(t)

}
> E

{
LV (xt) + γuT(t)u(t)

}
. (17)

Integrating (17) from 0 to t, under zero initial conditions we obtain

E
{
E(y, u, t)

}
> E

{
γ〈u, u〉t + V (xt)− V (0)

}
> γE〈u, u〉t

for all t > 0. Therefore, when condition (4) is satisfied, the neural network (3) is strictly
(Q,S,R)-γ-dissipative according to Definition 1.

Remark 4. Recently, the authors of [30, 35] have investigated the dissipativity of neural
networks with randomly occuring uncertainties by using Lyapunov–Krasovskii functional
methods and LMI approaches. Further, Pan et al. [21] have studied the problem of dis-
sipativity condition of stochastic fuzzy neural networks with distributed time-varying
delays and derived a new stability condition based on a Lyapunov–Krasovskii functional
including double-integral term and free weighting matrix method. However, as a different
aspect, by construction of a new Lyapunov–Krasovskii functional based on a time-delay
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partitioning approach, which are expected to be less conservative than the results dis-
cussed in the some existing literature, an improved delay-dependent stability criterion is
proposed in this paper. Although the Lyapunov stability theory and LMI technique were
widely used to consider the dynamic behaviors of delayed neural networks. To the best of
our knowledge, it is the first time to investigate the dissipativity of stochastic fuzzy neural
networks using delay-decomposition method. The condition obtained in Theorem 1 is in
the form of LMI, which can be easily solved by using LMI toolbox in Matlab.

Remark 5. Consider the following neural networks without fuzzy and stochastic effects.
However, for the general neural network, one has achieved some results in [25,30,33–35].
We have

dx(t) = −Ax(t) +Bf
(
x(t)

)
+ Cf

(
x(t− τ(t)

))
+ u(t),

y(t) = f
(
x(t)

)
.

(18)

According to Theorem 1, we have the following corollary for the delay-dependent
dissipativity of the neural networks (18).

Corollary 1. Assume that assumption (H1) is hold. Then for given scalar γ, the neural
network described by (18) is strictly (Q,S,R)-γ-dissipative for any time-varying delay
τ(t) satisfying (2) if there exist positive definite matrices P , Qk (i = 1, 2, . . . ,m), Ri
(i = 1, 2, 3), T , X , positive diagonal matrices U1, U2, and any appropriate dimensional
matrices L, M̄1 = [MT

11M
T
12 . . . M

T
1m]T, M̄2 = [MT

21M
T
22 . . . M

T
2m]T, . . . , M̄k =

[MT
k1M

T
k2 . . . M

T
km]T (k = 1, 2, . . . ,m) such that the following LMIs hold:

Γ̄ =



Γ1 Γ2 · · · 0 Γ3 Γ4 · · · 0 0 Γ5 Γ6 0 Γ7 P
∗ Γ8 · · · 0 0 Γ9 · · · 0 0 0 0 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
...

...
...

...
∗ ∗ · · · Γ10 Γ11 0 · · · 0 Γ12 0 0 0 0 0
∗ ∗ · · · ∗ Γ13 0 · · · 0 0 0 Γ14 0 0 0
∗ ∗ · · · ∗ ∗ −X · · · 0 0 0 0 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
...

...
...

...
∗ ∗ · · · ∗ ∗ ∗ · · · −X 0 0 0 0 0 0
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ −X 0 0 0 0 0
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ Γ15 0 0 Γ16 −S
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ Γ17 0 Γ18 0
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗ −T 0 0
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗ ∗ Γ19 L
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗ ∗ ∗ −R+ γI



< 0, (19)

Γ1 = −PA−ATP +Q1 +R1 − F1U1 +M11 +MT
11, Γ2 = −M11 +M21,

Γ3 = −Mm1, Γ4 = −M11, Γ5 = PBi +R2 + F2U1, Γ6 = PC,

Γ7 = −ATLT, Γ8 = (τ1 − 1)(Q1 −Q2) +M22 +MT
22, Γ9 = −Mm2,
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Γ10 =

(
m−1∑
i=1

τi − 1

)
(Qm−1 −Qm), Γ11 = Γ12 = −Mmm,

Γ13 =

(
m∑
i=1

τi − 1

)
(Qm +R1)− F1U2 +Mmm +MT

mm,

Γ14 =

(
m∑
i=1

τi − 1

)
R2 + F2U2, Γ15 = R3 + τ̄2T − U1 −Q,

Γ16 = BTLT, Γ17 =

(
m∑
i=1

τi − 1

)
R3 − U2,

Γ18 = CTLT, Γ19 = ᾱmX − L− LT.

Remark 6. When Q = 0, S = I , and γI − R = −γI , our result in Corollary 1
corresponds to a passive problem [25, 33, 34], which can be obtained in the following
corollary directly. Thus, the investigation in this paper improves the existing literature.

Corollary 2. Assume that assumption (H1) is hold. Then the neural network described
by (18) is passive in the sense of Definition 2 for any time-varying delay τ(t) satis-
fying (2) if there exist positive definite matrices P , Qk (i = 1, 2, . . . ,m), Ri (i =
1, 2, 3), T , X , positive diagonal matrices U1, U2, and any appropriate dimensional
matrices L, M̄1 = [MT

11M
T
12 . . . M

T
1m]T, M̄2 = [MT

21M
T
22 . . . M

T
2m]T, . . . , M̄k =

[MT
k1M

T
k2 . . . M

T
km]T (k = 1, 2, . . . ,m) such that the following LMIs hold :

Γ̂ =



Γ1 Γ2 · · · 0 Γ3 Γ4 · · · 0 0 Γ5 Γ6 0 Γ7 P
∗ Γ8 · · · 0 0 Γ9 · · · 0 0 0 0 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
...

...
...

...
∗ ∗ · · · Γ10 Γ11 0 · · · 0 Γ12 0 0 0 0 0
∗ ∗ · · · ∗ Γ13 0 · · · 0 0 0 Γ14 0 0 0
∗ ∗ · · · ∗ ∗ −X · · · 0 0 0 0 0 0 0
...

...
. . .

...
...

...
. . .

...
...

...
...

...
...

...
∗ ∗ · · · ∗ ∗ ∗ · · · −X 0 0 0 0 0 0
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ −X 0 0 0 0 0
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ Γ15 0 0 Γ16 −I
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ Γ17 0 Γ18 0
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗ −T 0 0
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗ ∗ Γ19 L
∗ ∗ · · · ∗ ∗ ∗ · · · ∗ ∗ ∗ ∗ ∗ ∗ −γI



< 0,

where

Γ15 = R3 + τ̄2T − U1,

and other terms are same as defined in Corollary 1.
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Proof. The proof immediately follows from the similar way of proof of Corollary 1, hence
it is omitted.

4 Dissipativity with randomly occurring uncertainty

In this section, based on Theorem 1 and Corollary 1, we are now ready to develop delay-
dependent criterion for the neural networks with time-varying parameter and randomly
occurring uncertainties in the form

dx(t) = −
(
A+ α(t)∆A(t)

)
x(t) +

(
B + β(t)∆B(t)

)
f
(
x(t)

)
+
(
C + δ(t)∆C(t)

)
f
(
x(t− τ(t)

)
x(t) = φ(t) ∀t ∈ [−τ̄ , 0],

(20)

where ∆A(t), ∆B(t) and ∆C(t) denotes the uncertain matrices and takes the following
form: [

∆A(t) ∆B(t) ∆C(t)
]

= HF (t)[E1 E2 E3], (21)

where H , E1, E2 and E3 are known real constant matrices with appropriate dimensions
and F (t) is an unknown real matrix function satisfying

FT(t)F (t) 6 I ∀t > 0.

In this paper, the parameter uncertainties denoted as in (21) are randomly occurring, which
was firstly introduced in [11]. The stochastic variables α(t), β(t) and δ(t) are mutually
independent Bernoulli-distributed white sequences. A natural assumption on the these
stochastic variables can be made as follows:

Pr{α(t) = 1} = α, Pr{α(t) = 0} = 1− α, (22)
Pr{β(t) = 1} = β, Pr{β(t) = 0} = 1− β, (23)
Pr{δ(t) = 1} = δ, Pr{δ(t) = 0} = 1− δ, (24)

where α ∈ [0, 1], β ∈ [0, 1] and δ ∈ [0, 1] are known constants.
Based on Corollary 1, the following criteria can be readily derived.

Theorem 2. Assume that assumption (H1) is hold. Then for given scalar γ, the neural
network described by (20) is strictly (Q,S,R)-γ-dissipative for any time-varying de-
lay τ(t) satisfying (2) if there exist a scalar λ, positive definite matrices P , Qk (i =
1, 2, . . . ,m), Ri (i = 1, 2, 3), T , X , positive diagonal matrices U1, U2 and any appro-
priate dimensional matrices L, M̄1 = [MT

11 . . . M
T
1m]T, M̄2 = [MT

21 . . . M
T
2m]T, . . . ,

M̄k = [MT
k1 . . . M

T
km]T (k = 1, 2, . . . ,m) such that the following LMIs hold:Γ̄ Γd λΓT

e

∗ −λI 0
∗ ∗ −λI

 < 0, (25)

where Γ̄ is defined in Corollary 1.
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Proof. Replace A, B, C in (19) with A+ α(t)∆A(t), B + β(t)∆B(t), C + δ(t)∆C(t),
respectively. Then the uncertain system (20) is equivalent to the following condition:

Γ̄ + ΓdF (t)Γe + ΓT
e F

T(t)ΓT
d < 0, (26)

where

Γd =
[
PH 0 . . . 0︸ ︷︷ ︸

m

0 . . . 0︸ ︷︷ ︸
m

0 0 0 LH 0
]T
,

Γe =
[
−αE1 0 . . . 0︸ ︷︷ ︸

m

0 . . . 0︸ ︷︷ ︸
m

βE2 δE3 0 0 0
]
.

By using Lemma 4, we obtain the necessary and sufficient condition to satisfy inequal-
ity (26), and there exist a scalar λ > 0 such that

Γ̄ + λ−1ΓdΓ
T
d + λΓT

e Γe < 0. (27)

Now, by applying Schur complement, (27) is equivalent to (25). This completes the proof
of Theorem 2.

Remark 7. In view of delay-partitioning idea employed in this work, with integer m
increasing, the dimension of the derived LMIs will become higher, and it will take more
computing time to check the stability criteria. It should be pointed out that the con-
servatism will be reduced as the decomposition becomes thinner. Therefore, the more
effective results can be obtained if we employ Lyapunov–Krasovskii functional with
m > 2.

5 Numerical examples

In this section, we are analyzing some numerical examples to show the effectiveness of
the proposed methods.

Example 1. Consider the stochastic fuzzy neural networks (3) with the parameters as
follows:

dx(t) =
[
−Aix(t) +Bif

(
x(t)

)
+ Cif

(
x
(
t− τ(t)

))
+ u(t)

]
dt

+
[
E1ix(t) + E2ix

(
t− τ(t)

)]
dω(t), i = 1, 2,

where

A1 =

[
1 0
0 2

]
, A2 =

[
2 0
0 3

]
, B1 =

[
0.14 −0.04
−0.05 0.06

]
,

B2 =

[
−0.09 −0.16
0.09 −0.24

]
, C1 =

[
−0.01 0.12
0.03 0.01

]
, C2 =

[
0.1 0.06
0.02 −0.1

]
,
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Table 1. Maximum value of τ̄ for different values of τ (Example 1).

Methods τ = 0.1 τ = 0.3 τ = 0.5 τ = 0.7 τ = 0.9

[21] 2.0649 1.1296 1.0550 1.0550 1.0550
Theorem 1 (m = 2) 2.3116 1.5278 1.3648 1.1537 1.1537

(a) Model 1 (b) Model 2

Figure 1. The state response in Example 1.

E11 =

[
0.2 −0.1
0.1 −0.2

]
, E12 =

[
0.1 −0.1
−0.1 0.1

]
,

E21 =

[
−0.2 0.01
0.2 −0.02

]
, E22 =

[
0.1 −0.02
0.1 0.1

]
,

Q =

[
−0.1 0

0 −0.2

]
, R =

[
5 0
0 6

]
, S =

[
0.7 0.5
2.2 −0.4

]
.

The activation functions are taken as f1(x1) = tanh(−x1), f2(x2) = tanh(0.3x2).
The time-varying delay satisfies (2), and for given scalar γ = 1, by solving LMI (5) in
Theorem 1, the obtained upper bounds τ̄ for different τ are listed in Table 1. From Table 1
it can be easily seen that the method proposed in this paper is much less conservative than
the corresponding method in [21]. Figure 1(a) gives the state response of the neural
network (3) with the initial condition x(t) = [−0.2 0.2]T. Figure 1(b) gives the state
response of the neural network (3) with the initial condition x(t) = [0.4 0.8]T, which
shows that the neural network is stable.

Example 2. Consider the neural networks (20) with the parameters as follows:

A =

[
2 0
0 1.5

]
, B =

[
−1 1
0.5 −1

]
, C =

[
−0.5 0.6
0.7 0.8

]
,

H =

[
0.4 0
0 0.4

]
, E1 =

[
0.2 0
0 0.2

]
, E2 =

[
0.15 0

0 0.15

]
,
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Table 2. Maximum value of γ for different values of a (Example 2).

Methods a = 0 a = 0.25 a = 0.50 a = 1

[30] 1.5871 1.5807 1.5739 1.5597
[35] 1.7183 1.7138 1.7090 1.6990
Theorem 2 (m = 2) 1.9832 1.9342 1.8812 1.8524

Table 3. Maximum value of γ for different values of τ̄ (Example 2).

Methods τ̄ = 0.5 τ̄ = 1.0 τ̄ = 1.5 τ̄ = 2.0

[30] 1.5182 1.5179 1.5153 1.5104
[35] 1.7006 1.6379 1.5922 1.5583
Theorem 2 (m = 2) 1.9252 1.8687 1.8176 1.7825

E3 =

[
0.1 0
0 0.1

]
, Q =

[
−0.9 0

0 −0.9

]
, S =

[
0.5 0
0.3 1

]
, R =

[
2 0
0 2

]
,

F+
1 = F+

2 = 0.9, F−
1 = F−

2 = −0.1.

In this example, we choose α = β = δ = a, τ̄ = τ = 0.4. By using Theorem 2,
the maximum value of γ for different values of a are shown in Table 2. In addition, for
a = τ = 0.5 and different τ̄ , the maximum values of γ calculated by Theorem 2 are listed
in Table 3. From Tables 2 and 3 it can be easily seen that the method proposed in this
paper is much less conservative than the corresponding methods in [30, 35].

Example 3. Consider the neural networks (18) with the parameters as follows:

A =

[
2.2 0
0 1.8

]
, B =

[
1.2 1
−0.2 0.3

]
, C =

[
0.8 0.4
−0.2 0.1

]
.

The activation functions are taken as follows:

fi(xi) = 0.5
(
|xi + 1| − |xi − 1|

)
, i = 1, 2.

It can be verified that assumption (H1) is satisfied with F+
1 = F+

2 = 1, F−
1 = F−

2 = 0.
For various values of τ , the computed upper bounds τ̄ , which guarantee the passivity
of neural network (18), are listed in Table 4. It can be seen that the passivity result we
proposed is less conservative than that in [25,30,33–35]. Figure 2 gives the state response
of the neural network (18) with the initial condition x(t) = [−1 1]T.

Table 4. Maximum value of τ̄ for different values of τ (Example 3).

Methods τ = 0.5 τ = 0.9 τ > 1

[25] 0.5227 0.4613 0.4613
[34] 1.3752 1.3027 1.3027
[33] 1.4693 1.4243 1.4240
[30] 1.8450 1.7647 1.7313
[35] 2.2058 2.0366 2.0000
Corollary 3.3 (m = 2) 2.6784 2.4246 2.3137
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Figure 2. State trajectory of the neural network in Example 3.

6 Conclusion

In this paper, the problem of dissipativity analysis has been investigated for stochastic
fuzzy neural networks with time delay using delay partitioning approach. Several delay-
dependent sufficient conditions have been proposed to guarantee the dissipativity of the
considered neural networks. All the results given in this paper are delay-dependent as
well as partition dependent. The effectiveness as well as the reduced conservatism of
the derived results has been shown by several numerical examples. By utilizing the pro-
posed idea of this paper, future works will focus on stabilization for various dynamic
systems with time-delays, such as adaptive dynamic surface control design systems [16],
distributed adaptive consensus tracking control for nonlinear multi-agent systems [39],
fuzzy fault-tolerant control systems [17], output-feedback control systems [28], fuzzy
hierarchical sliding-mode control systems [40], and fuzzy adaptive tracking control sys-
tems [27].
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