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Stability and Synchronization of Discrete-Time
Neural Networks With Switching Parameters and

Time-Varying Delays
Ligang Wu, Senior Member, IEEE, Zhiguang Feng, Student Member, IEEE,

and James Lam, Fellow, IEEE

Abstract— This paper is concerned with the problems of
exponential stability analysis and synchronization of discrete-
time switched delayed neural networks. Using the average dwell
time approach together with the piecewise Lyapunov function
technique, sufficient conditions are proposed to guarantee the
exponential stability for the switched neural networks with time-
delays. Benefitting from the delay partitioning method and the
free-weighting matrix technique, the conservatism of the obtained
results is reduced. In addition, the decay estimates are explicitly
given and the synchronization problem is solved. The results
reported in this paper not only depend upon the delay, but
also depend upon the partitioning, which aims at reducing the
conservatism. Numerical examples are presented to demonstrate
the usefulness of the derived theoretical results.

Index Terms— Average dwell time, delay partitioning, delayed
neural networks (DNNs), discrete time, exponential stability,
switched parameters.

I. INTRODUCTION

DELAYED neural networks (DNNs) have received
increasing attention in the past decades, because the

neural networks have extensive applications in signal process-
ing, image processing, speed detection of moving objects,
and related areas. In addition, because of the finite speed of
information processing, time-delay is frequently encountered,
and the existence of a delay in a system may induce instabil-
ity, oscillations or poor performances [17]. Therefore, many
research results reported on DNNs in the literature; see [11],
[18], [23], [37], [42], [49]–[52], and so on. Compared with
continuous-time DNNs, the discrete-time DNNs have received
relatively less attention. Some results can be found in the
literature; see [9], [27], [34], [48], [53], [55], [56], and so on.

Recently, some research studied the DNNs with Markovian
jumping parameters; see [21], [29], [35], [38], [43], and [44].
To mention a few, Huang et al. [21] investigated the robust
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stability of stochastic delayed additive neural networks with
Markovian switching; Liu et al. [29] studied stability and syn-
chronization of discrete-time Markovian jumping neural net-
works with mixed mode-dependent time-delays; Rakkiyappan
and Balasubramaniam [35] considered the dynamic analysis
of Markovian jumping impulsive stochastic Cohen–Grossberg
neural networks with discrete interval and distributed time-
varying delays; Shen and Wang [38] investigated the almost
sure exponential stability of recurrent neural networks with
Markovian switching; and Wang et al. [43] addressed the expo-
nential stability analysis of delayed recurrent neural networks
with Markovian jumping parameters. Notice that all the above-
mentioned results considered the Markovian jumping para-
meters. As it is well known that Markovian jumping can be
seen as a special case of switching with specified probability
distribution. Therefore, one common question could be: what
properties do the DNNs have if the parameter switching not
in the form of Markovian jumping? This question motivates
us to carry out this research.

In this paper, we will conduct the research on the stability
analysis and synchronization of discrete-time DNNs whose
parameters are operated by a switching signal, that is, the
discrete-time switched DNNs, which can be described by the
following equation:

x(k + 1) = C(αk)x(k)+ A(αk) f (x(k))

+Ad(αk) f (x(k − d(k))) (1)

where αk is a switching signal that specifies which subsystem
to be activated at a certain discrete-time instant. It should be
noted, here, that the switching is arbitrary over the average
dwell time, but not in the form of Markovian switching. To the
best of our knowledge, there are a few results being reported
on DNNs with arbitrary switching so far, see [2]–[5] [44].
The switched DNNs combining the theories of switched
systems and neural networks are applied to high-speed signal
processing, artificial intelligence, and gene selection in a
DNA microarray analysis [10], [36], [41]. The continuous-
time networks are usually discretized when they are used for
the sake of computer-based simulation or experimentation.
Unfortunately, the dynamic of the continuous-time networks
cannot be preserved by discretization, as mentioned in [32]. In
addition, the applications greatly depend on the stability of the
equilibrium point of neural networks. Therefore, it is important
to investigate the stability of the discrete-time switched DNNs.
This paper will extend the results in [44] on continuous-time
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switched DNNs to the discrete-time case. The technique and
methods to be used for the discrete-time case are, however,
different from the continuous-time case. Investigating such
switched DNNs would be rather difficult because the prob-
ability distribution of switching is not available. Many open
questions still remain unsolved. Obviously, the key problem
that deserves attention is to derive a condition, which can
guarantee the stability of the switched DNN, when it changes
from one mode to another under arbitrary switching signal
with average dwell time. This presents an interesting and yet
challenging research because it needs to integrate the research
of the switched hybrid systems into that of the DNNs.

In the past few years, there has been an increasing interest
in using the dwell time approach to handle switched sys-
tems [31]. Let τd > 0 be the dwell time and S (τd) be the
set of all switching signals with interval between consecutive
discontinuities being no smaller than τd . The result in [31]
showed that a sufficiently large τd can be chosen to warrant
the exponential stability of the underlying switched system
for any switching signal belonging to S (τd). Meanwhile, this
concept was expanded in [19] to establish the average dwell
time approach, which implies that the average time interval
between consecutive switchings is no less than a specified
constant τ ∗

d . It was also shown in [19] that if such a constant τ ∗
d

is sufficiently large, then the switched system is exponentially
stable. For discrete-time switched system, the results reported
by using average dwell approach are very limited.

Time-delay, inducing instability and degrading system per-
formance, is often encountered in practical engineering sys-
tems. For switched DNNs, the delay-dependent criteria for
global robust periodicity analysis problem are obtained in
terms of linear matrix inequalities (LMIs) by employing
free-weighting matrix method in [30]. By introducing triple
integral terms into a new Lyapunov functional, the robust
passivity analysis of uncertain switched neural networks of
neutral type with interval time-varying delay is considered
in [33]. For the first time, the H∞ weight learning law
for switched Hopfield neural networks with time-delay was
presented in [1]. Recently, the exponential stability analysis
problem was investigated in [44] using delay partitioning
method. The above-mentioned existing results are, however,
concerned with continuous-time switched DNNs. There are a
few works about discrete-time switched DNNs.

The delay partitioning technique (originally presented
in [17]), also called as delay fractioning technique, is con-
sidered as an effective approach to reduce the conservatism
of the stability condition of a time-delay linear system.
The basic idea of this approach is to partition the time-
delay (generally means time-invariant time-delay) into several
components evenly, if the time-delay is time varying with
lower bound, in this case, the lower bound is partitioned as
several evenly spaced components. Construct a Lyapunov–
Krasovskii functional (LKF) with consideration given to every
delay component, it can be shown that the stability condition
obtained by such a LKF is less conservative. Benefiting from
this approach, many results for other problems are extended.
To mention a few, the stability analysis for static recurrent
neural networks with time-invariant delay was studied in [13],

the stability criteria for continuous systems with multiple time-
varying delay components was proposed in [14], the stability
analysis and stabilization of T-S fuzzy time-delay systems
were investigated in [45] and [54], and the stabilization results
for discrete singular delay systems were given in [15].

For synchronization problem of DNNs, there are some
existing results [6]–[8], [24], [26], [57]. For example, some
sufficient conditions for the exponential synchronization of
DNNs were given in terms of LMIs using state feedback
control in [16]. Using the drive-response concept, a delay-
independent and decentralized control law for DNNs was
derived to achieve the exponential synchronization in [12].
For DNNs with reaction-diffusion terms, some conditions
dependent on the diffusion coefficients were given in [20] to
guarantee the global synchronization under the impulsive con-
troller. With the Lyapunov stability theory and the Kronecker
product, a unified LMI approach was proposed to address the
synchronization problem of discrete-time Markovian jumping
neural networks with mixed time-delays in [29].

Unfortunately, the stability analysis and synchronization
for discrete-time switched neural networks with time-varying
delay were not fully investigated. How to deal with the
discrete-time neural networks, switched system, and time-
varying delay in a unified framework; how to reduce the con-
servatism of the result for stability condition of discrete-time
neural networks with time-delay; and how to extend the result
to the synchronization problem are remaining challenges.

The objective of this paper is to investigate the problems
of the exponential stability and synchronization for discrete-
time switched DNNs. Specifically, we will use the average
dwell time approach and the piecewise Lyapunov function
technique in this paper. We will consider two cases where
the switched DNNs are with constant delay and time-varying
delay, respectively. In both cases, we will introduce a new LKF
to derive sufficient exponential stability conditions by integrat-
ing the delay partitioning method [17] with the free-weighting
matrix technique. As such, the obtained stability conditions
are delay dependent as well as partition dependent, which
allow for conservatism reduction. With this, the corresponding
synchronization method is proposed. The applicability of the
derived analytical results is exemplified by several illustrative
examples in comparison with the existing results.

Notations: The notations used throughout this paper are
standard. R

n is the n-dimensional Euclidean space, Z
+ is

the set of positive integers, the notation P > 0 means that
P is real symmetric and positive definite, I and 0 are the
identity matrix and a zero matrix, respectively, diag{. . .} is
a block-diagonal matrix, λmin(P) (λmax(P)) is the minimum
(maximum) eigenvalue of symmetric matrix P , and ‖ ·‖ is the
Euclidean norm of a vector and its induced norm of a matrix.
In symmetric block matrices or long matrix expressions, a star
(�) is used to represent a term that is induced by symmetry.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

Consider a discrete-time n-neuron neural network with N
modes described by the following delay-difference equation:

x(k + 1) = Cx(k)+ Ag (x(k))+ Ad g (x(k − d(k)))+ J (2)
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for k = 1, 2, . . ., where x(k) � [x1(k), x2(k), . . . , xn(k)]T ∈
R

n is the neuron state vector, J � [J1, J2, . . . , Jn]T ∈ R
n is a

constant external input vector, C � diag {c1, c2, . . . , cn} > 0
with 0 ≤ ci < 1 is the state feedback coefficient matrix,
A, Ad ∈ R

n×n are the connection weight matrix and the
delayed connection weight matrix, respectively, and g(x) �
[g1(x1), g2(x2), . . . , gn(xn)]T ∈ R

n is the neuron activation
function, which satisfies the following assumptions.

Assumption 1: The activation function g(x) is a bounded
function and satisfies g(0) = 0.

Assumption 2: For the activation function g(x), there exist
constants λ−

i and λ+
i such that for i ∈ 1, 2, . . . , n

λ−
i ≤ gi(x)− gi (y)

x − y
≤ λ+

i ∀x, y ∈ R, x �= y. (3)

The delay d(k) satisfying either (A1) or (A2) below.

(A1) Constant time-delay: 1 ≤ d(k) ≡ d, ∀k, where d is a
known integer.

(A2) Time-varying delay: 1 ≤ d1 ≤ d(k) ≤ d2, where
d1 and d2 are two known integers representing the
minimum and maximum delays, respectively.

Remark 1: Without loss of generality, it is assumed that
d1 < d2 in (A2). When d1 = d2, it reduces to the constant
delay case, which is the case in (A1).

Suppose x∗ = [x∗
1 , x∗

2 , . . . , x∗
n ]T is an equilibrium of (2).

We shift the equilibrium to the origin by changing variables
ξi (k) = xi (k) − x∗

i and fi (ξi (k)) = gi(ξi (k) + x∗
i ) − gi (x∗

i ),
i = 1, 2, . . . , n. Then, the discrete-time DNN (2) is readily
transformed into

ξ(k + 1) = Cξ(k)+ A f (ξ(k))+ Ad f (ξ(k − d(k))) (4)

where{
ξ(k) = [ ξ1(k), ξ2(k), . . . , ξn(k)

]T
f (ξ(k)) = [ f1(ξ1(k)), f2(ξ2(k)), . . . , fn(ξn(k))

]T
.

As in [29], [47], and [56], the model of discrete-time
switched DNN is described as follows:

ξ(k + 1) = C(αk)ξ(k)+ A(αk) f (ξ(k))

+Ad(αk) f (ξ(k − d(k))) (5)

where {(A(αk), Ad (αk),C(αk)) : αk ∈ N } is a family of
matrices parameterized by an index set N = {1, 2, . . . , N}
and αk : Z

+ → N is a piecewise constant function of time,
called as a switching signal, which takes its values in the finite
set N . At an arbitrary discrete time k, the value of αk , denoted
by α for simplicity, might depend on k or x(k), or both, or
may be generated by any other hybrid scheme. We assume that
the sequence of switching signal αk is unpredictable, but its
instantaneous value is available in real time. For the switching
time sequence k0 < k1 < k2 < · · · of the switching signal α,
the holding time between

[
kl, kl+1

]
is called as the dwell time

of the currently engaged subsystem, where l ∈ N .
For each possible value αk = i , i ∈ N , we will denote

the system matrices associated with mode i by A(i) =
A(αk), Ad (i) = Ad(αk), and C(i) = C(αk), where A(i),
Ad(i), and C(i) are constant matrices. Corresponding to
the switching signal α, we have the switching sequence

{(i0, k0), (i1, k1), . . . , (il, kl), . . . , |il ∈ N , l = 0, 1, . . .} with
k0 = 0, which means that the il th subsystem is activated when
k ∈ [kl, kl+1).

In addition, it is easily verified from (3) that fi (ξi (k))
satisfies fi (0) = 0 and ∀ξi �= 0

λ−
i ≤ fi (ξi (k))

ξi (k)
≤ λ+

i ∀i = 1, 2, . . . , n. (6)

The following definitions and lemma are introduced, which
will play the key roles in deriving our main results.

Definition 1: The equilibrium ξ∗ = 0 of the discrete-time
switched DNN in (5) is said to be exponentially stable under
α(k) if the solution ξ(k) satisfies the following:

‖ξ(k)‖ ≤ ηρ(k−k0) ‖ξ(k0)‖C1 ∀k ≥ k0

for constants η ≥ 1 and 0 < ρ < 1, and

‖ξ(k0)‖C1 � max
θ=−d̄,−d̄+1,...,0

{‖ξ(k + θ)‖ , ‖ς(k + θ)‖}

where ς(θ) � ξ(θ + 1)− ξ(θ) and d̄ � max{d, d2}.
Lemma 1 [58]: For any constant matrix M ∈ R

n×n , M>0,
integers a ≤ b, vector function w: {a, a + 1, . . . , b} → R

n ,
then

−(b−a+1)
b∑

i=a

wT (i)Mw(i)≤−
(

b∑
i=a

wT (i)

)
M

(
b∑

i=a

w(i)

)
.

Definition 2 ([28]): For any T2 > T1 ≥ 0, let Nα(T1, T2)
denote the number of switchings of α(k) over (T1, T2). If
Nα(T1, T2) ≤ N0 + (T2 − T1)/Ta holds for Ta > 0, N0 ≥ 0.
Then, Ta is as called the average dwell time.

Remark 2: By average dwell time switching, we mean a
class of switching signals such that the average time interval
between consecutive switchings is at least Ta . Then, a basic
problem for such systems is to specify the minimal Ta and
obtain the admissible switching signals such that the under-
lying system is stable and satisfies a prescribed performance.
As commonly used in the literature, we choose N0 = 0 in
Definition 2.

III. EXPONENTIAL STABILITY ANALYSIS

A. Constant Time-Delay Case

We shall consider the constant time-delay case, that is, (A1):
1 ≤ d(k) ≡ d , and we have the following result.

Theorem 1: Given integers m ≥ 1, τ ≥ 1, and a constant
0 < β < 1, supposed that there exist positive definite
matrices P(i) ∈ R

n×n , Q(i) ∈ R
mn×mn , R(i) ∈ R

n×n

� = diag{π1, π2, . . . , πn}, H = diag{h1, h2, . . . , hn} and
matrices M(i), N(i), S(i) such that for i ∈ N
�(i) � W T

P P̄(i)WP + W T
R R̄(i)WR + W T

Q Q̄(i)WQ

+sym
{

W T
P1 P(i)WP2 + W T

M (i)WS(i)

+W T
F�(�

+ +�−)WP1 − W T
P1��

+�−WP1

− W T
F�WF + W T

F DH(�+ +�−)WD

−W T
D H�+�−WD − W T

F DHWF D

}
< 0 (7)
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where

P̄(i) �
[
(1 − β)P(i) 0

0 P(i)

]

Q̄(i) �
[
βQ(i) 0

0 −βτ+1 Q(i)

]

R̄(i) �
[
βτ R(i) 0

0 −βτ+1

τ R(i)

]

WP �
[

In 0n,(m+3)n

0n,(m+3)n In

]

WR �
[

0n,(m+3)n In

In −In 0n,(m+2)n

]

WQ �
[

Imn 0mn,4n

0mn,n Imn 0mn,3n

]
WP1 �

[
In 0n,(m+3)n

]
WP2 �

[
0n,(m+3)n In

]
WD �

[
0n,mn In 0n,3n

]
WF D �

[
0n,(m+2)n In 0n,n

]
WM (i) �

[
M(i) S(i) 0n,(m+1)n N(i)

]
WS(i) �

[
C(i)− In 0n,mn A(i) Ad(i) −In

]
WF �

[
0n,(m+1)n In 0n,2n

]
�+ � diag{λ+

1 , . . . , λ
+
n }

�− � diag{λ−
1 , . . . , λ

−
n }.

Then, the discrete-time switched DNN in (5) with time-
delay satisfying (A1) is exponentially stable for any switch-
ing signal with average dwell time satisfying Ta > T ∗

a =
ceil (−lnμ/lnβ), where function ceil(a) represents rounding
real number a to the nearest integer greater than or equal to
a and μ ≥ 1 satisfies that ∀i, j ∈ N

P(i) ≤ μP( j), Q(i) ≤ μQ( j), R(i) ≤ μR( j). (8)

Moreover, an estimate of the state decay is given by

‖ξ(k)‖ ≤ ηρ(k−k0) ‖ξ(k0)‖C1 (9)

where

ρ �
√
βμ1/Ta , η �

√
b

a
≥ 1, a � min

∀i∈N
λmin (P(i))

b � max
∀i∈N

λmax (P(i))+ τβ max
∀i∈N

λmax (Q(i))

+τ (τ + 1)

2
β max

∀i∈N
λmax (R(i)) . (10)

Proof: By applying the delay-partitioning idea to the
delay d = mτ that gives m parts, we construct the following
Lyapunov–Krasovskii function:

V (ξk, αk) =
3∑

i=1

Vi (ξk, αk) (11)

with ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

V1(ξk, αk) � ξT (k)P(αk)ξ(k)

V2(ξk, αk) �
k−1∑

l=k−τ
βk−lζ T (l)Q(αk)ζ(l)

V3(ξk, αk) �
−1∑

s=−τ

k−1∑
l=k+s

βk−lςT (l)R(αk)ς(l)

where P(αk) > 0, Q(αk) > 0, and R(αk) > 0 are real
matrices to be determined, and

ζ(l) �

⎡
⎢⎢⎢⎢⎢⎣

ξ(l)
ξ (l − τ )
ξ (l − 2τ )

...
ξ (l − mτ + τ )

⎤
⎥⎥⎥⎥⎥⎦ , ς(l) � ξ(l + 1)− ξ(l).

For k ∈ [kl, kl+1), we define �Vi (ξk, αk) � Vi (ξk+1, αk) −
Vi (ξk, αk), i = 1, 2, 3 (Notice that the il th subsystem is
activated when k ∈ [kl, kl+1), i.e., the system operates in one
of the subsystems, thus increment of Vi (ξk, αk) is defined for
a fixed αk). Then, �V (ξk , αk) =∑3

i=1 �Vi (ξk, αk) with

�V1(ξk, αk) = ξT (k + 1)P(αk)ξ(k + 1)− ξT (k)P(αk)ξ(k)

= ςT (k)P(αk)ς(k)+ 2ξT (k)P(αk)ς(k) (12)

�V2(ξk, αk) = −(1 − β)

k−1∑
l=k−τ

βk−lζ T (l)Q(αk)ζ(l)

+βζ T (k)Q(αk)ζ(k)

−βτ+1ζ T (k − τ )Q(αk)ζ(k − τ ) (13)

�V3(ξk, αk) = −(1 − β)

−1∑
s=−τ

k−1∑
l=k+s

βk−lςT (l)R(αk)ς(l)

+βτςT (k)R(αk)ς(k)

−
k−1∑

l=k−τ
βk+1−lςT (l)R(αk)ς(l). (14)

From Jensen’s inequality in Lemma II, we can easily get

−
k−1∑

l=k−τ
βk+1−lςT (l)R(αk)ς(l)

≤ −βτ+1
k−1∑

l=k−τ
ςT (l)R(αk)ς(l)

≤ −β
τ+1

τ
[ξ(k)− ξ(k − τ )]T R(αk) [ξ(k)− ξ(k − τ )] .

(15)

Moreover, for any appropriately dimensioned matrices M(αk),
N(αk ), and S(αk), αk ∈ N , the following equation is true:

0 = 2
[
ξT (k)MT (αk)+ ςT (k)NT (αk)

+ ξT (k − τ )ST (αk)
]

× {[C(αk)− I ] ξ(k)− ς(k)+ A(αk) f (ξ(k))

+Ad(αk) f (ξ(k − d))}. (16)

From (6), for any scalar πi > 0 and hi > 0, we have that for
i = 1, 2, . . . , n

2
n∑

i=1
πi
[

fi (ξi (k))− λ−
i ξi (k)

] [
fi (ξi (k))− λ+

i ξi (k)
] ≤ 0

2
n∑

i=1
hi
[

fi (ξi (k − d))− λ−
i ξi (k − d)

]
× [ fi (ξi (k − d))− λ+

i ξi (k − d)
] ≤ 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
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or equivalently

2 f T (ξ(k))�(�++�−)ξ(k)−2ξT (k)��+�−ξ(k)
−2 f T (ξ(k))� f (ξ(k))≥ 0

2 f T (ξ(k − d))H(�+ +�−)ξ(k − d)
−2ξT (k − d)H�+�−ξ(k − d)
−2 f T (ξ(k − d))H f (ξ(k − d))≥ 0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(17)

where �+ � diag{λ+
1 , λ

+
2 , . . . , λ

+
n } and �− � diag{λ−

1 ,
λ−

2 , . . . , λ
−
n }.

Considering (12)–(17), it follows that:

�V (ξk , αk)+ (1 − β)V (ξk , αk)

≤ (1 − β)ξT (k)P(αk)ξ(k)

+2ξT (k)P(αk) [ξ(k + 1)− ξ(k)]

+ [ξ(k + 1)− ξ(k)]T P(αk) [ξ(k + 1)− ξ(k)]

+βζ T (k)Q(αk)ζ(k)− βτ+1ζ T (k − τ )Q(αk)ζ(k − τ )

+βτςT (k)R(αk)ς(k)

−β
τ+1

τ
[ξ(k)− ξ(k − τ )]T R(αk) [ξ(k)− ξ(k − τ )]

+2
[
ξT (k)MT (αk)+ ςT (k)NT (αk)

+ ξT (k − τ )ST (αk)
]

× {[C(αk)− I ] ξ(k)− ς(k)

+A(αk) f (ξ(k))+ Ad(αk) f (ξ(k − d))}
+2 f T (ξ(k))�(�+ +�−)ξ(k)− 2ξT (k)��+�−ξ(k)
−2 f T (ξ(k))� f (ξ(k))+ 2 f T (ξ(k − d))

×H(�++�−)ξ(k − d)

−2ξT (k − d)H�+�−ξ(k − d)− 2 f T (ξ(k − d))

×H f (ξ(k − d))

� ψ(k)T�(αk)ψ(k)

where

ψ(k) �
[
ζ T (k) ξT (k − d) f T (ξ(k)) f T (ξ(k − d)) ς(k)

]T
and �(αk) is defined in (7).

On the other hand, (7) implies �(αk) < 0. Then, we can
easily achieve that for k ∈ [kl, kl+1),

�V (ξk , αk)+ (1 − β)V (ξk, αk) < 0. (18)

Now, for an arbitrary piecewise constant switching signal αk ,
and for any k > 0, we let k0 < k1 < · · · < kl < · · · ,
l = 1, . . ., denote the switching points of α over the interval
(0, k). As mentioned earlier, the il th subsystem is activated
when k ∈ [

kl, kl+1). Therefore, for k ∈ [kl, kl+1), it holds
from (18) that

V (ξk+1, αkl ) < βV (ξk , αkl )

< β2V (ξk−1, αkl )

≤ · · ·
≤ β(k−kl +1)V (ξkl , αkl ).

Then, we have

V (ξk, αk) < β
k−kl V (ξkl , αkl ). (19)

Using (8), at switching instant kl , we have

P(αkl ) ≤ μP(αkl−1 ), Q(αkl ) ≤ μQ(αkl−1 ),

R(αkl ) ≤ μR(αkl−1 ).

Considering the Lyapunov functional in (11), at switching
instant kl , we have the following:

V (ξkl , αkl ) ≤ μV (ξkl , αkl−1 ). (20)

Therefore, it follows from (19) and (20) and the relationship
ϑ = Nα(0, k) ≤ (k − k0)/Ta that

V (ξk, αk) ≤ βk−klμV (ξkl , αkl−1 )

≤ · · ·
≤ β(k−k0)μϑV (ξk0 , αk0 )

≤ (βμ1/Ta )(k−k0)V (ξk0 , αk0 ). (21)

Notice from (11) that

V (ξk , αk) ≥ a ‖ξ(k)‖2 , V (ξk0 , αk0 ) ≤ b ‖ξ(k0)‖2
C1 (22)

where a and b are defined in (10). Combining (21) and (22)
yields

‖ξ(k)‖2 ≤ 1

a
V (ξk, αk) ≤ b

a
(βμ1/Ta )(k−k0) ‖ξ(k0)‖2

C1 . (23)

Furthermore, letting ρ �
√
βμ1/Ta , it follows that:

‖ξ(k)‖ ≤
√

b

a
ρ(k−k0) ‖ξ(k0)‖C1 . (24)

By Definition 1, we know that if 0 < ρ < 1, that is,
Ta > T ∗

a = ceil (−lnμ/ln β), the switched DNN in (5) is
exponentially stable. The proof is completed.

Remark 3: Theorem 1 presents a sufficient condition for
the exponential stability condition for the considered discrete-
time switched DNN. Here, β plays a key role in controlling
the low bound of the average dwell time, which can be seen
from Ta > T ∗

a = ceil (−lnμ/ln β). Specifically, if β is given
a smaller value, the low bound of the average dwell time
becomes smaller with a fixed μ, which may result in the
instability of the system.

Remark 4: When μ = 1 in Ta > T ∗
a = ceil (−lnμ/lnβ)

we have Ta > T ∗
a = 0, which means that the switching signal

α(k) can be arbitrary. In this case, (8) turns out to be P(i) =
P( j) = P , Q(i) = Q( j) = Q, R(i) = R( j) = R, ∀i, j ∈
N , and the proposed approach becomes a quadratic one (a
common Lyapunov functional for all subsystems).

Remark 5: The total number of decision variables [(4 +
0.5m2)n2 + (1 + 0.5m)n]N + 2n in Theorem 1 is dependent
on the delay partitioning number m, and it will increase if
m increases. When the delay partitioning number m ≥ 1
becomes larger, the conservatism of the results is further
reduced. Therefore, an appropriate partitioning number m can
be chosen to get the tradeoff between the number of decision
variables and the less conservatism in practical.

Now, we give the following proposition to show that the
proposed result will demonstrate its superiority in terms of
the reduced conservatism with m increasing.

Proposition 1: Suppose that τm and dm are the maximal τ
and the maximal delays obtained by Theorem 1 for a given
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number of partitions m, respectively. Then, for any positive
integer r such that (m/(m + r))τm is an integer, we have
(m/(m + r))τm ≤ τm+r , and thus dm ≤ dm+r .

Proof: From Theorem 1, we know that the following
inequality holds for given partitioning number m and the
integer τm :

[ξ(k + 1)− ξ(k)]T P(αk ) [ξ(k + 1)− ξ(k)]

−β
τm+1

τm
[ξ(k)− ξ(k − τm)]T R(αk) [ξ(k)− ξ(k − τm)]

+2 f T (ξ(k))�(�+ +�−)ξ(k)− 2ξT (k)��+�−ξ(k)
+(1 − β)ξT (k)P(αk)ξ(k)

+2ξT (k)P(αk) [ξ(k + 1)− ξ(k)]

−2 f T (ξ(k))� f (ξ(k))

+2 f T (ξ(k − d))H(�+ +�−)ξ(k − d)

−2ξT (k − d)H�+�−ξ(k − d)

−2 f T (ξ(k − d))H f (ξ(k − d))

+2
[
ξT (k)MT (αk)+ ςT (k)NT (αk)

+ ξT (k − τm)S
T (αk)

]
× {[C(αk)− I ] ξ(k)− ς(k)

+A(αk) f (ξ(k))+ Ad(αk) f (ξ(k − d))}
+βζ T (k)Q(αk)ζ(k)− βτm+1ζ T (k − τm)

×Q(αk)ζ(k − τm)+ βτmς
T (k)R(αk)ς(k) < 0.

Because �(i) is monotone increasing with respect to τ , the
above inequality holds with τm replaced by (m/(m + r))τm .
The remaining parts of the proof can be carried out
by following the similar lines as that of Proposition 1
in [15].

When μ > 1 and β → 0, we have Ta > T ∗
a = 0. On

the other hand, when μ > 1 and β → 1, obviously we have
Ta → ∞, that is, there is no switching. In such a case, the
discrete-time switched DNN in (5) is effectively operating at
one of the subsystems all the time, and it turns out to be

ξ(k + 1) = Cξ(k)+ A f (ξ(k))+ Ad f (ξ(k − d)). (25)

Corollary 1: Given integers m ≥ 1 and τ ≥ 1, the discrete-
time DNN in (25) is asymptotically stable if there exist positive
definite matrices P ∈ R

n×n , Q ∈ R
mn×mn , R ∈ R

n×n , � =
diag{π1, π2, . . . , πn}, H = diag{h1, h2, . . . , hn}, and matrices
M , N , S such that

� � W T
P P̄WP +W T

R R̄WR +W T
Q Q̄WQ +sym

{
W T

P1 PWP2

+W T
M WS +W T

F�(�
++�−)WP1−W T

P1��
+�−WP1

− W T
F�WF + W T

F DH(�+ +�−)WD

−W T
D H�+�−WD − W T

F DHWF D

}
< 0 (26)

where

P̄ �
[

0 0
0 P

]
, Q̄ �

[
Q 0
0 −Q

]
, R̄ �

[
τ R 0
0 − 1

τ R

]
WM �

[
M S 0n,(m+1)n N

]
WS �

[
C − In 0n,mn A Ad −In

]

and WP , WR , WQ , WP1, WP2, WD , WF , WF D , �+, and �−
are defined in Theorem 1.

Proof: Choose the following Lyapunov–Krasovskii func-
tion:

V̂ (ξk) � ξT (k)Pξ(k)+
k−1∑

l=k−τ
ζ T (l)Qζ(l)

+
−1∑

s=−τ

k−1∑
l=k+s

ςT (l)Rς(l).

The rest of the proof can be followed by the same lines of
that of Theorem 1, thus we omit the details.

When m = 1 in deriving the result of Theorem 1, that is,
we give up the delay partitioning approach. In such a case,
we have the following result.

Corollary 2: Given a constant 0 < β < 1 and an integer
d ≥ 1, supposed that there exist positive definite matri-
ces P(i) ∈ R

n×n , Q(i) ∈ R
n×n , R(i) ∈ R

n×n , � =
diag{π1, π2, . . . , πn}, H = diag{h1, h2, . . . , hn}, and matrices
M(i), N(i), S(i) such that for i ∈ N⎡
⎢⎢⎢⎢⎣
�̂11(i) �̂12(i) �̂13(i) MT (i)Ad(i) �̂15(i)
� �̂22(i) ST (i)A(i) �̂24(i) −ST (i)
� � −�T −� 0 AT (i)N(i)
� � � −HT − H AT

d (i)N(i)
� � � � �̂55(i)

⎤
⎥⎥⎥⎥⎦ < 0

where

�̂11(i) � (1 − β)P(i)+ βQ(i)− βd+1

d
R(i)

+sym
{

MT (i)[C(i)− I ] −��+�−}
�̂12(i) � βd+1

d
R(i)+ [C(i)− I ]T S(i)

�̂22(i) � −βd+1 Q(i)− βd+1

d
R(i)− 2H�+�−

�̂13(i) � MT (i)A(i)+�(�+ +�−)
�̂24(i) � ST (i)Ad(i)+ H(�+ +�−)
�̂15(i) � P(i)− MT (i)+ [C(i)− I ]T N(i)

�̂55(i) � P(i)+ βd R(i)− N(i) − NT (i).

Then, the discrete-time switched DNN in (5) is exponentially
stable for any switching signal with average dwell time
satisfying Ta > T ∗

a = ceil (−lnμ/lnβ), where μ ≥ 1
satisfies (8).

B. Time-Varying Delay Case

In this section, we shall consider the time-varying delay
case, that is, (A2): 0 < d1 ≤ d(k) ≤ d2. We partition the time-
delay d(k) into two parts: constant part d1 and time-varying
part ϑ(k), that is, d(k) = d1 + ϑ(k), where ϑ(k) satisfies
0 ≤ ϑ(k) ≤ d2 − d1. In this case, we set d1 = mτ , and have
the following result.

Theorem 2: Given integers m ≥ 1, τ ≥ 1, mτ < d2, and a
constant 0 < β < 1, supposed that there exist positive definite
matrices P(i) ∈ R

n×n , Q1(i) ∈ R
mn×mn , Q2(i) ∈ R

n×n ,
Q3(i) ∈ R

n×n , R1(i) ∈ R
n×n , R2(i) ∈ R

n×n , Z (i) ∈ R
n×n ,
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� = diag{π1, π2, . . . , πn}, V = diag{v1, v2, . . . , vn}, and
matrices M (i), N (i), S (i) such that for i ∈ N

�1(i) � W T
P P̄(i)WP +

∑2

ι=1
W T

QιQ̄ι(i)WQι

+
∑2

ι=1
W T

RιR̄1ι(i)WRι + W T
Z Z̄ (i)WZ

+sym
{
W T

P1P(i)WP2 + W T
M WS

+W T
F �(�

+ +�−)WP1 − W T
P1��

+�−WP1

−W T
F �WF + W T

F DV(�+ +�−)WF D

− W T
D V�+�−WD − W T

F DVWF D

}
< 0 (27)

�2(i) � W T
P P̄(i)WP +

∑2

ι=1
W T

QιQ̄ι(i)WQι

+
∑2

ι=1
W T

RιR̄2ι(i)WRι + W T
Z Z̄ (i)WZ

+sym
{
W T

P1P(i)WP2 + W T
M WS

+W T
F �(�

+ +�−)WP1 − W T
P1��

+�−WP1

−W T
F �WF + W T

F DV(�+ +�−)WF D

− W T
D V�+�−WD − W T

F DVWF D

}
< 0 (28)

where β̃ � (βd2+1)/(d2 − mτ ) and

P̄(i) � diag {(1 − β)P(i),P(i)}
Q̄1(i) � diag

{
βQ1(i), −βτ+1Q1(i)

}
Q̄2(i) � diag

{
βQ2(i),−βd2+1Q2(i)

}

R̄11(i) � diag

{
βτR1(i),−β

τ+1

τ
R1(i)

}

R̄21(i) � diag

{
βτR1(i),−β

τ+1

τ
R1(i)

}

R̄12(i) � diag
{
β(d2 − mτ )R2(i),−2β̃R2(i),−β̃R2(i)

}
R̄22(i) � diag

{
β(d2 − mτ )R2(i),−β̃R2(i),−2β̃R2(i)

}
Z̄ (i) � diag

{
β(d2 − mτ + 1)Z (i),−βd2+1Z (i)

}
WP �

[
In 0n,(m+5)n

0n,(m+5)n In

]

WQ1 �
[

Imn 0mn,6n

0mn,n Imn 0mn,5n

]

WQ2 �
[

0n,(m+5)n In

0n,(m+2)n In 0n,3n

]

WZ �
[

In 0n,(m+5)n

0n,(m+1)n In 0n,4n

]

WR1 �
[

0n,(m+5)n In

In −In 0n,(m+4)n

]

WR2 �

⎡
⎣ 0n,(m+5)n In

0n,(m+1)n In −In 0n,3n

0n,mn In −In 0n,4n

⎤
⎦

WM (i) �
[
M (i) S (i) 0n,(m+3)n N (i)

]
WP1 �

[
In 0n,(m+5)n

]
, WP2 �

[
0n,(m+5)n In

]
WS(i) �

[
C(i)− In 0n,(m+2)n A(i) Ad(i) −In

]

WF �
[

0n,(m+3) In 0n,2n
]

WD �
[

0n,(m+1)n In 0n,4n
]

WF D �
[

0n,(m+4)n In 0n,n
]
.

Then, the discrete-time switched DNN in (5) with time-
delay satisfying (A2) is exponentially stable for any switch-
ing signal with average dwell time satisfying Ta > T ∗

a =
ceil (−lnμ/lnβ), where μ ≥ 1 satisfies that ∀i, j ∈ N

P(i) ≤ μP( j), Q�(i) ≤ μQ�( j), � = 1, 2, 3

Rν(i) ≤ μRν( j), ν = 1, 2. (29)
Proof: Choose a Lyapunov function of the form as

follows:

W (ξk , αk) �
4∑

j=1

W j (ξk, αk) (30)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W1(ξk , αk) � ξT (k)P(αk)ξ(k)

W2(ξk , αk) �
k−1∑

l=k−τ
βk−lϕT (l)Q1(αk)ϕ(l)

+
k−1∑

l=k−d2

βk−lξT (l)Q2(αk)ξ(l)

W3(ξk , αk) �
−1∑

s=−τ

k−1∑
l=k+s

βk−lςT (l)R1(αk)ς(l)

+
−mτ−1∑
s=−d2

k−1∑
l=k+s

βk−lςT (l)R2(αk)ς(l)

W4(ξk , αk) �
−mτ+1∑

s=−d2+1

k−1∑
l=k−1+s

βk−lξT (l)Z (αk)ξ(l)

where

ϕ(l) �

⎡
⎢⎢⎢⎢⎢⎣

ξ(l)
ξ (l − τ )
ξ (l − 2τ )

...
ξ (l − (m − 1)τ )

⎤
⎥⎥⎥⎥⎥⎦ , ς(l) � ξ(l + 1)− ξ(l)

and P(αk) > 0, S (αk) > 0, Q1(αk) > 0, Q2(αk) > 0,
R1(αk) > 0, and R2(αk) > 0 are real matrices to be
determined.

For k ∈ [kl, kl+1), as in the previous section, we define
�W j (ξk , αk) � W j (ξk+1, αk) − W j (ξk, αk), j = 1, 2, 3, 4,
thus we have �W (ξk , αk) =∑4

j=1�W j (ξk , αk) with

�W (ξk , αk) =
4∑

j=1

�W j (ξk, αk)

�W1(ξk , αk) = ξT (k+1)P(αk)ξ(k+1)−ξT (k)P(αk)ξ(k)

= ςT (k)P(αk)ς(k)+ 2ξT (k)P(αk)ς(k) (31)

�W2(ξk , αk) = −(1 − β)

k−1∑
l=k−τ

βk−lϕT (l)Q1(αk)ϕ(l)

−(1 − β)

k−1∑
l=k−d2

βk−lξT (l)Q2(αk)ξ(l)

+βϕT (k)Q1(αk)ϕ(k)

−βτ+1ϕT (k − τ )Q1(αk)ϕ(k − τ )
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+βξT (k)Q2(αk)ξ(k)

−βd2+1ξT (k − d2)Q2(αk)ξ(k − d2) (32)

�W3(ξk, αk) = −(1−β)
−1∑

s=−τ

k−1∑
l=k+s

βk−lςT (l)R1(αk)ς(l)

−(1−β)
−mτ−1∑
s=−d2

k−1∑
l=k+s

βk−lςT (l)R2(αk)ς(l)

+βτςT (k)R1(αk)ς(k)

−
k−1∑

l=k−τ
βk+1−lςT (l)R1(αk)ς(l)

+β(d2 − mτ )ςT (k)R2(αk)ς(k)

−
k−mτ−1∑
l=k−d2

βk+1−lςT (l)R2(αk)ς(l) (33)

�W4(ξk, αk) ≤ −(1 − β)

−mτ+1∑
s=−d2+1

k−1∑
l=k−1+s

βk−lξT (l)

×Z (αk)ξ(l)

+β(d2 − mτ + 1)ξT (k)Z (αk)ξ(k)

−βd2+1ξT (k − d(k))Z (αk)ξ(k − d(k)).

(34)

Letting γ = (d(k)− mτ )/(d2 − mτ ) and by Jensen’s inequal-
ity, we have the following:

−
k−1∑

l=k−τ
βk+1−lςT (l)R1(αk)ς(l)

≤ −β1+τ
k−1∑

l=k−τ
ςT (l)R1(αk)ς(l)

≤ −β
1+τ

τ
[ξ(k)− ξ(k − τ )]T R1(αk) [ξ(k)− ξ(k − τ )]

(35)

and

−
k−mτ−1∑
l=k−d2

βk+1−lςT (l)R2(αk)ς(l)

= −
k−d(k)−1∑

l=k−d2

βk+1−lςT (l)R2(αk)ς(l)

−
k−mτ−1∑
l=k−d(k)

βk+1−lςT (l)R2(αk)ς(l)

≤ −
k−d(k)−1∑
l=k−d2

βk+1−l(d2 − d(k))ςT (l)
R2(αk)

d2 − mτ
ς(l)

−
k−d(k)−1∑
l=k−d2

γβk+1−l(d2 − d(k))ςT (l)
R2(αk)

d2 − mτ
ς(l)

−
k−mτ−1∑
l=k−d(k)

βk+1−l(d(k)− mτ )ςT (l)
R2(αk)

d2 − mτ
ς(l)

−
k−mτ−1∑
l=k−d(k)

(1 − γ )βk+1−l(d(k)− mτ )ςT (l)

× R2(αk)

d2 − mτ
ς(l)

≤ −(1 + γ )β̃ςT
1 (k)R2(αk)ς1(k)

−(2 − γ )β̃ςT
2 (k)R2(αk)ς2(k) (36)

where ς1(k) � ξ(k − d(k)) − ξ(k − d2) and ς2(k) � ξ(k −
mτ )− ξ(k − d(k)).

Moreover, for any appropriately dimensioned matrices
M (αk), N (αk), and S (αk), αk ∈ N , we have the following:

0 = 2
[
ξT (k)M T (αk)+ςT (k)N T (αk)+ξT (k−τ )S T (αk)

]
× {[C(αk)− I ] ξ(k)− ς(k)

+A(αk) f (ξ(k))+ Ad(αk) f (ξ(k − d(k)))}. (37)

From (6), for any � = diag{π1, π2, . . . , πn} > 0 and V =
diag{v1, v2, . . . , vn} > 0, we have the following:

2 f T (ξ(k))�(�++�−)ξ(k)−2ξT (k)��+�−ξ(k)
−2 f T (ξ(k))� f (ξ(k)) ≥ 0

2 f T (ξ(k − d(k)))V(�+ +�−)ξ(k − d(k))
−2ξT (k − d(k))V�+�−ξ(k − d(k))
−2 f T (ξ(k − d(k)))V f (ξ(k − d(k))) ≥ 0.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
(38)

Considering (31)–(36) and (38), we have

�W (ξk, αk)+ (1 − β)W (ξk , αk)

≤ φT (k)[γ�1(αk)+ (1 − γ )�2(αk)]φ(k)
where φ(k) �

[
ϕT (k) ξT (k − d1) ξ

T (k − d(k)) ξT (k − d2)

f T (ξ(k)) f T (ξ(k − d(k))) ςT (k)
]T

, and �1(αk), �2(αk)
are defined in (27) and (28), respectively. Moreover, from
�1(αk) < 0 and �2(αk) < 0, it follows that ∀k ∈ [kl, kl+1):

�W (ξk , αk)+ (1 − β)W (ξk , αk)

≤ φT (k)[γ�1(αk)+ (1 − γ )�2(αk)]φ(k) < 0.

The rest of the proof can be followed by the same lines of the
proof of Theorem 1. The proof is completed.

Remark 6: The technique of dealing with the term
−∑k−mτ−1

l=k−d2
βk+1−lςT (l)R2(αk)ς(l) came from [22], which

has reduced the conservatism of the results in previous work.
Remark 7: Because of the instrumental idea of delay parti-

tioning, the reduction of conservatism becomes more obvious
with the partitioning getting thinner (that is, m becoming
bigger). Simultaneously, the number of decision variables in
the obtained conditions, however, will be quickly increased as
m increases. It is difficult to determine the maximum value
of the delay bound of the system in (4) because of the time-
varying and nonlinear nature of the switched system.

In addition, we have Ta → ∞ (which means that there is
no switching) when μ > 1 and β → 1. In such a case, the
discrete-time switched DNN in (5) is effectively operating at
one of the subsystems all the time, and it turns out to be the
form as follows:

ξ(k + 1) = Cξ(k)+ A f (ξ(k))+ Ad f (ξ(k − d(k))). (39)
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In the following, we will give a corollary on the stability of
the discrete-time DNN in (39).

Corollary 3: Given an integer m ≥ 1, τ ≥ 1, and mτ < d2,
the discrete-time DNN in (39) with time-delay satisfying (A2)
is asymptotically stable, if there exist positive definite matrices
P ∈ R

n×n , Q1 ∈ R
mn×mn , Q2 ∈ R

n×n , Q3 ∈ R
n×n , R1 ∈

R
n×n , R2 ∈ R

n×n , Z ∈ R
n×n , � = diag{π1, π2, . . . , πn},

V = diag{v1, v2, . . . , vn}, and matrices M , N , and S such
that

�̂1 � W T
P P̄WP +

∑2

ι=1
W T

QιQ̄ιWQι +
∑2

ι=1
W T

RιR̄1ιWRι

+W T
Z Z̄ WZ + sym

{
W T

P1PWP2 + W T
M WS

+W T
F �(�

+ +�−)WP1 − W T
P1��

+�−WP1

−W T
F �WF + W T

F DV(�+ +�−)WF D

− W T
D V�+�−WD − W T

F DVWF D

}
< 0 (40)

�̂2 � W T
P P̄WP +

∑2

ι=1
W T

QιQ̄ιWQι +
∑2

ι=1
W T

RιR̄2ιWRι

+W T
Z Z̄ WZ + sym

{
W T

P1PWP2 + W T
M WS

+W T
F �(�

+ +�−)WP1 − W T
P1��

+�−WP1

−W T
F �WF + W T

F DV(�+ +�−)WF D

− W T
D V�+�−WD − W T

F DVWF D

}
< 0 (41)

where WP , WP1, WP2, WQ1, WQ2, WR1, WR2, WZ , WF , WD ,
WD1, WD2, WF D , WF D1, and WF D2 are defined in Theorem 2,
and

P̄ �
[

0 0
0 P

]
, Q̄1 �

[
Q1 0
0 −Q1

]

Q̄2 �
[
Q2 0
0 −Q2

]
, R̄11 = R̄21 �

[
τR1 0

0 − 1
τR1

]

R̄12 �

⎡
⎢⎣
(d2 − mτ )R2 0 0

0 − 2
d2−mτR2 0

0 0 − 1
d2−mτR2

⎤
⎥⎦

R̄22 �

⎡
⎢⎣
(d2 − mτ )R2 0 0

0 − 1
d2−mτR2 0

0 0 − 2
d2−mτR2

⎤
⎥⎦

Z̄ �
[
(d2 − mτ + 1)Z 0

0 −Z

]
WM �

[
M S 0n,(m+3)n N

]
WS �

[
C − In 0n,(m+2)n A Ad −In

]
.

IV. SYNCHRONIZATION

In the previous section, we have analyzed the stability for
a single neural network. In this section, we will consider the
synchronization problems.

A. Simple Case

Let us consider the network (2) as a drive system for
synchronization problem, then, we construct the response
system as follows:

y(k + 1) = C(αk)y(k)+ A(αk)g (y(k))

+Ad(αk)g (y(k − d(k)))+ J + u(k) (42)

for k = 1, 2, . . ., where y(k) � [y1(k), y2(k), . . . , yn(k)]T ∈
R

n is the neuron state vector of the response system and
u(k) ∈ R

n is feedback control input for synchronization to
be designed later.

Define e(k) � x(k)− y(k), h (e(k)) � g (x(k))− g (y(k)),
and h (e(k − d(k))) � g (x(k − d(k))) − g (y(k − d(k))). By
Assumptions 1 and 2, it is easily verified from (3) that
hi (ei (k)) satisfies hi (0) = 0 and ∀ei �= 0

λ−
i ≤ hi (ei (k))

ei (k)
≤ λ+

i ∀i = 1, 2, . . . , n. (43)

Hence, the error dynamic system is written by

e(k + 1) = C(αk)e(k)+ A(αk)h (e(k))

+Ad(αk)h (e(k − d(k)))− u(k). (44)

The control input associated with the state feedback is
designed as

u(k) = K (αk)e(k) (45)

where K (αk) ∈ R
n×n is the gain matrix to be determined for

synchronizing both a drive system and response system. Here,
the parameter matrices K (αk) are switching with the same
switching signal as the original system. Then, substituting
u(k) in (45) into the error dynamic system (44), we obtain
the closed-loop system as follows:

e(k + 1) = (C(αk)− K (αk)) e(k)

+A(αk)h (e(k))+ Ad(αk)h (e(k − d(k))) .

(46)

With Theorem 2, we have the following controller design
result.

Theorem 3: Given an integer m ≥ 1, τ ≥ 1, mτ < d2, and
a constant 0 < β < 1, supposed that there exist scalars σ j ,
j = 1, 2, 3, positive definite matrices P(i) ∈ R

n×n , Q1(i) ∈
R

mn×mn , Q2(i) ∈ R
n×n , Q3(i) ∈ R

n×n , R1(i) ∈ R
n×n ,

R2(i) ∈ R
n×n , Z (i) ∈ R

n×n , � = diag{π1, π2, . . . , πn},
V = diag{v1, v2, . . . , vn}, and matrices H (i), L(i) such that
for i ∈ N
�̄1(i) � W T

P P̄(i)WP +
∑2

ι=1
W T

QιQ̄ι(i)WQι

+
∑2

ι=1
W T

RιR̄1ι(i)WRι + W T
Z Z̄ (i)WZ

+sym
{
W T

P1P(i)WP2 + W T
σ WH

+W T
F �(�

+ +�−)WP1 − W T
P1��

+�−WP1

−W T
F �WF + W T

F DV(�+ +�−)WF D

−W T
D V�+�−WD − W T

F DVWF D

}
< 0 (47)

�̄2(i) � W T
P P̄(i)WP +

∑2

ι=1
W T

QιQ̄ι(i)WQι

+
∑2

ι=1
W T

RιR̄2ι(i)WRι + W T
Z Z̄ (i)WZ

+sym
{
W T

P1P(i)WP2 + W T
σ WH

+W T
F �(�

+ +�−)WP1 − W T
P1��

+�−WP1

−W T
F �WF + W T

F DV(�+ +�−)WF D

−W T
D V�+�−WD − W T

F DVWF D

}
< 0 (48)
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where

Wσ �
[
σ1 In σ2 In 0n,(m+3)n σ3 In

]
WP1 �

[
In 0n,(m+5)n

]
WS(i) �

[
H (i)(C(i)− In)− L(i) 0n,(m+2)n H (i)A(i)

H (i)Ad(i) −H (i)
]

and other matrix notations are defined in Theorem 2. Then,
the discrete-time switched DNN in (46) with time-delay is
exponentially stable for any switching signal with average
dwell time satisfying Ta > T ∗

a = ceil (−lnμ/ln β), where
μ ≥ 1 satisfies (29). Moreover, the controller gain can be
given by

K (i) = L(i)H −1(i).

Proof: Substituting C(i) in (27) with C(i)− K (i), that is
WS(i) in (27) is replaced by[

C(i)− In − K (i) 0n,(m+2)n A(i) Ad(i) −In
]
.

Then, setting M T (i) = σ1 H (i), N T (i) = σ2 H (i), and
S T (i) = σ3 H (i) with H (i) nonsingular in (27) and L(i) =
H (i)K (i), we have �̄1(i) < 0 and �̄2(i) < 0 from
�1(i) < 0, �2(i) < 0, and K (i) = L(i)H −1(i). The proof
is completed.

B. Coupled DNNs Case

In the previous parts, the exponential stability of a single
neural network is studied. From now on, it will be the main
focus to analyze the exponential synchronization problem for
an array of coupled identical switched neural networks with
time-delay. Consider a coupled system of q identical neural
networks described by

z j (k + 1) = C(αk)z j (k)+ A(αk)g
(
z j (k)

)
+Ad(αk)g

(
z j (k − d(k))

)
+D(αk)

q∑
l=1

ω j l zl(k), j = 1, 2, . . . , q (49)

where z j (k) = [
z j1, z j2, . . . , z jn

]T is the state vector of the
j th neural network, D(αk) is the linking matrix, and W =
[ω j l]q×q is the coupled configuration matrix of the network
with ω j l = ωl j ≥ 0 but not all zero. The diagonal element
ω j j is defined as follows:

ω j j = −
q∑

l=1,l �= j

ω j l = −
q∑

l=1,l �= j

ωl j , j, l = 1, 2, . . . , q.

(50)
The coupling satisfying

∑q
l=1 ω j l = 0 is called as linear

coupling.
For presentation convenience, we denote the

following:

z(k) �
[

zT
1 (k) zT

2 (k) . . . zT
q (k)

]T
G(z(k)) �

[
gT (z1(k)) gT (z2(k)) . . . gT (zq(k))

]T
.

Using the Kronecker product, we can rewrite system (49) into
a more compact form as follows:

z(k + 1) = (I ⊗ C(αk)+ W ⊗ D(αk ))z(k)

+(I ⊗ A(αk))G(z(k))

+(I ⊗ Ad(αk))G(z(k − d(k))). (51)

Lemma 1: [29] Let e ∈ R
q with all components being

1 and U = q I − eeT = [ui j ]q×q . For P ∈ R
n×n , x =

[xT
1 , x T

2 , . . . , x T
q ]T , and y = [yT

1 , yT
2 , . . . , yT

q ]T with xi , yi ∈
R

n . Then, the following equations hold:

U W = WU = qW

x T (U ⊗ P)y =
∑

1≤i< j≤q

(xi − x j )
T P(yi − y j ).

Theorem 4: Given integers m ≥ 1, 0 < d1 ≤ d2 and a
constant 0 < β < 1, supposed that there exist positive definite
matrices P(i) ∈ R

n×n , Q1(i) ∈ R
mn×mn , Q2(i) ∈ R

n×n ,
Q3(i) ∈ R

n×n , R1(i) ∈ R
n×n , R2(i) ∈ R

n×n , Z (i) ∈ R
n×n ,

� = diag{π1, π2, . . . , πn}, V = diag{v1, v2, . . . , vn}, and
matrices M (i), N (i), S (i) such that for i ∈ N

�̄1 j l(i) < 0, �̄2 j l(i) < 0, 1 ≤ j < l ≤ q (52)

where �̄v j l(i), v = 1, 2 are expressed by �v(i), v = 1, 2
in (27) and (28) with WS(i) replaced by WSjl(i) =[
C(i)+ qw j l D(i)− In0n,(m+2)n A(i)Ad(i)− In

]
, respec-

tively. Then, the coupled system in (51) with time-
delay satisfying (A2) is exponentially synchronized for
any switching signal with average dwell time satisfying
Ta > T ∗

a = ceil (−lnμ/ln β), where μ ≥ 1 satisfies

P(i) ≤ μP( j), Q�(i) ≤ μQ�( j), � = 1, 2, 3

Rν(i) ≤ μRν( j), ν = 1, 2 ∀i, j ∈ N . (53)
Proof: Consider the Lyapunov function as follows:

W̄ (zk, αk) =
4∑

j=1

W̄ j (zk, αk) (54)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W̄1(zk, αk) � zT (k)(U ⊗ P)(αk)z(k)

W̄2(zk, αk) �
k−1∑

l=k−τ
βk−lϕT (l)(U ⊗ Q1(αk))ϕ(l)

+
k−1∑

l=k−d2

βk−l zT (l)(U ⊗ Q2(αk))z(l)

W̄3(zk, αk) �
−1∑

s=−τ

k−1∑
l=k+s

βk−lςT (l)(U ⊗ R1(αk))ς(l)

+
−mτ−1∑
s=−d2

k−1∑
l=k+s

βk−lςT (l)(U ⊗ R2(αk))ς(l)

W̄4(zk, αk) �
−mτ+1∑

s=−d2+1

k−1∑
l=k−1+s

βk−l zT (l)(U ⊗Z (αk))z(l)

where

ϕ(l) �

⎡
⎢⎢⎢⎢⎢⎣

z(l)
z (l − τ )

z (l − 2τ )
...

z (l − (m − 1)τ )

⎤
⎥⎥⎥⎥⎥⎦ , ς(l) � z(l + 1)− z(l)
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and P(αk) > 0, S (αk) > 0, Q1(αk) > 0, Q2(αk) > 0,
R1(αk) > 0, and R2(αk) > 0 are real matrices to be
determined.

For k ∈ [kl, kl+1), as in the previous section, we
define �W̄ j (zk, αk) � W̄ j (zk+1, αk) − W̄ j (zk, αk), j =
1, 2, 3, 4. Similar to the proof in Section III-B, we have the
following:

�W̄1(zk, αk) = ςT (k)(U ⊗ P(αk))ς(k)

+2zT (k)(U ⊗ P(αk))ς(k) (55)

�W̄2(zk, αk) = −(1 − β)

k−1∑
l=k−τ

βk−lϕT (l)

×(U ⊗ Q1(αk))ϕ(l)

−(1 − β)

k−1∑
l=k−d2

βk−l zT (l)(U ⊗ Q2(αk))z(l)

+βϕT (k)(U ⊗ Q1(αk))ϕ(k)

−βτ+1ϕT (k − τ )(U ⊗ Q1(αk))ϕ(k − τ )

+βzT (k)(U ⊗ Q2(αk))z(k)

−βd2+1zT (k − d2)(U ⊗ Q2(αk))z(k − d2) (56)

�W̄3(zk, αk) ≤ −(1 − β)

−1∑
s=−τ

k−1∑
l=k+s

βk−l

×ςT (l)(U ⊗ R1(αk))ς(l)

−(1 − β)

−mτ−1∑
s=−d2

k−1∑
l=k+s

βk−lςT (l)(U ⊗ R2(αk))ς(l)

−β
1+τ

τ
[z(k)− z(k − τ )]T (U ⊗ R1(αk))

× [z(k)− z(k − τ )] − (1 + γ )β̃ςT
1 (k)(U ⊗ R2(αk))ς1(k)

−(2 − γ )β̃ςT
2 (k)(U ⊗ R2(αk))ς2(k)

+βτςT (k)(U ⊗ R1(αk))ς(k)

+β(d2 − mτ )ςT (k)(U ⊗ R2(αk))ς(k) (57)

�W̄4(zk, αk) ≤ −(1 − β)

−mτ+1∑
s=−d2+1

k−1∑
l=k−1+s

βk−l

×zT (l)(U ⊗ Z (αk))z(l)

+β(d2 − mτ + 1)zT (k)(U ⊗ Z (αk))z(k)

−βd2+1zT (k − d(k))(U ⊗ Z (αk))z(k − d(k)) (58)

where ς1(k) � z(k − d(k)) − z(k − d2) and ς2(k) � z(k −
mτ )− z(k − d(k)).

On the other hand, using Lemma 1, for any appropriately
dimensioned matrices M (αk), N (αk), and S (αk), αk ∈ N ,
the following equation is true:

0 = 2
[
zT (k)(U ⊗ M T (αk))+ ςT (k)(U ⊗ N T (αk))

+zT (k − τ )(U ⊗ S T (αk))
]

× {[I ⊗ C(αk)+ W ⊗ D(αk)− I ] z(k)− ς(k)

+(I ⊗ A(αk))G(z(k))

+(I ⊗ Ad(αk))G(z(k − d(k)))} . (59)

From Assumption 2, for any scalar πi > 0 and vi > 0, we
have that for i = 1, 2, . . . , n and 1 ≤ j < l ≤ q

2(g(z j (k))− g(zl(k)))T�
×(�+ +�−)(z j (k)− zl(k))− 2(z j (k)− zl(k))T�
×�+�−(z j (k)− zl(k))
−2(g(z j (k))− g(zl(k)))T�(g(z j (k))− g(zl(k))) ≥ 0

2(g(z j (k − d(k)))− g(zl(k − d(k))))T

×V(�+ +�−)(z j (k − d(k))− zl(k − d(k)))
−2(z j (k − d(k))− zl(k − d(k)))T

×V�+�−(z j (k − d(k))− zl(k − d(k)))
−2(g(z j (k − d(k)))− g(zl(k − d(k))))T

×V(g(z j (k − d(k)))− g(zl(k − d(k)))) ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(60)

where �, V , �+, and �− are defined in (38). It follows
from (55)–(60) and Lemma 1 that the following inequality
holds:

�W̄ (zk, αk)+ (1 − β)W̄ (zk, αk)

≤
∑

1≤ j<l≤q

φ̄T
jl(k)[γ �̄1 j l(αk)+ (1 − γ )�̄2 j l(αk)]φ̄ j l(k)

where

ς1 j (k) � z j (k − d(k))− z j (k − d2)

ς2 j (k) � z j (k − mτ )− z j (k − d(k))

φ̄ j l(k) �
[
(ϕ j (k)− ϕl(k))T (z j (k − d1)− zl(k − d1))

T

(z j (k − d(k))− zl(k − d(k)))T

(z j (k − d2) −zl(k − d2))
T

(G(z j (k))− G(zl(k)))T

(G(z j (k − d(k)))− G(z j (k − d(k))))T

(ς j (k)− ςl(k))
]T

ϕ j (k) �
[
zT

j (k) zT
j (k − τ ) . . . zT

j (k − (m − 1)τ )
]T

ς j (k) � z j (k + 1)− z j (k)

and �̄1 j l(αk) and �̄2 j l(αk) are defined in (53). Moreover,
from �̄1 j l(αk) < 0 and �̄2 j l(αk) < 0, it follows that ∀k ∈
[kl, kl+1):

�W̄ (zk, αk)+ (1 − β)W̄ (zk, αk)

≤ φ̄T
jl(k)[γ �̄1 j l(αk)+ (1 − γ )�̄2 j l(αk)]φ̄ j l(k) < 0.

The rest of the proof can be followed by the same lines of the
proof of Theorem 1. The proof is completed.

V. ILLUSTRATIVE EXAMPLES

In this section, we shall present three examples to show the
effectiveness of the methods proposed in the previous sections.

Example 1: Consider the discrete-time switched DNN
in (5) with N = 2 and its parameters given as follows:

C(1) = diag{0.01, 0.3}, C(2) = diag{0.01, 0.25}
A(1) =

[−0.1 0
0.1 0.005

]
, Ad(1) =

[−0.1 0.2
−0.2 −0.1

]

A(2) =
[−0.15 0

0.1 −0.015

]
, Ad(2) =

[
0.1 −0.1

−0.3 −0.1

]
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TABLE I

MAXIMUM ALLOWABLE DELAYS FOR DIFFERENT m

and�+ = diag{1, 1},�− = diag{0, 0}. Initially, we consider
the constant time-delay case. Our attention is focused on
finding the maximum allowable delay dmax such that the
discrete-time switched DNN in (5) is exponentially stable. We
choose β = 0.8, and the results derived by Theorem 1 for
different m are listed in Table I. As shown in Table I, the
maximum allowable delay becomes larger as the partitioning
becomes thinner.

Next, we consider the average dwell time scheme. Set
μ = 1.5 > 1, thus Ta > T ∗

a = ceil (−lnμ/lnβ) = 2.
Solving LMIs (7)–(8) in Theorem 1 with m = 5, we can
obtain a set of solutions for P(1), P(2), Q(1), Q(2), R(1),
and R(2), which means that the above discrete-time switched
DNN is exponentially stable. Taking Ta = 3 > T ∗

a , and
considering (10) yield a = 749.9, b = 5052.9, η = 2.5958,
and ρ = 0.975, thus

‖ξ(k)‖ ≤ 2.5958 × 0.975(k−k0) ‖ξ(k0)‖C1 .

Now, we consider that μ > 1 and β → 1, obviously, we
have Ta → ∞, that is, there is no switching. In such a case,
the discrete-time switched DNN in (5) is effectively operating
at one of the subsystems all the time, and it turns out to
be the form of (25). The related result for (25) is shown in
Corollary 1. To check Corollary 1 and compare it with some
existing results, we give the following parameters:

C =
[

0.7 0
0 −0.7

]
, A =

[
0.01 0.22

−0.02 0.05

]
,

Ad =
[

0.2 0.3
−0.2 −0.1

]

and �+ = diag{1, 1}, �− = diag{0, 0}.
The comparison results are given in Table II, from which

we can see that when m = 1 (that is, no delay partitioning) the
allowable maximum delay d are all d = 23 by the methods
in [39], [40], [55] and Corollary 1 of this paper. The number
of the variables to be determined in our result (Corollary 1)
is, however, fewer than that in [39], [40], and [55], that is,
some variables in [39], [40], and [55] are redundant. Thus,
from the viewpoint of computational complexity, Corollary 1
in this paper is more powerful. In addition, we can also see
form Table II that when m = 2 and m = 3, the allowable
maximum delay d are d = 44 and d = 45, respectively, by
both methods in Corollary 1 and [39]. The number of the
variables in Corollary 1 is, however, fewer than that of [39];
thus our result in Corollary 1 improves that in [39].

Example 2: In this example, we will consider the non-
switching case (which is a special case, see Remark 4), that
is, there is no switching in the considered discrete-time DNN.

The related results are given in Corollaries 1 and 3 for constant
and time-varying delay cases, respectively.

Recently, there are some new results reported on the stability
of discrete-time DNNs, see [39], [40], [46], [55], and so on.
In the following, we will compare our result in Corollary 3
with some of them to demonstrate the reduced conservatism of
the developed approach in this paper. Now, consider the non-
switched discrete-time DNN in (39) with time-varying delay
d(k), and for convenience, we choose the same parameters as
those in [39], that is

C =
[

0.8 0
0 0.9

]
, A =

[
0.001 0

0 0.005

]
,

Ad =
[−0.1 0.01

−0.2 −0.1

]
and take activation functions g1(s) = tanh(s), g2(s) = tanh(s).
It can be verified that Assumption 2 is satisfied with λ−

1 =
λ−

2 = 0 and λ+
1 = λ+

2 = 1. The results derived by Corollary 3
for different m are listed in Table III. In addition, the related
results using the methods in [39], [40], [46], and [55] are
displayed in Table III for comparison. Table III shows that the
new criterion given in Corollary 3 is less conservative than the
previous results.

Example 3: In this example, we will check the result for the
synchronization problem proposed in Theorem 3. Consider the
following switched DNN with time-varying delay and N = 2:

C(1) = diag{1, 0.3}, C(2) = diag{−0.1, 0.4}
A(1) =

[−0.1 0.3
0.5 0

]
, Ad(1) =

[−0.1 0.01
−0.2 −0.1

]

A(2) =
[

0.1 −0.2
0 −0.1

]
, Ad(2) =

[
0 0.2

0.2 −0.1

]
.

For given β = 0.8, μ = 4, d1 = 4, d2 = 5, σ1 = 1,
σ2 = 0.2, and σ3 = 3, the corresponding feasible solutions
to the LMIs (47) and (48) can be calculated as T ∗

a =
ceil (−lnμ/lnβ) = 7 and

H (1) =
[

187.5640 −14.1506
20.9342 97.1493

]

L(1) =
[

122.8718 30.3305
32.0865 1.1535

]

H (2) =
[

166.8438 −5.5504
38.4899 101.0527

]

L(2) =
[

98.3644 20.7151
36.1095 6.4222

]

K (1) =
[

0.6103 0.4011
0.1670 0.0362

]

K (2) =
[

0.5355 0.2344
0.1992 0.0745

]
.

We choose Ta = 10 > T ∗
a . The switched signal is shown in

Fig. 1 (here, 1 and 2 represent the first and second subsystems,
respectively), and Fig. 2 shows the synchronization error with
the time-varying delay as follows:

d(k) =

⎧⎪⎨
⎪⎩

4, 0 ≤ k < 10

5, 10 ≤ k < 20

4, else
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TABLE II

ALLOWABLE MAXIMUM DELAY d OBTAINED BY DIFFERENT METHODS

TABLE III

MAXIMUM ALLOWABLE DELAYS

0 20 40 60 80 100

1

2

Fig. 1. Switching signal.

and the initial conditions e(−k) = [ k 10/k
]T
, k = 1, . . . , 5,

e(0) = [ 1.0 −0.3
]T .

Example 4: In this example, the effectiveness of the The-
orem 4 for synchronization of the coupled neural network is
illustrated. Consider the coupled neural network in (51) of
multiple identical switched neural networks. For simplicity,
we consider N = 2 and q = 3. The system parameters are
given as follows:

C(1) =
[

0.3 0
0 0.4

]

C(2) =
[

0.4 0
0 0.3

]

A(1) =
[

2 −0.2
0.2 −1

]

A(2) =
[

0.1 0
0 0.5

]

Ad(1) =
[−0.1 0.01

−0.2 −0.1

]

Ad(2) =
[

0.1 −0.1
0.02 0.1

]

0 20 40 60 80 100
−0.5

0

0.5

1
e1(k)
e2(k)

Fig. 2. Synchronization error.

W =
⎡
⎣−0.2 0.1 0.1

0.1 −0.2 0.1
0.1 0.1 −0.2

⎤
⎦

D(1) =
[

1 0
0 1

]
,

D(2) =
[

1.2 0
0 0.8

]
.

For given β = 0.8, μ = 2.5, d1 = 2, d2 = 4,
g1(s) = tanh(−0.6s), and g2(s) = tanh(0.4s). It is easy to
check that

�− =
[−0.6 0

0 0

]
, �+ =

[
0 0
0 0.4

]
.

With the above parameters, by solving the LMIs in (52), we
can find a feasible set of solutions as follows:

P(1) =
[

33.2064 −3.0118
−3.0118 19.0231

]

P(2) =
[

127.8592 6.5062
6.5062 76.2237

]
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0 20 40 60 80 100

1

2

Fig. 3. Switching signal.

Q1(1) =

⎡
⎢⎢⎣

1.0885 −1.5329 −0.3412 0.9409
−1.5329 4.2380 0.8592 −2.9695
−0.3412 0.8592 0.6725 −1.1648

0.9409 −2.9695 −1.1648 3.8186

⎤
⎥⎥⎦

Q1(2) =

⎡
⎢⎢⎣

21.3964 1.4782 −21.6174 −2.1276
1.4782 16.7526 −0.8211 −9.7534

−21.6174 −0.8211 23.2874 2.7222
−2.1276 −9.7534 2.7222 15.1141

⎤
⎥⎥⎦

Q2(1) =
[

0.5146 −1.3995
−1.3995 5.4649

]

Q2(2) =
[

19.1107 −1.5184
−1.5184 29.2242

]

R1(1) =
[

0.6520 −1.8221
−1.8221 6.3147

]

R1(2) =
[

50.9113 3.4783
3.4783 26.6173

]

R2(1) =
[

0.3762 −1.1127
−1.1127 5.0035

]

R2(2) =
[

43.3051 7.4848
7.4848 28.6740

]

Z (1) =
[

4.2222 0.2016
0.2016 0.1291

]

Z (2) =
[

1.8185 0.4048
0.4048 1.9783

]

� =
[

78.8551 0
0 54.8507

]

H =
[

4.7727 0
0 11.6167

]
.

According to Theorem 4, the coupled discrete-time DNNs
in (51) with the given parameters are synchronized. We
choose Ta = 10 > T ∗

a . The switched signal is shown in
Fig. 3. The synchronization errors e12(k) = ||z1(k)− z2(k)||,
e13(k) = ||z1(k) − z3(k)||, and e23(k) = ||z2(k) − z3(k)|| are
given in Fig. 4, which shows that the synchronization error
approaches zero.

VI. CONCLUSION

In this paper, we introduced a class of discrete-time DNNs
with switching parameters as well as time-varying delay.

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3
e12(k)
e13(k)
e23(k)

Fig. 4. Synchronization error.

We dealt with the stability analysis and the synchronization
problems. The obtained stability results were based on
the use of the average dwell time approach and the
piecewise Lyapunov function technique. By considering the
advantage of the delay-partitioning technique, a novel LKF,
in combination with the free-weighting matrix technique,
was introduced to arrive at the sufficient conditions that
warranted the exponential stability of the switched neural
networks with constant or time-varying delays. The obtained
delay-dependent results also relied upon the partitioning so
that the conservatism can be reduced. Then, we turned to the
synchronization problem. It was shown that the addressed
synchronization problem was solvable if several LMIs were
feasible. Finally, the effectiveness of the proposed theory was
illustrated by numerical examples.
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