2,450 research outputs found

    Control and Power Supply for Resistance Spot Welding (RSW)

    Get PDF
    In the automobile industry, Resistance Spot Welding (RSW) is widely used for its low cost, high speed, simple mechanism and applicability for automation. RSW has become the predominant means of auto body assembly, resulting in two to six thousands spot welds performed on each manufactured car. In the North American automobile industry there are approximately 100 billion spot welds, which are done every year. RSW is the joining of two or more metal parts together in a localized area by resistive heating and pressure. Small Scale RSW (SSRSW) is commonly used for medical devices and electronic components, because the welded parts are thinner and smaller compared to common RSW applications, such as automotive applications. According to a study of Edison Welding Institute, 20% of the welding quality issues are the weld schedule or power supply related. Therefore, to contribute to weld quality improvement, the study of different weld schedules or power supplies and control schemes needs to be improved by doing further studies in this area. Thus a novel power supply, which can provide a testing bench for these studies, was designed and developed in 2005 by L. J. Brown and J. Lin. This research study will focus on studying and improving weld power supplies, weld schedules and control modes. One of the goals for this research is to improve the consistency of weld nugget size and strength by using different control parameters, which will be weighted geometric averages of voltage and current. These control parameters are fed back to a Proportional Integral Derivative (PID) controller that is designed to control the Direct Current (DC) power supply for the RSW to come up with the best control parameters that will improve the consistency of the RSW spot welds. Another goal for this research is it to further develop the existing DC power supply that was designed for SSRSW by L. J. Brown, to include tip voltage measurements, and Large Scale Resistance Spot Welding (LSRSW). This goal will lead to build additional weld modules to construct a 6000A welder in the future

    CONTROL OF GAS METAL ARC WELDING USING PROCESS SENSING AND LASER ARC STABILIZATION FOR ADDITIVE MANUFACTURING

    Get PDF
    The goal of the present research was to bridge the gap between powder-based and wire-based additive manufacturing (AM) processes using gas metal arc welding (GMAW). Powder-based AM processes typically can produce components with high geometric resolution (small features), but at low deposition rates. Wire-based AM processes typically can produce components with low geometric resolution, but at high deposition rates. AM with GMAW is a wire-based AM process in the wire arc additive manufacturing (WAAM) category of AM. To bridge the gap between powder-based and wire-based AM processes, GMAW’s deposition rate has to be reduced, allowing small features to be built. The method proposed to build small features with GMAW was to develop a system, called GLADiS (GMAW laser assisted deposition integrated system), to perform an improved metal deposition strategy. The improved metal deposition strategy was composed of four components: single droplet deposition (SiDD), noncontact arc starting, electrode extension minimization, and laser arc stabilization. SiDD would allow single molten metal droplets to be deposited anywhere on a build plane rather than running continuous weld beads. SiDD would only be possible using an alternative, noncontact arc starting technique. Minimizing the electrode extension would allow the deposition rate to be reduced, while still maintaining sufficient current for droplet/substrate coalescence. Using a laser to stabilize the arc would ensure that individual droplets would be transferred to the correct location on the substrate. Results showed that GLADiS was capable of building extremely thin walls using SiDD. In addition, minimizing the electrode extension was found to improve droplet/substrate coalescence. The final system used a 532nm laser to assist in arc starting and to stabilize the arc. Linear wall specimens made of steel could be produced at a 0.1lb/hr deposition rate and with a wall thickness of 0.1in or less. Weld metal deposits produced by the SiDD process were found to have a microstructure composed of extremely small grains, indicating that it would have excellent strength and toughness. In addition, only a small number of voids were found in the deposits

    Influence of surface pretreatment in resistance spot welding of aluminum AA1050

    Get PDF
    Resistance spot welding (RSW) of aluminum alloys implies a major problem of inconsistent quality from weld to weld due to problems of varying thickness of the oxide layer. The high resistivity of oxide layer causes strong heat development, which has significant influence on electrode life and weld quality. An experimental study of the influence of pretreatment on weld quality in RSW of AA1050 sheets with three thicknesses, comparing welding of as-received sheet with pretreated sheet by either pickling in NaOH or glass-blasting were investigated. Different weld settings were applied with low-, medium-, and high-energy inputs. The as-received sheet showed higher electrical contact resistance because of thicker oxide layer. Lower values were noticed with pickled surfaces, whereas the lowest electrical contact resistance was obtained when glass blasting, resulting in the roughest surface topography, which facilitated breakdown the oxide layer. Highest strength and smaller scatter in strength were obtained by pickling in NaOH

    Improved micro-contact resistance model that considers material deformation, electron transport and thin film characteristics

    No full text
    This paper reports on an improved analytic model forpredicting micro-contact resistance needed for designing microelectro-mechanical systems (MEMS) switches. The originalmodel had two primary considerations: 1) contact materialdeformation (i.e. elastic, plastic, or elastic-plastic) and 2) effectivecontact area radius. The model also assumed that individual aspotswere close together and that their interactions weredependent on each other which led to using the single effective aspotcontact area model. This single effective area model wasused to determine specific electron transport regions (i.e. ballistic,quasi-ballistic, or diffusive) by comparing the effective radius andthe mean free path of an electron. Using this model required thatmicro-switch contact materials be deposited, during devicefabrication, with processes ensuring low surface roughness values(i.e. sputtered films). Sputtered thin film electric contacts,however, do not behave like bulk materials and the effects of thinfilm contacts and spreading resistance must be considered. Theimproved micro-contact resistance model accounts for the twoprimary considerations above, as well as, using thin film,sputtered, electric contact

    Monitoring and characterization of abnormal process conditions in resistance spot welding

    Get PDF
    Resistance spot welding (RSW) is extensively used for sheet metal joining of body-in-white (BIW) structure in the automobile industry. Key parameters, such as welding current, electrode force and welding time, are involved in the RSW process. Appropriate welding parameters are vital for producing good welds; otherwise, undersized weld and expulsion are likely to be caused. For a specific type of sheet metal, an acceptable nugget is produced when an appropriate combination of welding parameters is used. However, undersized welds and expulsion are still commonly seen in the plant environment, where some abnormal process conditions could account for the production of the poor quality welds. Understanding the influence of abnormal process conditions on spot weld quality and other RSW related issues is crucial. A range of online signals, strongly related to the nugget development history, have attracted keen interest from the research community. Recent monitoring systems established the applied dynamic resistance (DR) signal, and good prediction of nugget diameter was made based on signal values. However, the DR curves with abnormal process conditions did not agree well with those under normal condition, making them less useful in detecting abnormal process conditions. More importantly, none of the existing monitoring systems have taken these abnormal process conditions into account. In addition, electrode degradation is one of the most important issues in the plant environment. Two major electrode degradation mechanisms, softening and intermetallic compound (IMC) formation, are strongly related to the characteristics of welding parameters and sheet metals. Electrode misalignment creates a very distinct temperature history of the electrode tip face, and is believed to affect the electrode degradation mechanism. Though previous studies have shown that electrode misalignment can shorten electrode life, the detailed mechanism is still not understood. In this study, an online-monitoring system based on DR curve was first established via a random forest (RF) model. The samples included individual welds on the tensile shear test sample and welds on the same sheet, considering the airgap and shunting effect. It was found that the RF model achieved a high classification accuracy between good and poor welds. However, the DR signals were affected by the shunting distance, and they displayed opposite trends against individual welds made without any shunting effect. Furthermore, a suitable online signal, electrode displacement (ED), was proposed for monitoring abnormal process conditions such as shunting, air gap and close edged welds. Related to the thermal expansion of sheet metal, ED showed good consistency of profile features and actual nugget diameters between abnormal and normal welds. Next, the influence of electrode misalignment on electrode degradation of galvannealed steel was qualitatively and quantitatively investigated. A much-reduced electrode life was found under the angular misalignment of 5°. Pitting and electrode softening were accelerated on the misaligned electrodes. δ Fe-Zn phase from the galvannealed layer that extends electrodes was found non-uniformly distributed on the worn electrode. Furthermore, electron backscatter diffraction (EBSD) analysis was implemented on the worn electrode, showing marked reduction in grain diameter and aspect ratio. The grain deformation capacity was estimated by the distribution of the Taylor factor, where the portion of pore grain was substantially weakened in the recrystallized region compared to the base metal region

    A thermal model of the spot welding process

    Get PDF

    Infrared Thermography for Weld Inspection: Feasibility and Application

    Get PDF
    Traditional ultrasonic testing (UT) techniques have been widely used to detect surface and sub-surface defects of welds. UT inspection is a contact method which burdens the manufacturer by storing hot specimens for inspection when the material is cool. Additionally, UT is only valid for 5 mm specimens or thicker and requires a highly skilled operator to perform the inspections and interpret the signals. Infrared thermography (IRT) has the potential to be implemented for weld inspections due to its non-contact nature. In this study, the feasibility of using IRT to overcome the limitations of UT inspection is investigated to detect inclusion, porosity, cracking, and lack of fusion in 38 weld specimens with thicknesses of 3, 8 and 13 mm. UT inspection was also performed to locate regions containing defects in the 8 mm and 13 mm specimens. Results showed that regions diagnosed with defects by the UT inspection lost heat faster than the sound weld. The IRT method was applied to six 3 mm specimens to detect their defects and successfully detected lack of fusion in one of them. All specimens were cut at the locations indicated by UT and IRT methods which proved the presence of a defect in 86% of the specimens. Despite the agreement with the UT inspection, the proposed IRT method had limited success in locating the defects in the 8 mm specimens. To fully implement in-line IRT-based weld inspections more investigations are required

    Solid state welding processes for an oxide dispersion strengthened nickel-chromium-aluminum alloy

    Get PDF
    Solid-state welding processes were evaluated for joining TD-NiCrAl (Ni-16Cr-4Al-2ThO2) alloy sheet. Both hot-press and resistance spot welding techniques were successfully applied in terms of achieving grain growth across the bond line. Less success was achieved with a resistance seam welding process. In stress-rupture shear and tensile shear tests of lap joints at 1100 C, most failures occurred in the parent material, which indicates that the weld quality was good and that the welds were not a plane of weakness. The overall weld quality was not as good as previously attained with TD-NiCr, probably because the presence of alumina at the faying surfaces and the developmental TD-NiCrAl sheet, which was not of the quality of the TD-NiCr sheet in terms of surface flatness and dimensional control

    Resistance Welding of Advanced Materials and Micro Components

    Get PDF
    • …
    corecore