41 research outputs found

    Performance enhancement for LTE and beyond systems

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyWireless communication systems have undergone fast development in recent years. Based on GSM/EDGE and UMTS/HSPA, the 3rd Generation Partnership Project (3GPP) specified the Long Term Evolution (LTE) standard to cope with rapidly increasing demands, including capacity, coverage, and data rate. To achieve this goal, several key techniques have been adopted by LTE, such as Multiple-Input and Multiple-Output (MIMO), Orthogonal Frequency-Division Multiplexing (OFDM), and heterogeneous network (HetNet). However, there are some inherent drawbacks regarding these techniques. Direct conversion architecture is adopted to provide a simple, low cost transmitter solution. The problem of I/Q imbalance arises due to the imperfection of circuit components; the orthogonality of OFDM is vulnerable to carrier frequency offset (CFO) and sampling frequency offset (SFO). The doubly selective channel can also severely deteriorate the receiver performance. In addition, the deployment of Heterogeneous Network (HetNet), which permits the co-existence of macro and pico cells, incurs inter-cell interference for cell edge users. The impact of these factors then results in significant degradation in relation to system performance. This dissertation aims to investigate the key techniques which can be used to mitigate the above problems. First, I/Q imbalance for the wideband transmitter is studied and a self-IQ-demodulation based compensation scheme for frequencydependent (FD) I/Q imbalance is proposed. This combats the FD I/Q imbalance by using the internal diode of the transmitter and a specially designed test signal without any external calibration instruments or internal low-IF feedback path. The instrument test results show that the proposed scheme can enhance signal quality by 10 dB in terms of image rejection ratio (IRR). In addition to the I/Q imbalance, the system suffers from CFO, SFO and frequency-time selective channel. To mitigate this, a hybrid optimum OFDM receiver with decision feedback equalizer (DFE) to cope with the CFO, SFO and doubly selective channel. The algorithm firstly estimates the CFO and channel frequency response (CFR) in the coarse estimation, with the help of hybrid classical timing and frequency synchronization algorithms. Afterwards, a pilot-aided polynomial interpolation channel estimation, combined with a low complexity DFE scheme, based on minimum mean squared error (MMSE) criteria, is developed to alleviate the impact of the residual SFO, CFO, and Doppler effect. A subspace-based signal-to-noise ratio (SNR) estimation algorithm is proposed to estimate the SNR in the doubly selective channel. This provides prior knowledge for MMSE-DFE and automatic modulation and coding (AMC). Simulation results show that this proposed estimation algorithm significantly improves the system performance. In order to speed up algorithm verification process, an FPGA based co-simulation is developed. Inter-cell interference caused by the co-existence of macro and pico cells has a big impact on system performance. Although an almost blank subframe (ABS) is proposed to mitigate this problem, the residual control signal in the ABS still inevitably causes interference. Hence, a cell-specific reference signal (CRS) interference cancellation algorithm, utilizing the information in the ABS, is proposed. First, the timing and carrier frequency offset of the interference signal is compensated by utilizing the cross-correlation properties of the synchronization signal. Afterwards, the reference signal is generated locally and channel response is estimated by making use of channel statistics. Then, the interference signal is reconstructed based on the previous estimate of the channel, timing and carrier frequency offset. The interference is mitigated by subtracting the estimation of the interference signal and LLR puncturing. The block error rate (BLER) performance of the signal is notably improved by this algorithm, according to the simulation results of different channel scenarios. The proposed techniques provide low cost, low complexity solutions for LTE and beyond systems. The simulation and measurements show good overall system performance can be achieved

    Modeling and Digital Mitigation of Transmitter Imperfections in Radio Communication Systems

    Get PDF
    To satisfy the continuously growing demands for higher data rates, modern radio communication systems employ larger bandwidths and more complex waveforms. Furthermore, radio devices are expected to support a rich mixture of standards such as cellular networks, wireless local-area networks, wireless personal area networks, positioning and navigation systems, etc. In general, a "smart'' device should be flexible to support all these requirements while being portable, cheap, and energy efficient. These seemingly conflicting expectations impose stringent radio frequency (RF) design challenges which, in turn, call for their proper understanding as well as developing cost-effective solutions to address them. The direct-conversion transceiver architecture is an appealing analog front-end for flexible and multi-standard radio systems. However, it is sensitive to various circuit impairments, and modern communication systems based on multi-carrier waveforms such as Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple Access (OFDMA) are particularly vulnerable to RF front-end non-idealities.This thesis addresses the modeling and digital mitigation of selected transmitter (TX) RF impairments in radio communication devices. The contributions can be divided into two areas. First, new modeling and digital mitigation techniques are proposed for two essential front-end impairments in direct-conversion architecture-based OFDM and OFDMA systems, namely inphase and quadrature phase (I/Q) imbalance and carrier frequency offset (CFO). Both joint and de-coupled estimation and compensation schemes for frequency-selective TX I/Q imbalance and channel distortions are proposed for OFDM systems, to be adopted on the receiver side. Then, in the context of uplink OFDMA and Single Carrier FDMA (SC-FDMA), which are the air interface technologies of the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) and LTE-Advanced systems, joint estimation and equalization techniques of RF impairments and channel distortions are proposed. Here, the challenging multi-user uplink scenario with unequal received power levels is investigated where I/Q imbalance causes inter-user interference. A joint mirror subcarrier processing-based minimum mean-square error (MMSE) equalizer with an arbitrary number of receiver antennas is formulated to effectively handle the mirror sub-band users of different power levels. Furthermore, the joint channel and impairments filter responses are efficiently approximated with polynomial-based basis function models, and the parameters of basis functions are estimated with the reference signals conforming to the LTE uplink sub-frame structure. The resulting receiver concept adopting the proposed techniques enables improved link performance without modifying the design of RF transceivers.Second, digital baseband mitigation solutions are developed for the TX leakage signal-induced self-interference in frequency division duplex (FDD) transceivers. In FDD transceivers, a duplexer is used to connect the TX and receiver (RX) chains to a common antenna while also providing isolation to the receiver chain against the powerful transmit signal. In general, the continuous miniaturization of hardware and adoption of larger bandwidths through carrier aggregation type noncontiguous allocations complicates achieving sufficient TX-RX isolation. Here, two different effects of the transmitter leakage signal are investigated. The first is TX out-of-band (OOB) emissions and TX spurious emissions at own receiver band, due to the transmitter nonlinearity, and the second is nonlinearity of down-converter in the RX that generates second-order intermodulation distortion (IMD2) due to the TX in-band leakage signal. This work shows that the transmitter leakage signal-induced interference depends on an equivalent leakage channel that models the TX path non-idealities, duplexer filter responses, and the RX path non-idealities. The work proposes algorithms that operate in the digital baseband of the transceiver to estimate the TX-RX non-idealities and the duplexer filter responses, and subsequently regenerating and canceling the self-interference, thereby potentially relaxing the TX-RX isolation requirements as well as increasing the transceiver flexibility.Overall, this thesis provides useful signal models to understand the implications of different RF non-idealities and proposes compensation solutions to cope with certain RF impairments. This is complemented with extensive computer simulations and practical RF measurements to validate their application in real-world radio transceivers

    Simultaneous Positioning and Communications: Hybrid Radio Architecture, Estimation Techniques, and Experimental Validation

    Get PDF
    abstract: Limited spectral access motivates technologies that adapt to diminishing resources and increasingly cluttered environments. A joint positioning-communications system is designed and implemented on \acf{COTS} hardware. This system enables simultaneous positioning of, and communications between, nodes in a distributed network of base-stations and unmanned aerial systems (UASs). This technology offers extreme ranging precision (<< 5 cm) with minimal bandwidth (10 MHz), a secure communications link to protect against cyberattacks, a small form factor that enables integration into numerous platforms, and minimal resource consumption which supports high-density networks. The positioning and communications tasks are performed simultaneously with a single, co-use waveform, which efficiently utilizes limited resources and supports higher user densities. The positioning task uses a cooperative, point-to-point synchronization protocol to estimate the relative position and orientation of all users within the network. The communications task distributes positioning information between users and secures the positioning task against cyberattacks. This high-performance system is enabled by advanced time-of-arrival estimation techniques and a modern phase-accurate distributed coherence synchronization algorithm. This technology may be installed in ground-stations, ground vehicles, unmanned aerial systems, and airborne vehicles, enabling a highly-mobile, re-configurable network with numerous applications.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Doctor of Philosophy

    Get PDF
    dissertationLow-cost wireless embedded systems can make radio channel measurements for the purposes of radio localization, synchronization, and breathing monitoring. Most of those systems measure the radio channel via the received signal strength indicator (RSSI), which is widely available on inexpensive radio transceivers. However, the use of standard RSSI imposes multiple limitations on the accuracy and reliability of such systems; moreover, higher accuracy is only accessible with very high-cost systems, both in bandwidth and device costs. On the other hand, wireless devices also rely on synchronized notion of time to coordinate tasks (transmit, receive, sleep, etc.), especially in time-based localization systems. Existing solutions use multiple message exchanges to estimate time offset and clock skew, which further increases channel utilization. In this dissertation, the design of the systems that use RSSI for device-free localization, device-based localization, and breathing monitoring applications are evaluated. Next, the design and evaluation of novel wireless embedded systems are introduced to enable more fine-grained radio signal measurements to the application. I design and study the effect of increasing the resolution of RSSI beyond the typical 1 dB step size, which is the current standard, with a couple of example applications: breathing monitoring and gesture recognition. Lastly, the Stitch architecture is then proposed to allow the frequency and time synchronization of multiple nodes' clocks. The prototype platform, Chronos, implements radio frequency synchronization (RFS), which accesses complex baseband samples from a low-power low-cost narrowband radio, estimates the carrier frequency offset, and iteratively drives the difference between two nodes' main local oscillators (LO) to less than 3 parts per billion (ppb). An optimized time synchronization and ranging protocols (EffToF) is designed and implemented to achieve the same timing accuracy as the state-of-the-art but with 59% less utilization of the UWB channel. Based on this dissertation, I could foresee Stitch and RFS further improving the robustness of communications infrastructure to GPS jamming, allow exploration of applications such as distributed beamforming and MIMO, and enable new highly-synchronous wireless sensing and actuation systems

    Synchronization in Cognitive Overlay Systems

    Get PDF
    The primary purpose of this thesis is to study the effect of synchronization problems in cognitive radio based overlay systems. In such systems the secondary transmitter should know the transmission timing of the primary transmitter for cooperation to take place between the two systems. The thesis also investigates the effect of relaying in overlay systems. By splitting the secondary transmission power into two parts by a ratio alpha, the secondary transmitter can relay the primary transmission while transmitting its own message. Another aim of the thesis is to study the effects of time and frequency offsets in the primary and the secondary systems. Hence, time and frequency synchronization issues are investigated for DVB-T and LTE systems individually. Cell search and selection procedures are also studied for LTE systems. Two N200 Universal Software Radio Peripherals (USRPs) were used to transmit and receive the signal using the Gnu Radio platform and the captured signals were post processed in Matlab to study the effects of time offset and frequency offset of the devices. Moreover, a Matlab simulation was used to investigate the effect of timing offset between primary and secondary transmitters in overlay systems. From the investigation of the overlay scenario with relay, we have found out that the relaying introduce a multi-path effect at the secondary receiver. If there is a delay between the primary and the secondary receivers, the components of the multi-path signal might be added-up in such a way that it is impossible to separate the primary and the secondary signals at the secondary receiver. Hence, we have implemented synchronization and equalization algorithms to estimate the delay and frequency offsets. We observed that the performance of the equalizer at the secondary receiver deteriorates for high delays and low alpha values

    Compensation of fibre impairments in coherent optical systems

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Coherent terabit/s communications using chip-scale optical frequency comb sources

    Get PDF
    Der Visual Networking Index (VNI) der Firma Cisco weist für den weltweiten Internetverkehr eine durchschnittlichen jährlichen Wachstumsrate von 26% aus und prognostiziert 2022 einen jährliche Datenverkehr von 4,8 Zettabyte [1]. Um diesem Anstieg des Netzwerkverkehrs zu begegnen, ist die kohärente Datenübertragung in Kombination mit sogenanntem Wellenlängenmultiplex (engl. wavelength-division multiplexing, WDM) in Langstrecken-Glasfasernetzwerken zum Standard geworden. Mit der verstärkten Nutzung von Cloud-basierten Diensten, dem wachsenden Trend, Inhalte in die Nähe der Endbenutzer zu bringen, und der steigenden Anzahl angeschlossener Geräte in sog. Internet-of-Things-(IoT-)Szenarien, wird der Datenverkehr auf allen Netzebenen voraussichtlich weiter drastisch ansteigen. Daher wird erwartet, dass die WDM-Übertragung mittelfristig auch kürzere Verbindungen verwendet werden wird, die in viel größeren Stückzahlen eingesetzt werden als Langstreckenverbindungen und bei denen die Größe und die Kosten der Transceiver-Baugruppen daher wesentlich wichtiger sind. In diesem Zusammenhang werden optische Frequenzkammgeneratoren als kompakte und robuste Mehrwellenlängen-Lichtquellen eine wichtige Rolle spielen. Sie können sowohl auf der Sender- als auch auf der Empfängerseite einer kohärenten WDM-Verbindung eine große Anzahl wohldefinierter optischer Träger oder Lokaloszillator-Signale liefern. Ein besonders wichtiger Vorteil der Frequenzkämme ist die Tatsache, dass die Spektrallinien von Natur aus äquidistant sind und durch nur zwei Parameter − die Mittenfrequenz und den freien Spektralbereich − definiert werden. Dadurch kann eine auf eine individuelle Frequenzüberwachung der einzelnen Träger verzichtet werden, und etwaige spektrale Schutzbänder zwischen benachbarten Kanälen können stark reduziert werden oder komplett wegfallen. Darüber hinaus erleichtert die inhärente Phasenbeziehung zwischen den Trägern eines Frequenzkamms die gemeinsame digitale Signalverarbeitung der WDM-Kanäle, was die Empfängerkomplexität reduzieren und darüber hinaus auch die Kompensation nichtlinearer Kanalstörungen ermöglichen kann. Unter den verschiedenen Kammgeneratoren sind Bauteile im Chip-Format der Schlüssel für künftige WDM-Transceiver, die eine kompakte Bauform aufweisen und sich kosteneffizient in großen Stückzahlen herstellen lassen sollen. Gegenstand dieser Arbeit ist daher die Untersuchung von neuartigen Frequenzkammgeneratoren im Chip-Format im Hinblick auf deren Eignung für die massiv parallele WDM-Übertragung. Diese Bauteile lassen sich nicht nur als Mehrwellenlängen-Lichtquellen auf der Senderseite einsetzen, sondern bieten sich auch als Mehrwellenlängen-Lokaloszillatoren (LO) für den parallelen kohärenten Empfang mehrerer WDM-Kanäle an. Bei den untersuchten Bauteilen handelt es sich um gütegeschaltete Laserdioden (engl. Gain-Switched Laser Diodes), modengekoppelte Laserdioden auf Basis von Quantenstrich-Strukturen (Quantum-Dash Mode-Locked Laser Diodes, QD-MLLD) und sog. Kerr-Kamm-Generatoren, die optische Nichtlinearitäten dritter Ordnung in Ringresonatoren hoher Güte ausnutzen. Der Schwerpunkt liegt dabei auf Datenübertragungsexperimenten, die die Eignung der verschiedenen Kammquellen untersuchen und die in den internationalen Fachzeitschriften Nature und Optics Express veröffentlicht wurden [J1]-[J4]. Kapitel 1 gibt eine allgemeine Einführung in das Thema der optischen Datenübertragung und der zugehörigen WDM-Verfahren. In diesem Zusammenhang werden die Vorteile optischer Frequenzkämme als Lichtquellen für die WDM-Datenübertragung und den WDM-Empfang erläutert. Die einige Inhalte dieses Kapitels sind dem Buchkapitel [B1] entnommen, wobei Änderungen zur Anpassung an die Struktur und Notation der vorliegenden Arbeit vorgenommen wurden. In Kapitel 2 wird eine grundlegende Einführung in optische Kommunikations-systeme mit Schwerpunkt auf Hochleistungsverbindungen gegeben, die auf WDM und kohärenten Übertragungsverfahren beruhen. Außerdem wird die integrierte Optik als wichtiges technologisches Element zum Bau kostengünstiger und kompakter WDM-Transceiver vorgestellt. Das Kapitel gibt ferner einen Überblick über verschiedene optische Frequenzkammgeneratoren im Chip-Format, die sich als Mehrwellenlängen-Lichtquellen für solche Transceiver anbieten, und es werden grundlegende Anforderungen an optische Frequenzkammgeneratoren formuliert, die für WDM-Anwendungen relevant sind. Das Kapitel endet mit einer vergleichenden Diskussion der verschiedenen Kammgeneratoren sowie einer Zusammenfassung ausgewählter WDM-Datenübertragungsexperimente, die mit diesen Kammgeneratoren demonstriert wurden. In Kapitel 3 wird die kohärente WDM-Sendetechnik und der kohärente WDM-Empfang mit einer gütegeschalteten Laserdiode (GSLD) diskutiert. Im Mittelpunkt der Arbeit steht ein Versuchsaufbau, in dem der empfängerseitige Kammgenerator aktiv mit dem senderseitigen Generator synchronisiert wurde. Das Experiment stellt die weltweit erste Demonstration einer kohärenten WDM-Übertragung mit Datenraten von über 1 Tbit/s dar, bei dem synchronisierte Frequenzkämme als Mehrwellenlängen-Lichtquelle am Sender und als Mehrwellenlängen-LO am Empfänger verwendet werden. Kapitel 4 untersucht das Potenzial von QD-MLLD als Mehrwellenlängen-Lichtquellen für die WDM-Datenübertragung. Diese Kammgeneratoren sind aufgrund ihrer kompakten Größe und des einfachen Betriebs besonders attraktiv. Die erzeugten Kammlinien weisen jedoch ein hohes Phasenrauschen auf, das die Modulationsformate in früheren Übertragungsexperimenten auf 16QAM begrenzte. In diesem Kapitel wird gezeigt, dass QD-MLLD die WDM-Übertragung mit Modulationsformaten jenseits von 16QAM unterstützen kann, wenn eine optische Rückkopplung durch einen externen Resonator zur Reduzierung des Phasenrauschens der Kammlinien verwendet wird. In den Experimenten wird eine Reduzierung der intrinsischen Linienbreite um etwa zwei Größenordnungen demonstriert, was eine 32QAM-WDM-Übertragung ermöglicht. Die Demonstration der Datenübertragung mit einer Rate von 12 Tbit/s über eine 75 km lange Faser mit einer spektralen Netto-Effizienz von 7,5 Bit/s/Hz stellt dabei die höchste für diese Bauteile gezeigte spektrale Effizienz dar. Gegenstand von Kapitel 5 ist die WDM-Übertragung und der kohärente Empfang mit QD-MLLD vor. Die Vorteile der Skalierbarkeit von QD-MLLD für massiv parallele WDM-Verbindungen werden also nicht nur am Sender, wie in Kapitel 4 beschrieben, sondern auch am Empfänger ausgenutzt. So konnte ein Datenstrom mit einer Rohdatenrate von 4,1 Tbit/s über eine Distanz von 75 km übertragen werden, indem ein Paar von QD-MLLD mit ähnlichen freien Spektralbereichen verwendet wurde – ein Bauteil zur Erzeugung der optischen Träger am WDM-Sender und ein weiteres Bauteil zur Bereitstellung der erforderlichen LO-Töne für den kohärenten WDM-Empfang. Kapitel 6 beschreibt WDM-Datenübertragungsexperimente mit Hilfe von Kerr-Kamm-Generatoren. Dazu werden sog. dissipative Kerr-Solitonen (engl. dissipative Kerr solitons, DKS) in integriert-optischen Mikroresonatoren genutzt, die wegen zur Erzeugung einer streng periodischen Folge ultra-kurzer optischer Impulsen im Zeitbereich und damit zu einem breitbandigen, für WDM-Systeme sehr gut geeigneten Frequenzkamm führen. Mit diesen DKS-Kämmen wird ein Datenstrom mit einer Rohdatenrate von 55,0 Tbit/s über eine 75 km lange Faser übertragen. Zum Zeitpunkt der Veröffentlichung war dies die höchste Datenrate, welche mit einer chip-basierten Frequenzkammquelle erreicht wurde. Das Ergebnis zeigt das Potenzial der Kammquellen für WDM-Übertragung. Darüber hinaus wird der kohärente Empfang von 93 WDM-Kanälen mit einer Datenrate von 37,2 Tbit/s unter Verwendung eines DKS-Kamms als Multiwellenlängen-LO demonstriert; die Übertragung erfolgt über eine 75 km lange Faser. Diese Arbeiten wurde in der international renommierten wissenschaftlichen Zeitschrift Nature publiziert. Kapitel 7 fasst die Arbeit zusammen und gibt einen Ausblick auf die Anwendung der diskutierten Kammgeneratoren in zukünftigen WDM-Systemen

    Synchronization in OFDM communication systems

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Distributed synchronization algorithms for wireless sensor networks

    Get PDF
    The ability to distribute time and frequency among a large population of interacting agents is of interest for diverse disciplines, inasmuch as it enables to carry out complex cooperative tasks. In a wireless sensor network (WSN), time/frequency synchronization allows the implementation of distributed signal processing and coding techniques, and the realization of coordinated access to the shared wireless medium. Large multi-hop WSN\u27s constitute a new regime for network synchronization, as they call for the development of scalable, fully distributed synchronization algorithms. While most of previous research focused on synchronization at the application layer, this thesis considers synchronization at the lowest layers of the communication protocol stack of a WSN, namely the physical and the medium access control (MAC) layer. At the physical layer, the focus is on the compensation of carrier frequency offsets (CFO), while time synchronization is studied for application at the MAC layer. In both cases, the problem of realizing network-wide synchronization is approached by employing distributed clock control algorithms based on the classical concept of coupled phase and frequency locked loops (PLL and FLL). The analysis takes into account communication, signaling and energy consumption constraints arising in the novel context of multi-hop WSN\u27s. In particular, the robustness of the algorithms is checked against packet collision events, infrequent sync updates, and errors introduced by different noise sources, such as transmission delays and clock frequency instabilities. By observing that WSN\u27s allow for greater flexibility in the design of the synchronization network architecture, this work examines also the relative merits of both peer-to-peer (mutually coupled - MC) and hierarchical (master-slave - MS) architectures. With both MC and MS architectures, synchronization accuracy degrades smoothly with the network size, provided that loop parameters are conveniently chosen. In particular, MS topologies guarantee faster synchronization, but they are hindered by higher noise accumulation, while MC topologies allow for an almost uniform error distribution at the price of much slower convergence. For all the considered cases, synchronization algorithms based on adaptive PLL and FLL designs are shown to provide robust and scalable network-wide time and frequency distribution in a WSN
    corecore