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ABSTRACT 

DISTRIBUTED SYNCHRONIZATION ALGORITHMS 
FOR WIRELESS SENSOR NETWORKS 

by 
Nicola Varanese 

The ability to distribute time and frequency among a large population of interacting 

agents is of interest for diverse disciplines, inasmuch as it enables to carry out complex 

cooperative tasks. In a wireless sensor network (WSN), time/frequency synchronization 

allows the implementation of distributed signal processing and coding techniques, and the 

realization of coordinated access to the shared wireless medium. Large multi-hop WSN's 

constitute a new regime for network synchronization, as they call for the development of 

scalable, fully distributed synchronization algorithms. While most of previous research 

focused on synchronization at the application layer, this thesis considers synchronization 

at the lowest layers of the communication protocol stack of a WSN, namely the physical 

and the medium access control (MAC) layer. At the physical layer, the focus is on the 

compensation of carrier frequency offsets (CFO), while time synchronization is studied 

for application at the MAC layer. In both cases, the problem of realizing network-wide 

synchronization is approached by employing distributed clock control algorithms based 

on the classical concept of coupled phase and frequency locked loops (PLL and FLL). 

The analysis takes into account communication, signaling and energy consumption 

constraints arising in the novel context of multi-hop WSN's. In particular, the robustness 

of the algorithms is checked against packet collision events, infrequent sync updates, and 

errors introduced by different noise sources, such as transmission delays and clock 

frequency instabilities. By observing that WSN's allow for greater flexibility in the design 



of the synchronization network architecture, this work examines also the relative merits 

of both peer-to-peer (mutually coupled - MC) and hierarchical (master-slave - MS) 

architectures. With both MC and MS architectures, synchronization accuracy degrades 

smoothly with the network size, provided that loop parameters are conveniently chosen. 

In particular, MS topologies guarantee faster synchronization, but they are hindered by 

higher noise accumulation, while MC topologies allow for an almost uniform error 

distribution at the price of much slower convergence. For all the considered cases, 

synchronization algorithms based on adaptive PLL and FLL designs are shown to provide 

robust and scalable network-wide time and frequency distribution in a WSN. 
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CHAPTER 1

INTRODUCTION

Synchronization is the onset of coordinated periodic events in a population of interacting

agents. Indeed, synchronization is the simplest form of coordination, and its function is to

enable more complex cooperative actions.

Synchronization is part of everyday life, where the common notion of time constitutes

one of the pillars of social interaction. It actually goes from the quartz clock on our

wrist deep into the innermost workings of the human body. In fact, each living being

possesses a number of internal clocks, the circadian rhythms, which regulate all periodic

activities, from sleep/wake cycles to the secretion of specific hormones. In humans, the

central (“master”) clock resides in the cells of the suprachiasmatic nucleus (SCN) in the

hypothalamus, and peripheral clocks exist in many organs such as the esophagus, lungs,

liver, pancreas. Circadian rhythms are entrained by external reference signals (or zeitbergs),

the most important of which is daylight. Daylight influences directly the master clock

in the SCN via the signals traveling from the eyes through the retinohypothalamic tract.

An animal kept in total darkness eventually assumes a free-running activity period. As

an example, experiments have determined that the human free-running sleep/wake cycle

amounts to around 25 hours. While looking for a treatment for sleep disorders, researchers

have studied the phase response curve (PRC) of the human sleep/wake rhythm to artificial

light stimuli. Another example of master-slave synchronization is found in musical

ensembles, where independent performers need a common time and rhythm (frequency)

in order to play the score in sync. The conductor in Figure 1.1.a distributes time and

frequency to a large orchestra, while the drummer of a rock band is often referred to as the

“clock distributor”.

1
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a) b)

Figure 1.1 Examples of synchronization phenomena in nature and everyday life: a) the
conductor of an orchestra and b) a school of fish.

Synchronization is not always induced in a master-slave fashion, but it can happen as

the outcome of spontaneous collective interaction. In nature, many examples of coordinated

dynamics are found, such as the movement of the school of fish in Figure 1.1.b. Fish

is spurred to cooperation by the need to escape predators, and it behaves so without any

leader or external forcing mechanism. Focusing on synchronization, it arises spontaneously

in a variety of circumstances. In the human body, pacemaker cells trigger contractions of

the heart tissues in unison. Neurons may fall in step with one another in certain diseases.

Crickets distributed over a wide area may start to chirp simultaneously. Norbert Wiener

in his landmark book “Cybernetics” [1] described his fascination for self-synchronization

arising in populations of flashing fireflies in South-East Asia. A mathematical explanation

for these phenomena has not been available until the seminal work of Winfree [2], who

first posed the problem as a system of mutually coupled limit-cycle oscillators. Mutual

coupling implies that there exist some mean (chemical, electrical, visual, acoustic) for each

oscillator to influence its neighbors and vice-versa, so that they cooperatively converge to

a synchronous regime. After Winfree, many researchers investigated diverse autonomous

synchronization phenomena ranging from neural networks to complex social interaction.

Finally, synchronization and timekeeping have always been fundamental facilities

in engineering systems. Over the centuries, timekeeping evolved from sundials to the
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pendulum clock invented by Christiaan Huygens in 1657 (following an idea of Galileo

Galilei). The pendulum clock was the first clock to be based on a harmonic oscillator.

Clock accuracy improved enormously in the Twentieth century by the invention of the

crystal oscillator, patented by Alexander M. Nicholson of Bell Labs in 1918, and the

development of atomic clocks in the 1950’s at the National Physical Laboratory in the UK.

The ability of artificial clocks to interact with each other was first discovered by Huygens

himself, who observed that two pendulum clocks hung on a common beam oscillate

with the same frequency and 180 degrees out of phase. Actually, a striking similarity

connects artificial and biological synchronization systems: every time and frequency

distribution system in operation is based on the familiar notions of master-slave and mutual

coupling interactions already found in natural phenomena. Also, when designing phase

and frequency recovery circuits, the PRC (or S-curve, in engineering terminology [3]) is a

fundamental design parameter. Synchronization in communication systems will be detailed

later on, after a brief introduction to synchronization regimes and oscillator models.

1.1 Synchronization in a Nutshell

In order to introduce basic notions and definitions about synchronization regimes, consider

a a simple harmonic oscillator with output

x(t) = A(t) sin (2πft+ φ) , (1.1)

where t is absolute time, f is the oscillator frequency and φ is the oscillator phase at t =

0 in radians. The quantity θ(t) = 2πft + φ is also called the instantaneous phase of

the oscillator. By neglecting amplitude dynamics, A(t) = A, the oscillator is a system

described by a scalar state variable, the instantaneous phase, θ(t). When the oscillator

is isolated, the phase increments with a speed proportional to the oscillator frequency in

rad/s 2πf , dθ(t)/dt = 2πf . More general models accounting for amplitude dynamics and

chaotic behaviors are possible, but they are out of the scope of this brief introduction. The
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time function (or local time) associated with x(t) is

τ (t) =
f

f0

t+ β, (1.2)

where f0 is the nominal frequency of the oscillator and β = φ/ (2πf0) is the phase in

seconds. Because of inaccuracies in the manufacturing process, the actual frequency is

always different from the nominal one, f 6= f0. The phase β depends on the instant at which

the oscillator was started. A digital clock is implemented by driving a counter register

with a voltage x(t). At the end of each period (e.g., on positive-going zero-crossings),

the register value is incremented, i.e., the clock ticks. The value displayed by the

register is therefore a quantized version of (1.2). In this work, quantization effects will

be often neglected, and τ (t) will be considered as the clock output signal. Given the

strict relationship between τ(t) and x(t), there will be no distinction between clocks and

oscillators in the following. From this simple definitions, the possible synchronization

regimes of a couple of clocks τ1 (t), τ2 (t), are the following (refer to Figure 1.2):

a) asynchronism: clocks run independently with different frequencies f1 6= f2 and

different phases β1 6= β2.

b) frequency synchronization: clocks differ for the phase, but they run at the same

frequency f1. Consider two subsequent time instants ta and tb. Frequency

synchronization implies that the duration of the time interval (tb − ta) is measured

coherently by both clocks, namely

τ1 (tb)− τ1 (ta) = τ2 (tb)− τ2 (ta) =
f1

f0

(tb − ta) . (1.3)

c) phase (and frequency) synchronization: phase synchronized clocks display the same

time at every instant t, τ1 (t) = τ2 (t). Phase synchronization naturally implies

frequency synchronization .
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Figure 1.2 Synchronization regimes: a) asynchronous clocks; b) frequency synchronized
clocks; c) phase (and frequency) synchronized clocks. Clock ticks are represented as
periodic pulses.
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i
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θi(∞)

Figure 1.3 Representation of phase oscillators as spheres rotating on a circle: a)
uncoupled and b) coupled case (steady-state regime).

Depending on the application, synchronization may be superfluous, frequency

synchronicity may suffice, or both phase and frequency synchronization may be requested.

Before treating applications, the following section introduces basic mathematical models

of coupled oscillators.

1.2 Models of Coupled Oscillators

Since Winfree’s work [2], researchers have striven to devise mathematical models suitable

to predict the dynamics of biological oscillators. Most of the efforts have concentrated on

autonomous synchronization phenomena arising from mutual coupling mechanisms. On

the other hand, master-slave configurations are the typical design choice in engineering

practice, whereby an accurate oscillator (the master) drives the phase of a lower-quality

clock (the slave). If the coupling is well-designed, the slave oscillates synchronously (or in-

lock) with the master at steady-state. In the following, two general models for coupled (non-

chaotic) oscillators are introduced, the phase oscillator and the integrate-and-fire oscillator,

which have found application both in biology and in engineering researChapter

The phase oscillator model has been first proposed by Kuramoto [4]. By neglecting

amplitude dynamics, the state of an oscillator can be represented as the position of a sphere

rotating on a circle (see Figure 1.3.a). The instantaneous angular position of the sphere,

θi(t), corresponds to the instantaneous phase of the oscillator output. The angular speed of
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the sphere, instead, is determined by the oscillator frequency in rad/s, 2πfi. When coupled,

oscillators tune their frequency based on the phase offset with respect to their neighbors.

Kuramoto proposed a sinusoidal sensitivity function to describe the dynamics of the generic

node
dθi(t)

dt
= (2πfi) +

K

N

N∑
j=1

sin (θj(t)− θi(t)) , (1.4)

where node j is in the set of neighbors of i, j ∈ Ni, and K is the coupling strength.

Kuramoto proved that, if the coupling K is large enough, node frequencies are pulled into

a frequency synchronous regime. This means that, if the observer’s viewpoint is moved

on a frame rotating at the convergence frequency f ∗, the spheres appear motionless on

the circle, at a fixed angular distance (phase offset) from each other (Figure 1.3.b). In

particular, global frequency synchronization is achieved if the coupling strength is larger

than the maximum frequency offset with respect to f ∗, K/2π > maxi |fi − f ∗|.

The simple Kuramoto model (1.4) finds relevant application in engineering systems.

Consider an electrical oscillator, such as the passive resonator oscillator in Figure 1.4.a,

with natural frequency f0 = 1

2π
√
LpCp

. The frequency of the sinusoidal current I0(t)

produced by the active element may be tuned by introducing (or by injecting) within the

circuit a sinusoidal current at frequency finj: Iinj(t) = Iinj sin (2πfinjt). Injection locking

was first studied by Adler [5], who derived the following equation for the dynamics of the

phase of the slave oscillator

dθ0(t)

dt
= 2πf0 +

Iinj
I0

πf0

Q
sin (2πfinjt− θ0(t)) , (1.5)

where I0 and θ0(t) are the peak amplitude and instantaneous phase of I0(t) and Q is the

quality factor of the resonator. With injection coupling, the coupling strength K =
Iinj
I0

πf0

Q

depends on the oscillator implementation through the quality factor Q. Remarkably,

Adler’s equation (1.5) is the equivalent of the Kuramoto equation (1.4) for the case

of master-slave coupling. As in Kuramoto’s case, the slave oscillator locks with the
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active 
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Figure 1.4 Injection locking of a passive resonator oscillator: a) equivalent parallel circuit;
b) oscillation and injection frequencies f0, finj , with respect to the locking range fL.

injected signal if the coupling strength is sufficiently large, K/2π > |f0 − finj|. In

fact, a fundamental parameter for the analysis of injection locking is the locking range

fL =
Iinj
I0

f0

2Q
(see Figure 1.4.b).

When a more refined control over the slave’s frequency and phase is needed, phase-

locked loops (PLL) are to be preferred to injection coupling [6] (see Figure 1.5). A PLL

is a control circuit that tunes dynamically the frequency of a voltage controlled oscillator

(VCO) based on the phase difference between the master (or reference) oscillator and the

VCO. PLL’s are common in modern RF transceivers, where they are mainly employed for

carrier frequency generation. The dynamic equation of a PLL with a proportional-integral

(PI) controller and a sinusoidal phase difference detector is

dθ0(t)

dt
= 2πf0 +KP sin (θr(t)− θ0(t)) +KI

ˆ t

0

sin (θr(τ)− θ0(τ)) dτ, (1.6)

where θr(t) is the reference phase, and KP and KI are the proportional and integral branch

gains, respectively. In the PLL nomenclature, the VCO controller is commonly called loop

filter. The loop filter can be modified according to design requirements. The number of

integrators within the PLL determines its type. As an example, a PLL with a PI controller

is a type 2 PLL, as it comprises two integrators: one in the loop filter and one in the VCO.

The sinusoidal PLL (1.6) has the same dynamics of an injection locked oscillator (1.5)

if KI = 0, but the coupling gain KP may be tuned by appropriately choosing the gains
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Figure 1.5 Block diagram of a phase-locked loop.
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pulse received

Κ

Figure 1.6 Integrate-and-Fire clock model.

of the VCO and loop filter [6]. Furthermore, the integral control allows a type 2 PLL

to synchronize to any reference frequency (i.e., it provides a theoretically infinite locking

range).

Notice that both injection locking and PLL techniques can be employed to realize

mutually coupled networks of oscillators. As an example, systems of mutually injection-

coupled oscillators have been studied to implement accurately phased antenna arrays [7].

In the phase oscillator model, oscillators are continuously coupled to each other

through their instantaneous phases. The integrate-and-fire (IF) oscillator model, instead,

has been proposed for those situations where oscillators are believed to be coupled by

discrete-time events, such as the spike of a neuron or the flash of a firefly. In the simplest IF

model, originally introduced in [8], oscillators are coupled with neighbors by the exchange

of periodic “pulses” (pulse coupling). Many variations of the model have been developed

over the years, see, e.g., the review in [9]. When the phase of oscillator i reaches the

threshold θi(t) = 2π, it “fires” a pulse to its neighbors and rewinds its phase back to

θi(t) = 0. Upon receiving a pulse from i, each of its neighbors j ∈ Ni advances its phase
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with

θj(t
+) = θj(t) +K∆ (θj(t)) , (1.7)

where ∆ (θ) is the coupling function. In the simplest case, depicted in Figure 1.6, it is

∆ (θ) = 1. Recall the phase model of Figure 1.3.a and let tk be the (absolute) time instant

where the i-th sphere crosses the positive horizontal axis for the k-th time. The IF model

is based on the observation that synchronization information is contained in the time series

{t0, t1, t2, . . .}. Remarkably, it has been shown (see, e.g., [9]) that the phase model and the

IF model are equivalent in the weak coupling regime, K � 1.

The sampled or digital PLL (DPLL) [10] is a discrete-time controller that tracks the

zero-crossings of the reference oscillator signal. Interestingly, its dynamics are the same

of master-slave IF oscillators with coupling function ∆ (θ) = sin (2π − θ). The dynamic

behavior of sampled and analogue PLL’s is also equivalent in the weak coupling regime,

KI < KP � 1 [6].

A third PLL type often encountered in network synchronization systems is the

software PLL (SPLL). SPLL allows the reference node to transmit synchronization

messages asynchronously by including the local clock value at transmission time within

the message itself. The clock controller at the receiving (slave) node is then implemented

in software, as inferred from the name.

1.3 Networks of Coupled Oscillators

The oscillator models of Section 1.2 were developed assuming that each oscillator can

interact with all others1 (full, or all-to-all connectivity). The interest in distributed

synchronization mechanisms was revived in recent years by the development of suitable

models to describe complex networks of dynamical systems [11], whereby each node

is sensitive only to a subset of the network nodes (neighbors). Network connectivity

1With master-slave topologies, this assumption means that all slaves are attached to a single master
node.
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determines which nodes can be coupled to each other (either mutually or in master-slave

fashion) and it can be represented as an undirected graph. Tools from graph theory have

allowed to categorize the various connectivity models that have arisen in researChapter A

brief overview of the most important connectivity models is hereby provided:

• Lattice graphs: the graph vertexes are deployed regularly as the nodes in a lattice

or a grid. The two most relevant cases are the two-dimensional grid (square grid

graph), and the one-dimensional grid (path graph or line network). The model may be

extended by allowing nodes to be connected with all neighbors within a connectivity

radius r.

• Random graphs: the graph is generated by some random process. Several variations

exist depending on the assumptions on the edge generation process. According to the

popular model first proposed by Gilbert, a link between any two nodes is established

with fixed probability p.

• Random geometric graphs: nodes are scattered uniformly and independently at

random in a bounded region (e.g., a square area). Two nodes are coupled if their

geometric distance is smaller than a fixed threshold (or connectivity radius) r. It has

been proved that dense random geometric graphs share important characteristics with

the lattice graph defined over the same region (and with the same connectivity radius

r).

• Small-world networks: introduced by Watts and Strogatz [11], these networks feature

a small shortest-path length between any couple of nodes (small-world effect), as for

random graphs. By contrast, lattices are also known as “large-world” networks, as

the average shortest-path length between a couple of nodes is the largest among all

types of graphs. Small worlds can be generated starting from a regular lattice, part

of whose links are “rewired” at random so as to connect nodes that were far away

from each other in the original graph. The reason of their importance relies in that
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small-world graphs appear to fit many real-world networks, such as social networks

of people, populations of firing neurons or chirping insects.

• Scale-free networks: first studied by Barabási and Albert [11], they constitute a

special case of small-world networks. “Scale-free” refers to the fact that the network

lacks a characteristic scale since the vast majority of its nodes has a small number of

connections (or degree), while a small minority of nodes (called hubs) features a very

high degree. It is conjectured that these networks cannot be created just by purely

random rewiring. Barabási and Albert devised a mechanism to generate scale-free

graphs called “preferential attachment”. Basically, rewiring is not performed at

random, but nodes connect preferably with other nodes having a high degree (a sort of

rich-get-richer mechanism). Preferential attachment is not the only generative model

for scale-free networks, and other algorithms have been devised recently. The general

scale-free model fits many real-world networks, both natural and artificial, such

as scientific collaboration networks, protein interaction networks, sexual partners

among humans, and the World Wide Web.

A wireless network comprises nodes scattered in a bounded area or volume. Also, nodes are

coupled with neighbors within a connectivity radius which depends on transmission power

and receiver sensitivity. From these observations, lattice and random geometric graph

models are often encountered for the analysis of wireless networks (see the discussion in

Chapter 2). The reader interested in more details about small-world and scale-free networks

is referred to the recent review in [12].

The connectivity graph describes which links can be activated in order to couple

the corresponding oscillators and build the synchronization network. The synchronization

network is forcibly a sub-graph of the connectivity graph, and it is in general a a directed

graph. In particular, two types of synchronization networks are found in practice: mutually

coupled (MC) and master-slave (MS) networks.
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a)

b)

Figure 1.7 Network synchronization topologies: a) Master-Slave and b) Mutually
Coupled.

In MS networks, (Figure 1.7.a) a single node is deployed with a precise reference

clock (master node). The master node stays at the top of a hierarchical topology whereby

nodes belonging to a lower layer adjust their local clocks given the synchronization

information from their parents.

In MC networks, (Figure 1.7.b) nodes are arranged in a peer-to-peer (or mutually

coupled) fashion: each node controls its local clock with the information received from

all its neighbors. In this case the synchronization network often coincides with the

connectivity graph. Also, mutually coupled topologies are typically employed to model

most of the synchronization phenomena observed in nature.

Research on distributed synchronization aims at understanding the interplay between

the synchronization network structure and the propensity of the network to synchronize.

Synchronization networks are also treated analytically with tools from algebraic graph

theory, see Chapter 2.



14

1.4 Network Synchronization in Wired Networks

Synchronization is a fundamental property in many fields of communication engineering,

ranging from RF transceiver design to time distribution based on atomic clocks. This

section reviews synchronization techniques employed in wired communication networks.

1.4.1 Digital Circuit-Switched Networks

In circuit-switched networks based on digital time-division multiplexing (TDM), synchro-

nization is a crucial facility in order to allow heterogeneous lower-rate bit-streams to be

conveyed on a single higher-rate transmission link. In fact, the frequency of the local clock

at a given node determines the actual bit-rate at the transmission interface. Clock frequency

differences between nodes in the network cause elastic buffers either to overflow or to

empty periodically (slip events) [13]. Asynchronous digital multiplexing systems, such

as those employed to implement the plesiochronous digital hierarchy (PDH) developed

in the 1960’s, employ bit justification techniques (also known as “pulse stuffing”) in

order to compensate for clock frequency offsets. Network-wide synchronization enables

synchronous digital multiplexing. Synchronous multiplexing systems, such as those

employed by the synchronous digital hierarchy (SDH), do not need bit justification, thereby

saving valuable transmission resources.

If the nodes have clear sky visibility, universal time and frequency transfer can be

realized via GPS (Figure 1.8). The GPS signal is referenced to universal time (UTC)

and can be employed to provide a stable time and frequency reference to a local clock.

GPS is often used as a backup synchronization facility in public switched telephone

networks (PSTN) and as the primary time and frequency reference for base stations in

2G/3G wireless cellular systems. When employing a single satellite as reference (time

dissemination configuration, Figure 1.8.a), the time offset estimation error depends on the

uncompensated propagation delay between the satellite and the local clock, and it has been

reported to amount to less than 100 ns [14]. Relevant improvements can be achieved by
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Figure 1.8 GPS time and frequency transfer: a) time dissemination and b) common view
configurations.

Stratum 1

Stratum 2

Primary Reference Clock (PRC)

controlled clock

control

Figure 1.9 Master-slave synchronization network employed for circuit-switched commu-
nication. Backup links are represented as dashed lines.

allowing two nodes to cooperate by exchanging their measured time offsets (common view

configuration, Figure 1.8.b). In this case one of the two clocks has a known relationship

to UTC and acts as the synchronization master for the other. By taking the difference of

the two measurements, most of the uncompensated propagation delay cancels out and the

offset estimation error (between master and slave) drops below 30 ns [14].

Whenever GPS is not available at all node locations, there is need for a distributed

network synchronization mechanism. In particular, SDH networks employ coupled PLL’s

to realize network time and frequency distribution [15][13]. During all the 1970’s and

1980’s there has been a long debate over which topology (either MS or MC) should have

been employed to implement the synchronization network for synchronous multiplexing
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systems. The adopted solution in SDH (and in most other cases) is a MS architecture as

the one in Figure 1.9, whereby a master node (primary reference clock - PRC) occupies the

top of a hierarchical topology which is divided in subsequent layers called strata. Nodes

belonging to a lower stratum (slaves) adjust their local clocks given the synchronization

information from upper layers by employing a PLL clock controller. The stability

and accuracy characteristics of the clocks at each stratum are defined by international

standards. In practical deployments, additional links (dashed lines in Figure 1.9) are

available for backup purposes in case of outage of the main links. MC architectures were

intensely investigated and found adoption in proprietary and military networks featuring

stringent requirements in terms of robustness to node failures, topology changes and

clock instabilities. In his seminal work [15], Lindsey and others proposed the use of

a well-connected (fully connected where feasible) MC network of PLL’s. According to

Lindsey’s design, each PLL employs as local reference a weighted average of the clock

signals from neighboring nodes. This configuration proved to be more robust against clock

frequency instabilities and path delays as compared to MS designs [15]. Nevertheless, the

MS topology is typically preferred in practical systems as it features simpler deployment

methodologies and easily predictable performance [13].

A complete review of frequency offset compensation and network synchronization

techniques for TDM networks (with a discussion on their suitability for specific network

topologies) can be found in [16].

1.4.2 Packet-Switched Networks

In packet-switched networks, distributed applications may require synchronization for

different purposes such as data timestamping, versioning control, and time-of-day services.

Also, industrial networks comprise distributed sensory and control systems that need a

common time-scale in order to timestamp sensed data and coordinate actions. Differently

from the case of circuit-switched networks, clocks may not extract synchronization
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information from electrical signals on wire2. Also, a GPS receiver may be too costly

or unfeasible due to the lack of clear sky visibility. In packet-switched networks such

as Ethernet local area networks (LAN) and the Internet, synchronization information is

exchanged by time-stamping packets at reception and transmission times and by inserting

these timestamps in their payload. A timestamp is a sample of the local clock taken at

packet transmission or reception time3. What undermines synchronization accuracy in

packet-switched networks is the delay in packet delivery. On the Internet, delays are caused

by queuing in intervening routers, while heavy traffic loads may trigger retransmissions in

LAN’s employing contention-based channel access mechanisms. Delays are in general

asymmetric and time-varying because of route changes and traffic load variations. The

random delay component is referred to delay jitter or packet delay variation (PDV).

Synchronization algorithms usually aim at estimating and compensating the deterministic

delay component and filtering out the random PDV. The two most prominent protocols

are the network time protocol (NTP) [17] and the recent IEEE 1588 or precise time

protocol (PTP) [18]. NTP is an application-layer protocol for TCP/IP networks, currently

developed by IETF. NTP messages are transported as a payload in UDP packets, and NTP

clocks are organized within a hierarchical MS structure (NTP sub-network) analogous to

Figure 1.7.a. PTP targets relatively localized systems and aims at synchronizing real-time

clocks for industrial automation and circuit-switching emulation. PTP messages can be

transported by UDP or they can be directly inserted in the payload of Ethernet frames.

PTP is also based on a MS topology. Both protocols assume that the deterministic

delay component is symmetric, and they estimate it by means of pair-wise handshakes

(returnable time approach) as in Figure 1.10. NTP messages can carry multiple timestamps,

and the exchange follows the client-server paradigm, while PTP messages carry only

2An exception is the recent Synchronous Ethernet system (SyncE), which synchronizes clocks on a
Ethernet LAN by feeding the physical electrical signals on the transmission line to a PLL, just as in
SDH circuit-switched networks. Unfortunately, it is not possible to synchronize heterogeneous wide
area networks (WAN) with SyncE, a limitation that currently affects its widespread application.
3The clock sampling operation is sometimes called clock capture when referred to hardware clocks.
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Figure 1.10 Timestamp exchange for a) NTP and b) IEEE 1588 (PTP). Timestamps
carried within messages are shown between brackets.

�����������������������������������������������������������������������
�����������������������������������������������������������������������
�����������������������������������������������������������������������
�����������������������������������������������������������������������
�����������������������������������������������������������������������
�����������������������������������������������������������������������
Server 1

���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������

PD
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������

PD
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������
���������������������������������������������������

PD

������������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������
������������������������������������������������������������������������

Selection

�������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������
�������������������������������������������������������������������������������������������

Combining

��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������

Filter

�����������������������������������������������������������������������
�����������������������������������������������������������������������
�����������������������������������������������������������������������
�����������������������������������������������������������������������
�����������������������������������������������������������������������
�����������������������������������������������������������������������
Server 2

�����������������������������������������������������������������������
�����������������������������������������������������������������������
�����������������������������������������������������������������������
�����������������������������������������������������������������������
�����������������������������������������������������������������������
�����������������������������������������������������������������������
Server 3

VFO

Figure 1.11 NTP clock control algorithm (VFO - variable frequency oscillator).

a single or no timestamps at all (depending on the message type), and the exchange

performed in a master-slave fashion. Another important difference is that NTP controls

the operating system software clock, while PTP controls the hardware clock in the network

interface card (NIC). Hardware assist makes PTP timestamps more accurate than NTP

timestamps as it clears out additional delays due to packet processing and OS interrupt

management. In particular, the timestamp is captured right after the preamble of the

PHY layer frame, before the start of the MAC layer header. The clock control law

adopted by the Network Time Protocol (NTP), is based on a discrete-time software

PLL4 (see Figure 1.11), which is designed by exploiting the analogy with an analogue

PLL mentioned before. Also, the conventional PLL design is augmented with peer

selection and combining functions. In particular, the peer selection procedure provides

resilience to potential attackers (“falsetickers”) and individuates correct time providers

(“truechimers”). The clock control algorithm for PTP is not specified in the standard and it

4The design of the NTP software PLL is actually complicated by the intrinsic asynchronism of time
message exchanges.
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is therefore implementation-dependent. In any case, selection and combining functions are

not necessary as the standard requires a slave node to select a single reference master once

and for all. The rationale behind this is to keep the slave as simple as possible, in contrast

with NTP, where the algorithm intelligence is all in the client. In [19], the authors propose a

simple clock control algorithm tailored for the implementation of PTP on a Ethernet. NTP

maintains a maximum time error with respect to UTC of 10 ms over the public Internet, and

less than 200 µs over a LAN in ideal conditions. PTP is reported to achieve accuracies in

the sub-microsecond range over a LAN thanks to hardware timestamping support. Finally,

the theoretical resolution of NTP timestamps (i.e., the smallest measurable time interval) is

232 ps, while it is 1 ns for PTP.

1.5 Network Synchronization in Wireless Networks

Motivations

In a wireless network, network-wide synchronization enables crucial features at different

layers of the protocol stack:

• Physical layer: Cooperative communication. Cooperation among independent

nodes allows to employ distributed (or cooperative) communication techniques at

the physical (PHY) layer in order to convey a single information stream to one

or multiple receivers. If perfect cooperation is possible, a group of cooperating

devices can utilize all the signal processing and coding schemes originally devised

for co-located antenna arrays, thereby defining a virtual antenna array (VAA). In

particular, link reliability and resilience to channel fading can be improved by imple-

menting distributed space-time codes (DSTC). A STC consists in a set of permutation

and simple processing operations that cooperating nodes have to perform on the

information stream to be transmitted. Lack of symbol-time synchronization among

cooperating nodes causes inter-symbol interference (ISI) at the receiving node,

thereby degrading code performance (Figure 1.12). Recent works have proposed to
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Figure 1.12 Occurrence of inter-symbol interference (ISI) when employing distributed
space-time codes (DSTC) with lack of symbol-time synchronization.

enhance resilience to ISI by employing orthogonal frequency division multiplexing

(space-time OFDM - ST-OFDM) or time-reversal STC (TR-STC) [20]. While

time synchronization at the PHY layer may be superfluous, the opposite is true

for carrier frequency synchronization. Carrier frequency offsets (CFO) among

transmitting nodes cause relevant signal distortion on the receiving side, and need

to be compensated by suitable synchronization techniques. In the simple case of

Figure 1.12, one of the two cooperating nodes can serve as reference for the other,

but such an approach entails a rapidly increasing overhead as the cooperating cluster

gets large. A de-centralized frequency synchronization algorithm needs to be devised

in order to guarantee the necessary scalability with the number of nodes.

• MAC layer: Coordinated medium access. In wireless sensor and ad-hoc networks,

all nodes employ the wireless medium for communication. Therefore, medium

access needs to be disciplined either by a distributed or a centralized medium

access control (MAC) protocol. Efficient MAC protocols divide the time resource

into super-frames, which are further divided into smaller time-slots (time division

multiple access - TDMA). A node may contend with others for access to a particular

time-slot, or it can be assigned a dedicated resource by a centralized or distributed

scheduling mechanism. In both cases, slot time synchronization is crucial to avoid

accidental packet collisions (Figure 1.13.a), or the employment of excessive guard

times. The fulfillment of this requirement is particularly demanding when nodes
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Figure 1.13 Slotted medium access access in presence of a) imperfect and b) perfect slot
timing. Packets and corresponding active links are matched with the same number. Dashed
lines connect each transmitter with interfered receivers.

are allowed to turn off the RF transceiver for long periods (“sleep” mode), and they

are unable to update synchronization as frequently as requested by the stability of

the local oscillator. Notice that, in systems employing frequency division multiple

access (FDMA), carrier frequency synchronization is also relevant at the MAC layer.

• Application layer: Distributed sensing. An appealing application of large-scale

sensor networks is the distributed sampling of space-time signals (Figure 1.14) for,

e.g., geophysical prospecting and target localization. Correct reconstruction of the

space-time signal requires nodes to be time synchronized sufficiently well to avoid

unwanted aliasing effects.

Functional view of synchronization

In order to perform diverse tasks at different layers, a wireless sensor node is usually

equipped with one or more local oscillators. The essential block diagram of a generic

wireless device is depicted in Figure 1.15. It comprises a RF transceiver and a micro-
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controller unit (MCU) connected by a dedicated bus. In this example, oscillator 1 serves

the RF transceiver by generating (through appropriate synthesizers) both the carrier signal

for RF up/down-conversion and the clock employed for sampling and processing of digital

baseband signals. Oscillator 2 drives two timers necessary for MCU operation. Timer 1

is employed by the medium access control (MAC) process to determine the start of access

time-slots and to regulate the sleep cycle of the transceiver module. Timer 2 can be used

by the operating system in order to provide a system clock to applications or other routines

(e.g., sampling and actuation functions). In practice, more complicated configurations are

typically encountered as, for example, the PHY layer may need to be coordinated with

MAC layer timing (e.g., the symbol clock may be required to be in sync with MAC slot

start time [21]).

This thesis focuses on lower layers, namely on the PHY and MAC layer. In particular,

the results in this work comprise techniques to compensate CFO at the physical layer and

to achieve time synchronization at the MAC layer. The clock output signals of interest for

these purposes are highlighted in Figure 1.15. The next section provides a brief review on

synchronization techniques for CFO compensation and time synchronization in wireless

networks.

1.6 State of the Art

Conventional synchronization techniques entail several drawbacks that impair their appli-

cation in WSN. The cost of a GPS receiver is excessive in terms of price and consumed

energy. Furthermore, sensors are not under clear sky visibility in indoor deployments,

and GPS signal reception is easily impaired even outdoor by, e.g., tree branches. Radio

clocks based on short-wave terrestrial broadcast are typically not accurate enough (with

a maximum time error of 1 ms) and require to increase the size of devices significantly.

NTP does not satisfy complexity and accuracy constraints because of its client/server

architecture and the employment of software timestamps (but it supports duty cycles as
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Figure 1.16 Synchronization in centralized wireless communication systems: a) network
topology and b) TDMA super-frame structure.

low as one packet per day). Tentative implementations of PTP on sensor networks have

been proposed (see, e.g., [22]), but there are still serious concerns about its scalability in

large WSN. For these reasons, WSN constitute a new regime for network synchronization

[23], and require the development of new synchronization techniques.

1.6.1 Synchronization in Wireless Communication Systems

Most wireless communication systems in operation are based on a centralized network

structure, whereby an access point5 (AP in Figure 1.16.a) manages the nodes that are

within its transmission range. Multiple AP’s are connected through a wired backbone

infrastructure in order to guarantee network-wide connectivity. In this context, the AP

is the natural reference for synchronization purposes. As far as frequency synchronization,

each terminal may easily estimate its CFO from the preamble of packets received from the

5The denomination of the AP may change depending on the context: e.g., in a cellular network it is
called “base station”, while in a WSN it is called “network coordinator”.
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AP. Frequency synchronization between AP’s is required only by cellular communication

systems in order to support handovers from one cell to the other, and it is usually

provided by a GPS receiver. Time synchronization is necessary whenever medium access

is organized into time-slots, in particular with TDMA protocols, whereby the AP reserves

each time-slot to a specific terminal. Typically, nodes obtain time synchronization through

a signaling channel. As an example, in networks based on IEEE 802.11 [24] and 802.15.4

[25] the AP transmits a signaling frame (also called “beacon”, see Figure 1.16.b) at the

start of each super-frame. By tracking the transmission time of the beacon frame, each

node maintains time synchronization with the AP. In cellular systems, propagation delays

are estimated by the AP and communicated to each terminal in order to be compensated

(timing advance mechanism). IEEE 802.11 wireless LAN’s, in the absence of a network

coordinator (Independent Basic Service Set - IBSS), prescribe each node to contend for

beacon transmission at the start of a new super-frame [24]. Specifications require to adjust

the local clock by employing Lamport’s algorithm [26], which retains some similarities

with the pulse-coupling mechanism of IF oscillators.

WSN and ad-hoc networks, instead, extend over multiple hops and cannot rely on

a pre-existing wired infrastructure. Sensor networks based on ZigBee/IEEE 802.15.4

[27][25] guarantee network-wide connectivity by organizing nodes in a cluster-tree

topology (see Figure 1.17.a). Each cluster has a local coordinator, and coordinators of

different clusters are organized in a fixed hierarchy. The cluster coordinator acquires

synchronization from its parent in the hierarchy, and in turn provides a time reference

to nodes within its cluster by transmitting a beacon frame in a reserved beacon slot.

The ECMA 368 standard for high-rate personal area networks [28] allows a flat mesh

architecture (see Figure 1.17.b), whereby each node is reserved a beacon slot for signaling

and synchronization purposes. Each node adjusts its local clock so as to be synchronized

with the slowest clock in the network. In both cases, the beacon slot allocation procedure

is a critical functionality that determines network performance, see, e.g., [29][30]. TSMP
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Figure 1.17 Synchronization in multihop wireless network with a) cluster-tree topology
(ZigBee) and b) mesh topology (ECMA 368).

[31] is a TDMA protocol which does not make use of beacons. When receiving, a node

measures the offset of packet reception time with respect to the expected slot start time. If

necessary, measured offsets are piggybacked to the transmitter within the acknowledgment

(ACK) frame. In order to distribute a network-wide time reference, TSMP organizes

nodes in a tree structure. TSMP is at the basis of the WirelessHART [32] standard for

industrial automation and IEEE 802.15.4E, the forthcoming amendment to 802.15.4 MAC

specifications (also known as time-synchronized channel hopping MAC - TSCH). It is

important to emphasize that all the above mentioned standards prescribe the use of accurate

hardware-assisted timestamps.

1.6.2 Protocols for Distributed Synchronization

All of the works reviewed in this section focus on time synchronization. To the best of

the author’s knowledge, distributed CFO compensation had not been considered before.

When targeting time synchronization, local time is translated to network (absolute) time

by compensating the local clock signal for phase and frequency offsets. Distributed



27

algorithms are able to estimate the parameters of the local clock by employing observations

of (local) pair-wise timing offsets. Recently, a number of works have applied Master-Slave

(MS) and Mutually Coupled (MC) synchronization architectures to realize distributed

synchronization in wireless networks, see, e.g., the reviews in [33][34][35]. Notably, a

number of works has proposed the use of periodic RF pulses in place of timestamps for

time information dissemination.

The first protocols to emerge were based on MS topologies. The timing-synch

protocol for sensor networks (TPSN) [36] was the first to propose to exploit the enhanced

accuracy of hardware timestamps to estimate pair-wise phase offsets. The flooding

time-synchronization protocol (FTSP) [37] improved over the performance of TPSN

by correcting frequency offsets through pair-wise linear regression. FTSP entails also

increased communication overhead as it requires nodes to transmit multiple timestamps

at a time. This feature enables the receiving node to filter out most of the residual

communication delays. FTSP achieves a typical time error of a few microseconds. In order

to reduce uncertainties due to transmission delays, the reference broadcast synchronization

(RBS) protocol [38] employs the same approach of GPS common view configuration

in Figure 1.8.b (also called receiver-receiver synchronization to distinguish it from the

conventional approach or sender-receiver synchronization). In this case, the role of the

GPS satellite is covered by a third cooperating node. RBS estimates pair-wise phase

and frequency offsets by linear regression. Notably, RBS can be adapted to handle more

general topologies. Improvements to the original RBS protocol may be found in [39].

Servetto [40] was the first to propose the use of periodic RF pulses in place of timestamps.

Synchronization with RF pulses is appealing due to the possibility of exploiting the

properties of the radio channel, whereby signals transmitted over the air superimpose with

a significant reduction of synchronization overhead. In [40] synchronization pulses (or

pilot sequences of pulses) from multiple parents superimpose at the receiver by the nature

of the radio channel. A receiving node can estimate its clock parameters by averaging
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the received pulses and by applying linear regression to the resulting observations. The

algorithm may be extended to dense (i.e., well-connected) MC networks by assuming that

phase offsets average out in the limit of infinite nodes, thereby giving rise to an observable

reference clock.

An algorithm tailored for hybrid MS/MC networks was proposed in [41]. As in the

previous protocols, each node estimates first pair-wise phase and frequency offsets with

respect to its neighbors. By observing that absolute phase and frequency offsets can be

written as a linear combination of pair-wise offsets, clock parameters can be computed by

solving a linear system of equations with a distributed (Jacobi-like) algorithm.

The usage of MC topologies has been inspired by natural phenomena, where large

populations of oscillators are entrained by wireless signals such as flashing lights (fireflies)

and chirps (crickets). In an effort to mimic nature, most of the previous works in the area

propose the use of periodic RF pulses for time and frequency synchronization. The IF

pulse-coupling mechanism was the first to be considered for employment in WSN by [42].

Unfortunately, the basic IF model does not provide an easy way to jointly compensate

both phase and frequency offsets, and it provides only frequency synchronization. For

this reason, [43] considered the use of a PLL clock controller, as suggested by previous

experience in the field of digital circuit-switched networks [15]. In particular, [43] adopted

a discrete-time type 1 second-order PLL, which was demonstrated to correct both frequency

and phase offsets, up to a residual phase mismatch which depends on loop parameters. The

algorithm of [43] can be improved by employing a type 2 PLL (i.e., a PI controller), which

provides full phase and frequency synchronization. Stability and steady-state accuracy of

a MC network of type 2 PLL’s were studied in [44][45], along with the use of timestamps

instead of RF pulses. In particular, the clock control scheme in [45] is closely related

to the one employed in NTP, and it could be extended to support fully asynchronous

(i.e., non periodic) timing message exchanges. The algorithm developed by [46] adopts

a distributed frequency offset estimation algorithm which is based on consensus strategies.
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The frequency estimation algorithm is operated jointly with a PLL for full phase and

frequency correction. Finally, the protocol proposed by [47] is similar to a type 2 PLL,

but there the frequency of the local clock is controlled in a nonlinear fashion. The authors

of [47] prove that the algorithm is robust against packet collision events, and it is therefore

tailored for implementation with contention-based medium access schemes.

1.7 Outline of the Thesis and Contributions

In this thesis, network synchronization is approached by employing clock control

algorithms based on the concept of phase and frequency locked loops (PLL and FLL). The

performance of these rather classical methods is analyzed in the novel context of multihop

wireless sensor networks (WSN). In particular, this work focuses on synchronization both

at the physical and at the MAC layer. The structure of physical and MAC layer frames

dramatically affects the way nodes are allowed to exchange synchronization information

and this needs to be taken into account in the design and analysis of synchronization

algorithm. On the other hand, WSN offer a wider flexibility in the design of the

synchronization architecture. A specific architecture may be even chosen dynamically

depending on the network topology. For this reason, the performance of synchronization

algorithms are evaluated on both MC and MS synchronization networks. The main

contributions of the present work are the following:

• At the physical layer, the focus is on frequency synchronization issues arising when

employing distributed space-time coding techniques (Chapter 3). An algorithm

based on distributed FLL (DFLL) is developed in order to compensate CFO among

an ensemble of nodes. A suitably designed frequency difference detector extracts

synchronization information from the preamble of PHY layer frames while the

control loop adjusts the frequency of the local oscillator. Stability conditions are

provided and the steady-state accuracy of a network of DFLL’s is evaluated for MC
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and MS topologies. The effects of CFO and frequency synchronization are analyzed

on a multi-hop relay network employing distributed orthogonal space-time codes.

• At the MAC layer, the focus is on time synchronization issues arising with TDMA

protocols. Firstly, synchronization acquisition is studied (Chapter 4) during the

network set-up phase. Since MS networks achieve synchronization in finite time, the

focus is on MC topologies and consider three transmission strategies for the exchange

of synchronization-related information: superposition (pulse-coupling), contention

and reservation-based beacon transmission. Sufficient conditions for stability of

the considered access strategies are derived, and it is verified that superposition

yields fastest convergence. Next (Chapter 5), the focus is on the steady-state

accuracy attainable by distributed synchronization algorithms during normal network

operation. The case of beacon-enabled TDMA protocols is considered, whereby

syncrhonziation is based on the periodic transmission of beacon frames. The

performance of distributed synchronization based on PLL clock control is compared

with a distributed regression algorithm for the estimation of clock parameters and

with the Cramer-Rao lower bound (CRLB) for the observation model at hand.

Closed-form expressions are provided for the accuracy of PLL’s over regular MC

networks and for the performance of distributed regression over general networks.

Simulation results show how MC topologies are more suited for networks with good

connectivity, while MS architectures achieve reasonable accuracies also on poorly

connected graphs. Finally, the case of beacon-less TDMA protocols is considered.

These protocols are typically employed when the network operates under very low

duty cycles (Chapter 6). In this case, synchronization is performed along with data

communication. Also, node clocks cannot be considered stable and their frequency

is randomly time-varying due to, e.g., changing environmental temperature. The

frequency tracking performance of a type 2 PLL and a joint PLL/FLL (P/FLL)

algorithm is investigated and compared with conventional techniques based on
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(rough) temperature compensation (temperature compensated clocks - TCC). In

particular, analytical expressions are derived concerning the attainable tracking

accuracy over regular MC networks and it is shown by simulations that PLL and

P/FLL techniques are superior to TCC.

In more detail, the outline of the thesis is as follows.

Chapter 2: This chapter contains some mathematical concepts used throughout the

thesis. In particular, the clock model and the network topological models are presented

from the point of view of both graph theory and linear algebra.

Part I - Synchronization at the Physical Layer

Chapter 3: The establishment of a common frequency reference in a wireless

network is a critical factor in enabling any degree of node cooperation in communication

and sensing functions. This chapter introduces distributed frequency-locked loops (D-

FLL) to synchronize the frequencies of autonomous nodes with wireless communication

capabilities. D-FLL’s are connected within a synchronization network that may be

organized with a peer-to-peer (MC) or hierarchical (MS) topology. The stability of the

D-FLL synchronization network is investigated considering the use of a suitable frequency

difference detector. The accuracy of frequency tracking is also analyzed in detail for

two sample network topologies. D-FLL’s prove to be a robust and accurate technique

for frequency synchronization purposes that can be readily employed with any network

architecture. This chapter is based on

• N. Varanese, O. Simeone, U. Spagnolini, Y. Bar-Ness, “Distributed frequency-locked

loops for wireless networks”, in proc. International Symposium on Spread Spectrum

Techniques and Applications (ISSSTA), Bologna, Italy, Aug. 25-28 2008.
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• U. Spagnolini, N .Varanese, O. Simeone, Y. Bar-Ness, “Distributed digital locked

loops (D-DLL) for time/frequency locking in packet communications”, in proc.

International Symposium on Personal, Indoor and Mobile Radio Communications

(PIMRC), Cannes, France, Sept. 15-18 2008 (invited paper).

• N. Varanese, U. Spagnolini, Y. Bar-Ness, “Distributed frequency locked loops for

wireless networks”, submitted to IEEE Trans. on Communications (second revision

round).

Part II - Synchronization at the MAC layer

Chapter 4: Network synchronization at the MAC layer can improve the performance

of wireless networks by enabling the use of slotted medium access protocols, such

as TDMA. Distributed synchronization is an appealing technique to achieve network

synchronization in wireless ad-hoc and sensor networks. At the MAC layer, different

signaling techniques and medium access protocols may be employed for synchronization

information. This chapter evaluates the impact of the use of reservation, contention and

superposition access protocols on the convergence rate of distributed synchronization based

on phase-locked loops (PLL). Contention and superposition are random access protocols,

and almost sure convergence can be guaranteed by studying convergence in the mean. Also,

an approximation of the convergence rate of random access protocols is proposed based

on numerical results. Finally, the performance of the considered protocols over a regular

square grid network is compared via simulations. The results of this chapter have been

extended from

• N. Varanese, Y. Bar-Ness, U. Spagnolini, “On the synchronization rate of distributed

medium access protocols”, in proc. Conference on Information Sciences and

Systems (CISS), Princeton, NJ USA, Mar. 17-19 2010.
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Chapter 5: This chapter considers a TDMA medium access protocol, where synchro-

nization is obtained by the periodic transmission of beacon frames. The study focuses on

the accuracy attainable by employing distributed synchronization techniques. In particular,

the focus is on two different approaches to the solution of the distributed synchronization

problem. The first (closed-loop algorithm) is based on the distributed control of local

clocks trough a type 2 phase-locked loop (PLL), while the second (open-loop algorithm) is

based on the distributed estimation of the phase and frequency offsets of the local clocks.

Both protocols are shown to be suitable for implementation over mutually-coupled (MC),

master-slave (MS), and hybrid synchronization networks. The synchronization accuracy of

the open-loop algorithm is derived for all topologies of interest, while for the accuracy

of the closed-loop algorithm exact analytical results are available only for regular MC

networks. The performance of practical algorithms is then compared with the Cramér-Rao

lower bound (CRLB) for the problem at hand. Results show that distributed algorithms are

inefficient with respect to the CRLB over peer-to-peer topologies, whereas they achieve

the accuracy limit over MS hierarchical architectures. Finally, the performance of MC

and hybrid topologies improves rapidly when increasing network connectivity, while MS

proves to be the best choice in poorly connected networks. Part of the results in this chapter

are contained in

• N. Varanese, U. Spagnolini, Y. Bar-Ness, “On the accuracy of distributed synchro-

nization algorithms for wireless networks”, in preparation for submission to IEEE

Trans. on Signal Processing.

Chapter 6: This chapter focuses on TDMA MAC protocols where nodes activate their

transceiver with a very low duty-cycle. Signaling and synchronization information

is exchanged along with data and ACK messages (beacon-less protocol). With low

duty-cycles, local clocks are subject to relevant frequency changes driven by environmental

temperature variations. This chapter analyzes the capability of adaptive clock control

algorithms to track frequency instabilities. In particular, two algorithms are considered,
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namely a type 2 PLL with a proportional-integral controller and a type 1 PLL equipped with

an independent frequency tracking loop (P/FLL). The performance of adaptive tracking

techniques is checked against a conventional approach based on improving clock accuracy

by the compensation of frequency changes due to environmental temperature variations

(temperature-compensated clock - TCC). Adaptive designs are shown to be competitive

with respect to the employment of TCC’s since they effectively track frequency variations

at smaller duty-cycles, while they filter out clock noise at larger duty cycles. Also, when

communication activity is extremely low, optimal loop parameters do not depend on the

transceiver’s duty-cycle. The results of this chapter are contained in

• N. Varanese, U. Spagnolini, Y. Bar-Ness, “Synchronization tracking in wireless

sensor networks with low duty cycles”, in preparation for submission to IEEE Trans.

on Communications.

Chapter 7: This chapter summarizes the results of the thesis and concludes by suggesting

possible future extensions to the presented work.



CHAPTER 2

SYSTEM MODEL

This chapter introduces general assumptions about the clock and synchronization network

models employed throughout the subsequent chapters of the thesis. Furthermore, algebraic

tools are presented in order to describe complex graphs. These tools will be instrumental

in the analysis of the syncrhonziation algorithms under consideration.

2.1 Oscillator and Clock models

An oscillator is a dynamical system, whose output is (in absence of noise sources) a

periodic signal. A typical model for the oscillator output is

x(t) = A sin (φ (t)) , (2.1)

where φ (t) is the instantaneous phase. A general model for φ (t) is [13]

φ (t) = φ (0) + (1 + α +Dt) 2πf0t+ υ (t) , (2.2)

where α is the fractional frequency offset (oscillator accuracy), D is the frequency drift,

υ (t) is the phase noise random process and f0 is the nominal frequency. In a general

radio transceiver, an oscillator with f0 ' 10-30 MHz is employed as reference to generate

the RF carrier and internal timing signals for the physical layer circuitry (and often also

for MAC layer functions). In sensor networks, the transceiver may be turned off for long

periods for energy saving purposes. In applications with low duty-cycle, the high-frequency

oscillator is turned off along with the radio, and sleep timing is provided by a low-power

low-frequency oscillator (typically a quartz crystal oscillator at f0 = 32 kHz). Depending

on the manufacturing process, at t = 0 a real oscillator outputs a signal at a frequency f

slightly different from the nominal one, f = f0 + ∆f , where ∆f = αf0. The accuracy α

35
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Table 2.1 Clock Accuracies Required by Different Wireless Communication Systems
(for the Air Interface), Including Aging and Dependence on Environmental Conditions.
Requirements for Cellular Systems Refer to the Base Station Clock

Technology Clock accuracy

3GPP GSM, W-CDMA (UMTS),

LTE

5 · 10−8 (50 ppb), wide area

10−7 (0.1 ppm), medical/local area

2.5 · 10−7 (0.25 ppm), home area (femtocell)

3GPP2 CDMA2000 5 · 10−8 (50 ppb)

IEEE 802.16 (WiMAX) 10−6 (1 ppm)

IEEE 802.11 (Wi-Fi) 10−4 (100 ppm)

IEEE 802.15.4 (ZigBee) 4 · 10−5 (40 ppm)

ECMA-368 (WiMedia) 2 · 10−5 (20 ppm)

WirelessHART 10−5 (10 ppm), recommended

Quartz Crystal Oscillator (XO)
' 10−4 (100 ppm)

over industrial temperature range

is equal to the fractional oscillator frequency offset at t = 0, α = ∆f/f0, and it is usually

expressed in µs/s (or equivalently, in ppm with respect to the nominal frequency f0). The

frequency of an oscillator changes over time (t > 0) due external factors, mainly because

of environmental temperature variations and aging. The drift D accounts for the oscillator

aging and it is typically expressed in ppm/year. It is important to remark that specifications

in current standards prescribe a minimum accuracy that takes temperature and aging effects

into account. Typical required accuracies for oscillators employed in wireless networks are

listed in Table 2.1. The strict accuracies required for the clocks of Base Stations in cellular

systems are typically satisfied by employing a GPS receiver or by deriving a stable clock

source from the backhauling circuit-switched network. Notice that systems employed for

local area and sensor networks require much looser accuracies, in the [10, 100] µs/s range
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(i.e., [10−4, 10−5] µs/µs), which are achievable with a quartz crystal oscillator (XO). Phase

noise υ (t) is a correlated random process due to the short-term frequency instability of the

oscillator, and its power spectral density (PSD) is typically close to a power-law model,

see, e.g., [13].

A time clock is composed by an oscillator and a b bits counter register. The start

of a new cycle of the oscillator signal triggers an increment (a clock tick) of the counter

register. The nominal time between two ticks is the clock granularity, or clock precision.

In the class of protocols of interest, clock granularity ranges roughly from1 1 µs to 100 µs.

The value of the counter at time t corresponds to the local time-scale τ(t),

τ(t) =
φ (t)

2πf0

+Q (t) (2.3)

= β + (1 + α) t+Dt2 + δ(t), (2.4)

where Q (t) is the quantization error due to the granularity of the counter register, β =

φ (0) / (2πf0) is the initial clock phase, and δ(t) = Q (t) +υ (t) / (2πf0) is the clock jitter,

which is the sum of the effects of quantization error and phase noise. Quantization error

Q (t) is typically assumed to be a stationary white random process. In the time distribution

nomenclature, it is more appropriate to denote with jitter only the white component of

δ(t), while the portion of the phase noise PSD closer to the oscillation frequency (typically

within 10 Hz) is referred to as frequency wander. Frequency wander is mainly caused by

external factors such as environmental temperature variations. The quantity dτ(t)
dt

is called

either timing skew or clock frequency. A clock is stable (over a pre-defined limited time

interval) if wander and drift are negligible, and therefore its frequency can be considered

constant. A common model for a stable clock is

τ(t) = β + (1 + α) t+ δ(t), (2.5)

1The typical length of the clock register is between b = 24 bits (IEEE 802.15.4) and b = 64 bits
(IEEE 802.11). Clock granularity can be dynamically tuned in IEEE 802.15.4, while it is 1 µs in
IEEE 802.11 [24] (local time (practically) never folds).
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where δ(t) is a white noise process. In the following, clock frequencies are adimensional

(or, equivalently, expressed in µs/µs), unless noted otherwise.

2.2 Connectivity Models for Large Sensor Fields

The deployment of a large number of sensors on a wide area is required by specific

applications such as geophysical prospecting, road and industrial structure monitoring and

control, environmental and proximity control. The nodes are assumed to be deployed

on a rugged bi-dimensional surface. Also, it is assumed that only line-of-sight (LOS)

communication is possible and that multipath propagation is negligible due to the absence

of relevant obstructions to propagation between nodes. Link quality between any pair of

nodes (i, j) can be therefore modeled by the Friis transmission equation

Pr = PtGi (θi, φi)Gj (θj, φj)
∣∣ai · a∗j ∣∣2( λ

4πdij

)2

, (2.6)

where Pt is the transmission power (in mW), Gi (θi, φi) is the antenna gain in the direction

(θi, φi) from which i sees j, Gj (θj, φj) is the antenna gain in the direction (θj, φj) from

which j sees i, ai, aj are the polarization vectors of i and j, and λ is the wavelength at the

carrier frequency. Reliable communication is possible between node i and node j if the

following condition on received power is satisfied

10 log10 Pr > γ̄dBm +mdBm, (2.7)

where γ̄dBm is the receiver sensitivity and mdBm is an interference and fading margin, both

expressed in dBm. If it is further assumed that antennas are matched in polarization and

well-pointed, (2.6) reduces to Pr = P0/d
2
ij , where P0 = PtG

2
(
λ
4π

)2, and (2.7) implies

dij < r = P010−
γ̄dB+mdB

10 , (2.8)

where r is the transmission range. The condition (2.8) is the basis of the so-called

geometric connectivity model. Whenever the assumption of ideal propagation character-
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istics is verified, the ring model is a satisfying description of network connectivity as it

captures the fact that a given node is able to exchange synchronization information only

with its nearest neighbors.

If nodes are placed outdoor on rough terrain, the ring model becomes optimistic, and

it is needed to resort to the general formula (2.6).

2.3 Synchronization Network Models

A network of K nodes is considered where each node runs an independent clock τi(t).

From the clock model of Section 2.1, two synchronization regimes can be identified,

namely time and frequency synchronization. A network is time synchronous if τ1 = τ2 =

. . . = τK = τ0, where τ0 defines the network reference time. A network is frequency

synchronous if α1 = α2 = . . . = αK , or equivalently f1 = f2 = . . . = fK = f0, where f0

defines the network reference frequency. Clearly time synchronization implies frequency

synchronization.

It is useful to model the topology of the synchronization network as a weighted

directed graph G = (V , E) of order K, where V = {1, .., K} is the set of nodes (graph

vertexes) and E ⊆ V × V is the set of links (graph edges). Generally, it is assumed a

geometric connectivity model, whereby (i, j) ∈ E if the distance between the two nodes is

smaller than the transmission radius r. The transmission radius depends on the employed

transmission power, receiver sensitivity and channel model. It is assumed that the first Ku

nodes are provided with independent time-scales and need to be synchronized, while the

remaining Kr = K −Ku nodes have access to a stable universal time reference (e.g., they

are deployed with a GPS receiver). The reference (or master) nodes are grouped in the set

M⊂ V , while the rest of the nodes (slaves) are part of the set S = V \M. The neighbors

of a slave node i ∈ S are the nodes from which i receives synchronization information, and

the neighbor set isNi = {j|(i, j) ∈ E}. Note that the neighbor setNi includes both master

and slave nodes. Links between slave nodes are weighted by the off-diagonal elements of
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Figure 2.1 Synchronization network topologies: a) Master-Slave and b) Mutually
Coupled.

the Ku×Ku adjacency matrix [A]i,j = aij ([A]i,i = 0). If a link exists from node j to node

i, {(i, j) ∈ E , i, j ∈ S}, the corresponding weight ai,j 6= 0. The Ku×Kr master adjacency

matrix [M]i,j = mij is similarly defined, whose elements weight the links from a master to

a slave node, {(i, j) ∈ E , i ∈ S, j ∈M}. In the following, it is assumed that master nodes

have access to a stable universal time and frequency reference, so that βi = αi = 0 and

τi(t) = t if i ∈M.

Topologies of synchronization networks fall into three categories:

Master Slave (MS): nodes are organized in a hierarchical structure as in Figure 2.1.a.

Master nodes occupy the top layer, while slave nodes receive synchronization information

according to the predefined hierarchy. The network time and frequency reference is given

by the master nodes’ clocks, τk = τ0, fk = f0, k ∈ M. MS graphs may take the form

of a tree (for a single master, |M| = 1), or a forest (for multiple masters, |M| > 1).

Also, each node may be allowed to be coupled to multiple parents. MS topologies

are widely employed for synchronization in wired communication networks (e.g., digital
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circuit-switched telephone networks [13] and the Internet [17]). In fact, MS networks are

easy to implement and to analyze since they are a direct extension of the single master-slave

case. The main drawback of a hierarchical structure is its scarce resilience to node failures:

if the master node of a tree network breaks down, synchronization is irremediably lost. In

the following, it is always assumed that there are no isolated nodes in MS graphs (i.e., the

master(s) can reach any node in the network).

Mutually Coupled (MC): the network is deployed without any master node, |M| =

0, and slave nodes are coupled in a peer-to-peer fashion as in Figure 2.1.b. MC topologies

have been first proposed in the 70’s by Lindsey [15], because they improve network

synchronization stability and are highly robust to node failures. Only recently, MC

architectures have attracted widespread interest for their applicability to wireless networks,

where the availability of a decentralized and robust synchronization mechanism could

be vital. In a MC setting, there is no universal reference and each node influences

the synchronization process. Synchronization occurs when all nodes agree on the same

reference time-scale τ0 and frequency f0. In general, when employing synchronization

algorithms over a MC network, τ0 and f0 depend on the characteristics of each clock

and on the underlying graph topology. In many cases, it is seen that the reference time

and frequency can be suitably defined as the node-wise instantaneous average time and

frequency τ0(t) = 1
K

∑K
i=1 τi(t), f0(t) = 1

K

∑K
i=1 fi(t). In general, the definition depends

on the specific network topology at hand and needs to be restated for each case. Any MC

network reaches network synchronization from any initial state if the underlying directed

graph G is strongly connected2 (sufficient condition) [48]. In the following, MC graphs are

always assumed to be strongly connected.

Hybrid: the network is deployed with some master nodes, |M| 6= 0, but slave nodes

are still coupled in a peer-to-peer fashion as in the MC case. This network architecture

was first proposed in [49] and comprises the previous ones as special cases. It retains the

2A directed graph is said to be strongly connected if there exist a directed path (i.e., a collection of
edges in E) connecting any pair of nodes in the graph.
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robustness of MC thanks to the peer-to-peer coupling while allowing for universal time and

frequency distribution.

2.4 Algebraic Description of Synchronization Networks

One of the purposes of this thesis is to analyze the performance of distributed

synchronziation algorithms in relation with the specific network topology. To this end,

the synchronization network can be mathematically described by means of the algebraic

tools hereafter introduced. First of all, let the in-degree of node k be defined as the sum of

the weights of all incoming links, di =
∑K

j=Ku+1mij +
∑Ku

j=1 aij . The Ku×Ku Laplacian

matrix is defined as L = D−A [50], whereA is the adjacency matrix previously introduced

in Section 2.3, and D is the diagonal matrix of in-degrees, D = diag (d1, d2, . . . , dKu). If

the graph has symmetric weights, aij = aji, L is symmetric. In network synchronization, it

is common to make use of the normalized Laplacian, defined as D−1L = I−D−1A, where

D−1A is recognized as the transition matrix of the natural random walk over the graph G

[51]. The eigenvalue spectra of these matrices is particularly relevant for the analysis of

synchronization algorithms. It is easily verified that the normalized Laplacian is similar

to the symmetric matrix3 D−
1
2 LD−

1
2 . Therefore, both L and D−1L have real eigenvalues.

By Gershgorin’s theorem, it can be verified that the eigenvalues of both matrices are also

nonnegative, and that the spectrum of the normalized Laplacian is comprised within the

interval 0 ≤ λk(D
−1L) ≤ 2, while for the Laplacian it is 0 ≤ λk(D

−1L) ≤ dmax, dmax

being the largest node degree. Finally, if G is a regular graph, i.e., if all nodes have the

same degree, d1 = d2 = . . . = dKu = d, the normalized Laplacian is symmetric as well

D−1L = 1
d
L.

In the case of MS networks, L and D−1L are full-rank and can be turned into a

triangular form by permutation of columns and rows. In particular, it can be shown that the

permutation operation does not change the elements on the main diagonal, and therefore

3Notice that the matrix D−
1
2 LD−

1
2 is also often referred to as the normalized Laplacian.
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the eigenvalues of L coincide with node degrees, while the eigenvalues of D−1L are all

equal to 1. In the case of tree graphs, the permutation turns L and D−1L directly into a

Jordan block form, and the two matrices cannot be diagonalized. This property reflects the

fact that MS networks arise by connecting dynamical systems in a cascade fashion.

In the case of MC networks, L and D−1L are singular as it holds (by construction)

L1 = (D−A) 1 = 0, where 1 is the all-ones vector. This property also implies that 1

is the right eigenvector associated with the zero eigenvalue for both L and D−1L. If link

weights are symmetric, 1TL = 0, i.e., 1 is also the left eigenvector for the zero eigenvalue

of L. For the normalized Laplacian, instead, it is easily verified that the left eigenvector

depends on node degrees, in particular it is vTD−1L = 0 where [v]i = di/ (
∑

i di). If the

graph is connected, the zero eigenvalue is unique and the Laplacian can be diagonalized

by eigenvalue decomposition (EVD). Let the EVD of L and D−1L be defined as L =

VBV−1 and D−1L = UCU−1, respectively. The eigenvectors of D−1L correspond to the

generalized eigenvectors of L and D, and it is U = D−
1
2 V since D is positive-definite

[52]. The nonzero eigenvalues of the Laplacian spectra depend on graph properties, and

in particular the second smallest eigenvalue λ2(L) reflects network connectivity (the better

the network is connected the larger is λ2(L)). The next section provides some insights on

the properties of the spectrum of MC graphs.

2.5 The Spectrum of MC Networks

The computation of the Laplacian spectrum poses in general insurmountable difficulties,

except in few special cases, such as regular graphs. The graph of an MC network is regular

if all nodes have the same number of neighbors, or equivalently the same degree d1 = d2 =

. . . = dKu = d. The simplest example of a regular graph is the ring network. This section

intends to show that the spectrum of a regular graph can indeed approximate the spectrum

of a general graph with similar local connectivity properties. In particular, the focus is

on a regular deployment, whereby nodes are located at unitary distance from the nearest
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Figure 2.2 Example topologies: a) mutually coupled (MC) ring and b) master slave (MS)
line networks of K nodes. The distance between nodes is normalized to unity and the
transmission radius is r = 1 (nearest neighbor connectivity).

neighbor (unitary node density). Consider first a (regular) ring network of K nodes as in

Figure 2.2.a. In this case, the Laplacian matrix L
(r)
K is a circulant Toeplitz matrix, defined

by its first row c. The eigenvalues of a circulant matrix are the DFT coefficients of c [53],

λi(L
(r)
K ) =

K−1∑
n=0

cne
−j2π i

K
n. (2.9)

If each node can reach d neighbors (dk = d) with unitary edge weights, i.e., r = d/2 and

[A]ij = 1 if |i − j| ≤ N and [A]ij = 0 otherwise, from (2.9) the Laplacian spectrum is

found to be

λi(L
(r)
K ) =

(
1 +

1

d

)
− 1

d

sin
(
π (d+ 1) (i−1)

K

)
sin
(
π (i−1)

K

) (2.10)

for i = 1, . . . , K. As expected, the smallest eigenvalue is λ1(L
(r)
K ) = 0. The second

smallest eigenvalue, which is an index of network connectivity, is

λ2(L
(r)
K ) =

(
1 +

1

d

)
− 1

d

sin
(
π (d+1)

K

)
sin
(
π 1
K

) , (2.11)
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and it is proportional to node degree d and inversely proportional to network size K. If the

degree is let grow with the network size, d = αK, λ2(L
(r)
K ) is still decreasing for increasing

K, but for an infinite network size it converges to λ2(Lr
∞) = 1 − sin (πα) / (πα). By

approximating the sine as sin (x) ' x− x3/6, (2.1) simplifies to

λ2(L
(r)
K ) ' π2

6

(
d

k

)2(
1 +

3

d

)
. (2.12)

Now consider a (non regular) line network of K nodes (Figure 2.2.b) employing the

same transmission range r and associated Laplacian matrix L
(l)
K . In this case the nodes

can not have all the same degree, as the edge nodes have no neighbors on one side. It can

be shown that, for growing network size, i.e., K → ∞, the sequence of matrices L
(l)
K is

asymptotically equivalent to L
(r)
K ,

lim
K→∞

1√
K

∥∥∥L(l)
K − L

(r)
K

∥∥∥
F

= 0, (2.13)

where ‖B‖F is the Frobenius norm of B, and therefore their eigenvalues are asymptotically

equally distributed [53]. This property guarantees that the eigenvalues of L
(l)
K and L

(r)
K

will behave similarly in large networks, as it is illustrated in Figure 2.4, where the ordered

spectra of a line and ring network are plotted for increasing K and r = 5. Notice that, due

to the properties of the Laplacian matrix, λ1(L
(l)
K ) = λ1(L

(r)
K ) = 0 for any network size K.

Clearly, the asymptotic equidistribution property does not imply that the two spectra will

converge pointwise. In fact, it is always true that a ring network has a better connectivity

than a line network, λ2

(
L

(r)
K

)
> λ2

(
L

(l)
K

)
.

If the network size is fixed and the transmission radius r is increased, instead, the

Laplacian spectrum would converge in both cases to λk
(
L

(l)
K

)
= λk

(
L

(r)
K

)
= 1 + 1

K+1
,

i.e., the spectrum of a network with full all-to-all connectivity. The spectrum convergence

is plotted in Figure 2.4 for a line and ring network of K = 50 nodes. It can be seen that

small eigenvalues converge more slowly than the rest.
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It can be shown that the same properties hold also for the bidimensional case,

whereby nodes are deployed over a planar (2D lattice) or toroidal domain (2D regular

graph). Also, it is conceivable to extend the asymptotic equivalence in (2.13) from

deterministic to random geometric graphs. In fact, it is known that, for a sufficiently large

transmission radius r, a random geometric graph is regular with high probability [54]. As

shown in [55], the transition matrix of a natural random walk over a random geometric and

a regular deterministic graph are asymptotically equivalent as long as the random graph is

connected with high probability.



Part I

Synchronization at the Physical Layer
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CHAPTER 3

DISTRIBUTED CARRIER FREQUENCY SYNCHRONIZATION

At the physical layer, cooperative communication techniques require independent nodes to

generate RF signals with the same carrier frequency. In the analysis of virtual antenna

arrays (VAA) systems (e.g., those employing distributed space-time codes - DSTC),

cooperating nodes are typically assumed to be frequency synchronous. In practice, the

limited accuracy and stability of real oscillators defies this assumption, and the carrier

frequency of a given transceiver is different from the nominal one and continuously

time-varying. Therefore, distributed synchronization techniques are needed in order

to compensate and track carrier frequency offsets (CFO) when employing cooperative

communication schemes.

Most of the work in the area of network synchronization has dealt with synchro-

nization at higher layers via transmission and reception of signaling packets carrying

timestamps. Inspired by the pulse-coupling mechanism in IF oscillators, [42] first proposed

to realize time synchronization at the physical layer, through the exchange of periodic

RF pulses. The protocol presented in [43], while exploiting pulse-coupling principles, it

employs a more refined clock controller based on a second-order type 1 DPLL, generalizing

classical work on networks of analogue PLL’s [15]. Despite its importance, the feasibility

of distributed frequency synchronization algorithms at the physical layer has not been

carefully investigated yet. Recently, [56] has studied the problem of estimating and

adjusting the carrier frequencies in a two-transmitters-one-receiver system employing

distributed Alamouti space-time code. The algorithm cannot easily scale to a higher

number of nodes as it relies on the assignment of specific pilot sequences to each node.

This chapter proposes a distributed approach to frequency synchronization in a

wireless network which is based on frequency-locking principles: each node controls the

49
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frequency of its clock by a frequency-locked loop (FLL) while the clock phase is arbitrary.

A signaling channel is considered, whereby nodes exchange synchronization information

with neighbors by transmission of unmodulated pilot tones. There is no need to provide the

nodes with different pilot sequences. The local frequency correction is based on a weighted

sum of frequency offsets as a result of the combination of the received signals operated by

a suitably designed frequency difference detector (FDD). It is shown that a network of

Distributed FLL’s (D-FLL’s) is flexible enough to acquire frequency synchronization with

both MS or MC architectures (with a proper setting of FLL parameters). In particular, for a

sufficiently high SNR, the algorithm stability is not impaired by either pilot length or phase

noise. After acquisition, the network of multiple D-FLL’s tracks frequency instabilities and

channel noise by acting as a frequency-selective filter. It is proved that MC architecture is

equivalent to the parallel connection of FLL’s, and that provides a smooth distribution of

synchronization error among nodes. On the other hand, MS architectures correspond to a

series connection of FLL’s and imply error accumulation along the chain.

The chapter is organized as follows. Section II presents a FDD design that is able to

compute a frequency correction from the superposition of pilot tones. Section III analyzes

the conditions under which a D-FLL network equipped with the proposed FDD is able to

acquire frequency synchronization. Steady-state tracking accuracy is analyzed in Section

IV for general topologies by taking into account both channel noise and the frequency

instability of local oscillators. The results are specialized in Section IV-A for a MC ring

network, and in Section IV-B for a MS line network. The frequency acquisition rate of a

MC network equipped with the proposed FDD is compared in Section V with an alternative

detector design by simulations. The accuracy of frequency synchronization with MC and

MS architectures is compared for a line network. Finally, Section VI concludes the chapter.



51

3.1 System Model

3.1.1 Distributed Frequency-Locked Loops (D-FLL)

Each node employs a frequency-locked loop (FLL) to control its clock frequency dynam-

ically. A FLL is a discrete-time dynamic system whose state variable is the local frequency

fk[n]. A D-FLL is designed so that fk[n] is controlled by the weighted sum of frequencies

of neighboring nodes
∑

i 6=k pk,ifi[n], where
∑

i 6=k pk,i = 1. A common and practical choice

for the weights is pk,i = ak,i/dk, where ak,i is the weight for the edge (k, i) in the topology

graph G and dk is the degree of node k: dk =
∑

i 6=k ak,i. The local frequency error

ēk[n] =
(∑

i 6=k pk,ifi[n]
)
− fk[n] follows from the frequency difference detector (FDD):

ēk[n] =
1

dk

∑
i 6=k

ak,i (fi[n]− fk[n]) . (3.1)

The frequency of the k-th node is updated with the linear correction

fk[n+ 1] = fk[n] + εēk[n], (3.2)

the parameter ε is the loop gain. The update rule (3.2) is a first-order discrete-time FLL

as any memory in the loop is not necessary for frequency locking [6]. At equilibrium,

fk[n + 1] = fk[n] and the error is ēk[n] = 0. The frequency synchronization network

under analysis is composed of multiple distributed FLL’s (D-FLL’s) whose connections are

described by the topology graph G. In the following, D-FLL’s are employed to achieve

frequency synchronization in a network of nodes with radio communication capabilities.

Recall that frequency is a parameter embedded in a pilot tone transmitted by each node

according to a synchronization protocol as described below.

3.1.2 Synchronization Protocol

It is assumed that a common network time-scale is maintained by implementing a suitable

network time synchronization algorithm, see, e.g., [42][43] and the survey [35]. Therefore,

the time axis can be divided into frames of duration TF seconds as in Figure 3.1. Each
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Figure 3.1 Frame structure and network operation.

frame corresponds to one D-FLL iteration, and comprises a certain number of time-slots

each of duration T0 seconds. In every time-slot, each node may either transmit, receive

or sleep (i.e., turn off its transceiver for energy saving purposes). When receiving during

a time-slot, a node computes the frequency error with respect to transmitting neighbors.

At the end of the frame, the frequency offsets are combined as in (3.1) in order to obtain

the frequency correction εēk[n] in (3.2) used for the next frame. To simplify, nodes are

assumed to be provided with full duplex capabilities and to have their transceiver always

turned on. Given this assumption, each node both transmits and receives at the same time,

and there is no need for more than one time-slot per frame (i.e., TF = T0). This assumption

simplifies the analysis without affecting in any way applicability and conclusions to more

general medium access protocols (see, e.g., [57]).

The base-band model of the synchronization signal transmitted by node k during the

n-th frame is

xk(t;n) = ej(2πfk[n]t+φk[n]), (3.3)

where φk[n] is the carrier phase (the time-slot length is assumed large enough to neglect

the modulating pulse). When employing BPSK modulation, the signal (3.3) corresponds

to a long sequence of 1’s, i.e., all nodes employ the same pilot sequence. Notice that
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the local frequency fk[n] is controlled by the D-FLL, while the phase φk[n] is a random

process due to the oscillator phase noise. In the following, φk[n] is assumed to be

stationary and uniformly distributed in [−π, π). The wireless channel between any pair

of nodes (i, k) is modeled as a time-invariant complex scalar gain hk,i = |hk,i| ejψk,i . The

channel amplitude incorporates the transmission power PT (the same for all nodes) and it

is inversely proportional to the geometric distance between nodes Dk,i: |hk,i|2 = PTD
−α
k,i ,

reciprocity holds with |hk,i| = |hi,k|. From (3.3), it is clear that the local carrier frequency

fk[n] is a parameter embedded in the pilot signal xk(t;n). In the next section, a suitable

frequency difference detector is designed in order to compute the desired error signal ēk[n]

of (3.1) from the received signal samples.

3.2 Design of the Frequency Difference Detector

The FDD has to approximate the frequency error estimate (3.1) in order to implement D-

FLL’s under the assumptions on network and node operation of Section 3.1. At node k, the

received RF signal is down-converted to base-band by mixing with the current frequency

fk[n] and sampled at frequency 1/Ts. As a consequence, the received sampled base-band

signal in the n-th time-slot is

yk (mTs) =
∑
i 6=k

|hk,i|ej(2π(fi−fk)mTs+φk,i) + zk (mTs) , (3.4)

for m = 0, . . . , L− 1, where the total number of samples within a time-slot is L = T0/Ts,

zk (mTs) ∼ CN (0, N0/Ts) are additive white Gaussian noise (AWGN) samples, and φk,i

is the overall phase offset between the i-th and k-th node. Due to the uniform distribution

of φi, φk,i is also uniform on [−π, π).

The error to be used by the D-FLL is (Appendix 3.A)

ēk =
1

4πTsr̃y (0)
Im {r̃y (Ts)− r̃y (−Ts)} . (3.5)
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Figure 3.2 Block diagram for a FLL employing a Digital Balanced Quadricorrelator
(DBQC) as detector; yk(t) =

∑
i 6=k |hk,i| cos (2πfi[n]t+ φk,i) + zk(t) is the RF received

signal, while the normalized loop gain ε̄ = ε/ (2π(L− 1)Tsr̃y[0]). VCO stands for
Voltage-Controlled Oscillator (VCO).

where r̃y (lTs) is the (unbiased) sample autocorrelation of yk (mTs). For L odd (L ≥ 3),

(3.5) reduces to

ēk =
1

2π (L− 1)Tsr̃y (0)

L−3
2∑
i=0

Im

{(
yk ((2i+ 2)Ts)− yk ((2i)Ts)

)
y∗k ((2i+ 1)Ts)

}
,

(3.6)

with r̃y (0) = 2
L−1

∑L−3
2

i=0 |yk ((2i+ 1)Ts) |2. Notice that the detector (3.6) processes the

aggregated received signal samples yk (mTs) directly, and it does not separate the different

contributions in any way. By substituting yk (mTs) = Re {yk (mTs)} + jIm {yk (mTs)}

in (3.6), it is possible to see that the FDD (3.5) may be implemented as in Figure 3.2.

In particular, the scheme in Figure 3.2 is a Digital Balanced Quadricorrelator (DBQC).

Analog BQC [58] have been employed in the past for frequency offset estimation with

analog and digital modulations (in the latter case when timing synchronization was

not available). The frequency error (3.1) could also be evaluated by using DFT-based

spectral methods. DFT-based techniques achieve coarse frequency synchronization, as

their frequency resolution is limited by the number of available samples [59], as shown
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by simulation results in Section 3.5. Other techniques, such as Fitz and L&R frequency

estimators [58], could be employed as FDD, at the price of a higher implementation

complexity.

In the next section, it is shown under which conditions the frequency correction

computed by the DBQC detector induces frequency synchronization in a network of

D-FLL’s.

3.3 Frequency Acquisition

The transient phase from start-up to network synchronization (up to a prescribed accuracy)

is usually dubbed frequency acquisition. The D-FLL network is said to be asymptotically

stable if, in the absence of noise, zk (mTs) = 0, it can reach the synchronization state as

n → ∞, f1[∞] = f2[∞] = . . . = fK [∞] = f0, for any initial condition fk[0]. Given

the signal model (3.4) and the frequency difference detector (3.5), this section studies

the stability of frequency acquisition in a D-FLL network. Let the frequency spread be

defined as the maximum pair-wise frequency offset, ∆f = maxi,j |fi − fj|. At start-up,

the frequency spread may be quite large (typically up to 0.1/Ts), and it is progressively

decreased by the action of D-FLL’s. By plugging the input signal expression (3.4) in (3.6),

after some algebra the error (3.5) becomes

ēk[n] =
1

2πTsdk[n]

∑
i 6=k

ak,i[n] sin
(

2π (fi[n]− fk[n])Ts

)
, (3.7)

where the weight ak,i[n] = |hk,i|2 + bk,i[n] for the edge (k, i) depend on deterministic

attenuation |hk,i|2 and the random term bk,i[n],

bk,i[n] =
|hk,i|
L

∑
l 6=k,i

|hk,l| L−3
2∑

m=0

cos
(

2π (fi[n]− fl[n]) (2m+ 1)Ts + φk,i[n]− φk,l[n]
) .
(3.8)

The randomness of bk,i[n] is due to the random phase offsets φk,i[n], φk,l[n]. In particular,

E [bk,i[n]] = 0, and bk,i[n] → 0 as the number of samples L → ∞. As before, the node
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degree dk[n] is defined as dk[n] =
∑

i 6=k ak,i[n]. Comparing (3.1) with (3.7)-(3.8), it can

be seen that the actual detector characteristic (or S-curve [58]) is nonlinear and that the

edge weights contain a random component due to the superposition of multiple signals at

the detector input. In the following, it is shown that, under appropriate conditions, the

detector nonlinearity and the randomness of the edge weights do not impair the stability of

the frequency acquisition process.

As discussed in Section 2.3, Master-Slave (MS) synchronization networks are

equivalent to the connection of D-FLL’s in a hierarchical fashion. In a chain network,

for example, each node adjusts its frequency so as to follow the frequency of the preceding

node. Intuitively, if each FLL is stable, the whole network will be stable and each node

will ultimately acquire the frequency of the master node(s). In the following, the focus will

be on the stability of Mutually Coupled (MC) networks, whose analysis is more involved.

Furthermore, the stability of a single FLL (and thus of a whole MS network) may be studied

by specializing the following considerations. Two limiting cases are considered in which

the stability of frequency acquisition in MC networks can be characterized.

Large observation window: If L→∞ (or T0 →∞), each D-FLL is a deterministic

nonlinear dynamical system of the form

fk[n+ 1] = fk[n] + ε
1

2πTsdk

∑
i 6=k

ak,i sin
(

2π (fi[n]− fk[n])Ts

)
, k = 1, . . . , K, (3.9)

with ai,k = |hk,i|2. The periodicity of the S-curve could cause spurious effects, possibly

leading a node to lock on a frequency that is outside the system bandwidth (false lock

event). The maximum frequency spread ∆fmax that guarantees no false locks in the

network is defined as the locking range. In [60] it was noticed that, for a MC topology

with all-to-all connectivity, a sufficient condition to avoid false locks in (3.9) is fi[0] ∈

(γ − 1/4Ts, γ + 1/4Ts), where γ is an arbitrary frequency. Therefore, the locking range

of the DBQC detector for an all-to-all topology is ∆fmax = 1/2Ts. In a classical

single-master/single-slave system Fitz and L&R detectors have maximum locking range
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∆fmax = 1/2Ts and 1/Ts, respectively [58]. Other results on stability of a system

analogous to (3.9) can be found in [61][60].

Large sample rate: For large sample rate as compared to the frequency spread,

1/Ts � ∆f , (3.7) can be linearized as

fk[n+ 1] = fk[n] +
ε

dk[n]

∑
i 6=k

ak,i[n] (fi[n]− fk[n]) , k = 1, . . . , K. (3.10)

Notice that without any assumption on the number of available samples L, the weights

ak,i[n] are random and time-varying as in (3.7). Let the normalized graph Laplacian be

defined as L[n] = I − D[n]−1A[n], where the adjacency matrix A[n] was defined in

Section 2.3, and D[n] = diag (d1[n], d2[n], . . . , dK [n]) is the diagonal degree matrix. By

defining the vector containing the frequencies of all nodes as f [n] = [f1[n], ..., fK [n]]T ,

(3.10) becomes

f [n+ 1] = f [n]− εL[n]f [n] = Wε[n]f [n]. (3.11)

The system matrix Wε[n] = I − εL[n] is a i.i.d random matrix process with unitary row

sums Wε[n] ·1 = 1. This property guarantees that the synchronization state f [n] = f01 is a

fixed point of the random iteration (3.11). The system (3.11) is a random linear dynamical

system that has been widely investigated in stochastic control theory [62]. Given the

reference frequency for a MC topology f0[n] = 1
K

1T f [n], the vector of synchronization

errors with respect to the reference f0[n] is ∆[n] = (I− J) f [n], where J = 1
K

11T . It can

be shown that the dynamic of ∆[n] is ruled by the recursion

∆[n] = Pε[n− 1]∆[n− 1], (3.12)

where Pε[n] = Wε[n] − JWε[n]. A suitable Lyapunov potential function for the system

(3.12) has been derived in [62], proving that a sufficient condition for almost sure stability

(i.e., convergence with probability 1) is that the eigenvalues of the matrix

Πε = E [Pε[n]⊗Pε[n]] (3.13)
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be inside the unit circle, where ⊗ denotes the Kronecker product and the average is taken

over the distribution of the phase offsets φk,i[n]. Therefore, if the loop gain ε is chosen so

that the largest eigenvalue satisfies λ1 (Πε) < 1, a.s. stability is guaranteed. This result is

important as it means that a proper choice of the loop gain ε implies that the randomness of

the weights ak,i[n] does not limit the attainable synchronization accuracy. It has been shown

in [54][63] that the constraint λ1 (Πε) < 1 is also necessary and sufficient for convergence

in the mean square sense, and that the mean square convergence rate of (3.12) depends on

λ1 (Πε).

3.4 Frequency Tracking

In steady-state, if the system is stable and noiseless as assumed in Section 3.3, node

frequencies are kept perfectly synchronized by the action of D-FLL’s so that f [n] = f01. In

practice, noise induces frequencies to fluctuate randomly around the synchronization state.

The tracking performance of a synchronization algorithm refers to its steady-state accuracy.

This section studies D-FLL frequency tracking by accounting for two noise sources, namely

channel noise introduced in Section 3.2 and the frequency noise of the local oscillator.

The channel noise zk (mTs) in (3.4) undermines the accuracy of the FDD frequency

estimate. In particular, the output of the FDD (3.7) during tracking may be written as

ēk[n] =
1

dk

∑
i 6=k

ak,i (fi[n]− fk[n]) + wk[n], (3.14)

where wk[n] is the frequency estimation error due to channel noise (or FDD noise). In

(3.14), as customary in PLL tracking analysis [58], the frequency spread is assumed to be

small enough, namely ∆f � 1/Ts, in order to neglect the detector nonlinearity. Also,

a small loop gain ε is typically employed during tracking operation in order to reduce

frequency fluctuations. Under these conditions, the random coupling term (3.8) is averaged

out, and it is possible to assume the weights in (3.14) to be deterministic, namely ak,i =

|hk,i|2. The normalization factor r̃y[0] in (3.6) is substituted by the received signal power
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dk =
∑

i 6=k |hk,i|
2, which can be estimated accurately by using pilot signals received over

multiple frames. Given the detector (3.6), the variance of the noise term wk[n] in (3.14) can

be approximated as (Appendix B)

Var (wk) '
1

4π2T 2
s (L− 1)2

(
N0

dkTs

)
+

1

8π2T 2
s (L− 1)

(
N0

dkTs

)2

. (3.15)

Not surprisingly, the noise variance is inversely proportional to the number of neighbors

of node k through dk. Also, by defining the SNR at node k as SNRk = dkTs/N0, it is

seen from (3.15) that the noise variance is O (1/L) at low SNR, while it is O (1/L2) at

high SNR. If all nodes have the same degree dk = d (i.e., the underlying graph is regular),

the FDD noise variance is independent of the node: Var (wk) = σ2
w. When studying loop

tracking, wk[n] is assumed to be a i.i.d. Gaussian process with variance (3.15).

Consider now the noise due to local oscillator instability. The frequency of a free-

running oscillator is a random process which is usually modeled as fk(t) = fc + ∆fk +

Dkt+ vk(t), where fc is the nominal oscillator frequency, ∆fk is a deterministic frequency

offset, Dk is the linear frequency drift in [Hz/s]. Frequency noise vk(t) is a correlated

random process due to the short-term frequency instability of the oscillator, and its power

spectral density is typically close to a power-law model, see, e.g., [13]. When the local

oscillator is controlled by a discrete-time FLL with updating time aligned to the frame

timing TF , frequency noise can be modeled as a discrete-time random process vk[n] =

vk(nTF ) added at the output of the NCO. If the duration of a frame TF is much larger

than the coherence time of vk(t), vk[n] can be modeled as a i.i.d. process with a Gaussian

distribution, vk[n] ∼ N (0, σ2
v) for all nodes.

Given the previous discussion, a D-FLL with noise sources may be represented as the

block diagram in Figure 3.3, where the weights pk,i = ak,i/dk,
∑

i 6=k pk,i = 1 (see Section

3.1.1). The Z-transform of the loop transfer function from the input
∑

i 6=k pk,ifi[n] to the

output fk[n] is

H(z) =
εz−1

1− (1− ε) z−1
, (3.16)
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Figure 3.3 A D-FLL model with all noise sources.

Stability of (3.16) implies ε ∈ (0, 2), andH(z) is low-pass if ε ∈ (0, 1), while it is high-pass

for ε ∈ [1, 2) without any attenuation, thus yielding indefinite noise accumulation inside

the loop. Therefore, ε ∈ (0, 1) is always a preferred choice. The error transfer function

from the input
∑

i 6=k pk,ifi[n] to the error ēk[n] is

G(z) =
1− z−1

1− (1− ε) z−1
= 1−H(z). (3.17)

This is also the transfer function from vk[n] to the output fk[n]. In general G(z) has a

high-pass characteristic. The Z-transform of the frequency fk[n] is

Fk (z) = H (z)

(
1

dk

∑
i 6=k

ak,iFi (z)

)
+Nk(z), (3.18)

where Nk(z) = H (z)Wk(z) + G(z)Vk(z) is the equivalent noise process. Recall that

if node k is a master node (k ∈ M) its frequency is assumed stable and known, i.e.,

fk[n] = f0, and therefore Nk(z) = 0. Network dynamics may be described concisely in

vector notation as

F (z) = H (z) D−1AF (z) + N(z), (3.19)

where the diagonal degree matrix D = diag (d1, d2, . . . , dK), and the adjacency matrix

A depend on synchronization topology, and F (z) = [F1 (z) , F2 (z) , . . . , FN (z)]T . From

(3.19), the matrix of cross-spectra for the vector process f [n] is

Sf (z) = E
[
F (z) FH (z)

]
=
(
I−H (z) D−1A

)−1
Sn (z)

(
I−H (z) D−1A

)−H
,

(3.20)
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Figure 3.4 Exemplary topologies: a) mutually coupled (MC) ring and b) master slave
(MS) line networks of K nodes. The distance between nodes is normalized to unity and
the transmission radius is r = 1 (nearest neighbor connectivity).

where Sn (z) is a diagonal matrix with [Sn (z)]k,k = 0 if k ∈ M (i.e., k is a master node),

and [Sn (z)]k,k = σ2
w |H(z)|2 + σ2

v |G(z)|2 if k /∈ M. Similar results can be found in [64]

for a network of continuous-time PLL’s. Correlation properties for any topology and loop

filter depend on (3.20). This is specialized in the next subsections for Mutually Coupled

(MC) ring network and a Master Slave (MS) line network (see Figure 3.4).

3.4.1 Mutually Coupled (MC) Ring Topology

In the case of MC topologies as the one in Figure 1.7.b, the analysis of the spectral matrix

Sf (z) is quite complex due to the bi-directional connections between nodes. Nevertheless,

if the network is connected, the normalized adjacency matrix D−1A may be factorized by

eigenvalue decomposition, viz. D−1A = UΛU−1, and the vector equation (3.19) can be

diagonalized

Φ(z) = (I−H (z) Λ)−1 Π(z), (3.21)

where Φ(z) = U−1F(z) and Π(z) = U−1N(z) = H (z) U−1W(z) + G(z)U−1V(z).

By defining ν[n] = U−1v[n] and ω[n] = U−1w[n], it is possible to compute the transfer
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Figure 3.5 Decomposition of MC network of D-FLL’s.

function for each noise component of (3.21) separately. Therefore, the dynamics of (3.21)

may be described by a set of parallel dynamical systems as the one in Figure 3.5. In fact,

the system in Figure 3.5 is similar to the D-FLL in Figure 3.3, the only difference being

the scalar feedback gain λk(L) = 1− λk(D−1A), where L = I−D−1A is the normalized

Laplacian matrix. The transfer functions from FDD noise ωk[n] and frequency noise νk[n]

components, to the output frequency ϕk[n] are, respectively,

Hk (z;λk (L)) =
εz−1

1− (1− ελk (L)) z−1
, (3.22)

and

Gk (z;λk (L)) =
1− z−1

1− (1− ελk (L)) z−1
. (3.23)

In general, Gk (z;λk (L)) 6= 1 − Hk (z;λk (L)). It is worthwhile to remark that for a

network with full all-to-all connectivity and unitary edge weights, ak,i = 1, the analysis

simplifies as the Laplacian spectrum is λk (L) = 1 + 1
K−1

for k = 2, . . . , K, and λk (L) '

1 for sufficiently large K. In this specific (though often impractical) case, the network

effectively corresponds to K parallel D-FLL’s.

The decomposition is particularly useful when the matrix D−1A is symmetric and

the eigenvector matrix is unitary: UUH = I, with U−1 = UH . This is the case of regular

networks as the ring network in Figure 3.4.a, where each node has the same degree d = 2.

Recall the definition of reference frequency for MC topologies f0[n] = 1
K

1T f [n], which

was introduced in Section 3.3. Since D−1A1 = 1, the frequency component ϕ1[n] =
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1√
K

1T f [n] is proportional to the reference frequency, ϕ1[n] =
√
Kf0[n]. The associated

feedback gain is λ1 (L) = 1 − λ1(D−1A) = 0, and thus this component undergoes a

random walk due to FDD noise, as pointed out by [65]. This fact does not constitute

a serious drawback for common D-FLL applications as long as the loop gain ε is small

enough. In order to gain insights, let the network mean square synchronization error be

defined as

ξ2 =
1

K

K∑
k=1

E
[
∆2
k[n]
]

=
1

K
E
[
‖∆[n]‖2] , (3.24)

where the synchronization error vector ∆[n] = (I− J) f [n], with J = 1/K11T . Since U

is orthogonal, (3.24) may be computed as ξ2 = 1
K

∑K
k=2E [ϕ2

k[n]] . Standard noise analysis

applied to the transfer functions (3.22)-(3.23) reveals that the synchronization error is

ξ2 =
1

K

K∑
k=2

[
σ2
wε

2

1− (1− ελk (L))2 + σ2
v

(
1 +

ε2λ2
k (L)

1− (1− ελk (L))2

)]
, (3.25)

where the Laplacian spectrum λk (L) of a ring network with nearest-neighbor connectivity

as the one in Figure 3.4.a is λk(L) = 2
(

1− cos
(

2π (k−1)
K

))
. The network error (3.25)

depends on all the spectral components of the Laplacian except λ1 (L) = 0. The error

(3.25) diverges as the loop gain ε→ 2/maxk {λk(L)}, but the choice ε ∈ (0, 1) guarantees

finite output noise as 0 ≤ λk(L) ≤ 2 for any MC topology (see, e.g., [66]). When ε is small

enough (ε→ 0), error (3.25) can be approximated as

ξ2 ' K − 1

K
σ2
v +

ε

2K

K∑
k=2

[
σ2
w

1

λk (L)
+ σ2

vλk (L)

]
, (3.26)

thus showing that it is possible to reduce the network mean square synchronization error

to any desired value by controlling the loop gain ε. The first term within brackets in

(3.26) (caused by FDD noise) is inversely proportional to λk (L), while the second term

within brackets (caused by frequency noise) is directly proportional to λk (L). For a given

loop gain ε, minimum synchronization error ξ2 is achieved when each eigenvalue of the

Laplacian spectrum λk (L) = σw/σv. If σ2
w = σ2

v , minimizing the synchronization error ξ2
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requires λk (L) = 1. This can be achieved by a dense synchronization network deployed

with full all-to-all connectivity. In general, increasing connectivity is beneficial for tracking

performance as spectral components associated to small eigenvalues dominate in (3.26).

As a final remark, the analysis carried out here can be considered a raw approxi-

mation for more practical MC topologies. In fact, it is possible to show that grid networks

on planar and toroidal domains behave similarly as the network size grows, namely for

K → ∞ (see the theory on asymptotic equivalence of matrices in [53]). Recent works

(see, e.g., [54]) have also pointed out similarities between the spectra of dense random

geometric networks and grid networks.

3.4.2 Master Slave (MS) Line Topology

In the case of MS topologies as the one in Figure 1.7.a, it is not possible to exploit the

spectral techniques employed for the MC case. In fact, the normalized adjacency matrix

D−1A cannot be diagonalized for hierarchical topologies. Nevertheless, it is still possible

to follow the general analysis from (3.20). This section considers the regular MS line

network in Figure 3.4.b, where the node degree is d = 1. The set of master nodes is

M = {1}, and therefore the reference frequency is f0 = f1. While an MC network is

equivalent to parallel D-FLL’s, the analysis for this topology corresponds to a cascade of

D-FLL’s. The error analysis follows the same lines of jitter accumulation in chains of PLL

repeaters (see, e.g., [13][67]). The nodes are labelled with their distance in hops from the

master node, so that node k in Figure 3.4.b has hop distance ` = k − 1. In the general case

of tree or forest-like topologies, ` is also dubbed the layer or stratum index, as it indicates

the node position within the clock hierarchy with respect to the closest master [13][17]. The

synchronization tree depth is defined as the maximum layer index, and it is here P = K−1.

The variance of the synchronization error at hop distance `, ∆`[n] = f`[n] − f1, can be

computed from its power spectral density (PSD) S`(f) as E [∆2
` [n]] =

´ 1

0
S`(f)df , where

f is the normalized frequency in cycles/sample. Given the transfer functions H(z) and
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G(z) previously defined in Section 3.4, the error PSD at layer ` may be expressed as (see,

e.g., [13])

S`(f) =
(
σ2
w |H(f)|2 + σ2

v |G(f)|2
)(1− |H(f)|2`

1− |H(f)|2

)
, (3.27)

where the equality z = exp (2πf) has been employed. To integrate (3.27), let the

incremental noise PSD s`(f) = S`(f) − S`−1(f) be defined as the difference between the

noise PSD at layer `, and the noise PSD at layer `− 1, where the noise PSD of the master

node (layer ` = 0) is S0(f) = 0. The synchronization error variance can be expressed as

the sum

E
[
∆2
` [n]
]

=
∑̀
i=1

δ2
i , (3.28)

where δ2
i is the variance of the incremental noise and it is computed by the integral δ2

i =
´ 1

0
si(f)df . Given the expression of H(z) and G(z) in (3.16)-(3.17), after some algebra

s`(f) may be written as

s`(f) =

(
σ2
w +

σ2
v

ε2
(
4 sin2(πf)

))[ ε2

(1 + (1− ε)2)− 2(1− ε) cos(2πf)

]`
. (3.29)

The integral of (3.29) may be computed analytically (see eq. 2.554.3 of the table in [68]) in

the case of noiseless local oscillators (σ2
v = 0) . However, the final expression is involved

and does not allow any insight on the behavior of the system. In order to derive a useful

approximation for δ2
` , two properties of (3.27) are exploited, namely that S`(0) = `σ2

w, and

that, for `→∞ and f > 0, S`(f) can be approximated as

S`→∞(f) =
(
σ2
w |H(f)|2 + σ2

v |G(f)|2
) 1

1− |H(f)|2
. (3.30)

It is then possible to obtain a raw approximation of the integral of (3.29) by computing the

area of the shaded region in Figure 3.6. In particular, it can be proved that, for ` > σ2
v

σ2
w(1−ε)
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Figure 3.6 PSD of synchronization error at layer ` and ` − 1 compared with the limit
S`→∞(f) in (3.30), ε = 0.3, σ2

w = 1, σ2
v = 0.5.

and ε ∈ (0, 1), the synchronization error is

δ2
` '

εσ2
w

π
√
` (1− ε)− σ2

v

σ2
w

, (3.31)

thus showing that δ2
` can be made arbitrarily small by reducing the loop gain ε, as expected.

The incremental noise also decreases as the layer index grows large, δ2
` = O

(
1/
√
`
)

as

` → ∞. The approximation (3.31) is compared with the exact integral of (3.29) in Figure

3.7, for different values of the loop gain ε and ideal oscillators (σ2
v = 0). The approximation

is tighter for small ε and large `. The reduction of the incremental noise variance is clearly

due to the low-pass filtering properties of the FLL. In fact, if ε = 1 the FLL is an all-pass

filter, and the incremental noise is constant over `.

For the line network of Figure 3.4.b, the network mean square error (3.24) in terms

of δ2
` becomes

ξ2 =
1

K

K−1∑
`=1

(K − `) δ2
` . (3.32)
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Figure 3.7 Incremental noise variance δ2
` (solid line) compared with the approximation

(3.31) (dashed line) versus the layer index `, for σ2
w = 1 and σ2

v = 0.

In that network, each node communicates only with the next nearest neighbor along the

line, the tree depth is equal to P = K − 1, and each tree layer comprises a single node.

By increasing the transmission range, the master node could reach more than one neighbor.

On the other hand, if each node along the line did the same, the tree depth would be smaller

thanK−1. Let the synchronization layer or stratum L` be defined as the set comprising the

nodes that are ` hops far from the master node [13][17]. Assuming that each node selects

the neighbor belonging to the highest layer as its parent, the synchronization error variance

is the same for nodes belonging to the same layer. The relationship between E [∆2
` [n]] and

δ2
` is again as in (3.28). Therefore, (3.32) can easily generalized to

ξ2 =
1

K

P∑
`=1

|L`| (P − `+ 1) δ2
` , (3.33)

where P is the number of tree layers. Since, as before, each layer accumulates noise from

previous ones, the network synchronization error decreases when the number of layers P

is reduced by increasing the transmission radius. The minimum network error is achieved

when the master node is able to reach all the other nodes in the network, i.e., P = 1 and

ξ2 = K−1
K
δ2

1 .
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3.5 Simulation Results

This section first validates the discussion on acquisition stability in Section 3.3 by

considering a MC topology where K = 4 nodes are grouped in two clusters as in Figure

3.8.a. This topology is particularly relevant for cooperative communications applications,

…
1 2 K3

b)

…
1 2 K3

c)

4

D2

31

2

a)

D1

Figure 3.8 Simple network topologies considered in Section 3.5: a) MC network of K =
4 nodes with full connectivity; b)-c) MS and MC line networks of K nodes with r = 1, the
distance between nodes is normalized to unity.

as seen in [69]. The transmission radius is such that each node is connected with all the

others (r � D2, all-to-all network). In the following, all frequencies are normalized over

the sampling frequency 1/Ts, or equivalently Ts = 1. For this scenario, the starting point is

chosen as f [0] = fc+[0.15, 0.05,−0.05,−0.15]T , where fc is the nominal carrier frequency

of the communication system. This setup guarantees no occurrence of false locks for the

deterministic system (3.9) (that is for a number of samples L → ∞) . It is worth to

recall that, on the other hand, the convergence of the random linear system (3.10) does not

depend on the initial conditions. It has been observed that, due to the random nature of the

connections, false locks do occur for finite L, but rapidly decreasing in probability as L

grows. For the sake of clarity, the following simulation results do not include the instances

where false locks occur. The proposed algorithm is compared with a DFT-based algorithm,
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which estimates the first moment of the power spectrum of the received signal through

the DFT of the L samples available. In Figure 3.9 the root mean square (RMS) network

10 20 30 40 50 60 70 80 90 100

10-3

10-2

10-1

n

DBQC
DFT-based method
L→∞L→∞

L=3

L=5

L=21

][nξ

Figure 3.9 RMS network synchronization error ξ[n] for different algorithms (D2/D1 =
1.2, ε = 0.15, L = 3, 5, 21).

synchronization error ξ[n] is plotted versus the iteration index n for different values of

L = 3, 5, 21. In Figure 3.8.a it is D2/D1 = 1.2 , path-loss exponent is α = 2, loop

gain is ε = 0.15, and noise sources have been neglected as in Section 3.3, σ2
w = σ2

v = 0.

Regarding instances where a false lock occurs, with L = 3 the probability of a false lock

is 1.48%, and never occurred for L = 5 and 10000 independent runs. The eigenvalues of

the matrix Πε are all inside the unit circle for all values of L, and the nonlinear system

is able to achieve consensus w.p.1 when no false lock occurs, where greater L improves

convergence speed. The DFT-based algorithm is inevitably limited by the few frequency

samples available. Despite an intrinsic resilience to false locks, the convergence rate of this

algorithm dramatically reduces after few iterations, and, for a practical (small) number of

iterations, it can achieve synchronization only to a finite accuracy.

Next, the focus is on the tracking performance of MC and MS synchronization

topologies. The following simulations are relative to linear topologies comprising K = 25
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Figure 3.10 Steady-state RMS synchronization error for a line network of K = 25 nodes
with MC and MS topology (r = 1).

nodes, as the ones in Figure 3.8.b-c for MS and MC, respectively. D-FLL’s are modeled as

a discrete-time linear system driven by noise as in Section 3.4. Initial frequencies are

uniformly distributed within the interval [−0.1, 0.1]. It is assumed that a transmission

power PT = p0 is needed to guarantee nearest neighbor connectivity, or, equivalently,

unitary transmission radius, r = 1. The frequency noise variance is σ2
v = 10−6, while the

FDD noise variance is obtained from (3.15) with p0Ts/N0 = 10dB and L = 26 samples.

In Figure 3.10 the steady-state RMS synchronization error
√
E [∆2

k] is plotted versus node

index k for both synchronization topologies with nearest neighbor connectivity, r = 1. As

expected, both MC and MS achieve higher synchronization accuracy as the loop gain ε is

reduced. As predicted by the findings in Section 3.4.2, it is seen that a small loop gain

reduces noise accumulation with MS topology. An interesting feature of MC topologies

that was not predicted by the analysis in Section 3.4.1, is the smooth error distribution

within the network, especially for small loop gains. Noise accumulation for MC occurs at

the edges of the linear network, while synchronization error is minimum at the center. It is
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Figure 3.11 Steady-state RMS network synchronization error ξ∞ (ε) versus convergence
time n∗ (ε) for a line network of K = 25 nodes with MC and MS topology. Loop gain ε
varies from ε = 0.1 (empty dot) to ε = 1 (filled dot).

envisaged that the inherent robustness to noise accumulation of MC topologies could make

this architecture attractive for large networks.

The lower noise sensitivity of MC architectures is traded with larger convergence

times, as each node is sensitive to the ensemble of his neighbors. This effect is shown

in Figure 3.11 in terms of steady-state RMS network synchronization error ξ∞ (ε) versus

convergence time necessary to reach steady-state n∗ (ε) for varying loop gain ε = [0.1, 1]

and increasing transmission range r. The convergence time is defined as the iteration index

n∗ (ε) such that |ξ [n∗ (ε)]− ξ∞ (ε)| /ξ∞ (ε) < 0.1. It is assumed that a transmission range

r may be achieved by employing a transmission power PT = p0r
α. As shown previously

in Figure 3.10, Figure 3.11 confirms that higher accuracy may be achieved by reducing

the loop gain ε. Nevertheless, Figure 3.11 shows that improving the accuracy of network

synchronization entails a cost in terms of convergence time. In addition, given a desired

accuracy ξ∞, MS topologies are uniformly faster in convergence than MC topologies, for

any ε. This means that the smooth error distribution provided by the MC architecture is
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achieved at the price of a slower convergence. As expected, for a given required accuracy,

the convergence speed of both architectures can be improved by increasing connectivity

through a higher transmission range r. For r = 25, each node is able reach any other

node with 1-hop (all-to-all MC, single-layer MS topology), and MS still outperforms MC.

In fact, the detector of Section 3.2 weights the contribution of received signals based on

their relative power. This means that the contribution of nearest neighbors is dominant

with respect to other nodes, irrespectively of the transmission radius. If the employed

detector weights contributions from all neighbors in the same way (as in MAC layer

synchronization), 1-hop MC and MS topologies are equivalent.

3.6 An Application: Multi-hop relay networks

As remarked before, one of the possible applications of distributed carrier frequency

synchronization is the implementation of cooperative communication techniques at the

physical layer. This section presents some results regarding the impact of carrier frequency

offsets on a multi-hop relay network as the one depicted in Figure 3.12. Similar networks

1 2 i S
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. . . . . .
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1 d
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Figure 3.12 Multi-hop relay network with S relaying stages.

have been considered in recent works on distributed space-time codes, see, e.g., [70][71].

In this setup, a two-antenna source node wishes to communicate to a single-antenna

destination node. Since the destination is out of the transmission range of the source,

multi-hop communication is realized by S relaying stages, each made up of two relay

nodes (the total number of nodes is thus K = 2(S + 1)). As in Section 3.1.2, it is assumed

that each transmitted packet contains a preamble signal for synchronization purposes. To
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elaborate, during the first frame the source node transmits a packet (preamble and data) to

the first stage of relays, which process it and forward it to the next stage during the second

frame. In the i-th frame, the i-th relay stage process the signal received from the (i− 1)-th

stage, until the message finally gets to the destination, at the end of the (S + 1)-th frame.

Targeting a scenario with frequency (and phase) offsets, it is considered the use of

differential space-time block codes (DSTBC) at each relaying stage (see Appendix 3.C).

DSTBC does not require channel estimation at the receiving side (at the price of about 3

dB loss in equivalent SNR as compared to coherent STBC) [20]. Also, the probability of

symbol error in the presence of carrier frequency offsets can be shown to be independent

of the block (packet) length. According to the communication protocol, the (i − 1)-th

relay stage employs a DSTBC to forward the message to the i-th stage, where each node

independently decodes (decode and forward relaying, DF) and re-encodes for transmission

in the subsequent slot. Different synchronization strategies can be devised for this scenario.

a - Open-loop: each node adjusts its frequency in a memory-less (one-shot, or

open-loop) fashion before decoding the data payload of the transmitted packet. Namely,

the carrier frequency offset of the nodes in the receiving stage is computed upon reception

of the preamble signal employing (3.6). This scheme correspond to the current practice,

and it essentially assumes that previous stages have already achieved a good level of

synchronization. However, for small L, the one-shot frequency estimate is affected by

a relevant error already at stage 1, which inevitably propagates to the following stages in

the subsequent steps.

b - Closed-loop A: similarly to the open-loop technique above, only nodes in the

receiving stage update their local offsets. However, a running frequency estimate is

performed according to the D-FLL algorithm (3.2)-(3.6) (or equivalently Figure 3.2).

Again, here each node updates the local frequency correction only when it needs to decode

the transmitted data. The local frequency is updated by combining the new estimate
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provided by the detector (3.6) with previous estimates, thus allowing for a progressive

refinement of the local correction.

c - Closed-loop B: this scheme extends closed-loop B by considering that the D-FLL

algorithm shows faster convergence times in well-connected networks. The simplest way

to improve network connectivity (for synchronization purposes) is to let all nodes listen

to each synchronization signal transmitted in the network, whether or not they need to

decode the data payload. Therefore, differently from the previous techniques, all nodes that

are currently not busy in transmission (except the source) update their running frequency

estimate according to Figure 3.2.

Notice that all the aforementioned synchronization algorithms are based on a MS

architecture, where the frequency of the source node is the network reference. In the

following, it is assumed that each transmitted symbol has unitary power and that each

link is affected by additive white Gaussian noise with variance N0. The SNR is defined as

SNR = 1/N0. The path loss exponent is α = 3. The preamble signal is always assumed

to be transmitted with a 5 dB power boost with respect to the data payload. The employed

modulation is BPSK. The carrier frequency of node k at startup, fk[0], is assumed to be

uniformly distributed in the interval [−f0,max, f0,max]/Ts. The ratio between the inter-stage

distance and the intra-stage distance is D/d = 1.2. Also, trading off accuracy versus

convergence speed, the loop gain is set ε = 0.35. Finally, the training length is L = 11

samples for both open and closed-loop techniques.

Figure 3.13 shows the degradation in the end-to-end BER due to increasing frequency

offsets among the nodes in the network, in the case where no frequency offset correction

takes place. In this case S = 5 stages. In ideal conditions (f0,max = 0), the use of DSTBC

provides a diversity gain of 2, while a maximum spread f0,max = 0.04 is sufficient to

nullify the diversity gain of the space-time scheme, raising the slope of the curve from 2 to

approximately 1 (for this range of SNR values).
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Figure 3.13 End-to-end BER after S = 5 stages for the network in Figure 3.12 without
frequency offset compensation (ε = 0, D/d = 1.2).

In the following simulation results, the end-to-end transmission of p packets (corre-

sponding to (S + 1)p frames) is considered. The performance measures of interest are

the network RMS synchronization error ξ[p] and the end-to-end BER associated with each

packet. Figure 3.14 compares the speed of convergence of the three algorithms discussed

in the previous section, in terms of the RMS synchronization error ξ[p], (S = 3 stages,

f0,max = 0.15 and SNR = 15dB). The open loop approach is limited by the very few

samples employed (L = 11), whereas both closed-loop algorithms exploit the filtering

properties of the D-FLL to achieve much better accuracy. The algorithm B converges

faster, but at the price of a higher noise floor. However, this impairment is immaterial to

BER performance (see below). Algorithm B was expected to be faster because it better

exploits network connectivity. Nevertheless, its accuracy is impaired by the fact that nodes

adjust their frequencies even when receiving noisy pilot signals from distant nodes. Scheme

A, on the contrary, requires nodes to listen only to their immediate neighbors.
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(f0,max = 0.15, S = 3, D/d = 1.2, ε = 0.35, L = 11, SNR = 15dB).
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Figure 3.15 End-to-end BER for different algorithms (f0,max = 0.15, S = 3, D/d = 1.2,
ε = 0.35, L = 11, SNR = 15, 20dB).



77

Finally, Figure 3.15 verifies the impact of the performance in Figure 3.14 on the

end-to-end BER as a function of the packet index p (S = 3 stages and f0,max = 0.15).

Despite of a higher error floor, the algorithm B needs only p = 4 packets to get close to

the synchronous system performance for both SNR values, while the scheme A requires

at least p = 7 packets. The open loop technique would need a longer preamble sequence to

improve its performance.

3.7 Conclusions

This chapter presented frequency synchronization techniques for wireless networks based

on the concept of Distributed Frequency Locked Loops (D-FLL). Both hierarchical (master

slave - MS) and peer-to-peer (mutually coupled - MC) architectures have been considered

for the synchronization network. A design for the frequency difference detector (FDD)

has been proposed whereby all nodes transmit the same pilot signal for synchronization

purposes, and the local frequency correction is computed by processing the received

superposition of pilot signals from neighboring nodes. It was shown that the stability of

frequency acquisition with a D-FLL network equipped with the proposed FDD can be

guaranteed by a suitable choice of loop and detector parameters. Analysis of steady-state

accuracy of frequency tracking accounts for both channel noise and oscillator frequency

instabilities. A general analysis, valid for any network topology, has been carried out and

then specialized for a MC ring network and a MS line network. While the MC network

is equivalent to a parallel connection of FLL’s, the MS network corresponds to a cascade

connection of FLL’s. In both cases, synchronization accuracy may be improved by reducing

the loop bandwidth and/or by improving connectivity with a higher transmission range.

Finally, by the aid of simulation results, it was shown that MC provides a smooth error

distribution over the network at the price of a slower convergence time as compared to MS.

On the other hand, noise accumulation with hierarchical architectures may be mitigated by

reducing the loop bandwidth.
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Appendix 3.A: Derivation of the FDD

First, consider the continuous-time counterpart of (3.4), yk(t), and let the frame duration

be TF →∞ (or L→∞). With ak,i = |hk,i|2, it can be seen that, for |fi − fk| < 1
2Ts

,

ēk =
ek∑
i 6=k ak,i

=

´ 1/2Ts
−1/2Ts

f · Yk(f)df´ 1/2Ts
−1/2Ts

(Yk(f)−N0) df
, (3.34)

where Yk(f) is the power spectral density of yk(t) and ek =
∑

i 6=k ak,i (fi − fk). Recalling

that Yk(f) is the Fourier transform of the autocorrelation ry(t) = E [yk(t+ τ)y∗k(τ)], it is

possible to write the error ek in (3.34) as

ek =
1

2πj

ˆ 1/2Ts

−1/2Ts

j2πfYk(f)df =
1

2πj

dry(t)

dt

∣∣∣∣
t=0

. (3.35)

By employing a first-order finite difference in lieu of the derivative, (3.35) is approximated

by

ek '
1

2πj

ry(Ts)− ry(−Ts)
2Ts

. (3.36)

By neglecting the noise at the denominator of (3.34) (N0 = 0), and employing

the (unbiased) sample autocorrelation of the sampled signal yk (mTs), r̃y (mTs) =

1
L−m

∑L−1−m
i=0 yk ((i+m)Ts) y

∗
k (iTs), the normalized error ēk is computed with

ēk =
1

4πTs

Im {r̃y (Ts)− r̃y (−Ts)}
r̃y (0)

, (3.37)

which is the proposed FDD1. As a final remark, an alternative estimator for (3.34) was

proposed in [72] along the same lines of the derivation presented here.

1By neglecting the noise in the normalization of (3.34), the actual FDD output is ēk[n] =
α
[

ek∑
i 6=k ak,i

]
, where the detector gain α ≤ 1. This does not affect loop stability, which is the

main concern in this chapter. Notice that the detector gain would still be close to unity for high
SNR,

∑
i 6=k |hk,i|2 � N0/Ts.
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Appendix 3.B: Derivation of the FDD Error Variance (3.15)

This appendix contains the derivation of the approximation of the FDD error variance in

(3.15). The input to the FDD (3.4) may be reformulated as

yk (mTs) = sk (mTs) + zk (mTs) , (3.38)

for m = 0, . . . , L − 1, where the signal is sk (mTs) =∑
i 6=k |hk,i| exp (j (2π(fi − fk)mTs + φk,i)) and the noise process zk (mTs) is i.i.d.

and Gaussian, zk (mTs) ∼ CN (0, N0/Ts). The degree of node k is defined as the power

of the signal sk (mTs) when L→∞, dk =
∑

i 6=k |hk,i|
2. Recall the expression of the FDD

in (3.6)

ēk =
1

2π (L− 1)Tsdk
Im


L−3

2∑
i=0

[
(yk ((2i+ 2)Ts)− yk ((2i)Ts)) y

∗
k ((2i+ 1)Ts)

] ,

(3.39)

where the normalization factor r̃y(0) in (3.6) is substituted by the received signal power

dk =
∑

i 6=k |hk,i|
2. Given the model (3.38), the detector (3.39) can be expressed as the sum

of three terms, namely

ēk =
1

2π (L− 1)Tsdk
Im {uSS,k + uNS,k + uNN,k} , (3.40)

where the term uSS,k is related to signal-signal interaction, uNS,k to noise-signal interaction,

and uNN,k to noise-noise interaction. The impact of the term uSS,k on loop dynamics has

already been analyzed in detail in Section 3.3. In the following, the focus is on the analysis

of the noise terms uNS,k and uNN,k, which are the cause of frequency estimation errors.

Let us start by focusing on noise-signal interaction, uNS,k. By plugging (3.38) in

(3.39) and collecting the terms where the signal is multiplied by noise, it holds that

uNS,k =

L−3
2∑
i=0

[
(sk (2i+ 2)− sk (2i)) z∗k (2i+ 1) + (zk (2i+ 2)− zk (2i)) s∗k (2i+ 1)

]
,

(3.41)
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where the sampling period Ts has been neglected for notational convenience (or equiva-

lently Ts = 1). The term uNS,k is a random variable with zero mean and variance to be

determined. The expression (3.47) may be rewritten as

uNS,k =

L−3
2∑
i=0

[(sk (2i+ 2)− sk (2i)) z∗k (2i+ 1)]−
L−5

2∑
i=0

[(sk (2i+ 3)− sk (2i+ 1))∗ zk (2i+ 2)] +

+ (s∗k (L− 2) zk (L− 1)− s∗k (1) zk (0)) . (3.42)

Notice that only the imaginary part of (3.42), Im {uNS,k}, contributes to the detector output

(3.40). By exploiting the independence of noise samples, the variance of Im {uNS,k} may

be evaluated as

E
[
(Im {uNS,k})2] =

N0

2Ts

L−3∑
i=0

|sk (i+ 2)− sk (i)|2 +
N0

2Ts

(
|sk (L− 2)|2 + |sk (1)|2

)
.

(3.43)

The last term of (3.43) is roughly proportional to the energy of sk (m), i.e., it is proportional

to the node degree dk; the first term, instead, is proportional to the energy of the signal

sk (m+ 2)− sk (m) = 2j
∑
i 6=k

|hk,i| sin (2π(fi − fk)Ts) ej(2π(fi−fk)(m+1)Ts+φk,i), (3.44)

where m = 0, . . . , L− 1. Consequently, (3.43) is approximated as

E
[
(Im {uNS,k})2] ' 2

N0

Ts
(L− 2)

∑
i 6=k

|hk,i|2 sin2 (2π(fi − fk)Ts) +N0dk. (3.45)

When frequency offsets are small, (3.45) is further simplified to yield

E
[
(Im {uNS,k})2] ' 2

N0

Ts
(2πTs)

2 (L− 2)
∑
i 6=k

|hk,i|2 (fi − fk)2 +
N0

Ts
dk. (3.46)
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We are left with the analysis of noise-noise interaction, uNN,k. This term corresponds

to the output of the FDD when there is only noise at the input, namely

uNN,k =

L−3
2∑
i=0

[
(zk (2i+ 2)− zk (2i)) z∗k (2i+ 1)

]
. (3.47)

It can be observed that uNN,k is zero mean and uncorrelated with uNS,k in (3.41). The

FDD (3.40) employs only the imaginary part of (3.47), Im {uNN,k}, whose variance may be

computed by exploiting the independence of noise samples as

E
[
(Im {uNN,k})2] =

L− 1

2

(
N0

Ts

)2

. (3.48)

Let us now go back to the expression of the frequency detector (3.40). Given the

previous derivations, the variance of the FDD output is

Var (ēk) =
E
[
(Im {uNS,k})2]+ E

[
(Im {uNN,k})2]

(2π (L− 1)Tsdk)
2 . (3.49)

By plugging (3.46)-(3.48) in (3.49), it can be obtained

Var (ēk) '
2 (L− 2)

(L− 1)2

∑
i 6=k |hk,i|2(fi − fk)2∑

i 6=k |hk,i|2

(
N0

dkTs

)
+

1

4π2T 2
s (L− 1)2

(
N0

dkTs

)
+

1

8π2T 2
s (L− 1)

(
N0

dkTs

)2

(3.50)

In the tracking regime, the frequency spread is small, ∆f � 1/Ts, and therefore the first

term in (3.50) may be neglected, so as to yield (3.15).

Appendix 3.C: DSTBC with frequency offsets

Without loss of generality, here we consider the l-th space-time codeword transmitted

during the n-th frame from the i-th stage to the (i + 1)-th stage (nodes 2i and 2i + 1

are transmitting, see Figure 3.12). Also, the focus is on the processing at node 2i+2 within

the (i+ 1)-th stage, as the two receiving nodes decode independently of each other.
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Let the input alphabet X = {Xl} be a finite set of 2 × 2 unitary matrices. The

differentially encoded Space-Time codeword actually transmitted over the channel is Wl =

Wl−1Xl, with W0 = I. As suggested in [20], Xl is chosen as a normalized Alamouti code

matrix, such that XH
l Xl = I. Assuming a synchronous system, the 1 × 2 received vector

signal over two consecutive symbol periods is

yl = hWl + nl = yl−1Xl − nl−1Xl + nl, (3.51)

where h = [h2i+2,2i[n], h2i+2,2i+1[n]] is the channel between the transmitting nodes (2i, 2i+

1) and the receiving node 2i + 2 (constant over the whole frame period), and the additive

noise nl ∼ CN (0, N0I). From (3.51), as in differential modulation for point-to-point

channels, the signal vector received at time l − 1 is the effective channel at time l, and the

information-bearing signal is corrupted by two noise terms.

In case of different frequency offsets at the two transmitting nodes, the received

vector signal (3.51) can be written as

yl = h

 w1,le
jω12lTs −w∗2,lejω1(2l+1)Ts

w2,le
jω22lTs w∗1,le

jω2(2l+1)Ts

+ nl, (3.52)

where ω1 = 2π(f2i[n] − f2i+2[n]) and ω2 = 2π(f2i+1[n] − f2i+2[n]) are the offsets

between the two transmitting nodes and the receiving node. Due to the different

carrier frequencies, the effective Space-Time codeword is no more orthogonal, generating

Inter-Symbol-Interference at the output of the detector.
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Preface to Part II

In the first part of the thesis, it was shown how a network of coupled FLL’s can be employed

to provide network-wide carrier frequency synchronization, which is a fundamental facility

whenever there is need to implement cooperative communication schemes at the physical

layer. The study was divided into the analysis of frequency acquisition (transient dynamics)

and the analysis of frequency tracking in presence of diverse noise sources (steady-state

accuracy). The second part of the thesis is devoted to time synchronization at the medium

access control (MAC) layer. MAC layer synchronization is required to allow the use

of efficient medium access techniques for data communication, such as time division

multiple access (TDMA) and slotted contention-based access (e.g., slotted-Aloha). When

implemented at the higher layers of the communication protocol stack, a synchronization

algorithm needs to cope with the specific constraints imposed by protocol design. At the

MAC layer, by design, synchronization information can be conveyed either by a sync

sequence (i.e., a waveform with tight autocorrelation) or a timestamp (i.e., a sample of

the hardware clock). In case timestamps are employed, sync packets (called beacons) can

be transmitted employing either a reservation or a contention-based access protocol. Also,

synchronization can be updated with very low frequency when the transceiver is operated

with a small duty-cycle, e.g., for energy saving purposes. Infrequent updates make it more

difficult for the nodes to maintain a tight network-wide synchronization because of the

frequency instability of hardware clocks. As in Part I, Part II analyzes both synchronization

acquisition and tracking, keeping into account all the aforementioned aspects of MAC

layer synchronization. In particular, Chapter 4 discusses the time needed to achieve

synchronization when employing different medium access strategies for the transmission

of sync information. Chapter 5 focuses on the tracking accuracy attained by distributed

synchronization algorithms during normal network operation (i.e., in steady-state). Finally,

Chapter 6 analyzes the effects of clock frequency instability on synchronization accuracy

when nodes are operated with low duty cycles.



CHAPTER 4

SYNCHRONIZATION RATE

OF MEDIUM ACCESS PROTOCOLS

If the network is organized in a layered hierarchical structure (MS architecture), synchro-

nization information propagates subsequently from one layer to the other, and network-

wide synchronization can be achieved within a finite number of steps that depends on the

number of layers (see, e.g., [37][25]). This chapter investigates the more difficult case

whereby the network is organized with a peer-to-peer architecture (MC architecture), and

synchronization has to be realized by a completely distributed process.

As detailed in Chapter 2, distributed synchronization algorithms for coordinated

medium access in MC networks have been proposed in several research works [73] [46]

[47] and standards [28] [24]. In this chapter, the general framework of phase-locked loops

(PLL) is applied to network time synchronization at the MAC layer. The time required to

achieve network synchronization is investigated when employing different medium access

strategies for sync information. In fact, each node may convey its local time to its neighbors

either by transmitting beacon frames carrying a timestamp, or by broadcasting a frame

synchronization sequence on a dedicated signaling channel. Beacon frames require the use

of a reservation or contention access scheme, in order to avoid or reduce the occurrence

of beacon collision events. On the other hand, the same frame synchronization sequence

may be transmitted simultaneously by many nodes, since the superposition of sequences

over the radio channel allows the use of a PLL design similar to the one introduced in [43].

Reservation access exploits spatial resource reuse to enable each node to communicate

with all its neighbors, and convergence may be studied by adapting results on consensus

algorithms, see, e.g., [48][66][74]. When contention or superposition access schemes are

used, instead, only a randomly chosen subset of nodes is active at the same time, thus
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resulting in interaction among a random set of nodes. The focus of this chapter is to evaluate

the convergence of random interactions.

The convergence of PLL’s with random interactions may be studied with tools

employed in the analysis of random consensus algorithms. Gossip algorithms [54] are

a class of random consensus strategies where only one node is transmitting at a time.

Convergence of Gossip algorithms in mean and mean square sense were studied in [54][75],

and extensions to more general random interactions can be found in [76][63][77]. The

approaches for analysis pursued in [63] introduced simple conditions for almost sure

convergence of random consensus, and [78] studied the convergence rate of distributed

Gossip through the Lyapunov exponent of the corresponding random linear dynamical

system.

This chapter evaluates how random interactions induced by the use of contention

or superposition access schemes affect the convergence of PLL’s, by comparing the

convergence rate of these protocols to the rate achieved by reservation access. In particular,

the analysis focuses on convergence in average, which was proved [63] to constitute a

necessary and sufficient condition for almost sure convergence. It is also shown, by

simulations, that the actual convergence rate (Lyapunov exponent) can be approximated

by the rate of convergence in the mean for the network model under analysis. Finally, the

three considered access schemes are compared by simulations, showing that superposition

is the most efficient random access protocol for synchronization purposes.

4.1 System Model

Consider a wireless network of K nodes employing packet-based communication and a

slotted medium access protocol (Figure 4.1). Time slots are organized in superframes,

where the initial slots are dedicated to signaling purposes (beacon slots), and the remaining

slots are used for data communication. Signaling is needed mainly for data slot reservation

(in case TDMA is employed) and for time synchronization. In particular, synchronization
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TSF
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Figure 4.1 Superframe structure for different medium access protocols: a) superposition,
b) contention, c) reservation.

is the first task to be carried out during the set-up of the network. Also, network

synchronization can be lost after nodes have turned off their transceivers for a long

time (“sleep” mode), because of the instability of hardware clocks. Notice that during

network set-up, data slots are unusable because of the lack of accurate network-wide

synchronization. Nevertheless, data slots are not used for synchronization, and therefore

their employment is immaterial to the analysis. Nodes are assumed to employ a PLL to

achieve network synchronization in a completely de-centralized fashion.

Within a signaling slot, synchronization information may be conveyed either by a

beacon frame carrying a timestamp, or by a frame synchronization sequence. Beacon

frames are MAC-layer packets that need to be demodulated and decoded upon reception.

Therefore, a node can not receive and decode correctly multiple beacon frames at the

same time, and a reservation or contention access protocol is mandatory for beacon

frame transmission. A frame synchronization sequence, instead, is a pre-defined sequence

of modulated bits, designed to have a narrow auto-correlation. Upon reception, time

information is extracted by correlating the received signal with the known sequence and

locating the maximum. When multiple sequences are received simultaneously, the output
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of the correlator shows multiple peaks. As discussed in [43][79] and in Chapter 3, network

synchronization can be achieved in the case of signal superposition by using a PLL with a

proper detector design. Of note, reservation and contention access protocols may also be

used with frame synchronization sequences. This chapter focuses on the impact of different

medium access protocols on the convergence rate of PLL’s.

Given the previous discussion, the following medium access protocols are considered

for the signaling slots (see Figure 4.1):

a) Superposition: each superframe contains only one signaling slot. At the start of

the superframe, each node will choose randomly whether to broadcast its time

information or listen to its neighbor’s transmissions.

b) Contention: each superframe contains only one signaling slot. Each node contends for

the signaling slot by using some contention access protocol. If there are no collisions,

all the neighbor of the transmitting node may receive its time information. A similar

approach is employed in the Independent Basic Service Set (IBSS) mode of IEEE

802.11 [24].

c) Reservation: each node is assigned a signaling time slot to broadcast time information

to its neighbors. A decentralized procedure may be used to allocate signaling slots

in order to avoid beacon collisions. Slot allocation is assumed to be fixed and the

number of signaling slots in each superframe depends on the spatial reuse factor

M [80]. A similar approach was proposed for the ECMA 368 standard [28] and

ZigBee networks with cluster-tree topology [29]. This approach is feasible when

beacon scheduling is known beforehand (e.g., when the radios are waken up after a

prolonged sleep period). Each time slot needs to comprise suitable guard times in

order to avoid collisions despite residual clock skews.

A node updates its local clock each time it receives time information within a signaling

slot. Convergence time is expressed as the number of (signaling) slots necessary to reach
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network synchronization up to a prescribed accuracy with respect to the initial conditions.

Since a slot corresponds to an iteration of the synchronization protocol, in the following

the terms slot and iteration is used interchangeably.

Type 1 Phase-Locked Loop (PLL)

Network time synchronization can be achieved in a completely distributed fashion by

deploying each node with a phase-locked loop (PLL). This subsection reviews the basic

principles underlying coupled PLL’s. In the following, clocks are assumed to be all

frequency-synchronous, i.e., for simplicity, it holds that α1 = α2 = . . . = αK = 1.

According to the model introduced in Section 2.1, under the assumption of frequency

synchronization, the local clock at node i reads τi (t) = t + βi, and a simple type 1 PLL

is enough in order to achieve network-wide time (phase) synchronization. Let τi[n] be the

time displayed by node i’s clock at the time the n-th signaling packet is transmitted. At

the n-th signaling slot, the output of the time error detector of the local PLL at node i is a

linear combination of the time offsets between node i and its neighbors

ei[n] =
1∑

j∈N̄i aij

∑
j∈N̄i

aij (τj[n]− τi[n]) , (4.1)

where N̄i is the set of neighbors of i. In the case of reservation and contention access,

the timestamp τj[n] is captured at the transmitting side right before beacon transmission,

and then inserted in the beacon payload. In the case of superposition access, instead, the

error detector needs to be designed in order to produce directly an estimate of the weighted

combination of pair-wise offsets (4.1). A suitable detector design to this end was already

proposed in [43] (see also Chapter 3 for the case of carrier frequency synchronization). The

weights aij can be arbitrarily chosen [54], but here it is assumed aij ∈ {0, 1}. In practice,

the output of the error detector (4.1) is corrupted by additive noise due to, e.g., transmission

delays and channel noise. In this chapter the influence of additive noise is neglected, and

the focus is on stability analysis (time sync acquisition). In fact, if the system is stable,
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additive noise determines only its steady-state accuracy, which will be the subject of the

next two chapters. Based on the error ei[n], the i-th node corrects the local time according

to

τ+
i [n] = τi[n] + εei[n], (4.2)

where the parameter ε is defined as the loop gain. As usual in the analysis of coupled

oscillators, the focus is on phase dynamics and the clock phase is defined as xi (t) =

τi (t) − t. Also, let xi[n] be the phase at local time τi[n]. From (4.2), it can be seen that

phase dynamics obey the following recursion

xi[n+ 1] = xi[n] +
ε∑

j∈N̄i aij

∑
j∈N̄i

aij (xj[n]− xi[n]) , (4.3)

The update rule (4.3) describes a type 1 discrete-time PLL where the controlled variable

is the local clock phase xi[n]. Typically, the system is designed to act as a low-pass filter

on ei[n], and therefore ε ∈ (0, 1). As pointed out in [43][69], the update rule (4.3) can

also be seen as an instance of linear consensus algorithms, see, e.g., [48][66]. By reaching

network synchronization, it is intended that all the K nodes converge to the same value

x1[∞] = x2[∞] = . . . = xK [∞] = x∗.

4.2 Reservation Access Protocol

This section focuses on the convergence rate for reservation access protocols. The

following is an application of results in [43][81][74], but its inclusion here is necessary

for the discussion of Section 4.3. In the case of reservation access, a given link is active

only during the time slot reserved for its transmissions. The active links at the n-th slot

(iteration) may be described by the directed graph Gr[n] = (V , Er[n]) and the associated

adjacency matrix Ar[n], where the subscript r stands for “reservation”. Notice that the

graph Gr[n] is a subgraph of the connectivity graph Ḡ = (V , Ē), which defines the links

that can be activated during any time slot (see Section 2.3). The elements of the adjacency
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matrix [Ar[n]]ij = a
(r)
ij [n] may be defined as

a
(r)
ij [n] =

 1 i 6= j, (i, j) ∈ Er[n]

0 otherwise
. (4.4)

If node i does not receive any information from its neighbors during the n-th superframe,

i.e.,
∑

j a
(r)
ij [n] = 0, it will not update its local time:

xi[n+ 1]=xi[n]. (4.5)

Otherwise, if
∑

j a
(r)
ij [n] 6= 0, it will update its local time as

xi[n+ 1] = (1− ε) τi[n] +
ε∑

j a
(r)
ij [n]

∑
j

a
(r)
ij [n]xj[n]. (4.6)

The vector x[n] = [x1[n], ..., xK [n]]T contains the local time of all nodes at the n-th

iteration. Equations (4.5)-(4.6) can be expressed compactly as the vector equation [48][43]

x[n+ 1] = Wr[n]x[n]. (4.7)

If ε ∈ (0, 1), the matrix Wr[n] is nonnengative and row stochastic since, by construction,

Wr[n]1 = 1 for all values of the loop gain.

The slot allocation procedure assures that all links in Ē are active with a period of M

slots, i.e., the graph sequence satisfies

M⋃
l=1

Gr[kM + l] = Ḡ,

Gr[kM + l] = Gr[nM + l], k 6= m (4.8)

Therefore, for a given slot allocation, the matrix process Wr[n] is deterministic and

periodic. By exploiting the periodicity of the system matrix, (4.7) can be expressed

alternatively as

x[p+ 1] = W̄rx[p] (4.9)
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where p is the superframe index (i.e., the time slot index n = pM ) and W̄r =∏M
l=1 Wr[kM + l]. Again, the matrix W̄r is nonnegative and row stochastic if ε ∈ (0, 1).

As shown in [48], a synchronization (consensus) point x∗ = x∗1 is globally asymptotically

stable for all initial states x[0] provided that the graph Ḡ is connected.

In order to study the convergence rate of (4.9) to network synchronization, the

synchronization error vector ∆[n] is defined as deviations of the components of τ [n] from

their instantaneous average Jx[n], i.e., ∆[n] = (I−J)x[n], where J = 1
K

11T . It is apparent

that when the network is synchronized, that is when x[n] = x∗1, the synchronization error

is ∆[n] = 0.

When communication occurs on a fixed graph, the convergence of a MC network of

PLL’s to network synchronization is asymptotic [15], i.e., ‖∆[n]‖ → 0 as n → ∞, for

all values of the loop gain ε. The only exception is the fully-connected case (one-hop or

all-to-all network), where nodes can synchronize to a common time with a single step by

taking the average of all other nodes’ local time. When the coupling graph is time-varying,

instead, convergence may occur in finite time, i.e., ‖∆[n]‖ = 0 for some n < ∞ and

ε. It has been observed by simulation that finite time convergence occurs typically when

ε = 1, and in fully connected networks even when ε < 1. Nevertheless, full connectivity is

impractical in large networks, and choosing ε = 1 leads to instability for some beacon slot

allocations1. Therefore, in the following the focus is on asymptotic convergence. When

convergence is asymptotic, the convergence time in terms of number of iterations can be

defined as

Tr =
δ

Rr

, (4.10)

where the factor δ = log10 (‖∆[0]‖ / ‖∆[T ]‖) depends on the synchronization accuracy

requirements with respect to initial conditions, and the convergence rate Rr can be found

1Setting ε = 1 leads to oscillatory steady-state dynamics whenever the sequence Gr[n] routes sync
information over cycles.
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to be (see also [63])

Rr = − sup
∆[0]

lim
p→+∞

1

M
log10 ‖∆[p]‖

1
p , (4.11)

It can be shown after some algebra that

Rr = − 1

M
log10 ρ

(
W̄r − J

)
= − 1

M
log10 λ2

(
W̄r

)
, (4.12)

where the second equality follows from the fact that the spectral radius ρ
(
W̄r − J

)
coincides with λ2

(
W̄r

)
, the second largest eigenvalue of W̄r. It can be seen from (4.12)

that the use of reservation access entails a cost given by the spatial reuse factor M , which

reduces the actual convergence rate. Also, different slot allocations will provide different

convergence rates.

4.3 Contention and Superposition Access Protocols

In the case of contention or superposition access, the active links at the n-th iteration

are chosen at random within Ē . As before, the active links at the n-th slot (iteration)

are described by the directed graph Gm[n] = (V , Em[n]) and the associated adjacency

matrix Am[n], where the subscript indicates whether it refers to contention (m = c) or

superposition (m = s). The vector difference equation that describes the dynamics of the

PLL’s with contention or superposition access can be written as

x[n+ 1] = Wm[n]x[n], (4.13)

where Wm[n] is now a random matrix process. Contention and superposition make for

different properties of the directed graph Gm[n]:

• Contention: A simple contention protocol is assumed, which is inspired by the

one employed in [24]. At the n-th iteration, each node chooses to transmit with

the same probability pc. Let Ac[n] be the set of transmitting nodes. When node

j transmits (j ∈ Ac[n]), its time information may be received by all receiving
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neighbors (half-duplex constraint), i.e.,
{
i|i /∈ Ac[n], i ∈ N̄j

}
. It is assumed that a

transmission over a directed edge (i, j) does not incur a collision whenever no other

node in the neighborhood of i is transmitting2, i.e., N̄i ∩ Ac[n] = j. This can be

summarized as

Ec[n] =
{

(i, j)|j ∈ Ac[n], i /∈ Ac[n], N̄i ∩ Ac[n] = j
}
. (4.14)

Notice that, in this case, each node will receive time information from at most one of

its neighbors at a time.

• Superposition: At the n-th iteration, each node chooses to transmit at random with

the same probability ps. The active edges are

Es[n] =
{

(i, j)|j ∈ As[n], i /∈ As[n], i ∈ N̄j
}
. (4.15)

Therefore, a receiving node i /∈ As[n] will receive time information from all its

transmitting neighbors.

Since, for both protocols, Gm[n] is the outcome of a random construction (i.e., it is a random

subgraph of Ḡ), (4.13) is a random linear dynamical system (while (4.9) was a deterministic

system). Given that Gm[n] is constructed in a i.i.d. fashion at each iteration, the sequence

of system matrices {Wm[n]}+∞
n=0 is a (stationary) random matrix process. Similarly to the

deterministic case, if ε ∈ (0, 1) Wm[n] is nonnegative and row stochastic, i.e., Wm[n]1 =

1. Since x∗1 (for some x∗ ∈ R) is a fixed point of (4.13), whenever the algorithm reaches

a network synchronization state, it would not leave it.

In the following, conditions for almost sure convergence of (4.13) will be provided,

along with a lower bound to the convergence rate of (4.13) for both contention and

superposition protocols.

2More complex collision conditions based on the interference graph or on the signal to interference
and noise ratio (SINR) may be considered; nevertheless, here this simple criterion is chosen for its
wide adoption in many practical algorithms and standards, see, e.g., [28][25].
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4.3.1 Almost Sure Convergence

Let Ā be the adjacency matrix associated with the connectivity graph Ḡ. Also, let

the Laplacian matrix associated to Ā be defined as L̄ = D̄ − Ā, where D̄ =

diag (d1, d2, . . . , dK) and di =
∑

j[Ā]i,j . The following result from [63] provides a

necessary and sufficient condition for almost sure (a.s.) convergence of (4.13) to network

synchronization.

Theorem ([63]). The random dynamical system (4.13) converges a.s. to network synchro-

nization iff the average system

x[n+ 1] = E [Wm[n]] x[n]. (4.16)

converges to network synchronization.

Therefore, the study of a.s. convergence boils down to the study of convergence of

the average system (4.16).

Lemma. The average system matrix for contention and superposition access is given by

(the index n is dropped for notational convenience)

E [Wm] = (I−εDm (pm)) + εDm (pm) D̄−1Ā, (4.17)

where Dm (pm) is a diagonal matrix. For contention

[Dc (pc)]ii = 1− pc − (1− pc)
(

1− dipc (1− pc)di+1
)
, (4.18)

while for superposition

[Ds (ps)]ii = 1− ps − (1− ps)di+1 . (4.19)

For pm ∈ (0, 1), ε ∈ (0, 1), E [Wm] satisfies the following:

E [Wm] 1 = 1, ρ(E [Wm]− J) < 1, (4.20)
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and in both cases the average system (4.16) converges to network synchronization. The

convergence rate of the average system (4.16) is given by

Rave
m = − log10 ρ(E [Wm]− J)

= − log10 λ2 (E [Wm]) . (4.21)

In the following, it will be shown that the rate of convergence in average is also

strictly connected to the actual convergence rate of (4.13).

4.3.2 Convergence Rate

As in Section 4.2, the error vector is defined as ∆[n] = (I− J)τ [n]. In case of contention

or superposition access, the dynamics of ∆[n] are ruled by the following recursion

∆[n] = (Wm[n]− 1vTm[n])∆[n− 1]

= Pm[n]∆[n− 1], (4.22)

where vTm[n] = 1
N

1TWm[n]. It can be seen that (4.22) is again a random dynamical system,

and it can be shown that its rate of convergence is determined by a deterministic constant

γm (Lyapunov exponent [82][78])

Rm = − sup
∆[0]

lim
n→+∞

log10 ‖∆[n]‖
1
n = − log γm. (4.23)

The Lyapunov exponent γm cannot be computed in closed form except in some cases.

Nevertheless, as proved in [78], it can be lower bounded with

− log γm ≥ −
1

2
log10 ρ (E [Pm ⊗Pm]) , (4.24)

where ⊗ denotes the Kronecker product. As a consequence, the convergence time may be

upper bounded as

Tm ≤
δ

−1
2

log10 ρ (E [Pm ⊗Pm])
. (4.25)
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Figure 4.2 Comparison of convergence time computed by the Lyapunov exponent γc with
respect to possible approximations versus the loop gain ε and for increasing transmission
range r. Square grid network of 5× 5 nodes at unit distance, contention access protocol.

Unfortunately, the bound (4.24) is very challenging to compute for the algorithms at hand.

Figure 4.2 refers to contention access and a square grid network ofK = 25 nodes deployed

at unit distance from each other. The convergence time computed by the Lyapunov

exponent γc is compared with the upper bound (4.25) and the convergence time of the

average system T ave
c = (δ/− log10 λ2 (E [Wc])), as a function of the loop gain ε and

increasing transmission range r (the Lyapunov exponent is computed by using the methods

in [78]). The accuracy chosen for convergence is δ = 1 (i.e., ‖∆[T ]‖ = ‖∆[0]‖ /10) and

the transmission probability pc is optimized so that to maximize the probability of a given

edge to be active. It can be seen that, for this sample network, the convergence rate of

the average system is the closest approximation for the Lyapunov exponent. Similar results

hold for superposition access and for other topologies, such as a random geometric network

of 25 nodes deployed in a unit square. From this numerical analysis, it is concluded that

the convergence rate Rave
m is a reasonable approximation of the actual rate of convergence
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Figure 4.3 Average convergence time of reservation access protocol versus the loop gain
ε for increasing transmission range r. Regular square grid network of 5× 5 nodes.

(4.23) for the considered topology. In the next section, the rate of convergence Rave
m will be

used to choose the loop gain ε for contention and superposition access protocols.

4.4 Simulation Results

This section presents simulation results in order to compare the convergence rate of the

access protocols introduced in Section 4.1. A regular square grid network of 5 × 5

nodes is considered, where the distance between nodes on the grid is 1 m. The same

collision conditions as those in Section 4.3 are considered for both the reservation and

contention access protocols. For a given transmission radius r, the transmission probability

for contention and superposition access, pc and ps, are optimized so as to maximize the

probability of a generic edge to be active. Required accuracy is chosen as δ = 1.

Looking for the value of the loop gain ε that maximizes the convergence rate for

each of the considered protocols, Figure 4.3 depicts the average convergence time for the

reservation access protocol of Section 4.2 as a function of the loop gain ε for increasing
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Figure 4.4 Convergence time of random access protocols versus the loop gain ε for
increasing transmission range r. Regular square grid network of 5× 5 nodes.

transmission radius r. Notice that, for a given network topology, the convergence time

(4.10) depends on the specific signaling slot allocation. In [57], the average convergence

time was computed by averaging the actual convergence time (4.10) only for the fastest

slot allocations. Differently from [57], Figure 4.3 depicts the average convergence time

of a larger set of feasible allocations3. Interestingly, ε = 1 is not a good choice, since it

results in PLL instability with some allocations. From Figure 4.3, the optimal loop gain

ε is 0.7 and 0.9 for r = 1, 2, respectively. If r = 7 (not shown), each node is able to

communicate with any other node in the network (all-to-all coupling), and the reservation

algorithm allocates a different slot to every node (i.e., M = 25). In this case, if ε > 0.5, all

nodes are perfectly synchronized (i.e., ‖∆[n]‖ = 0) within M iterations and the definition

of asymptotic convergence time (4.10) may not be applied.

Following the discussion in Section 4.3.2, Figure 4.4 depicts the convergence time

in average as an approximation of the actual convergence time of random access protocols

3In particular, feasible allocations are found by employing a random vertex coloring algorithm [83].
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Figure 4.5 Convergence time for different access protocols versus the transmission range
r. Regular square grid network of 5× 5 nodes.

for the network under analysis. It can be seen that the convergence time is a decreasing

function of the loop gain for random access protocols, and therefore the best ε is close to

unity.

Finally, Figure 4.5 depicts the convergence time as a function of the transmission

range r for all the considered medium access protocols. The loop gain for random access

protocols is chosen as ε = 0.95. It can be seen that superposition access is able to exploit

signaling resources more efficiently than contention access. With respect to the reservation

protocol, a special remark needs to be done regarding connectivity. In fact, when the

network is sufficiently well connected, it has been observed that it is in general easy to

find feasible allocations allowing convergence in finite time. In particular, for the specific

network considered here, when r > 2 all the considered slot allocations were able to

guarantee finite-time convergence. The curve for reservation access is therefore truncated

at r = 2 in Figure 4.5 since, when finite-time convergence occurs, the definition (4.10) is

not applicable.
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4.5 Conclusions

This chapter considered the application of distributed synchronization based on phase-

locked loops (PLL) at the MAC layer. The focus was on the impact of the medium access

protocol employed for signaling purposes on the convergence rate of PLL’s. Three access

protocol were considered: reservation, contention and superposition. While the reservation

protocol allocates a dedicated signaling slot for each node, contention and superposition

protocols are both random access schemes. Convergence in the mean has been studied for

contention and superposition, as it is a necessary and sufficient condition for almost sure

convergence to network synchronization. Also, it was shown by simulations that, for a

sample square grid network, the rate of convergence in average is a good approximation to

the actual convergence rate of these schemes. Finally, the considered protocols have been

compared to each other with respect to the convergence speed, showing that superposition

is the most efficient random access protocol for synchronization purposes.



CHAPTER 5

ACCURACY OF DISTRIBUTED SYNCHRONIZATION

A TDMA protocol reserves dedicated resources for each link and requires tight

network synchronization in order to avoid unwanted collisions and manage interference.

Synchronization in a TDMA network can be achieved by employing a MS protocol

such as FTSP or by a MC scheme as detailed in Chapter 4. After the network setup

phase, each node keeps in sync with the network by tracking the periodic transmission

of signaling packets (beacon frames) at frame start. In This chapter focuses on this regime

and analyzes the steady-state accuracy of distributed synchronization algorithms. Clocks

are characterized by two parameters: timing offset (or phase offset) and timing skew

(or frequency offset). Synchronization algorithms aim at correcting phase and frequency

offsets so that all clocks in the network display the same time. In particular, distributed

synchronization algorithms may be categorized into open-loop and closed-loop techniques,

depending on how the clock correction operation is performed.

Open-loop algorithms estimate the parameters of the local clock employing obser-

vations of pair-wise timing offsets. Local time is translated to network (absolute) time by

compensating each clock sample (or timestamp) for phase and frequency offsets. The most

popular synchronization protocol based on the MS architecture is the reference broadcast

synchronization (RBS) protocol [38]. RBS corrects phase and frequency offsets in a MS

network by applying linear regression techniques. Improvements to the original RBS

protocol may be found in [39]. The algorithm proposed in [41], instead, applies to hybrid

networks. This technique is based on writing the clock parameter estimation problem as a

linear system of equations, which is then solved by a distributed iterative algorithm.

Closed-loop synchronization algorithms control the local clock directly by dynam-

ically tuning the local clock frequency. The local controller adapts the frequency correction

102
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applied to the clock according to the observed pair-wise time offsets. Most of the

algorithms following this approach are close relatives of distributed phase-locked loops

(PLL) systems widely employed in synchronous digital circuit-switched networks [15][13].

The clock control law adopted by the Network Time Protocol (NTP) [17], is based on

a discrete-time PLL, and it is tailored for MS topologies. Recently, [45] has studied

the stability of a clock control algorithm similar to NTP on a MC network. Finally, the

algorithm developed in [46] follows a hybrid approach by enhancing a closed-loop phase

correction with an open-loop frequency estimator.

This chapter focuses on synchronization at the MAC layer by considering a TDMA

(i.e., collision-less) protocol for medium access. In addition to MC and MS topologies,

a hybrid network architecture is considered, whereby master nodes are deployed in a

peer-to-peer coupled network. A stable clock model is assumed, whereby local time

needs to be compensated only for phase and frequency offsets. Analysis considers the

synchronization accuracy attained by an open-loop algorithm based on distributed linear

regression and a closed-loop algorithm based on distributed PLL’s. The performance

of practical distributed algorithms is also compared with the Cramér-Rao lower bound

(CRLB) for the problem at hand. Results show that peer-to-peer topologies are inefficient

with respect to the CRLB, whereas the MS hierarchical architecture is able to achieve

the accuracy limit. Nevertheless, the performance of MC and hybrid topologies improves

rapidly when increasing network connectivity, while MS proves to be optimal in poorly

connected networks.

5.1 System Model

5.1.1 Beacon-enabled TDMA MAC Protocol

This chapter analyzes the asymptotic (steady-state) accuracy of distributed algorithms for

time synchronization at the MAC layer. Since the focus on the steady-state regime, nodes

are assumed to have already acquired raw network-wide time synchronization. Given this
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Figure 5.1 Super-Frame structure for a general beacon-enabled TDMA MAC protocol.

assumption, a beacon-enabled TDMA MAC protocol is considered, whereby the time axis

is divided into super-frames of duration TSF seconds as in Figure 5.1. Each superframe

in divided into a beacon period (BP) and a data period (DP), that are further divided into

time-slots. Time-slots within the DP are employed for data transmission, while time-slots

within the BP (or beacon slots) are employed for transmission of signaling information

(beacon frames). No assumption is made on channel access during the DP, as that portion

of the super-frame is irrelevant for the synchronization function. On the other hand, beacon

frames are assumed to be transmitted on a reservation basis, whereby a distributed or

centralized scheduling algorithm assigns a beacon slot to each node. A given beacon slot

may be reused by non-interfering nodes and the number of beacon slots (i.e., the length of

the BP) needed for collision-less transmission depends on the transmission range r (i.e., on

node density). Each slot has a fixed duration TS and it is associated to an integer index q,

so that its nominal time offset from super-frame start is qTS seconds. When the local clock

of node j marks the start of the beacon slot reserved for it, j broadcasts its beacon frame to

its neighbors (accounting for appropriate guard times). Upon receiving a beacon frame at

time t, node i associates it with a timestamp τi(t), obtained by reading its local clock. It is

assumed the use of accurate hardware timestamps: the timestamp is captured from the local

clock upon reception of the first symbol of the start-of-frame delimiter (SFD) sequence at

the physical layer interface. It is important to remark that the exchange of synchronization

information through periodic beacon transmissions is strictly unidirectional, i.e., nodes

do not communicate each other the observed timestamps. As detailed in the following,

this factor has a major impact on the attainable accuracy of distributed synchronization
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algorithms. On the other hand, beacon frames can include other signaling information, e.g.,

the estimated accuracy of the local oscillator. All nodes need to have their radios turned

on during the BP, while they are allowed to sleep during the DP. This communication and

synchronization model is motivated by recent solutions proposed for general multi-hop

mesh networks [28] and applies (with little modifications) also to sensor networks with a

cluster-tree architecture, such as ZigBee networks [29].

It has to be noted that the synchronization algorithms studied here could be adapted

with minor changes to contention-based medium access protocols. In that case, synchro-

nization error analysis would need to account for asynchronous transmissions and beacon

collisions, thus making the TDMA scenario presented here somewhat optimistic. The

next chapter will focus on synchronization in non-beacon enabled networks, where time

information is exchanged along with data and ACK packets (as in the time-synchronized

mesh protocol - TSMP [31]). Finally, the proposed algorithms are not confined to the MAC

layer, as they could be implemented (with minor changes) at every layer of the protocol

stack, in particular at the application layer. At higher layers, large network delays need to

be continuously compensated by handshaking procedures such as those specified by IEEE

1588/PTP or NTP time transfer protocols. The interested reader could refer to [39] for

a review of handshaking procedures suited for wireless networks that can be employed

alongside the proposed algorithms.

5.1.2 Observation Model

In order to develop an observation model suitable for the development of synchronization

algorithms, consider two sample nodes, j and i. Assume that they do not employ any

synchronization technique and let their clocks running freely. Node j broadcasts a beacon

periodically, whenever its local clock strikes τj (tj[n]) = nTSF + qjTS , where tj[n] is the

absolute beacon transmission time (see Figure 5.2). Alternatively, beacon transmission is

triggered when node j’s clock increases by an amount equal to TSF with respect to the last
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beacon transmission time,

τj(tj[n])− τj(tj[n− 1]) = TSF , (5.1)

where τj(tj[0]) = qjTS . The recursive definition of the beacon transmission time (5.1)

is particularly important for the design of iterative synchronization algorithms. The

reception of a beacon frame triggers a timestamp τi(t
′
j[n]) = τi(tj[n] + vij[n]) at node

i. The reception timestamp τi(tn + vij[n]) depends on the delivery time delay vij[n] (or

channel jitter1). The delivery time is due to the accumulation of both deterministic and

random delay components. In general, delivery time is the sum of send time and medium

access time vj[n] (random), channel propagation (time-of-flight) and transmission time νp

(deterministic), and finally receive time vi[n] (random) (see [37] for a detailed description).

For distances below 300 m, the propagation time is negligible (it is less than 1 µs). In

case hardware-assisted timestamps are implemented (as prescribed by IEEE 802.15.4 [25]

and IEEE 802.11 [24] specifications), random delay components can be neglected. The

1The random component of the delivery time delay is also called packet delay variation (PDV) in
the literature on synchronization on packet-switched networks.
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residual jitter boils down to the errors in compensating deterministic delays and residual

circuit delays at both transmitting and receiving side.

In the following, clocks are assumed to be perfectly stable within a super-frame

(frequency drift and phase noise are negligible). If quantization noise is neglected as well,

the clock at node i may be modeled as

τi(t) = (1 + αi) t+ βi, (5.2)

where βi is the initial phase and the clock frequency is 1 + αi. From (5.2), the epoch t

can be recovered from local time at node j as t(τj) = 1
1+αj

(τj − βj). By plugging the

transmission epoch tn(τj) in the expression for the reception timestamp τi (tj[n] + vij[n]),

it is obtained

τi (tj[n] + vij(tn)) =
1 + αi
1 + αj

τj(tj[n]) +

(
βi −

1 + αi
1 + αj

βj

)
+ (1 + αi) vij[n]. (5.3)

The observation model (5.3) has been studied in many works on synchronization (see, e.g.,

[46]). From the super-frame model of Section 5.1.1, the local time at node j is known2 to

be τj(tj[n]) = nTSF + qjTS . In the following it is considered τj(tj[n]) ' nTSF , as this

approximation is irrelevant for accuracy analysis. The model may be simplified by noting

that, since |αk| � 1 for ∀k, 1+αi
1+αj

' 1 + (αi − αj), and (5.3) can be approximated as

τi (tj[n] + vij[n]) ' nTSF + (αi − αj) (nTSF − βj) + (βi − βj) + vij[n]. (5.4)

The local time at node j, nTSF , is a known constant and does not add any useful information

by itself. Therefore, it is possible to focus on pair-wise time offsets, oij[n] = nTSF −

τi (tj[n] + vij[n]). By defining wij[n] := −vij[n], the model for time offset observations

2Other protocols, such as IEEE 1588 and NTP, do not require to perform time information exchanges
with a fixed and known periodicity. In those cases the packet needs to be timestamped also at
transmitting side, since τj(tj [n]) is unknown to the receiver. The transmission timestamp τj(tn)
is then inserted either in the packet payload or in a following signaling packet, thereby increasing
synchronization overhead.
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may be written as

oij[n] = (αj − αi) (nTSF − βj) + (βj − βi) + wij[n]. (5.5)

If initial time offsets are bounded within a finite interval (e.g., βj ∈ [0, TSF ]), nTSF � βj

for sufficiently large n, and the observation model (5.5) may be approximated with the

following

oij[n] ' (αj − αi)nTSF + (βj − βi) + wij[n]. (5.6)

In practical systems, the reception timestamp τi (tn + vij(tn)) is quantized. Overall,

considering residual channel jitter and timestamp quantization, the random noise wij[n]

is assumed to be a i.i.d. random process with variance E
[
(wij[n])2] = σ2

ij . Notice that the

average noise is non-zero, E [wij[n]] 6= 0, due to residual deterministic delays on the link

between node j and node i. In the following, it is assumed that any residual deterministic

delay may be accurately measured and compensated beforehand3, so that E [wij[n]] = 0.

Typically, the observation noise is assumed to follow either a Gaussian or an exponential

distribution [39]. If the transmitting node j is a master node deployed with an accurate

time reference (e.g., GPS), its clock is assumed be matched perfectly to absolute time, i.e.,

τj(t) = t and αj = βj = 0.

When a synchronization algorithm is employed, the local clock τj(t) is compensated

for the estimated phase and frequency offsets, and the resulting corrected clock si (t) is

employed as the timer for MAC layer tasks. To clarify this point, consider the simple

case of beacon transmission from node j to node i in Figure 5.2. Similarly to (5.1), node

j evaluates the time interval between successive beacon transmissions by employing the

corrected clock,

sj(tj[n])− sj(tj[n− 1]) = TSF . (5.7)

3Deterministic delays may be estimated through a preliminary network calibration procedure
consisting in series of timing handshakes between neighbors.
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When a beacon is received, node i captures the local clock value τi(t′j[n]) and corrects

it to obtain the corrected timestamp si(t′j[n]). Finally, the corrected time offset oij[n] =

nTSF − si
(
t′j[n]

)
retains the same expression of (5.6), but it depends on the residual phase

and frequency offsets after the clock correction operation.

In order to simplify the treatment in the following sections, a simplified notation is

introduced: with reference to events within the n-th super-frame, τij[n] = τi(t
′
j[n]) and

sij[n] = si(t
′
j[n]) indicate the beacon transmission time from node j according to node i’s

local and corrected clocks, while τii[n] = τi(ti[n]) and sii[n] = si(ti[n]) are the beacon

transmission time from node i according to its local and corrected clocks.

5.2 Distributed Clock Control: Closed-loop Synchronization

This section analyzes a synchronization algorithm that is based on the distributed control of

the clock ensemble. Consider a simple master-slave system. Given the observation (5.6),

the internal model principle suggests that a PI controller is needed to drive to zero the static

error with respect to the master. In the synchronization nomenclature, a PI control law

corresponds to a type 2 phase-locked loop (PLL) [6][15]. In the following, it will be shown

that a type 2 PLL is able to compensate both frequency and phase offsets also in a general

synchronization network4.

When a synchronization algorithm is employed, beacon transmissions are triggered

according to the corrected clock si[n]. A PLL applies a linear correction to the local clock,

so that sii[n] = τii[n] + pi[n], where pi[n] is the local correction term. From the discussion

in Section 5.1.2, it holds that sii[n] − sii[n − 1] = TSF , and it can be seen by simple

manipulations that the transmission time of the n-th beacon frame with respect to the local

4Notably, a type 2 PLL is employed also by NTPv3 [17]. NTPv3 implements an asynchronous
correction mechanism for a (software) system clock in order to provide an accurate time-of-day
service. The presented algorithm, instead, entails periodic adjustments of the MAC layer clock
employed to coordinate medium access.
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clock satisfies

τii[n]− τii[n− 1] = TSF − (pi[n]− pi[n− 1]) . (5.8)

By comparing (5.8) with (5.1), it is seen that the PLL changes dynamically (closed-loop

synchronization) the frequency of beacon transmission events as in a variable frequency

oscillator (VFO). It is important to stress that (5.8) allows to determine the corrected

beacon transmission times with respect to the local clock by employing the conventional

compare function of hardware clock registers [21]. No direct correction of the local clock

is requested (i.e., no timing advance or periodic tick removal/addition). When a PI (type 2)

loop filter is utilized, the clock correction is computed as (see Figure 5.3)

pi[n] = pi[n− 1] + κ1ei[n− 1] + TSFui[n− 1], (5.9)
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where the phase correction term εei[n] is provided by the proportional branch of the loop

filter, while the frequency correction term TSFui[n] provided by the integral branch is

ui[n] = ui[n− 1] + κ′2εei[n− 1]. (5.10)

Notice that the dimension of ui[n] is [µs/µs], the integral gain κ′2 is expressed in [µs−1]

and the gain κ1 is dimensionless. The error ei[n] is computed by the combining block as a

linear combination of pair-wise time offsets5

ei[n] =
1

di

[
K∑

j=Ku+1

mijoij[n] +
Ku∑
j=1

aijoij[n]

]
, (5.11)

where the in-degree of node k, dk, is defined as the sum of the weights of all incoming

links at node k, di =
∑K

j=Ku+1mij +
∑Ku

j=1 aij and the weights mij , aij are subject to

design choice. In particular, each node may arbitrarily decide whether to listen or not to

each of its neighbors (i.e., aij ∈ {0, 1}, mij ∈ {0, 1}). Notice that pair-wise time offsets

oij[n] need to be computed with respect to the corrected clock. For this purpose, when

a beacon is received from node j during the n-th super-frame, node i captures the local

clock value τij[n] and computes the corrected timestamp sij[n] as sij[n] = τij[n] + pij[n],

where pij[n] is the timestamp correction term. It will be shown in the next section that

a reasonable choice for timestamp correction is pij[n] = pi[n] + ui[n − 1] (qj − qi)TS .

The corrected reception timestamp sij[n] and the next beacon transmission time τii[n] in

(5.8) may be computed by the NCO circuit in Figure 5.4. The start time of any time-slot

within the DP of the n-th super-frame may be evaluated with respect to the local clock as

τii [n; q] = τii[n] +
(

1− ui[n]− κ1
ei[n]
TSF

)
(q − qi)TS , where q is the index of the time-slot

of interest.

A necessary condition for the clock control algorithm to work properly is that τii[n] >

τii[n− 1], or, equivalently, that the corrected clock sii[n] is monotonically increasing (time

5In general, the phase detector can include additional memory and filtering. Phase detectors may
also implement outlier detection for security purposes [17].
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never runs backwards). From (5.9), it is possible to express (5.8) in terms of phase and

frequency corrections as

τii[n]− τii[n− 1] = TSF − κ1ei[n− 1]− TSFui[n− 1]. (5.12)

The monotonicity condition requires that |κ1ei[n− 1] + TSFui[n− 1]| < TSF . If loop

parameters are chosen wisely, frequency correction is typically small, |ui[n− 1]| � 1 and

most of the overall correction is provided by the phase term. Phase correction is a weighted

average of corrected time offsets, which can be expressed as

oij[n] = nTSF + qjTS − (τij[n] + pij[n])

= nTSF + qjTS −
[
nTSF + qiTS + (τij[n]− τii[n]) + pij[n]− pi[n]

]
= (τii[n]− τij[n])− (1− ui[n− 1]) (qi − qj)TS. (5.13)

Under normal operating conditions, |τii[n]− τij[n]| < TSF , and it holds |oij[n]| < TSF ,

therefore allowing to meet the monotonicity constraint. Notice that the second term in

(5.13) takes into account the fact that beacons from j and i are transmitted in different

time-slots.
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In the next section, an analytical model for the clock control algorithm in Figure 5.3

is derived in order to derive stability conditions and synchronization accuracy for a network

of coupled PLL’s.

5.2.1 PLL Stability Analysis

This section investigates conditions necessary to ensure the stability of a network of

coupled PLL’s. Stability is in fact a required preliminary assumption in order to study

the accuracy of synchronization at steady-state. From (5.12) and (5.2), the absolute time

interval between two successive beacon transmissions from node i is

ti[n]− ti[n− 1] =
1

1 + αi
(TSF − κ1ei[n− 1]− TSFui[n− 1]) . (5.14)

Recall that, since master nodes have access to an accurate time reference, it is τi[n] =

ti[n] and ti[n] − ti[n − 1] = TSF if i ∈ M. Since additive noise does not affect

stability, observations are here considered noiseless, i.e., with reference to Figure 5.2, it

is assumed t′j[n] = tj[n] (or equivalently wij[n] = 0 in (5.6)). Measured time offsets can

therefore be expressed as a function of absolute time by observing that τij[n] − τii[n] =

(1 + αi) (tj[n]− ti[n]) in (5.13), and therefore

oij[n] = (1 + αi) [(ti[n]− qiTS)− (tj[n]− qjTS)]− (αi + ui[n− 1]) (qj − qi)TS.

' (1 + αi) [(ti[n]− qiTS)− (tj[n]− qjTS)] (5.15)

where the last approximation holds assuming that, in steady-state, frequency

correction is sufficiently accurate with respect to noise and clock granularity so that

(αi + ui[n− 1]) (qj − qi)TS ' 0 for every qj , qi. The phase and frequency estimation

errors of node i with respect to absolute time are defined as

xi[n] = ti[n]− qiTS − nTSF (5.16)

yi[n] = − (ui[n] + αi)
TSF

1 + αi
. (5.17)
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From (5.10)-(5.15) the dynamic equation for phase and frequency errors can be written as

xi[n] = xi[n− 1] +
κ1

di
ei[n− 1] + yi[n− 1], (5.18)

yi[n] = yi[n− 1] + κ2
κ1

di
ei[n− 1], (5.19)

where κ2 = TSFκ
′
2 is now a dimension-less constant and the initial condition for the

frequency error is yi[0] = − αi
1+αi

TSF . The error ei[n] in (5.18)-(5.19) reads

ei[n] = −
K∑

j=Ku+1

mijxi[n] +
Ku∑
j=1

aij (xj[n]− xi[n]) . (5.20)

Recall the definition of the Laplacian matrix L = D−A, where A is the adjacency matrix

and D is the diagonal matrix of node degrees, D = diag (d1, d2, . . . , dKu). By introducing

the vectors x = [x1, x2, . . . , xKu ]T , y = [y1, y2, . . . , yKu ]T , the equations (5.18)-(5.20) may

be cast in vector form as x [n]

y [n]

 =

 I− κ1D
−1L I

−κ1κ2D
−1L I


 x [n− 1]

y [n− 1]

 . (5.21)

A dynamic system equivalent to (5.21) was studied in [44] for MC networks. Here a general

treatment is pursued, which is valid for any topology, by following on the lines of stability

analysis for formation control [84]. In the case of MS and hybrid networks, the Laplacian

L is nonsingular, and the equilibrium point of (5.21) is x∗ = y∗ = 0. In the case of

MC networks, instead, L is singular as L1 = 0. This property reflects the fact that the

universal time t is unobservable in a MC network, and phase and frequencies are estimated

with respect to a virtual reference τ0(t) = α0t + β0, where the constants α0, β0 depend on

network topology and synchronization algorithm adopted. In fact, it can be shown (see also

[44]) that limn→∞ x[n] = 1vTx [0]− ny∗, where y∗ = 1vTy [0] and [v]i = di/ (
∑

i di).

The Schur decomposition of the normalized Laplacian matrix can be expressed as

D−1L = QTQH , where Q is a unitary matrix and T is an upper triangular matrix with

diagonal entries [T]ii = λi(D
−1L) [85]. By letting x̃[n] = QHx[n], ỹ[n] = QHy[n],
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(5.21) can be rewritten as x̃ [n]

ỹ [n]

 =

 I− κ1T I

−κ1κ2T I


 x̃ [n− 1]

ỹ [n− 1]

 . (5.22)

The blocks comprised in the equivalent system matrix in (5.22) are now either diagonal or

triangular, and therefore the system (5.22) is stable depending on the stability of the Ku

2× 2 subsystems defined over the diagonal elements of the blocks, x̃i [n]

ỹi [n]

 =

 1− κ1µi 1

−κ1κ2µi 1


 x̃i [n− 1]

ỹi [n− 1]

 , (5.23)

where µi = λi(D
−1L) for notational convenience. The system in (5.23) is the same as

a type 2 discrete-time phase-locked loop (DPLL) with loop gain κ1µi. If the eigenvalues

µi are all real, (5.23) is known to be stable if 0 < κ2 < 1 and 0 < κ1µi < 4/ (2− κ2)

[6]. The normalized Laplacian D−1L of a MS network may be triangularized by simple

permutation, and its eigenvalues are all equal to 1, µi = 1 for i = 1, . . . K. Therefore,

the stability criteria valid for a single MS link are sufficient to guarantee the stability

of a whole MS network6. In the case of MC networks, L is symmetric, and therefore

its eigenvalues are all real and nonnegative. The eigenvalues of D−1L correspond to the

generalized eigenvalues of L and D [52]; since D is positive-definite, they are also real.

Finally, by Gershgorin’s theorem [85], µi is comprised within µi ∈ [0, 2], and therefore a

sufficient condition for stability of (5.23) is
0 < κ2 < 1

0 < κ1 <
2

2−κ2

µi > 0 i = 2, . . . , K

. (5.24)

where the last condition takes into account that µ1 = 0 from the unobservability of absolute

time. The fact that all the other eigenvalues need to be non-zero implies that the network

6A necessary requirement for network synchronization with a MS architecture is that the topology
graph contains a forest rooted at the master nodes, which implies µi > 0.
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is connected . If the graph is regular (e.g., a ring network), the normalized Laplacian

is symmetric and the matrix T is diagonal. In this way, the system (5.21) is effectively

decoupled into K parallel 2×2 systems. Of note, MC networks with full connectivity have

µi>1 = 1 + 1
K−1

, i.e., µi>1 ' 1 for large K. For a hybrid network, L is still symmetric,

but µ1 > 0 needs to be added to the sufficient conditions (5.24) in order to achieve network

synchronization.

The loop gain κ1 and the integrator gain κ2 govern the loop dynamic response. A

common practice in discrete-time PLL design is to employ a time-continuous approxi-

mation of (5.18)-(5.19) in order to choose their values [6]. The approximation is accurate

for small loop gain κ1 (κ1 < 0.2 according to [6]), which is a typical choice to achieve

accurate tracking. In particular, a type 2 PLL may be approximated by a continuous-time

(analogue) PLL with natural frequency ωn and damping factor ζ

ωn =
1

TSF

√
κ1κ2 (5.25)

ζ =
1

2

√
κ1

κ2

. (5.26)

In general, it is recommended to choose κ2 < κ1 in order to have ζ > 0.5 and avoid large

oscillations in the dynamic response. Typical choices are κ2 = κ1/4 or κ2 = κ1/2, which

imply ζ = 1 or ζ = 0.707, respectively. When PLL’s are coupled in a synchronization

network, their dynamic response depends on the specific architecture adopted. Wide

oscillations are observed with both MS and MC topologies even with ζ > 1, but large

damping factors entail longer convergence times. Of note, it is recommended in the

literature to employ ζ ≥ 4.4 with MS topologies (see, e.g., [6]). From simulation

results here omitted, it has been determined that ζ = 5 is a reasonable choice for all the

architectures considered in this work.
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5.2.2 PLL Accuracy Analysis

Consider now the case where the measured offsets oij[n] in (5.15) are corrupted by i.i.d.

noise with varianceE
[
(wij[n])2] = σ2

w. After the selection and combining block, the noise

term added to the error ei[n] in (5.20) is

wi[n] =
1

di

[
K∑

j=Ku+1

mijwij[n] +
Ku∑
j=1

aijwij[n]

]
. (5.27)

Let the noise vector w[n] be defined as w[n] = [w1[n], w2[n], . . . , wKu [n]]. From (5.27)

the noise covariance is E
[
wwT

]
= σ2

wD−1. The update (5.21) may be rewritten as

z [n] =

 I− κ1D
−1L I

−κ1κ2D
−1L I

 z [n− 1] + κ1

 w[n− 1]

κ2w[n− 1]

 . (5.28)

where z [n] = [x [n] ,y [n]]T . Let P be the iteration matrix in (5.28). From (5.28), the

covariance C [n] = E
[
z [n] zT [n]

]
satisfies the recursion

C [n] = PC [n− 1] PT + Cw, (5.29)

where the covariance matrix of the random additive term in (5.28) is

Cw = κ2
1σ

2
w

 1 κ2

κ2 κ2
2

⊗D−1. (5.30)

If the iteration P is stable, the steady-state covariance Css = limn→∞C[n] satisfies the

discrete-time Lyapunov equation

Css = PCssP
T + Cw, (5.31)

which has a unique solution that may be expressed as

Css =
∞∑
n=0

(
PT
)n

CwPn. (5.32)
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In the case of MS and hybrid networks, the steady-state average MSE for phase and

frequency is defined as ξ2
p = limn→∞

1
K

∑Ku
i=1E [x2

i [n]], ξ2
f = limn→∞

1
K

∑Ku
i=1 E [y2

i [n]],

respectively. These quantities are computed from the covariance matrix in (5.32) as

ξ2
p =

1

K

Ku∑
i=1

[Css]ii (5.33)

ξ2
f =

1

K

2Ku∑
i=Ku+1

[Css]ii . (5.34)

In the case of MC networks, absolute time is unobservable due to the lack of a master node.

Phase and frequency errors are therefore defined with respect to a virtual reference, x0[n],

y0[n], given by the weighted average of absolute phases and frequencies, e.g., x0[n] =∑K
j=1 vixi[n] for phase. The weight for the contribution of node i, vi, can be conveniently

chosen according to the specific case under analysis. In particular, in order to perform

noise analysis for a MC networks of PLL’s with dynamics (5.28), the following change of

variables is introduced

s[n] =

 (IK − 1vT
)

x[n](
IK − 1vT

)
y[n]

 , (5.35)

where the node weights are [v]i = vi = di/ (
∑

i di). It can be shown that the Lyapunov

equation (5.31) is rewritten for the transformed state (5.35) as

Css = P′CssP
′T + C′w, (5.36)

where P′ = GPG, C′w = GCwG, and G = I2 ⊗
(
IK − 1vT

)
. The steady-state average

MSE for phase and frequency, ξ2
p , ξ2

f , is then computed from (5.36) analogously to (5.33)-

(5.34).

In the special case of regular MC networks, the steady-state accuracy can be

computed in closed form as detailed in the following section.
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Figure 5.5 Decomposition of a regular MC network of PLL’s.

5.2.3 A Special Case: Regular MC Networks

In the case of regular MC networks, the node degree is the same for all nodes, di = d,

and the steady-state phase and frequency MSE may be computed analytically. In fact, the

normalized Laplacian D−1L = 1
d
L is symmetric and (5.28) may be diagonalized into K

parallel dynamic systems as the one in Figure 5.5. The input noise w̃i[n] is i.i.d. along the

index i, E
[
(w̃i[n])2] = σ2

w

d
. The transfer function from w̃i[n] to x̃i[n] is

Hp (z;µi) = κ1z
−1 1− (1− κ2) z−1

(1− z−1)2 + κ1µiz−1 [1− (1− κ2) z−1]
. (5.37)

The output phase noise power for the i-th spectral component is computed by integrating

the power spectral density of (5.37), Sp (z;µi) = Hp (z;µi)Hp (z−1;µi), as in

2b
(p)
L (µi) =

1

2πj

˛
|z|=1

Sp (z;µi) z
−1dz. (5.38)

The term b
(p)
L (µi) is defined as the one-sided noise equivalent bandwidth of (5.37) [6].

Notice that (5.38) is a normalized bandwidth, and it is therefore dimension-less. By

employing the residue theorem [86], (5.38) yields

2b
(p)
L (µi) =

κ1

2µi

1 + κ2

κ1µi
− κ2

2
(3− κ2)

1− κ2 − κ1µi
4

(2− κ2 + κ2
2)
. (5.39)
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Therefore, the average steady-state phase error is

ξ2
p =

1

K

K∑
i=2

σ2
w

d
2b

(p)
L (µi) (5.40)

' κ1

2

σ2
w

K

K∑
i=2

[
1

dµi
+

1

4ζ2

1

dµ2
i

]
, (5.41)

where the last approximation follows from 2b
(p)
L (µi) ' κ1

2µi

(
1 + 1

4ζ2µi

)
for small loop gain

κ1, κ2 < κ1 � 1, and κ2 = κ1

4ζ2 as in (5.26).

The steady-state frequency MSE may be computed by following a similar procedure.

The transfer function from from w̃i[n] to ỹi[n] is

Hf (z;λi) = κ1κ2z
−1 1− z−1

(1− z−1)2 + κ1µiz−1 [1− (1− κ2) z−1]
. (5.42)

Again by applying the residue theorem, the noise equivalent bandwidth of (5.42) reads

2b
(f)
L (µi) =

1

µ2
i

2κ2

(1− κ2)
[
1 + 2(2−κ1µi)

κ1κ2µi

] . (5.43)

Therefore, the steady-state average MSE is

ξ2
f =

1

K

K∑
i=2

σ2
w

d
2b

(f)
L (µi) (5.44)

' κ3
1

32ζ4

σ2
w

K

K∑
i=2

1

dµ2
i

. (5.45)

where the last approximation holds for small loop gain κ1, κ2 < κ1 � 1. Notice that both

phase and frequency accuracy in (5.41)-(5.45) show the same dependence from network

topology through the normalized Laplacian spectrum µi = λi (L) /d.

5.3 Distributed Estimation of Clock Parameters: Open-loop Synchronization

From the simple model (5.2), each clock is defined by two parameters: the frequency offset

αi and the phase offset βi. If node i has available an estimate of these two, x̂Ti =
[
α̂i, β̂i

]
,
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it can correct the local clock τi(t) as in (time translation operation7)

si(τi) =
1

1 + α̂i

(
τi − β̂i

)
. (5.46)

If the estimates coincide with the actual values, α̂i = αi, β̂i = βi, then time displayed by

the corrected clock coincides with absolute time, si(τi) = ti(τi). As for the PLL, beacon

transmissions can be triggered without adjusting the local clock directly, but just waiting

for the local clock to strike

τii[n] = (1 + α̂i)nTSF + β̂i. (5.47)

Also, as in (5.12), subsequent beacon transmissions can be triggered via the recursion

τii[n+ 1]− τii[n] = (1 + α̂i)TSF . (5.48)

In this section an algorithm is devised in order to estimate clock parameters in a completely

distributed fashion. Notice how, from the observation model (5.6), the problem can be

posed as a distributed linear regression. In general, distributed estimation problems are

solved in two steps, namely a training phase and a fusion phase. During the training phase,

nodes acquire the local observations necessary for estimation, while during the fusion phase

each node cooperates with its neighbors in order to compute the global estimate of the

parameters of interest. If clocks are indefinitely stable, their frequency never changes, and

clock parameters can be estimated once and for all during the initial network calibration by

a single training and fusion cycle. In practice, training and fusion phases would repeat

periodically throughout normal network operation (see Figure 5.6) in order to update

current estimates and track slow clock frequency variations due to environmental factors.

The assumption of clock stability formulated in Section 5.1.2 implies that frequency

changes are so slow that clock parameters can be regarded as constant within a single

7By employing the same useful approximations adopted in Section 5.1.2, the corrected clock can be
alternatively computed with si(τi) ' τi − α̂iτi − (1− α̂i) β̂i.
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Figure 5.6 Alternating training and fusion phases for the distributed estimation of clock
parameters.

update interval. If estimation is performed independently in subsequent training/fusion

cycles (open-loop synchronization), synchronization accuracy depends only on the length

of the training phase. For simplicity of exposition, in the following the focus is on the

initial network calibration, whereby nodes transmit only beacon frames leaving their clocks

free-running, and each super-frame comprises suitable inter-slot guard times to account for

phase and frequency offsets.

During the training phase, each node i collects a set of N time offset observations

{oij[n]}N−1
n=0 for each incoming link (i, j) ∈ E . Notice that the set of available measures

depends on network connectivity through the edge set E . Since each super-frame allows to

collect only a single time offset for each link, the training phase comprises N subsequent

super-frames. During the fusion phase, nodes employ a distributed procedure to estimate

local clock parameters. This phase comprises several super-frames, say NF , depending

on the fusion algorithm adopted and network architecture. The exact value of NF is

immaterial for the present discussion since it does not affect synchronization accuracy. In

the following, a fusion algorithm will be devised in order to allow a given node i to estimate

its own clock parameters without exchanging measured offsets with its neighbors, but only

by broadcasting its current estimate x̂Ti =
[
α̂i, β̂i

]
. The value of the current estimate can

be inserted in the payload of the beacon frame, thereby complying with the communication

model of Section 5.1.1.

Suitable distributed algorithms can be devised by considering synthetic observations,

computed as the weighted sum of the time offsets observed by node i in the n-th super-
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frame of the training phase, namely

oi[n] =
∑

j∈Ni∩M

mijoij[n] +
∑

j∈Ni∩S

aijoij[n], (5.49)

where the weights aij , mij are subject to design choice. It can be easily proved that (5.49)

is a sufficient statistics for the problem at hand. Still, processing the original observations

typically implies a degradation of the estimation efficiency. As it will be shown in Section

5.6, this is also the case here. Given the model (5.6), (5.49) may be expressed in terms of

the parameters of interest as

oi[n] = −
K∑

j=Ku+1

mij [αinTSF + βi] +
Ku∑
j=1

aij [(αj − αi)nTSF + (βj − βi)] + wi[n],

(5.50)

for n = 0, . . . , (N − 1)TSF , where the noise wi[n] =
∑K

j=Ku+1mijwij[n] +∑Ku
j=1 aijwij[n]. Recall the definition of the in-degree of node k, di =

∑K
j=Ku+1mij +∑Ku

j=1 aij . The noise variance is proportional to the node degree, E
[
(wi[n])2] = diσ

2
w.

As a preliminary step towards the development of a distributed fusion scheme, the next

section introduces a centralized procedure that estimates phase and frequency offsets from

the synthetic observations (5.50).

5.3.1 Centralized Estimation

In this section it is assumed to employ a centralized processor which has somehow obtained

timing offsets observations (5.50) from all nodes. The analysis of the centralized algorithm

is instrumental in order to derive the distributed algorithm of Section 5.3.2.

The N × 1 vector comprising the observations of node i is oi =

[oi[0], oi[1], . . . , oi[N − 1]]T , the N × 1 observation noise vector is wi =

[wi[0], wi[1], . . . , wi[N − 1]]T , and the 2Ku × 1 parameter vector is x =[
xT1 ,x

T
2 , . . . ,x

T
Ku

]T , xTi = [αi, βi]. From (5.50), it can be seen that

oi =

[(
−dieTi + aTi

)
⊗R

]
x + wi, (5.51)
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where ei is the i-th column of theKu×Ku identity matrix, aTi is the i-th row of theKu×Ku

adjacency matrix A, and the N × 2 matrix R is

R =



0 1

TSF 1

...
...

(N − 1)TSF 1


. (5.52)

By defining the NKu × 1 network observation vector o =
[
oT1 ,o

T
2 , . . . ,o

T
Ku

]T , the

observations can be written in compact form as the following linear system

o = Hx + w, (5.53)

where the NKu × 2Ku system matrix is H = −L ⊗ R and the covariance matrix of the

random noise w is Cw = D⊗ INσ
2
w.

In the case of MS and hybrid architectures introduced in Section 2.3, if the network

graph comprises a forest rooted at the master nodes, the Laplacian L is nonsingular,

and therefore H has full column-rank. From the Gauss-Markov theorem, the best linear

unbiased estimator (BLUE) for the vector parameter x given the linear model (5.53) is

x̂ = Wo, where [87]

W =
(
HTC−1

w H
)−1

HTC−1
w . (5.54)

By exploiting the mixed-product property of the Kronecker product [85],

(A⊗B) (C⊗D) = AC⊗BD, and the 2Ku ×NKu matrix W is written as

W = −L−1 ⊗R†, (5.55)

where R† is the 2×N pseudoinverse (Moore-Penrose inverse) of R, R† =
(
RTR

)−1
RT

[85]. The 2Ku × 2Ku covariance matrix of the estimate is

Cov (x̂) = σ2
w

(
LTD−1L

)−1 ⊗
(
RTR

)−1
. (5.56)
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Let the network phase estimation error ξ2
p be defined as the average MSE, ξ2

p =

1
K

∑Ku
i=1E

[(
β̂i − βi

)2
]

; a similar definition holds for the network frequency estimation

error ξ2
f . From (5.56), it holds that

ξ2
p =

2 (2N − 1)

N (N + 1)

σ2
w

K

Ku∑
i=1

1

λi (LTD−1L)
(5.57)

ξ2
f =

12

T 2
SFN (N2 − 1)

σ2
w

K

Ku∑
i=1

1

λi (LTD−1L)
, (5.58)

where it has been employed the property of the trace of an invertible matrix E, tr (E−1) =∑Ku
i=1 λ

−1
i (E), and λi (E) are the ordered eigenvalues of E, λ1 (E) ≤ λ2 (E) ≤ . . . ≤

λKu (E).

In the case of MC architectures, there are no master nodes and the Laplacian L is a

symmetric singular matrix, L1 = 0. Since universal time can not be observed in a MC

network, phase and frequencies are estimated with respect to a virtual reference τ0(t) =

α0t+ β0, where the reference phase and frequency are α0 = 1
K

∑K
j=1 αi, β0 = 1

K

∑K
j=1 βi.

The new parameter vector y =
[
yT1 ,y

T
2 , . . . ,y

T
K

]T , yTi = [αi − α0, βi − β0], can be written

as a linear combination of absolute phases and frequencies, y = [(IK − J)⊗ I2] x, where

J = 1
K

11T . It is shown in Appendix 5.A that the BLUE estimator for the transformed

parameters is ŷ = Wo, where

W = −
(
LTD−1L

)†
LTD−1 ⊗R†. (5.59)

The covariance matrix of the estimate is

Cov (ŷ) = σ2
w

(
LTD−1L

)† ⊗ (RTR
)−1

. (5.60)
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From (5.60) and the definition of Moore-Penrose inverse [85], the average MSE reads

ξ2
p =

2 (2N − 1)

N (N + 1)

σ2
w

K

K∑
i=2

1

λi (LTD−1L)
(5.61)

ξ2
f =

12

T 2
SFN (N2 − 1)

σ2
w

K

K∑
i=2

1

λi (LTD−1L)
. (5.62)

Notice that sum starts from i = 2 as λ1

(
LTD−1L

)
= 0 from the singularity of the

Laplacian L.

The next section introduces a distributed algorithm that achieves the same accuracy

as the centralized estimator on certain topologies.

5.3.2 Distributed Estimation

Clock parameter estimation may be performed in a distributed fashion by the use of

iterative methods for the inversion of the linear system

− (L⊗R) x̂ = o. (5.63)

Notice that the system (5.63) is inconsistent as the observation o is corrupted by noise. In

order to find a solution to (5.63), a distributed iterative procedure can be derived in the likes

of the block Jacobi algorithm [88]. By defining Ã = A⊗R and the block-diagonal matrix

D̃ = D ⊗R, the system matrix in (5.63) can be split as (L⊗R) =
(
D̃− Ã

)
. If di 6= 0

(i.e., if there are no isolated nodes), D̃ has full column-rank, and the pseudoinverse of D̃

reads

D̃† =
(
D⊗RT ·D⊗R

)−1
D⊗RT

= D−1 ⊗R†, (5.64)

which is again block-diagonal. As it holds that D̃†D̃ = I, (5.63) may be cast into the

following fixed-point equation

x̂ = D̃†Ãx̂− c, (5.65)
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where c = D̃†o. The fixed-point of (5.65) can be computed recursively by the following

iterative procedure

x̂ [p+ 1] = (1− ε) x̂ [p] + ε
[
D̃†Ãx̂ [p]− c

]
, (5.66)

where x̂ [p] is the vector comprising phase and frequency estimates at step p, and ε is a

relaxation parameter. By substituting (5.64) in (5.66), the estimate update is rewritten as

x̂ [p+ 1] =
[(

IKu − εD−1L
)
⊗ I2

]
x̂ [p]− εc. (5.67)

In the case of MS and hybrid architectures, the recursion (5.67) converges to the BLUE

(5.56) if the spectral radius of the iteration matrix is strictly smaller than unity [50],

ρ (I− εD−1L) < 1. As already observed in Section 5.2.1, Gershgorin’s theorem assures

that the eigenvalues of D−1L are comprised within the interval (0, 2]. Therefore, a sufficient

condition to ensure the convergence of the algorithm is 0 < ε < 1. Notably, the algorithm

is still convergent with ε = 1, since the iteration matrix would be D−1A and L = D −A

is an M-matrix8. In the case of MC architectures, the recursion (5.67) converges to the

BLUE (5.59) only on regular networks (e.g., ring networks). In general, the accuracy

of the distributed algorithm is very close to the optimum (5.60) on graphs with almost

regular degree distribution (e.g, the lattice and line graphs considered in Section 5.6).

Appendix 5.A is devoted to the detailed convergence analysis of (5.67) in the case of MC

architectures.

Direct inspection reveals that the recursion (5.67) allows for a distributed implemen-

tation. In particular, since D̃ is block-diagonal, c is partitioned as c = [c1, c2, . . . , cKu ],

where each 2 × 1 component ci = [cα,i, cβ,i]
T can be computed locally by node i by

applying linear regression to local observations, [cα,i, cβ,i]
T = 1

di
R†oi. Also, from (5.67),

it is apparent that frequency and phase updates are independent. In conclusion, the phase

8Several conditions can ensure that a given matrix is an M-matrix. In this case, it can be exploited
the fact that L is nonsingular with nonpositive off-diagonal entries and its eigenvalues are real and
positive [50].
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Figure 5.7 Block diagram of the implementation of the distributed open-loop algorithm
at node i. Only the structure of the phase estimation block is detailed.

update at node i is (frequency update is analogous)

β̂i [p+ 1] = β̂i [p] +
ε

di

[ ∑
j∈Ni∩S

aij

(
β̂j [p]− β̂i [p]

)
−

∑
j∈Ni∩M

mijβ̂i [p]

]
− εcβ,i. (5.68)

The iteration (5.68) is implemented as a distributed parallel algorithm, whereby each node

updates its local phase and frequency estimates given its current estimate and the current

estimates of its neighbors. The block diagram of the algorithm is depicted in Figure 5.7.

The combining function in Figure 5.7 refers to the fact that the link weights aij , mij in

(5.49) are subject to design choice. In practice, after the training phase, each node i

computes ci from local observations, and during the subsequent fusion phase it runs the

recursion (5.68) to compute the global estimate of its phase offset. Each super-frame within

the fusion phase corresponds to one iteration of the recursion, and current estimates αi[p],

βi[p] are advertised within the beacon frames broadcast by node i.

The authors of [41] employ a local update which corresponds to (5.68) specialized

with ε = 1. Nevertheless, the “spatial smoothing” algorithm proposed in [41] assumed a

different communication model, whereby neighbors exchange local observations oij[n] by

bi-directional communication. Furthermore, convergence of the algorithm is proved only
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for hybrid topologies. Finally, Appendix 5.B discusses an alternative algorithm tailored for

MS networks.

5.4 Cramér-Rao Lower Bound (CRLB)

This section deals with the computation of the Cramér-Rao lower bound (CRLB) for the

estimation of clock frequencies and phases with the observation model (5.6). The CRLB is

a lower bound on the accuracy of any unbiased estimator. Parameters are organized in the

2Ku × 1 vector x =
[
xT1 ,x

T
2 , . . . ,x

T
Ku

]T , where xTi = [αi, βi]. The CRLB for an unbiased

estimator x̂ is defined as

Cov(x̂) = E
[
(x̂− x) (x̂− x)T

]
≥ F−1, (5.69)

where F is the 2Ku × 2Ku Fisher information matrix (FIM). The CRLB can be computed

only for an ideal estimator that has somehow obtained the observations taken on all links.

In particular, it is assumed that N time offset observations {oij[n]}N−1
n=0 are taken over each

link (i, j) ∈ E . Let o be the the NK2 × 1 observation vector. In the following, the CRLB

is computed for the case of Gaussian observation noise, whereby o ∼ N (ō (x) ,C). The

elements of the FIM are [87]

[F]ij =

[
∂ō (x)

∂xi

]T
C−1

[
∂ō (x)

∂xj

]
, (5.70)

where xi is the i-th component of the parameter vector, xi = [x]i. In the case of closed-

loop synchronization, the covariance of observations C depends on loop parameters and

network topology. In this case, in fact, time offsets measured on a given link are observed

at a distant node after being filtered by the PLL’s of the intevening nodes. The CRLB of

closed-loop algorithms is computed numerically for the topologies of interest in Section

5.6. The following discussion focuses on the case of open-loop synchronization, whereby

observations are i.i.d. over time and links, C = σ2
wI, and the CRLB may be computed in
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closed form. The elements of the FIM are [87]

[F]ij =
1

σ2
ij

∑
(l,m)∈E

N−1∑
n=0

∂olm[n]

∂xi

∂olm[n]

∂xj
. (5.71)

The link weights are assumed to be unitary whenever a link exists between two slave nodes,

aij = 1 if (i, j) ∈ E , or between a master and a slave node, mik = 1 if (i, k) ∈ E . Given

the structure of the parameter vector x and the observation model (5.6), the FIM F is a

Ku ×Ku block matrix

F =



F11 F12 · · · F1Ku

F21 F22
...

... . . . ...

FKu1 · · · · · · FKuKu


, (5.72)

where the 2× 2 submatrix Fij is

Fij = − 1

σ2
w

(aij + aji)
(
RTR

)
for j 6= i (5.73)

Fii =
1

σ2
w

[
K∑

j=Ku+1

mij +
Ku∑
j=1

(aij + aji)

] (
RTR

)
for j = i, (5.74)

The N × 2 matrix R was defined in (5.52), and the 2 × 2 matrix RTR is the FIM for a

linear regression problem [87]. The out-degree of node k is defined as the sum of weights

of all outgoing links, do,k =
∑Ku

j=1 aji, and the Ku × Ku complementary Laplacian as

Lc = Do −AT , where the diagonal matrix Do = diag (do,1, do,2, . . . , do,Ku). Notice that

the complementary Laplacian is always singular as its rows sum to zero, Lc1 = 0. Given

(5.72)-(5.74) the FIM can be written in a convenient compact form as

F =
1

σ2
w

(L + Lc)⊗
(
RTR

)
, (5.75)

where ⊗ denotes the Kronecker product.

In the case of MS and hybrid networks, the matrix (L + Lc) is invertible, and it holds

that F−1 = σ2
w (L + Lc)

−1 ⊗
(
RTR

)−1, by the properties of the Kronecker product [85].
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From (5.69) and (5.75), a lower bound on the average MSE (defined in Section 5.3) can be

written as

ξ2
p ≥

2 (2N − 1)

N (N + 1)

σ2
w

K

Ku∑
i=1

1

λi (L + Lc)
(5.76)

ξ2
f ≥

12

T 2
SFN (N2 − 1)

σ2
w

K

Ku∑
i=1

1

λi (L + Lc)
. (5.77)

The CRLB is achieved by the open-loop algorithm on MS topologies where each node is

constrained to have only a single parent (see Appendix 5.B). In all other cases, the open-

loop algorithm does not achieve the bound. This was expected, as the open-loop algorithm

was derived after processing (i.e., degrading) the original observations. If nodes are allowed

to exchange observed time offsets with their neighbors, distributed algorithms capable of

achieving the CRLB can be devised by exploiting the linearity of the observation model

(5.6) (see [89] for the case of hybrid and MS networks). Nevertheless, as already remarked

in Section 5.1.1, nodes are not allowed to communicate timestamps to each other when

synchronization is based on periodic beacon transmissions, which is the case considered

here.

In the case of MC networks, there are no master nodes, M = 0, and the Laplacian

matrix is singular since its rows sum to zero, L1 = 0. Also, as all links are bi-directional,

the adjacency matrix is symmetric and Lc = L. This means that the matrix (L + Lc) =

2L is singular as well and the FIM (5.75) is not invertible. Again, this fact reflects

the impossibility of estimating absolute phase and frequency offsets in a MC network.

Estimation problems with singular FIM have been studied in several works on estimation

theory, see, e.g., [90]. The CRLB is computed by considering a suitable transformation of

the original parameter set. In particular, consider the vector y = [(IK − J)⊗ I2] x as in

Section 5.3.1. The CRLB for this problem is [90]

Cov(ŷ) = E
[
(ŷ − y) (ŷ − y)T

]
≥ GF†G, (5.78)



132

where G = (IK − J) ⊗ I2 and F† is the Moore-Penrose pseudoinverse of the FIM in

(5.75). Since the Laplacian L is symmetric and (IK − J) is a projection matrix, (5.78) can

be simplified by employing the properties of the Kronecker product in [91],

Cov(ŷ) ≥ σ2
w

2
L† ⊗

(
RTR

)−1
. (5.79)

From (5.79), the bounds on the average MSE for phase and frequency estimates read

ξ2
p ≥

2 (2N − 1)

N (N + 1)

σ2
w

K

K∑
i=2

1

2λi (L)
(5.80)

ξ2
f ≥

12

T 2
SFN (N2 − 1)

σ2
w

K

K∑
i=2

1

2λi (L)
. (5.81)

Notice that, differently from (5.76)-(5.77), the summation in (5.80)-(5.81) starts from i = 2

as the smallest eigenvalue of the Laplacian matrix is null in this case, λ1 (L) = 0.

5.5 Discussion

Comparing the presented algorithms among themselves and the CRLB is not straight-

forward as the closed-loop estimator employs observations over infinite past, while the

open-loop estimator and the CRLB are derived assuming finite-length observations. In

[58], the length of the effective closed-loop observation window Neff is computed by

opening the loop and evaluating the accuracy of an open-loop estimator employing the

same observations as the PLL. Consider a single MS link: the open-loop counterpart to the

type 2 PLL is simple linear regression. Therefore, Neff is related with the PLL (phase)

noise bandwidth (5.39) as

2 (2Neff − 1)

Neff (Neff + 1)
= 2b

(p)
L (1) , (5.82)

where the left-hand side is recognized as the accuracy of intercept estimation achieved by

linear regression. Approximating (5.82) for large Neff , it is Neff = 2/b
(p)
L (1).
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Consider the case of a regular MC network (e.g., a ring network). When the network

is poorly connected (i.e., when the number of nodes K is large with respect to node degree

d) the smallest nonzero eigenvalue is small, µ2 = λ2 (D−1L)� 1, and the accuracy (5.41)

may be roughly approximated in terms of the effective observation window Neff as

ξ2
p '

4σ2
w

Neff

1

1 + 4ζ2

d

λ2
2 (L)

, (5.83)

where λ2 (D−1L) = λ2 (L) /d since di = d for a regular network. By the same arguments

and by the symmetry of the Laplacian matrix for MC networks, L = LT , the accuracy of

the open-loop algorithm (5.62) may be approximated as

ξ2
p '

4σ2
w

Neff

d

λ2
2 (L)

. (5.84)

By comparing (5.83) with (5.84), it is seen that the network MSE of the closed-loop

algorithm is smaller by a factor of (1 + 4ζ2) = 1 + κ1/κ2. This effect is clearly due to

the noise filtering action of the PLL loop filter. The approximation of the open-loop CRLB

(5.80) for poorly connected networks reads

ξ2
p ≥

4σ2
w

Neff

1

2λ2 (L)
. (5.85)

From (5.83)-(5.85), distributed algorithms appear inefficient with respect to the open-loop

CRLB, as their synchronization error is inversely proportional to the square of the smallest

Laplacian eigenvalue λ2 (L). The noise filtering property of the closed-loop scheme

partially compensates the cost of distributed synchronization.

A similar approximation may be carried out in the case of MS and hybrid networks.

In particular, the open-loop MSE (5.57) is

ξ2
p '

4σ2
w

Neff

Ku

K

1

λ1 (LTD−1L)
, (5.86)
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while the open-loop CRLB (5.76) is

ξ2
p ≥

4σ2
w

Neff

Ku

K

1

λ1 (L + Lc)
. (5.87)

Unfortunately, closed-loop performance may not be derived in closed form for these

topologies. By comparing (5.86) with (5.87), it is seen that the distributed algorithm is

efficient only if the spectrum of LTD−1L is similar to the spectrum of L+Lc. As it will be

shown in the next section, this is the case only with the MS architecture (see also Appendix

5.B).

Finally, it is important to stress how, besides performance considerations, several

practical observations lean in favor of closed-loop synchronization algorithms. In fact, in

order to achieve accurate synchronization, the open-loop algorithm needs to employ a large

number of observations N . A large N entails three main drawbacks. Firstly, N samples

require N super-frames to be acquired (long training phase) and a lot of memory to be

allocated before processing. Secondly, communication resources need to be reserved for

communication of current estimates (during the fusion phase). These considerations make

the open-loop algorithm less appealing for implementation at the MAC layer.

5.6 Simulation Results

This section presents simulation results in order to compare the accuracy of open and

closed-loop synchronization algorithms of Section 5.2-5.3 with the CRLB of a centralized

procedure computed in Section 5.4. In order to compare the accuracy of distributed

algorithms with the CRLB, it is assumed that the timestamp observation noise follows a

Gaussian distribution. In all of the following simulations, the RMS jitter σw = 10 µs,

TSF = 250 ms, TS = 5 ms, ζ = 5. Also, only results regarding phase synchronization

accuracy will be shown, as similar behavior has been observed with frequency accuracy.

First, it is interesting to check the impact of the topologies introduced in Section 2.3 on

the distribution of synchronization error in the network. Notably, the distribution shape
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Figure 5.8 CRLB for a line network of K = 31 nodes (N = 100, σw = 10 µs).

does not change significantly whether practical algorithms or the CRLB are considered.

Figure 5.8 shows the CRLB for a line network of K = 31 nodes with nearest-neighbor

connectivity. The limit accuracy of the three architectures is computed with the open-loop

formula (5.75). With the MC architecture, the synchronization error depends on the

connectivity of the whole network and on the distance of each node from the network

border. With MS and hybrid architectures, instead, the error depends solely on the

distance of each node from the master nodes. The consequence is that the accuracy

with MC topology degrades smoothly from the center through the borders of the network.

With MS and hybrid topologies, instead, a smooth accuracy distribution is obtained only

by deploying two master nodes at network edges. The CRLB for a grid network of

K = 31× 31 nodes with MS and MC architectures is depicted in Figure 5.9. Analogously

to the line network case, the error with MC architecture concentrates at the borders of

the network. A smooth error distribution is achieved also with MS architecture and 4

master nodes deployed at corner points as in Figure 5.9.a. The symmetry of level curves
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Figure 5.9 CRLB (in µs) for a grid network of K = 31 × 31 nodes with a) MS and b)
MC architecture (N = 10, σw = 10 µs).

is significantly different in the two cases, though. Finally, MC architecture provides an

overall higher accuracy as it exploits network connectivity more efficiently.

The performance of the open-loop and closed-loop algorithms introduced in Section

5.2-5.3 is compared with the CRLB in Figure 5.10 for a line network with MC topology.

The open-loop accuracy is computed with (5.60), which constitutes a lower bound for the

accuracy achieved by the distributed algorithm introduced in Section 5.3.2. As expected

from the discussion in Section 5.5, the closed-loop algorithm clearly outperforms the

open-loop algorithm, and both are quite far from the accuracy limit of a centralized

estimator. The approximations (5.83)-(5.84) provide a raw prediction of accuracy in

both open and closed-loop cases. For the same line network, the performance of

proposed algorithms with MS and hybrid topologies is depicted in Figure 5.11. Again,

closed-loop outperforms the open-loop approach. Both schemes achieve the CRLB with

MS architecture, while the open-loop performance is pretty far from the CRLB when
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Figure 5.12 Trade-off between number of master nodes and transmission range r to
achieve a required RMS network accuracy ξp; a) closed-loop and b) open-loop algorithm
on a line network of K = 31 nodes (N = 1000, σw = 10 µs).

employing the hybrid architecture. In general, it can be concluded that distributed

algorithms fail to be efficient when the coupling is peer-to-peer.

From Figure 5.10-5.11, it is observed how MS outperforms hybrid and MC archi-

tectures when employing distributed algorithms on a line network with nearest neighbor

connectivity (r = 1). In the following it will be shown how MC and hybrid topologies turn

convenient when the network is well connected. Higher connectivity provides a reduction

of the RMS network synchronization error ξp at the expense of a larger transmission range

r. When employing MS and hybrid topologies, a given RMS error ξp may be achieved also

by deploying more master nodes without increasing r. The trade-off between transmission

range r and the number of deployed master nodes is depicted in Figure 5.12 for a line

network of K = 31 nodes. For the closed-loop algorithm in Figure 5.12.a, ξp = 1 µs is

achieved by hybrid and MS topologies with roughly the same number of master nodes for

all values of r. The hybrid topology is definitely more efficient than MS if the target RMS

error is ξp = 500 ns. The MC architecture largely benefits from increasing r. In particular,

it achieves ξp = 500 ns already with r = 3, while hybrid and MS need to be deployed with

3 and 7 master nodes, respectively. It is concluded that topologies employing peer-to-peer
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coupling are more efficient in exploiting good network connectivity. For the open-loop

algorithm in Figure 5.12.b, it is observed that MS and hybrid architectures are convenient

only for a high target accuracy.

5.7 Conclusions

TDMA medium access protocols require accurate time synchronization in order to avoid

packet collision events. In this chapter, one such protocol has been considered, where

synchronization is obtained by the periodic transmission of beacon frames. The study

has focused on the accuracy attainable by distributed synchronization techniques. Two

algorithms for distributed synchronization have been developed. The first (closed-loop

algorithm) is based on the distributed control of local clocks trough a type 2 phase-locked

loop (PLL), while the second (open-loop algorithm) is based on the distributed estimation

of the phase and frequency offsets of the local clocks. The two protocols are both

suitable for implementation over general synchronization networks; in particular, the

chapter considers mutually-coupled (MC), master-slave (MS), and hybrid networks. The

synchronization accuracy of the open-loop algorithm is derived for all topologies of

interest, while the accuracy of the closed-loop algorithm exact analytical results are

available only for regular MC networks. The performance of practical algorithms is then

compared with the Cramér-Rao lower bound (CRLB) for the problem at hand. Results

show that distributed algorithms are inefficient with respect to the CRLB over peer-to-peer

topologies, whereas they achieve the accuracy limit over MS hierarchical architectures.

Finally, the performance of MC and hybrid topologies improves rapidly when increasing

network connectivity, while MS proves to be the best choice in poorly connected networks.



140

Appendix 5.A: Open-loop synchronization for MC networks

In the case of MC networks, the Laplacian matrix L is singular, and it is not possible to

employ (5.55). In order to simplify the analysis, consider the normalized system

(
D−

1
2 ⊗ I

)
o =

(
D−

1
2 ⊗ I

)
Hx +

(
D−

1
2 ⊗ I

)
w

=
(
−D−

1
2 L⊗R

)
x + w̃, (5.88)

where Cov (w̃) = I. The BLUE of y corresponds to the least-square solution of (5.88),

which is found by employing the Moore-Penrose inverse,

ŷ =
(
−D−

1
2 L⊗R

)† (
D−

1
2 ⊗ I

)
o

= −
(
D−

1
2 L
)†

D−
1
2 ⊗R†o, (5.89)

where we exploited the compatibility of the Kronecker product with the Moore-Penrose

inverse, (A⊗B)† = A† ⊗ B† [91]. Notice that D cannot be simplified in (5.89) as the

reverse-order law fails (in general) for the pseudoinverse, (AB)† 6= B†A† [50]. The final

result in (5.59) is obtained from (5.89) by the property A† =
(
ATA

)†
AT [50]. By direct

substitution, it can be verified that (5.89) is the sum of y and a random term with covariance

(5.60).

We now prove the convergence of the distributed fusion algorithm presented in

Section 5.3.2 on MC networks. As noted before, phases and frequencies are updated

independently in (5.67). Therefore, in order to simplify the treatment, we consider the

following simplified recursion

z [p+ 1] =
(
I− εD−1L

)
z [p]− εb, (5.90)

where z [p] is a vector comprising either phase or frequency estimates, and b is defined

accordingly. Notice that the normalized Laplacian D−1L is singular since D−1L1 = 0. If

the network is connected, the null eigenvalue has multiplicity 1, and all other eigenvalues
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are real and positive by the generalized eigenvalue theorem [52]. Therefore, the system

matrix in (5.90) can be diagonalized by eigenvalue decomposition as

(
IK − εD-1L

)
= U

 1 0

0 IK−1 − εΛ

U−1, (5.91)

where Λ = diag
(
λ2

(
D-1L

)
, . . . , λK

(
D-1L

))
. If the relaxation coefficient is bounded as

0 < ε < 2/λK
(
D-1L

)
, then it is ρ

(
I− εD-1L

)
< 1, and

(
I− εD-1L

)
is a semiconvergent

matrix according to the definition in [92]. Notice that, by Gershgorin’s theorem, it is

λK
(
D-1L

)
≤ 2, and therefore 0 < ε < 1 is a sufficient condition for semiconvergence.

Semiconvergence implies that the limit of the powers of
(
I− εD-1L

)
converges to a rank-1

matrix, namely9

lim
p→∞

(
I− εD-1L

)p
= 1vT , (5.92)

where [v]i = di/ (
∑

i di). Semiconvergence allows also to compute the following limit

lim
p→∞

p∑
k=0

(
I− εD−1L

)k − p1vT = U

 p∑
k=0

 0 0

0 I− εΛ


kU−1

=
1

ε
U

 0 0

0 Λ−1

U−1

=
1

ε

(
D−1L

)D
, (5.93)

where AD is the Drazin generalized inverse of A [50]. From the properties of the Drazin

inverse, it holds that (D−1L)
D

(D−1L) = I−1vT . Now, the recursion (5.90) can be solved

by direct substitution,

z [p+ 1] =
(
I− εD−1L

)p+1
z [0]−

p∑
k=0

(
I− εD−1L

)k
εb. (5.94)

9In general, the powers of a square semiconvergent matrix A converge to the projector onto
N (I−A) along R (I−A) [50].
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Similarly to the PLL analysis in Section 5.2.2, estimates of phase or frequency offsets are

here defined with respect to a weighted average, namely s [p] =
(
I− 1vT

)
z [p]. By the

substitution of (5.92)-(5.93) in (5.94), it can be seen that

lim
p→∞

s [p] = −
(
D−1L

)D
b. (5.95)

Consider now the original recursion (5.67), and define the running parameter estimate as

ŷ[p] =
[(

I− 1vT
)
⊗ I2

]
x̂[p]. By employing (5.95), it can be verified that ŷ[p] converges

to a noisy estimate of the transformed parameters y =
[(

I− 1vT
)
⊗ I2

]
x. After some

manipulations, the covariance of the estimation error is found to be

Cov (ŷ[∞]) = σ2
wD−

1
2

(
D−

1
2 LTD−1LD−

1
2

)†
D−

1
2 ⊗

(
RTR

)−1
. (5.96)

In deriving (5.96), we have exploited the similarity of D−1L with the symmetric matrix

D−
1
2 LD−

1
2 , and the fact that the Drazin and Moore-Penrose inverses coincide for

symmetric matrices. In general, the estimation error of the distributed algorithm (5.96)

is very close to the optimum (5.60) for graphs with almost regular degree distribution. The

distributed and centralized estimates achieve the same accuracy when D = dI, i.e., on

regular networks.

Appendix 5.B: Open-loop synchronization for MS networks: CRLB and an

alternative algorithm

Let us consider first a MS chain network. In this case, the CRLB assumes a particularly

simple form. Let node 1 be the master node, and the remaining Ku = K−1 nodes be slave
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nodes. If we have nearest-neighbor connectivity, the Ku ×Ku Laplacian matrix is

L =



1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1
. . . ...

...
... . . . . . . 0

0 0 · · · −1 1


, (5.97)

which is is tridiagonal and full-rank. The inverse of the FIM is

F−1 =



1 1 · · · 1

1 2 · · · 2

...
... . . . ...

1 2 · · · Ku


⊗
(
RTR

)−1
, (5.98)

From (5.98), the bound for the phase and frequency estimates of node i is

Cov


 α̂i

β̂i


 ≥ (i− 1)σ2

w

(
RTR

)−1
. (5.99)

For a large number of samples, N → ∞, Var
(
β̂i

)
' (i− 1) σ2

w

N
and Var (α̂i) '

(i− 1) 12σ2
w

T 2
SFN

3 . From (5.103) the noise (jitter) accumulation due to the hierarchical network

structure is apparent.

For this network, a simple iterative algorithm may be devised by direct inspection of

the inversion matrix W in (5.55). The Laplacian matrix for a MS chain network is (5.97),

which is lower triangular and invertible. The inversion matrix is W = L−1 ⊗WR, where

the inverse of the Laplacian is the lower triangular matrix

L−1 =



1 0 · · · 0

1
. . . . . . ...

... . . . . . . 0

1 · · · 1 1


. (5.100)
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From (5.100), we can express the ML estimate x̂Ti =
[
α̂i, β̂i

]
in closed form a α̂i

β̂i

 = −
i∑

k=2

R†ok. (5.101)

Notice that in the MS chain each node observes only time offset with respect to the

preceding node, that is ok[n] = (αk−1 − αk)nTSF + (βk−1 − βk) + wk[n]. Therefore,

the 2 × 1 vector R†ok is the standard ML regression of the frequency and phase offsets,

∆αk = (αk−1 − αk) and ∆βi−1 = (βi−1 − βi). Given these considerations, we may rewrite

(5.101) as  α̂i

β̂i

 = −
i∑

k=2

 ∆̂αk

∆̂βk

 . (5.102)

The estimator (5.102) may be implemented by a distributed sequential algorithm that takes

exactly K steps to complete. In the first step, node 1 computes α̂1 = −∆̂α1, β̂1 = −∆̂β1

and sends a packet to node 2 with their values. In the second step, node 2 computes ∆̂α2,

∆̂β2 and sends a packet to node 3 with α̂2 = α̂1 − ∆̂α2, β̂2 = β̂1 − ∆̂β2, and so on. The

attained accuracy is as in (5.56). In particular, it holds that

Cov


 α̂i

β̂i


 = (i− 1)σ2

w

(
RTR

)−1
, (5.103)

which coincides with the CRLB in (5.99). This is not surprising, as the synthetic

observation (5.49) coincides with the original observation (5.6) for a MS chain network.

Now, the Laplacian of any MS network may be cast into a lower triangular form

as (5.97) through appropriate node indexing. As the inverse of a lower triangular matrix

is also lower triangular [85], analogous sequential protocols may be derived for any MS

network. If applied on a tree network (where each node can have only a single parent), this

protocol is identical to the operation of the FTSP protocol [37].



CHAPTER 6

ACCURATE SYNCHRONIZATION

WITH LOW DUTY CYCLES

The lifetime of a Wireless Sensor Networks (WSN) is defined with respect to the specific

task the network is designed for (e.g., monitoring, surveillance, sensing) [93] and depends,

barring malfunctioning devices, mainly on the energy consumption of the participating

nodes. Most of the energy consumed by a sensor node is drained by the RF transceiver

module, while the energy required by the MCU and sensor units is less relevant. For

this reason, most MAC layer protocols (including TDMA protocols) enable nodes to

shut down their RF circuitry ("sleep" mode) when not transmitting or receiving, thereby

allowing for relevant energy savings. Also, the energy efficiency of a MAC protocol

is degraded when a packet collisions occur and when nodes are required to keep their

radio on for a long time when nobody is transmitting (idle listening). With TDMA

protocols, data is transmitted according to a pre-defined schedule and collisions and idle

listening are inherently minimized. The drawback of TDMA is the requirement of tight

network-wide time synchronization, which is typically regarded as a factor of energy

consumption. In fact, if the MAC protocol is beacon-enabled, a node needs to be awake

during the whole beacon transmission interval. Also, synchronization need to be refreshed

frequently because of clock drifts and inaccuracies, thereby forcing nodes to wake up just

to re-synchronize with the network. For these reasons, TDMA protocols targeting energy

efficiency do not employ beaconing, and synchronization information is carried along with

data and ACK frames. Recent advances in clock design have also improved the accuracy of

clocks without increasing hardware costs significantly. This chapter deals with comparing

the performance of accurate clocks against the one achieved employing regular clocks and

distributed synchronization algorithms.

145
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6.1 System Model

6.1.1 Non-Beacon Enabled TDMA MAC Protocol

TSF [s]

TDP 

TS 

qTS 

…1 q 1 2 …
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DATA ACK

i j i j

2 q

ξi

Figure 6.1 Super-Frame structure for a non-beacon-enabled TDMA MAC protocol.

A non-beacon-enabled TDMA MAC protocol is considered, whereby the time axis

is divided into super-frames of duration TSF seconds as in Figure 6.1. There is no beacon

period (BP), and the data period (DP) may - in principle - occupy the whole super-frame.

As before, the DP is then divided into time-slots, which are employed for data transmission

by a reservation-based medium access protocol. Each time-slot is allocated to a given

link (i, j), and comprises both data and ACK/NACK transmission. Each slot has a fixed

duration TS and it is associated to an integer index q, so that its nominal time offset

from super-frame start is qTS . It is assumed the existence of an efficient link scheduling

algorithm, whereby each slot may be reused by non-interfering links. During the time-slot

reserved for link (i, j), the data frame is transmitted with an offset ξi from the ideal slot

start time due to the synchronization error at the transmitting node i. When receiving the

data frame, node j measures the clock offset with respect to i and (if necessary) sends

this measure back within the acknowledgment (ACK) message to node i. The maximum

allowed synchronization error ξmax depends on reception and transmission guard times (for

a detailed discussion, see [31]).

Nodes have their radio turned on during the DP slots where they are either

transmitting or receiving, while they are allowed to turn their radio off (“sleep” mode)
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for the rest of the time. In low duty-cycle networks, the DP can be much shorter than

the super-frame, which may range from few seconds to (in principle) a whole day. The

duty-cycle D of the TDMA protocol is the ratio between the active period and the sleep

period. If a node transmits at least one data frame in each super-frame, the duty cycle

is D = TS/TSF . As an example, the duty cycle for TSF = 40 s and TS = 10

ms is D = 0.025%. If the MAC protocol is well configured, the duty cycle of the

radio transceiver matches the frequency with which the upper layers require information

exchange among the nodes. The duty-cycle for most sensor networks applications is well

below 1% [94].

The sleep schedule is usually maintained by a sleep timer driven by a low-power

crystal oscillator (XO) (typically a 32 kHz quartz crystal). XO’s are in general stable in

the short-term, but very unstable in the long-term, and phase synchronization is lost after

few seconds in sleep mode. For this reason, TDMA protocols are said not to be suited

for low duty-cycles because of their stringent synchronization requirements. In order to

maintain clock phase synchronization, nodes may have to turn their radio on just to perform

synchronization tasks. Alternatively, large guard times can be arranged to account for

timing mismatch, but this would cause nodes to waste precious energy while waiting for

incoming transmissions (idle listening). The next section introduces a clock model capable

of taking into account the effects of frequency instability.

6.1.2 Unstable Clock Model

In the following, it is assumed that each node broadcasts a single packet to all its neighbors

during each super-frame. The transmission time of the (n− 1)-th packet according to the

local clock is τi[n−1]. When the clock is free-running, the n-th packet is transmitted when

the local clock reaches τi[n− 1] + TSF , or

τi[n]− τi[n− 1] = TSF . (6.1)
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If the frequency αi[n] changes from one super-frame to another, the clock is unstable.

Packet transmission times (6.1) can be expressed in terms of absolute time ti[n] as

ti[n]− ti[n− 1] =
1

1 + αi[n− 1]
TSF ' (1− αi[n− 1])TSF , (6.2)

where the last approximation holds since frequency offset is always small, αi[n] � 1.

Clock instability becomes particularly visible for large super-frame lengths TSF . The main

cause of long-term frequency fluctuations (or frequency wander) in XO’s are environmental

temperature variations, mechanical shocks and exposure to electric and magnetic fields.

Focusing on temperature, the typical frequency-temperature characteristic for a tuning fork

XO is [95]

αi (T ) = ᾱi − kS (T − To)2 + kD
dT

dt
, (6.3)

where ᾱi is the manufacturing accuracy (adimensional or, equivalently, in µs/µs), T is

the external temperature in °C, kS is the static temperature coefficient in °C−2, while kD

is the dynamic temperature coefficient in s/°C. In static conditions, the characteristic has a

parabolic shape, while in dynamic conditions it deviates from the static curve by an amount

that depends on the rate of change in temperature (see Figure 6.2.a). Typical values for the

static temperature coefficient kS are between 3 · 10−8 and 4.2 · 10−8 °C−2, thus yielding an

offset around −160 ppm at −40 °C (with To = 25 °C).

The frequency dynamic is modeled as the sum of two random processes, namely

αi[n] = ᾱi + vi[n] + ψi[n], (6.4)

where vi[n] is a white noise process (white frequency modulation - WFM), while ψi[n] is

a random walk process (random walk frequency modulation - RWFM) with initial value

ψi[0] = 0. The WFM component models quick frequency changes due to noise within

the clock circuitry, while the RWFM component models frequency wander. The frequency

change (αi[n]− αi[n− 1])TSF corresponds to the period jitter of the clock over the time
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Figure 6.2 Frequency-temperature characteristic for a tuning fork crystal oscillator (XO)
a) without and b) with temperature compensation. Dynamic characteristic is depicted
assuming a sinusoidal temperature variation over time (see [95] for experimental results).

interval TSF [96]. From (6.2)-(6.4), the local clock process may be modeled as a double-

integrator system, namely ti[n]

ψi[n]

 =

 1 −TSF

0 1


 ti[n− 1]

ψi[n− 1]

+

 −TSFvi[n− 1]

ηi[n− 1]

+

 (1− ᾱi)TSF

0

 ,
(6.5)

where ηi[n] is the RWFM step. Noise sources are assumed to be Gaussian i.i.d random

variables, namely  vi[n]

ηi[n]

 ∼ N


 0

0

 ,
 σ2

v 0

0 σ2
η


 . (6.6)

The power of the WFM and RWFM components is related to the super-frame length as [96] σ2
v = qνT

−1
SF

σ2
η = qηTSF

. (6.7)

The severity of the RWFM qη depends on the intensity of the thermal and mechanical stress

the clock undergoes within a super-frame.

In order to overcome frequency variations, possible solutions are either to improve

the stability of the clock while keeping its cost as low as possible, or to enhance the
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synchronization algorithm with frequency tracking capabilities. The next section deals

with methods to improve clock quality by temperature compensation techniques.

6.2 Temperature-Compensated Clocks with Phase Synchronization

Conventional synchronization algorithms control only the clock phase, and the local time

drifts away when synchronization is stopped during sleep mode because of frequency

offsets. If the super-frame is too long with respect to the local oscillator accuracy,

nodes will be required to wake up just to update (or “keep alive”) their clock phase by

exchanging synchronization information. Assuming that nodes are perfectly synchronized

to the network reference time-scale at the end of a given super-frame, the clock keep-alive

interval (or re-synchronization interval) is easily computed for MS networks as [31]

TKA =
ξmax − δ̄
2αmax

, (6.8)

where ξmax is the maximum allowed phase offset, δ̄ is the phase synchronization accuracy

(e.g., clock precision), and αmax is the maximum frequency offset (in s/s). Synchronization

requirements do not impair energy efficiency if nodes do not have to wake up just to re-

synchronize their clocks, i.e., TKA ≥ TSF . Given this requirement and (6.8), the maximum

phase mismatch is related with TSF as

ξmax = 2αmaxTSF + δ̄. (6.9)

Since TSF depends on the application duty cycle, energy efficiency can be achieved either

by improving clock accuracy or by reducing spectral efficiency by allowing larger guard

times to cope with large errors ξmax. The current trend in industry is to improve the clock

accuracy αmax. As an example, if ξmax = 1 ms, δ̄ = 10 µs and TSF = 40 s, the required

clock accuracy1 is αmax ≤ 25 ppm. With low duty cycles, most of the frequency offset

1Requirements of current standards are αmax ≤ 40 ppm for IEEE 802.15.4, and αmax ≤ 100
ppm for IEEE 802.11. Notice that these requirements include manufacturing accuracy and all
environmental and aging effects [25].
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between two nodes is due to environmental temperature variations, and higher accuracy can

be obtained by the employment of a temperature-compensated clock (TCC). Temperature

compensation is realized by keeping a look-up table where temperature is matched with

the relative induced frequency offset. A control circuit adjusts the frequency of the clock

given the temperature measured by a sensor and the corresponding offset in the table.

The table can be compiled by a calibration procedure at the end of the manufacturing

process. Digital compensation techniques constitutes the simplest (and cheapest) way to

implement temperature compensation [97]. In particular, digital compensation is realized

by adding or subtracting ticks to the clock register in order to compensate for the offset

triggered by the measured temperature. Even when employing a TCC, frequency offsets

cannot be compensated perfectly (see Figure 6.2.b and [97]): temperature is measured only

periodically, and the dynamic frequency-temperature characteristic is not known. In the

following, it is assumed a maximum offset αmax = 10 ppm after compensation, accounting

for both static and dynamic compensation errors. This has been reported [31] as a satisfying

stability for super-frame lengths below 1 minute and maximum error ξmax = 1 ms (with

slot duration Ts = 10 ms). Notice that, for longer super-frame lengths, this is a somewhat

optimistic assumption since αmax still depends on TSF in practice.

In the following, it is investigated whether enhancing the synchronization algorithm

with frequency tracking capabilities constitutes a valid alternative to temperature compen-

sation.

6.3 Type 2 Phase-Locked Loop (PLL)

If it is feasible to control the packet timestamping process, network synchronization may

be achieved by employing suitably-designed phase-locked loops (PLL) [6][15]. A type 2

PLL as the one in Figure 6.3 is capable of tracking not only phase, but also frequency drifts.

If the algorithm could track frequency changes perfectly, the maximum phase offset ξmax

would depend only on the maximum frequency change within a super-frame, and not on
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Figure 6.3 Block diagram of the PLL synchronization algorithm. The algorithm is
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the overall frequency offset as in the case of TCC. Notably, for a simple master-slave link,

the type 2 PLL shares the same structure of the optimal Kalman filter2 [98]. As detailed in

Chapter 5, when the clock is controlled by a type 2 PLL, the absolute time interval between

two successive packet transmissions reads

ti[n]− ti[n− 1] =
1

1 + αi[n− 1]
(TSF − κ1ei[n− 1]− TSFui[n− 1])

' (1− αi[n− 1])TSF −
κ1ei[n− 1] + TSFui[n− 1]

1 + αi[n− 1]
, (6.10)

where the approximation holds since αi[n] � 1 and ei[n − 1] and ui[n − 1] are the phase

and frequency corrections, respectively. In practice, node i computes the phase offset

oij with respect to a transmitting neighbor j during the time-slot reserved for the link

(i, j). The offset oij is then employed to compute phase and frequency corrections as in

(5.10)-(5.11). In order to simplify the treatment and derive general results, in the following

the specific link schedule is neglected, and it is ideally assumed that nodes transmit and

2The problem of synchronizing networked unstable clocks can be posed in the Kalman filtering
framework. Unfortunately, the optimal Kalman filter cannot be implemented in a distributed
fashion.
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receive simultaneously in a unique time-slot at the beginning of the super-frame. Therefore,

ti[n] identifies the absolute time at which node i transmits its packet at the beginning of

the super-frame. Recall that, if node i is a master node, it has access to an accurate and

stable time reference, and it is ti[n] = to[n] and to[n] = nTSF . In the following, the

tracking accuracy of synchronization algorithms is evaluated by computing the phase MSE

at steady-state,

ξ = lim
n→∞

√√√√ 1

K

Ku∑
i=1

E
[
(ti[n]− to[n])2], (6.11)

where to[n] is the network reference time-scale. In the case of MC topologies, it is to[n] =

1
K

∑K
i=1 ti[n]. As in Chapter 5, the phase and frequency estimation errors of node i are

defined with respect to absolute time as

xi[n] = ti[n]− nTSF (6.12)

yi[n] = − (ui[n] + αi[n])TSF . (6.13)

From (5.10)(6.10)(5.15) the dynamic equation for phase and frequency errors may be

written as

xi[n] = xi[n− 1] +
κ1

di
ei[n− 1] + yi[n− 1] (6.14)

yi[n] = yi[n− 1] + κ2
κ1

di
ei[n− 1]− TSF (αi[n]− αi[n− 1]) . (6.15)

The error ei[n] in (6.14)-(6.15) reads

ei[n] = −
K∑

j=Ku+1

mijxi[n] +
Ku∑
j=1

aij (xj[n]− xi[n]) , (6.16)

where the weights mij , aij are subject to design choice. By defining the vectors x =

[x1, x2, . . . , xKu ]T , y = [y1, y2, . . . , yKu ]T , the equations (6.14)-(6.15) may be cast in vector
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form as x [n]

y [n]

 =

 I− κ1D
−1L I

−κ1κ2D
−1L I


 x [n− 1]

y [n− 1]

− TSF
 0

α[n]−α[n− 1]

 . (6.17)

Recall the conditions required for the system (6.17) to be stable,

0 < κ2 < 1

0 < κ1 <
2

2−κ2

µi > 0 i = 2, . . . , K

µ1 > 0 MS and hybrid

, (6.18)

where µi = λi(L). When the system is stable, noise analysis follows the same procedure

of Section 5.2.2, which treated the case of stable clocks. In fact, it is possible to write the

Lyapunov equation for the state covariance matrix and compute the steady-state covariance

for the input covariance (6.6).

In the case of regular MC networks, the node degree is the same for all nodes, di = d,

and the steady-state phase error variance may be computed in closed form. The eigenvalue

decomposition of the normalized Laplacian matrix is d−1L = QTQH , whereby Q is a

unitary matrix and T is a diagonal matrix with entries [T]ii = λi(L)/d [85]. By letting

x̃[n] = QHx[n], ỹ[n] = QHy[n], α̃[n] = QHα[n], (6.17) can be rewritten as K parallel

dynamic systems as the one in Figure 6.4. The update equation of a the i-th component is x̃i [n]

ỹi [n]

 =

 1− κ1µi 1

−κ1κ2µi 1


 x̃i [n− 1]

ỹi [n− 1]

− TSF
 0

α̃i[n]− α̃i[n− 1]

 . (6.19)

By employing the spectral analysis techniques of Section 5.2.3, the overall output error

due to observation noise and oscillator instability is

ξ2 =
1

K

K∑
i=2

pi (κ1, κ2, µi)

[
σ2
w

dµ2
i

(
κ1µi + κ2 −

κ1µiκ2

2
(3− κ2)

)
+

σ2
v

κ1µi
+ σ2

η

(
1

(κ1µi)
2 κ2

− 1− κ2

2 (κ1µi)κ2

)]
. (6.20)



155

µi

+

- 1

1

1 −

−

− z

z ][~ nxi][~ nwi

][~ nyi

1κ

2κ
1

1

1 −

−

− z

z

][~ nvT iSF][~ nT iSFη

Figure 6.4 Decomposition of a regular MC network of PLL’s accounting for all noise
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where

pi (κ1, κ2, µi) =
2

4− 4κ2 − κ1µi (2− 3κ2 + κ2
2)
. (6.21)

Notice that the weight pi (κ1, κ2, µi) in (6.21) diverges at the boundary of the stability

region. The network MSE (6.20) is therefore a function of loop parameters, network

topology and the variances of noise sources. For small loop gain, κ1, κ2 < κ1 � 1,

the network steady-state phase error is approximated as

ξ2 ' 1

K

K∑
i=2

1

2µi

[(
κ1 +

κ2

µi

)
σ2
w

d
+
σ2
v

κ1

+
σ2
η

κ2κ1µi

]
. (6.22)

From (6.22), it is clear that reducing the gains κ1, κ2 is beneficial in order to reduce the

channel noise, but it degrades the PLL tracking capabilities. This implies that a large

bandwidth is needed in order to filter out the local clock noise, in line with classical PLL

theory [6]. It is expected that the optimal parameters will grow in proportion with the

super-frame length TSF , since local noise sources become dominant in the low duty-cycle

regime. The next section introduces an alternative synchronization algorithm based on

tracking frequency dynamics by means of a type 1 frequency locked loop (FLL).
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6.4 Phase/Frequency-Locked Loop (P/FLL)

Frequency variations may be tracked by the use of a suitably designed frequency-locked

loop (FLL), at the price of increased synchronization overhead. The FLL updates the

frequency correction with

ui[n] = ui[n− 1] + κF e
(f)
i [n], (6.23)

where the frequency error is a linear combination of pair-wise frequency offsets,

e
(f)
i [n] =

1

di

[
K∑

j=Ku+1

mijfij[n] +
Ku∑
j=1

aijfij[n]

]
. (6.24)

Pair-wise frequency offsets are computed by the frequency detector block from the first-

order difference of pair-wise phase offsets and phase corrections (see Appendix 6.A for a

proof),

fij[n] = (oij[n]− oij[n− 1])− κP (ej[n− 1]− ei[n− 1]) . (6.25)

From (6.25), implementing a frequency detector requires each node j to communicate its

last phase correction ej[n − 1] to its neighbors3. When using a FLL to recover frequency

synchronization, a simple type 1 PLL is sufficient to retrieve phase synchronization. The

block diagram of the P/FLL algorithm is depicted in Figure 6.5. After the change of

variables (6.12)-(6.13), the dynamic equation of the P/FLL can be written compactly as

(see Appendix 6.A) x [n]

y [n]

 =

 I− κPD−1L I

0 I− κFD−1L


 x [n− 1]

y [n− 1]

−TSF
 0

α[n]−α[n− 1]

 .
(6.26)

3The necessity to communicate ej [n − 1] to the neighbors makes the FLL not implementable with
plain pulse-coupling techniques as [43].
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If the PLL and the FLL are both stable, then the overall update (6.26) is stable. Therefore,

sufficient stability conditions read

0 < κP < 1

0 < κF < 1

µi > 0 i = 2, . . . , K

µ1 > 0 MS and hybrid

. (6.27)

It is worthwhile to emphasize how, differently from the type 2 PLL case, stability conditions

of frequency and phase tracking loops are decoupled in the P/FLL. If the system is stable,

it is easy to check that converges to x [n] = 1
(
vTx [0]

)
+ n1

(
vTy [0]

)
, where v is the left

eigenvector of the normalized Laplacian matrix, vTD−1L = 0. For general topologies,

noise analysis is again carried out by solving the steady-state Lyapunov equation (see

Section 5.2.2).

As before, in the case of regular MC networks, the system (6.26) may be diagonalized

by eigenvalue decomposition so as to obtain K uncoupled systems as the one in Figure 6.4.
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The update equation of the i-th system is x̃i [n]

ỹi [n]

 =

 1− κPµi 1

0 1− κFµi


 x̃i [n− 1]

ỹi [n− 1]

− TSF
 0

α̃i[n]− α̃i[n− 1]

 .
(6.28)

It is convenient to introduce the equivalent loop parameters γ = κPκF and ρ = κP + κF .

It can be shown that the network MSE reads

ξ2 =
1

K

K∑
i=2

pi (γ, ρ, µi)

[
σ2
w

d
(γµi (2 + γµi) + ρ (2ρ− 3γµi)) + 2σ2

v +
σ2
η

µ2
i γ

(2− ρ− γµi)
]
,

(6.29)

where

pi (γ, ρ, µi) =
1

µi (ρ− γµi) (4− 2ρ+ γµi)
. (6.30)

As for the type 2 PLL, the weights pi (γ, ρ, µi) tend to infinity close to the boundary of the

stability region. For small loop gains, κP � 1, κF � 1, the network steady-state phase

error is approximated as

ξ2 ' 1

K

K∑
i=2

1

2µi

[(
ρ+

γ

ρ

)
σ2
w

d
+
σ2
v

ρ
+

σ2
η

µ2
i γρ

]
. (6.31)
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Equation (6.31) shows that, as expected, small loop gains reduce channel noise but

emphasize the local oscillator noise. The next section deals with the optimization of the

network MSE for both the type 2 PLL and P/FLL algorithms.

6.5 Optimization of Loop Parameters

For both the PLL and the P/FLL algorithm, the network MSE ξ2 of a regular MC network is

a function of the loop parameters, network connectivity and noise variances. In particular, it

may be shown that ξ2 tends to infinity at the boundary of the stability region, and it is convex

in terms of the loop parameters and coupling coefficients. Convexity implies that the

optimization of coupling coefficients aij , mij , and loop parameters may be carried out by

efficient numerical methods [99]. It is conjectured that these properties hold for all network

topologies. Nevertheless, even for the regular MC case, the global optimization over edge

weights and loop parameters can be carried out only by a centralized controller which is

aware of the complete network topology. Notably, the NTP protocol comprises a distributed

gain adaptation algorithm which is based on the measured pair-wise synchronization

error [17]. The optimality of this heuristic algorithm is questionable, though. From

simulation results here omitted, it can be conjectured that it holds for the optimal P/FLL

parameters that κp = κF . This implies that the P/FLL dynamics may be regulated by

a single parameter, while two parameters are needed for the type 2 PLL. A suboptimal

approach to optimize PLL dynamics (adopted by NTP) is to keep the loop damping factor

ζ =
√
κ1/4κ2 fixed (i.e., to choose κ2 = κ1/4ζ

2) and search for the optimal κ1. The merits

of the optimal and suboptimal approach are delved in the next section, which studies the

performance of the PLL and P/FLL algorithms for varying loop parameters.

6.6 Simulation Results

This section deals with the evaluation of the performance achieved by PLL and P/FLL

algorithms in terms of network phase root MSE (RMSE) ξ with respect to the super-frame
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length TSF . The results for the algorithms of interest are compared with two reference

curves, namely the frequency change variance (i.e., the power of the untracked clock noise

component) and the phase accuracy of a noiseless TCC (6.9) with αmax = 10 ppm and

δ̄ = 40 µs. The TCC reference is quite optimistic for two reasons. Firstly, a TCC is indeed

affected by period jitter, due to its inability to correct frequency offsets exactly in dynamic

conditions. Secondly, TCC’s are typically employed with synchronization protocols in the

likes of FTSP [37], which are tailored for MS topologies. Since this class of protocols

features phase jitter accumulation down the hierarchy, this curve is exact only for a single

master-slave link, and it is a lower bound for general multihop networks. The untracked

noise constitutes a limit to the performance of the proposed protocols, as it is impossible

to predict the next step of the frequency random walk. In particular, it has been chosen

ση = 3.2 · 10−9
√
TSF , which corresponds to a RWFM step with a standard deviation of 0.2

ppm for TSF = 1 hour4. In order to highlight the effects of RWFM, it is assumed that the

WFM component of clock noise is not present, σv = 0. The following simulations refer

to a line network of K = 10 nodes with nearest-neighbor connectivity. The super-frame

length varies from 100 ms to 105 s, i.e., well over one day, and the channel noise is σw = 10

µs. Figure 6.7 depicts the performance for a MC topology and constant loop parameters,

κ1 = 0.1, ζ = 5, κP = κF = 0.1. Both proposed algorithms outperform TCC accuracy for

small TSF , mainly because of their phase filtering capability. As expected, the performance

degrades rapidly with longer super-frames.

The performance of the PLL and P/FLL schemes over the same MC line network,

but with adaptive loop gains, is depicted in Figure 6.8. Loop gains are adapted so as to

minimize the network MSE in the equivalent ring network of 10 nodes. This solution is

clearly suboptimal when applied to a line network, but it is expected to perform reasonably

close to optimal from the asymptotic equivalence of ring and line topologies (see Section

4According to the clock model (6.3), with kS = 4·10−8°C−2, kD = 0 and To = 25°C, a temperature
change of ±1°C from a starting temperature of 20°C roughly corresponds to a frequency change of
±0.4 ppm.
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Figure 6.7 Network RMSE for a line network of 10 nodes with MC topology, PLL and
P/FLL parameters are kept fixed:κ1 = 0.1, ζ = 5, κP = κF = 0.1.

2.5). Both the PLL and the P/FLL outperform the TCC over the whole range of values for

TSF . In particular, their performance is identical when the PLL is optimized over both κ1

and κ2, and the damping changes with TSF as ζ =
√
κ1/4κ2 = ζopt (TSF ). When keeping

the damping factor ζ fixed, ζ = 2, 5, 10, the PLL performance is inevitably degraded, but

it is still more accurate with respect to a TCC. The optimal loop parameters as a function

of super-frame length TSF are depicted in Figure 6.9. For short super-frames (TSF < 100

s), loop gains grow proportionally with TSF . When the untracked noise contribution is

dominant (TSF > 100 s), the optimal loop parameters are close to the stability boundary,

and their values do not change for larger values of TSF . Notice how the optimal PLL

damping factor ζopt (TSF ) is almost constant at small and large TSF , and it is always

ζopt (TSF ) > 0.707.

Figure 6.10 reports the network RMSE for a MS topology and adaptive loop gains.

Since there is no analytical expression for the phase error in a general MS network, the

gains are here adapted so as to optimize a single master-slave link. Again, both adaptive
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Figure 6.10 Network RMSE for a line network of 10 nodes with MS topology, PLL and
P/FLL parameters are optimized.

algorithms outperform TCC, but the P/FLL algorithm performs slightly better than the PLL

algorithm. Also, the PLL RMSE is largely degraded when employing a constant damping

factor ζ > 1. Finally, the optimal parameter values are plotted in Figure 6.10 with respect

to the super-frame length TSF . The behavior of the curves is similar to the MC case in

Figure 6.9. Of note, the optimal PLL damping for large TSF is ζopt (TSF ) = 1, with loop

gain κ1 > 1.

6.7 Conclusions

In networks with low duty-cycles, nodes are kept in sleep mode most of the time,

and their clocks are subject to relevant frequency changes driven by environmental

temperature variations. This chapter has analyzed the capability of adaptive clock

control algorithms to track frequency instabilities in a network employing a beacon-less

TDMA MAC protocol, where the duty-cycle depends on the super-frame length TSF .

In particular, the two algorithms that have been considered are a type 2 PLL with a
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Figure 6.11 Optimal loop parameters for a line network of 10 nodes with MS topology.

proportional-integral controller and a P/FLL equipped with a frequency tracking loop.

The performance of adaptive schemes has been checked against a conventional approach

based on improving clock accuracy by the compensation of frequency changes due to

environmental temperature variations (temperature-compensated clock - TCC). Adaptive

designs have shown to be competitive with respect to the employment of TCC’s since they

effectively track frequency variations at smaller duty-cycles, while they filter out clock

noise at larger duty cycles. In particular, at very small duty-cycles (TSF > 1000 s), the

optimal loop parameters do not depend on the super-frame length TSF .

Appendix 6.A: Design of the Frequency Difference Detector

Recall the phase offset model (5.15) introduced in Section 5.2,

oij[n] = (1 + αi[n]) (ti[n]− tj[n]) . (6.32)
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If the frequency changes slowly with time, αi[n] ' αi[n − 1], the first-order difference of

pair-wise phase offsets reads

oij[n]− oij[n− 1] = (1 + αi[n])

[
(ti[n]− ti[n− 1])− (tj[n]− tj[n− 1])

]
' (1 + αi[n])TSF

(
1− ui[n− 1]

1 + αi[n− 1]
− 1− uj[n− 1]

1 + αj[n− 1]

)
+

+ κP

(
1 + αi[n]

1 + αj[n− 1]
ej[n− 1]− ei[n− 1]

)
, (6.33)

where the update law (6.10) has been employed. The pair-wise frequency difference fij[n]

is computed by the FDD with

fij[n] = (oij[n]− oij[n− 1])− κP (ej[n− 1]− ei[n− 1]) .

= (1 + αi[n])TSF

[
1− ui[n− 1]

1 + αi[n− 1]
− 1− uj[n− 1]

1 + αj[n− 1]

]
+ κP

[
αi[n]− αj[n− 1]

1 + αj[n− 1]
ej[n− 1]

]
' (1 + αi[n])TSF [(uj[n− 1] + αj[n− 1])− (ui[n− 1] + αi[n− 1])] , (6.34)

where the last approximation holds since αi[n], αj[n] � 1 for every n. After the change

of variables (6.12)-(6.13), it is fij[n] = (1 + αi[n]) (yi[n− 1]− yj[n− 1]), from which

(6.26) is readily obtained.



CHAPTER 7

CONCLUSIONS AND FUTURE WORK

Synchronization is a fundamental facility for communication networks. In wireless sensor

networks (WSN), in particular, it is instrumental in order to enable cooperation at the

physical layer, to coordinate medium access at the link layer, and to schedule sampling

and control tasks at the application layer. In the past, synchronization techniques have

been specialized for the specific task (carrier frequency, symbol/frame time sync) and

protocol layer (physical, link, application) they were intended for. Nevertheless, in most

cases practical algorithms are based on the familiar phase locking principles that drive

natural synchronization phenomena. With reference to the case of wireless networks,

previous works on network synchronization focused either on higher layers (neglecting

complexity constraints) or on a specific communication system (Wi-Fi, cellular networks).

The aim of this thesis was to develop low-complexity synchronization algorithms targeted

at application at the lower layers of the protocol stack of a WSN, namely at the physical

and MAC layers. This work considered communication models incorporating typical

design aspects of WSN protocols, and developed algorithms based on the classical

concept of coupled phase and frequency locked loops (PLL and FLL). PLL and FLL

techniques have shown not only to constitute low-complexity solutions, but they also

provide enhanced robustness against the impairments of wireless communication, i.e.,

channel noise, interference and packet collision events. The proposed algorithms proved to

be versatile enough to adapt to both peer-to-peer (mutually coupled - MC) and hierarchical

(master-slave - MS) networks, thereby providing absolute freedom in the design of the

underlying communication architecture. Finally, the capability of PLL and FLL algorithms

to track clock frequency instabilities have been checked and shown to outperform current

industrial solutions.
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From the results presented throughout the thesis, synchronization algorithms based

on phase-locking principles appear to be fundamental tools to realize simple, accurate and

scalable distributed synchronization in a large wireless network. Several topics of interest

for future research are listed below.

• At the physical layer, the study focused exclusively on distributed carrier frequency

synchronization, realized exploiting frequency-locking principles. Even in a simple

point-to-point link, multi-path propagation complicates symbol time synchronization,

which is typically implemented jointly with channel equalization [3]. Nevertheless,

multipath signal distortion is mitigated when employing ultra-wideband (UWB)

signaling. UWB modulation allows to discriminate signals received from different

propagation paths1, and to accurately estimate clock time offsets and propagation

delays up to the nanosecond scale. Distributed time synchronization in a UWB

network requires to be performed jointly with distributed localization. This problem

is the focus of active industrial and academic research efforts. In fact, UWB

modulations have been recently introduced in the first amendment to IEEE 802.15.4

[100] (called IEEE 802.15.4a-2007). At the time of this writing, the first 802.15.4a

chips with a real-time location system (RTLS) are being commercialized. A

long-standing issue is the feasibility of distributed carrier phase synchronization

[101]. Phase synchronization is instrumental for the implementation of advanced

cooperative functions, such as distributed beamforming. Unfortunately, the practi-

cality of distributed phase synchronization is undermined by the necessity to

compensate propagation delays and to accurately track rapid phase variations.

• At the MAC layer, time synchronization has been analyzed by simulations employing

synthetic models for the impairments due to the communication protocol and various

noise sources. The actual tracking capabilities of PLL and FLL techniques should be

1The reader can think about impulse radio UWB (IR-UWB) modulations, but the same observations
hold true also for other UWB types, e.g., OFDM-UWB modulations.
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checked experimentally on real-world hardware employing different communication

protocols. Also, the performance of iterative synchronization algorithms is heavily

dependent on the specific choice of loop parameters. In order to ease practical

implementation, simple heuristics have to be designed in order to choose values for

the loop parameters. When employing contention access protocols, transmission

probabilities determine the frequency of occurrence of retransmissions and therefore

the tracking capabilities of the synchronization network. This problem is particularly

relevant in the design and setup of ad-hoc networks based on IEEE 802.11, where

signaling information (including sync-related information) is transmitted by using a

contention-based access protocol. Also, optimal loop parameters should be chosen

in order to accurately balance accuracy versus tracking performance as a function of

the synchronization update interval. With respect to this topic, it is worth to point

out that interesting heuristics have already been incorporated in the design of NTPv4

[102].



REFERENCES

[1] N. Wiener, Cybernetics or Control and Communication in the Animal and the Machine.
The MIT Press, 1965.

[2] A. Winfree, “Biological rhythms and the behavior of populations of coupled oscillators,”
Journal of theoretical biology, vol. 16, no. 1, pp. 15–42, 1967.

[3] H. Meyr, M. Moeneclaey, and S. Fechtel, Digital communication receivers: synchro-
nization, channel estimation, and signal processing. John Wiley & Sons, Inc. New
York, NY, USA, 1997.

[4] Y. Kuramoto, Chemical oscillations, waves, and turbulence. Springer, 1984.

[5] R. Adler, “A study of locking phenomena in oscillators,” Proceedings of the IRE, vol. 34,
pp. 351–357, Jun. 1946.

[6] F. M. Gardner, Phaselock techniques. Wiley Interscience, 2005.

[7] A. Banai, F. Farzaneh, and S. Ayazian, “Investigation of the locking bandwidth in linear
and circular arrays of mutually coupled oscillators, intended for microwave power
combining,” IEE Proc. Microwave Antennas and Propagat., vol. 152, no. 6, p. 441,
2005.

[8] C. Peskin, Mathematical aspects of heart physiology. Courant Institute of Mathematical
Sciences, New York University, 1975.

[9] E. Izhikevich, “Weakly pulse-coupled oscillators, FM interactions, synchronization, and
oscillatory associative memory,” IEEE Trans. Neural Netw., vol. 10, pp. 508–526,
Mar. 1999.

[10] W. Lindsey and C. Chie, “A survey of digital phase-locked loops,” Proceedings of the
IEEE, vol. 69, Apr. 1981.

[11] A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, and C. Zhou, “Synchronization in
complex networks,” Physics Reports, vol. 469, no. 3, pp. 93–153, 2008.

[12] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D. Hwang, “Complex networks:
Structure and dynamics,” Physics Reports, vol. 424, no. 4-5, pp. 175–308, 2006.

[13] S. Bregni, Synchronization of Digital Telecommunications Networks. Wiley, 2002.

[14] W. Lewandowski and C. Thomas, “GPS time transfer,” Proceedings of the IEEE, vol. 79,
pp. 991–1000, Jul. 1991.

[15] W. C. Lindsey, F. Ghazvinian, W. C. Hagmann, and K. Dessouky, “Network synchro-
nization,” Proc. IEEE, vol. 73, pp. 1445–1467, Oct. 1985.

169



170

[16] E. Harrington, “Synchronization techniques for various switching network topologies,”
IEEE Trans. Commun., vol. 26, pp. 925–932, Jun. 1978.

[17] D. Mills, Computer network time synchronization: the network time protocol. CRC Press,
2006.

[18] Standard for a Precision Clock Synchronization Protocol for Networked Measurement and
Control Systems, IEEE Std. 1588-2008, 2008.

[19] P. Ferrari, A. Flammini, D. Marioli, and A. Taroni, “IEEE 1588-based synchronization
system for a displacement sensor network,” IEEE Transactions on Instrumentation
and Measurement, vol. 57, no. 2, pp. 254 –260, feb. 2008.

[20] E. G. Larsson and P. Stoica, Space-time block coding for wireless communications.
Cambridge Univeristy Press, 2003.

[21] CC2530 IEEE 802.15.4 System-on-Chip Data Sheet, Texas Instruments Inc., rev. Apr.
2009.

[22] H. Cho, J. Jung, B. Cho, Y. Jin, S. Lee, and Y. Baek, “Precision time synchronization using
ieee 1588 for wireless sensor networks,” Computational Science and Engineering,
2009. CSE ’09. International Conference on, vol. 2, pp. 579 –586, aug. 2009.

[23] J. Elson and K. Römer, “Wireless sensor networks: A new regime for time synchro-
nization,” ACM SIGCOMM Computer Communication Review, vol. 33, no. 1, pp.
149–154, 2003.

[24] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification,
IEEE Std. 802.11-2007, 2007.

[25] Wireless medium access control (MAC) and physical layer (PHY) specifications for low-
rate wireless personal area networks (LR-WPANs), IEEE Std. 802.15.4-2006, 2006.

[26] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,”
Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

[27] ZigBee Specifications, ZigBee Alliance Std. version 1.0, 2005.

[28] High Rate Ultre Wideband (PHY) and (MAC) Standard, ECMA Std. 368, 2008.

[29] A. Koubâa, A. Cunha, M. Alves, and E. Tovar, “TDBS: a time division beacon scheduling
mechanism for ZigBee cluster-tree wireless sensor networks,” Real-Time Systems,
vol. 40, no. 3, pp. 321–354, 2008.

[30] V. Vishnevsky, A. Lyakhov, A. Safonov, S. Mo, and A. Gelman, “Study of Beaconing
in Multihop Wireless PAN with Distributed Control,” IEEE transactions on mobile
computing, pp. 113–126, Jan. 2008.



171

[31] K. Pister and L. Doherty, “TSMP: time synchronized mesh protocol,” in Proceedings of
the IASTED International Symposium on Distributed Sensor Networks, Orlando, FL,
Nov. 2008.

[32] WirelessHART Communication Specification (HART 7.1), HART Foundation Std., 2009.

[33] B. Sadler and A. Swami, “Synchronization in sensor networks: an overview,” in Military
Communications Conference, 2006. MILCOM 2006, 2006, pp. 1–6.

[34] B. Sundararaman, U. Buy, and A. Kshemkalyani, “Clock synchronization for wireless
sensor networks: a survey,” Ad Hoc Networks, vol. 3, no. 3, pp. 281–323, 2005.

[35] K. Romer, P. Blum, and L. Meier, “Time synchronization and calibration in wireless sensor
networks,” in Handbook of Sensor Networks: Algorithms and Architectures. John
Wiley & Sons, 2005, pp. 199–237.

[36] S. Ganeriwal, R. Kumar, and M. Srivastava, “Timing-sync protocol for sensor networks,”
in Proceedings of the 1st international conference on Embedded networked sensor
systems, 2003, p. 149.

[37] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time synchronization
protocol,” in SenSys ’04: Proceedings of the 2nd international conference on
Embedded networked sensor systems, 2004, pp. 39–49.

[38] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchronization using
reference broadcasts,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 147–163, 2002.

[39] E. Serpedin and Q. Chaudhari, Synchronization in wireless sensor networks: parameter
estimation, performance benchmarks and protocols. Cambridge University Press,
2009.

[40] A. Hu and S. Servetto, “On the scalability of cooperative time synchronization in pulse-
connected networks,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2725–2748, 2006.

[41] A. Giridhar and P. Kumar, “Distributed clock synchronization over wireless networks:
Algorithms and analysis,” in 45th IEEE Conference on Decision and Control, 2006,
2006, pp. 4915–4920.

[42] Y. W. Hong and A. Scaglione, “A scalable synchronization protocol for large scale sensor
networks and its applications,” IEEE J. Select. Areas Commun., vol. 23, pp. 1085–
1099, May 2005.

[43] O. Simeone and U. Spagnolini, “Distributed synchronization for wireless sensor networks
with couple discrete-time oscillators,” in Eurasip Journal on Wireless Commun. and
Networking, vol. 2007, Jul. 2007, pp. 3153–3167.

[44] R. Carli, A. Chiuso, L. Schenato, and S. Zampieri, “A PI consensus controller for
networked clocks synchronization,” in Proc. of 17th IFAC World Congress, Seoul
(Korea), 2008.



172

[45] R. Carli and S. Zampieri, “Networked clock synchronization based on second order linear
consensus algorithms,” Center for Control Dynamical Systems and Computation,
Univ. of California, Santa Barbara, Tech. Rep., 2010.

[46] L. Schenato and G. Gamba, “A distributed consensus protocol for clock synchronization
in wireless sensor network,” in Proc. of the 46th IEEE Conference on Decision and
Control, vol. 2007, Dec. 2007.

[47] C. Rentel and T. Kunz, “A clock-sampling mutual network time-synchronization algorithm
for wireless ad hoc networks,” IEEE Trans. Mobile Comput., vol. 7, pp. 633–646, May
2008.

[48] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with
switching topology and time-delays,” IEEE Trans. Autom. Control, vol. 49, pp.
1520–1533, Sep. 2004.

[49] D. Mitra, “Network synchronization-Analysis of a hybrid of master-slave and mutual
synchronization,” IEEE Trans. Commun., vol. 28, pp. 1245–1259, Aug. 1980.

[50] C. Meyer, Matrix analysis and applied linear algebra. Society for Industrial Mathematics,
2000.

[51] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a graph,” Siam Review,
pp. 667–689, 2004.

[52] A. Laub, Matrix analysis for scientists and engineers. Society for Industrial Mathematics,
2005.

[53] R. Gray, Toeplitz and circulant matrices: A review. Now Publishers, 2006.

[54] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE
Trans. Inform. Theory, vol. 52, no. 6, pp. 2508–2530, 2006.

[55] S. Rai, “The spectrum of a random geometric graph is concentrated,” Journal of Theoretical
Probability, vol. 20, no. 2, pp. 119–132, 2007.

[56] P. Parker, P. Mitran, D. Bliss, and V. Tarokh, “On bounds and algorithms for frequency
synchronization for collaborative communication systems,” IEEE Trans. on Signal
Proc., vol. 56, no. 8, pp. 3742–3752, 2008.

[57] N. Varanese, Y. Bar-Ness, and U. Spagnolini, “On the Synchronization Rate of Distributed
Medium Access Protocols ,” in Proc. of 44th Annual Conference on Information
Sciences and Systems (CISS), Princeton, NJ USA, Mar. 2010.

[58] U. Mengali and A. N. D’Andrea, Synchronization Techniques for Digital Receivers.
Springer, 1997.

[59] K. L. Fernando, V. J. Matthews, and E. B. Clarck, “Mean frequency estimation of
narrowband signals,” IEEE Signal Process. Lett., vol. 11, pp. 175–178, Feb. 2004.



173

[60] B. I. Triplett, D. J. Klein, and K. A. Morgansen, “Discrete time Kuramoto models with
delay,” in Workshop on Networked Embedded Sensing and Control, vol. 2005, Oct.
2005.

[61] E. Mallada and A. Tang, “Synchronization of phase-coupled oscillators with arbitrary
topology,” in Proc. of IEEE ITA Workshop 2007, La Jolla, CA USA, Feb. 2010.

[62] H. J. Kushner, Introduction to stochastic control. Holt, Rinehart and Winston, 1971.

[63] F. Fagnani and S. Zampieri, “Randomized consensus algorithms over large scale networks,”
in Proc. of IEEE ITA Workshop 2007, La Jolla, CA USA, Jan. 2007.

[64] W. R. Braun, “Short term frequency instability effects in networks of coupled oscillators,”
IEEE Trans. Commun., vol. COM-28, pp. 1269–1275, Aug. 1980.

[65] L.Xiao, S. Boyd, and S. Kim, “Distributed average consensus with least-mean-square
deviation,” Journal of Parallel and Distributed Computing, vol. 67, pp. 33–46, Jan.
2007.

[66] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in networked
multi-agent systems,” Proc. IEEE, vol. 95, pp. 215–233, Jan. 2007.

[67] E. Lee and D. Messerschmitt, Digital communication. Springer, 1994.

[68] I. Gradshteyn, I. Ryzhik, A. Jeffrey, and D. Zwillinger, Table of integrals, series and
products. Academic press, 1994.

[69] U. Spagnolini, N. Varanese, O. Simeone, and Y. Bar-Ness, “Distributed digital looked loops
for time/frequency locking in packet-based wireless communication,” in Proc. IEEE
PIMRC 2008, Sep. 2008.

[70] S. Borade, L. Zheng, and R. Gallager, “Amplify-and-forward in wireless relay networks:
rate, diversity, and network size,” IEEE Trans. Inf. Theory, vol. 53, pp. 3302–3318,
Oct. 2007.

[71] M. Vajapeyam and U. Mitra, “Performance analysis of distributed space-time coded
protocols for wireless multi-hop communications,” IEEE Trans. Commun., vol. 9, pp.
122–133, Jan. 2010.

[72] K. Miller and M. Rochwarger, “A covariance approach to spectral moment estimation,”
IEEE Trans. Inf. Theory, vol. 5, pp. 588–596, Sep. 1972.

[73] O. Simeone, U. Spagnolini, G. Scutari, and Y. Bar-Ness, “Physical-layer distributed
synchronization in wireless networks and applications,” Physical Communication, pp.
67–83, Mar. 2008.

[74] L. Moreau, “Stability of multiagent systems with time-dependent communication links,”
IEEE Trans. Automat. Contr., vol. 50, pp. 169–182, Feb. 2005.



174

[75] T. Aysal, M. Yildiz, A. Sarwate, and A. Scaglione, “Broadcast gossip algorithms for
consensus,” IEEE Trans. Signal Processing, vol. 57, no. 7, pp. 2748–2761, 2009.

[76] S. Kar and J. Moura, “Sensor Networks With Random Links: Topology Design for
Distributed Consensus,” IEEE Trans. Signal Processing, vol. 56, no. 7, Part 2, pp.
3315–3326, 2008.

[77] A. Tahbaz-Salehi and A. Jadbabaie, “On consensus over random networks,” in Proceedings
of the 44th Annual Allerton Conference on Communication, Control and Computing,
2006.

[78] P. Denantes, F. Benezit, P. Thiran, and M. Vetterli, “Which Distributed Averaging
Algorithm Should I Choose for my Sensor Network?” in IEEE INFOCOM 2008,
Phoenix, AZ USA, Apr. 2008.

[79] N. Varanese, O. Simeone, Y. Bar-Ness, and U. Spagnolini, “Distributed frequency-locked
loops for wireless networks,” in Proc. IEEE ISSSTA 2008, Bologna, Italy, Aug. 2008.

[80] R. Nelson and L. Kleinrock, “Spatial-TDMA: A collision-free multihop channel access
protocol,” IEEE Trans. Commun., pp. 934–944, Sep. 1985.

[81] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems & Control
Letters, vol. 53, no. 1, pp. 65–78, 2004.

[82] L. Arnold, Random dynamical systems. Springer, 1998.

[83] R. Diestel, Graph Theory. Springer-Verlag, 2006.

[84] J. Fax and R. Murray, “Information flow and cooperative control of vehicle formations,”
IEEE Trans. Autom. Control, vol. 49, no. 9, pp. 1465–1476, 2004.

[85] R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press, 1990.

[86] L. Ahlfors, Complex analysis. McGraw-Hill, 1979.

[87] S. Kay, Fundamentals of statistical signal processing: estimation theory. Prentice Hall,
1993.

[88] D. Bertsekas and J. Tsitsiklis, Parallel and distributed computation. Englewood Cliffs,
NJ, 1999.

[89] P. Barooah, N. da Silva, and J. Hespanha, “Distributed optimal estimation from relative
measurements for localization and time synchronization,” in Distributed Computing
in Sensor Systems, ser. Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2006, vol. 4026, pp. 266–281.

[90] P. Stoica and T. Marzetta, “Parameter estimation problems with singular information
matrices,” IEEE Trans. on Signal Processing, vol. 49, no. 1, pp. 87–90, 2001.



175

[91] A. Langville and W. Stewart, “The Kronecker product and stochastic automata networks,”
Journal of computational and applied mathematics, vol. 167, no. 2, pp. 429–447,
2004.

[92] A. Berman and R. Plemmons, Nonnegative matrices in the mathematical sciences. Society
for Industrial Mathematics, 1994.

[93] Y. Chen and Q. Zhao, “On the lifetime of wireless sensor networks,” IEEE Commun. Lett.,
pp. 976–978, Nov. 2005.

[94] A. Bachir, M. Dohler, T. Watteyne, and K. Leung, “MAC essentials for wireless sensor
networks,” IEEE Communications Surveys Tutorials, vol. 12, no. 2, pp. 222 –248,
2010.

[95] F. Walls and J.-J. Gagnepain, “Environmental sensitivities of quartz oscillators,” IEEE
Trans. Ultrason., Ferroelectr., Freq. Control, vol. 39, no. 2, pp. 241–249, mar. 1992.

[96] D. Lee, “Analysis of jitter in phase-locked loops,” IEEE Trans. Circuits Syst. II, vol. 49,
pp. 704–711, Nov. 2002.

[97] K. Pister, Y. Zats, R. Conant, and N. Treuhaft, “Low-powered autonomous radio node with
temperature sensor and crystal,” U.S. Patent US 2005/0 213 612 A1, Sep. 29, 2005.

[98] A. Patapoutian, “On phase-locked loops and Kalman filters,” IEEE Trans. Commun.,
vol. 47, pp. 670–672, May 1999.

[99] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge University Press, 2004.

[100] Wireless MAC and PHY Specifications for Low-Rate Wireless Personal Area Networks (LR-
WPANs): Amendment 1: Add Alternate PHY, IEEE Std. 802.15.4a-2007, 2007.

[101] R. Mudumbai, G. Barriac, and U. Madhow, “On the feasibility of distributed beamforming
in wireless networks,” Wireless Communications, IEEE Transactions on, vol. 6, no.
May, pp. 1754 –1763, 2007.

[102] D. Mills, “Network time protocol version 4 reference and implementation guide,”
University of Delaware, Tech. Rep., June 2006.


	Distributed synchronization algorithms for wireless sensor networks
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)

	Dedication
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: System Model
	Chapter 3: Distributed Carrier Frequency Synchronization
	Chapter 4: Synchronization Rate of Medium Access Protocols
	Chapter 5: Accuracy of Distributed Synchronization
	Chapter 6: Accurate Synchronization with Low Duty Cycles
	Chapter 7: Conclusions and Future Work
	References

	List of Tables
	List of Figures (1 of 5)
	List of Figures (2 of 5)
	List of Figures (3 of 5)
	List of Figures (4 of 5)
	List of Figures (5 of 5)


