11,960 research outputs found

    {Improved Bounds on Fourier Entropy and Min-entropy}

    Get PDF
    Given a Boolean function f:{1,1}n{1,1}f:\{-1,1\}^n\to \{-1,1\}, the Fourier distribution assigns probability f^(S)2\widehat{f}(S)^2 to S[n]S\subseteq [n]. The Fourier Entropy-Influence (FEI) conjecture of Friedgut and Kalai asks if there exist a universal constant C>0 such that H(f^2)CInf(f)H(\hat{f}^2)\leq C Inf(f), where H(f^2)H(\hat{f}^2) is the Shannon entropy of the Fourier distribution of ff and Inf(f)Inf(f) is the total influence of ff. 1) We consider the weaker Fourier Min-entropy-Influence (FMEI) conjecture. This asks if H(f^2)CInf(f)H_{\infty}(\hat{f}^2)\leq C Inf(f), where H(f^2)H_{\infty}(\hat{f}^2) is the min-entropy of the Fourier distribution. We show H(f^2)2Cmin(f)H_{\infty}(\hat{f}^2)\leq 2C_{\min}^\oplus(f), where Cmin(f)C_{\min}^\oplus(f) is the minimum parity certificate complexity of ff. We also show that for every ϵ0\epsilon\geq 0, we have H(f^2)2log(f^1,ϵ/(1ϵ))H_{\infty}(\hat{f}^2)\leq 2\log (\|\hat{f}\|_{1,\epsilon}/(1-\epsilon)), where f^1,ϵ\|\hat{f}\|_{1,\epsilon} is the approximate spectral norm of ff. As a corollary, we verify the FMEI conjecture for the class of read-kk DNFDNFs (for constant kk). 2) We show that H(f^2)2aUC(f)H(\hat{f}^2)\leq 2 aUC^\oplus(f), where aUC(f)aUC^\oplus(f) is the average unambiguous parity certificate complexity of ff. This improves upon Chakraborty et al. An important consequence of the FEI conjecture is the long-standing Mansour's conjecture. We show that a weaker version of FEI already implies Mansour's conjecture: is H(f^2)Cmin{C0(f),C1(f)}H(\hat{f}^2)\leq C \min\{C^0(f),C^1(f)\}?, where C0(f),C1(f)C^0(f), C^1(f) are the 0- and 1-certificate complexities of ff, respectively. 3) We study what FEI implies about the structure of polynomials that 1/3-approximate a Boolean function. We pose a conjecture (which is implied by FEI): no "flat" degree-dd polynomial of sparsity 2ω(d)2^{\omega(d)} can 1/3-approximate a Boolean function. We prove this conjecture unconditionally for a particular class of polynomials

    Certainty relations, mutual entanglement and non-displacable manifolds

    Full text link
    We derive explicit bounds for the average entropy characterizing measurements of a pure quantum state of size NN in LL orthogonal bases. Lower bounds lead to novel entropic uncertainty relations, while upper bounds allow us to formulate universal certainty relations. For L=2L=2 the maximal average entropy saturates at logN\log N as there exists a mutually coherent state, but certainty relations are shown to be nontrivial for L3L \ge 3 measurements. In the case of a prime power dimension, N=pkN=p^k, and the number of measurements L=N+1L=N+1, the upper bound for the average entropy becomes minimal for a collection of mutually unbiased bases. Analogous approach is used to study entanglement with respect to LL different splittings of a composite system, linked by bi-partite quantum gates. We show that for any two-qubit unitary gate UU(4)U\in \mathcal{U}(4) there exist states being mutually separable or mutually entangled with respect to both splittings (related by UU) of the composite system. The latter statement follows from the fact that the real projective space RP3CP3\mathbb{R}P^{3}\subset\mathbb{C}P^{3} is non-displacable. For L=3L=3 splittings the maximal sum of LL entanglement entropies is conjectured to achieve its minimum for a collection of three mutually entangled bases, formed by two mutually entangling gates

    Entropic uncertainty relations - A survey

    Get PDF
    Uncertainty relations play a central role in quantum mechanics. Entropic uncertainty relations in particular have gained significant importance within quantum information, providing the foundation for the security of many quantum cryptographic protocols. Yet, rather little is known about entropic uncertainty relations with more than two measurement settings. In this note we review known results and open questions.Comment: 12 pages, revte

    Quantum discord and classical correlation can tighten the uncertainty principle in the presence of quantum memory

    Get PDF
    Uncertainty relations capture the essence of the inevitable randomness associated with the outcomes of two incompatible quantum measurements. Recently, Berta et al. have shown that the lower bound on the uncertainties of the measurement outcomes depends on the correlations between the observed system and an observer who possesses a quantum memory. If the system is maximally entangled with its memory, the outcomes of two incompatible measurements made on the system can be predicted precisely. Here, we obtain a new uncertainty relation that tightens the lower bound of Berta et al., by incorporating an additional term that depends on the quantum discord and the classical correlations of the joint state of the observed system and the quantum memory. We discuss several examples of states for which our new lower bound is tighter than the bound of Berta et al. On the application side, we discuss the relevance of our new inequality for the security of quantum key distribution and show that it can be used to provide bounds on the distillable common randomness and the entanglement of formation of bipartite quantum states.Comment: v1: Latex, 4 and half pages, one fig; v2: 9 pages including 4-page appendix; v3: accepted into Physical Review A with minor change

    Improved Extractors for Recognizable and Algebraic Sources

    Get PDF

    Optimality of entropic uncertainty relations

    Get PDF
    The entropic uncertainty relation proven by Maassen and Uffink for arbitrary pairs of two observables is known to be non-optimal. Here, we call an uncertainty relation optimal, if the lower bound can be attained for any value of either of the corresponding uncertainties. In this work we establish optimal uncertainty relations by characterising the optimal lower bound in scenarios similar to the Maassen-Uffink type. We disprove a conjecture by Englert et al. and generalise various previous results. However, we are still far from a complete understanding and, based on numerical investigation and analytical results in small dimension, we present a number of conjectures.Comment: 24 pages, 10 figure
    corecore