100 research outputs found

    Four decades of research on the open-shop scheduling problem to minimize the makespan

    Full text link
    One of the basic scheduling problems, the open-shop scheduling problem has a broad range of applications across different sectors. The problem concerns scheduling a set of jobs, each of which has a set of operations, on a set of different machines. Each machine can process at most one operation at a time and the job processing order on the machines is immaterial, i.e., it has no implication for the scheduling outcome. The aim is to determine a schedule, i.e., the completion times of the operations processed on the machines, such that a performance criterion is optimized. While research on the problem dates back to the 1970s, there have been reviving interests in the computational complexity of variants of the problem and solution methodologies in the past few years. Aiming to provide a complete road map for future research on the open-shop scheduling problem, we present an up-to-date and comprehensive review of studies on the problem that focuses on minimizing the makespan, and discuss potential research opportunities

    Static allocation of computation to processors in multicomputers

    Get PDF

    Selected Papers from the 9th World Congress on Industrial Process Tomography

    Get PDF
    Industrial process tomography (IPT) is becoming an important tool for Industry 4.0. It consists of multidimensional sensor technologies and methods that aim to provide unparalleled internal information on industrial processes used in many sectors. This book showcases a selection of papers at the forefront of the latest developments in such technologies

    Permutation flow shops with exact time lags to minimise maximum lateness

    Get PDF
    International audienceIn this paper we investigate the m-machine permutation flow shop scheduling problem where exact time lags are defined between consecutive operations of every job. This generic model can be used for the study and analysis of various real situations that may arise, for instance, in the food-producing, pharmaceutical and steel industries. The objective is to minimise the maximum lateness. We study polynomial special cases and provide a dominance relation. We derive lower and upper bounds that are integrated in a branch-and-bound procedure to solve the problem. Three branching schemes are proposed and compared. We perform a computational analysis to evaluate the efficiency of the developed method

    Advancing mixed criticality scheduling techniques to support industrial applications

    Get PDF
    Safety critical software development is an extremely costly endeavour; software developers must forever target efficient processes that reduce software cost, while allowing significant increases in system size. The key challenge being how to reduce software cost, without compromising safety or quality. The focus of this thesis is to research the development and temporal proof of a mixed criticality system. The thesis, which attempts to define an end to end process, begins by studying appropriate and efficient methods for assessing the timing performance of system components. The key being an approach that can be applied automatically at an early point in the design lifecycle. The thesis then progresses to study how existing mixed criticality research needs to be advanced and matured in order to support an industrial safety critical application. This includes the definition of a scheduling model designed to provide the necessary protections advised by international aviation guidelines. In the final part of this thesis the timing process and mixed criticality system model are brought together to explore how a real system using these techniques could be validated

    Energy Efficient Policies, Scheduling, and Design for Sustainable Manufacturing Systems

    Get PDF
    Climate mitigation, more stringent regulations, rising energy costs, and sustainable manufacturing are pushing researchers to focus on energy efficiency, energy flexibility, and implementation of renewable energy sources in manufacturing systems. This thesis aims to analyze the main works proposed regarding these hot topics, and to fill the gaps in the literature. First, a detailed literature review is proposed. Works regarding energy efficiency in different manufacturing levels, in the assembly line, energy saving policies, and the implementation of renewable energy sources are analyzed. Then, trying to fill the gaps in the literature, different topics are analyzed more in depth. In the single machine context, a mathematical model aiming to align the manufacturing power required to a renewable energy supply in order to obtain the maximum profit is developed. The model is applied to a single work center powered by the electric grid and by a photovoltaic system; afterwards, energy storage is also added to the power system. Analyzing the job shop context, switch off policies implementing workload approach and scheduling considering variable speed of the machines and power constraints are proposed. The direct and indirect workloads of the machines are considered to support the switch on/off decisions. A simulation model is developed to test the proposed policies compared to others presented in the literature. Regarding the job shop scheduling, a fixed and variable power constraints are considered, assuming the minimization of the makespan as the objective function. Studying the factory level, a mathematical model to design a flow line considering the possibility of using switch-off policies is developed. The design model for production lines includes a targeted imbalance among the workstations to allow for defined idle time. Finally, the main findings, results, and the future directions and challenges are presented
    corecore