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a b s t r a c t 

The considered coupled task problem (CTP) is to schedule n jobs, each consisting of two (sub)tasks, on 

a single machine. Exact delay times are between the subtasks of a job and the makespan has to be 

minimized. It has been proven that the problem is strongly N P -hard in general case (see Orman and 

Potts (1997)), even if the lengths of the subtasks are identical. This paper considers a special case of 

CTP where there are jobs with two different delay times only. The complexity status of this problem is 

unknown. We will present an algorithm – called First Fit Decreasing (FFD) – and we will prove that its 

approximation ratio is in the interval (1 . 57894 , 1 . 57916) . 

© 2021 The Authors. Published by Elsevier B.V. 
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. Introduction 

The single-machine coupled task problem (CTP) is defined as 

ollows: An instance is given by I n = { J 1 , J 2 , . . . , J n } , where each J i is

 job consisting of two tasks, which are denoted by { a 1 , a 2 , . . . , a n }
nd { b 1 , b 2 , . . . , b n } , respectively. Tasks have to be executed in a

iven sequence and an exact delay time (idle time) – l i , (i = 

 , . . . , n ) – is required between their executions. For job J i the pro-

essing times of the two tasks will be denoted by p(a i ) and p(b i ) ,

esp. The machine can process at most one task at a time and no 

reemption is allowed. In a solution for job J i S(a i ) and S(b i ) de-

ote the starting times of the two tasks, and a solution is given by 

he first task’s starting time of each job. The completion time of J i 
s C(J i ) = S(a i ) + p(a i ) + l i + p(b i ) . A solution – also called schedule

is feasible, if for any time-slot at most one task is performed by 

he machine. The quality of a (feasible) solution σ is evaluated by 

he maximum completion time (also called makespan): 

 

σ
max = max { C(J i ) | J i ∈ I n } . 
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The objective is to find a feasible schedule that minimizes the 

aximum completion time. 

We will usually refer to jobs and tasks just by their indices and 

in order to simplify notations – we will use the identical nota- 

ions a i and b i for the processing times of the tasks. 

The CTP appears in numerous practical problems. The most ci- 

ations can be found for pulsed radar systems where a radar has 

o keep track of different targets by transmitting a pulse, and re- 

eiving its reflection (see eg. Orman & Potts, 1997; Orman, Potts, 

hahani, & Moore, 1996 ). The interval between the transmission 

nd reception depends on the distance of the target. Similar exam- 

les from the field of agriculture and chemistry can also be cited 

 Ageev & Baburin, 2007; Ageev & Ivanov, 2016 ). 

.1. Related works 

It is apparent that the pioneer complexity paper of Orman & 

otts (1997) gave an intensive movement to the research of this 

opic, and an extensive study of the CTP with different objective 

unctions has therefore been developed in last few years. Recently, 

 state of art survey was published by Khatami, Salehipour, & 

heng (2020) , which is adequate for establishing the knowledge 

f the enquirer reader. For the general case, we will use the stan- 

ard three-field notation – introduced by Graham, Lawler, Lenstra, 

 Rinnooy Kan (1979) – as follows: 1 | Coup-Task , exact l i | C max . 

The complexity of this problem was deeply analyzed in Orman 

 Potts (1997) and – in the general case – shown to be strongly 

 P -hard. To avoid technical complications for special cases in 

hich all jobs are identical, in their paper ( Orman & Potts, 1997 )
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Table 1 

Worst case performances of analysed approximation algorithms. 

Problem ρ(A ) T.compl. Inapprox. Ref. 

l j , a j , b j ≤ 3 . 5 O (n log n ) 2 − ε Ageev & Kononov (2007) 

l j , a j ≤ b j ≤ 3 O (n log n ) 2 − ε Ageev & Kononov (2007) 

l j , a j = b j ≤ 2 . 5 O (n log n ) 2 − ε Ageev & Kononov (2007) 

l j = L, a j , b j ≤ 3 O (n log n ) 1 . 5 − ε Ageev & Ivanov (2016) 

l j = L, a j ≤ b j ≤ 2 O (n log n ) 1 . 5 − ε Ageev & Ivanov (2016) 

l j = L, a j = b j ≤ 1 . 5 O (n log n ) 1 . 25 − ε Ageev & Ivanov (2016) 

l j , UET = 1 . 75 O (n log n ) Ageev & Baburin (2007) and Békési et al. (2009) 

l j ∈ { L 1 , L 2 } , UET [1.5789,1.5791) O (n ) this paper 
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C

rman and Potts assumed that processing times and idle times 

re inputs for all jobs, thus they gave an input size of O (n ) rather

han O ( log n ) . The latter scheduling papers accepted this assump- 

ion, and we also use this condition for all inputs. The problem 

emains N P -hard even in numerous special cases where there are 

estrictions either for the processing times of the tasks or for the 

elay times, and only a few of them can be solved in polynomial 

ime (see Li & Zhao, 2007; Orman & Potts, 1997 ). One exception to

 rule is the Identical Coupled Task Problem (ICTP) where a i = a ,

 i = L , and b i = b for each job. This problem was studied extensively 

ater and different pseudo-polynomial algorithms have been devel- 

ped, – e.g. Ahr, Békési, Galambos, Oswald, & Reinelt (2004) – but 

ts complexity is still open. 

For N P -hard CTP problems, different approximation algorithms 

ave been developed, and their effectiveness are measured by the 

erformance ratio which is defined as follows. Let I n be an instance 

f n jobs. Denote by C A max (I n ) and C ∗max (I n ) the makespans produced

y algorithm A and an optimal schedule of I n , respectively. Algo- 

ithm A is called ρ-approximation algorithm for some ρ ≥ 1 if 

 

A 
max (I n ) ≤ ρ C ∗max (I n ) 

or every instance of jobs. The smallest possible value ρ is called 

orst-case (performance) ratio of algorithm A, and is denoted by ρA . 

We summarized the recent results concerning the approxima- 

ion algorithms for different N P -complete problems in Table 1 . As 

he table shows there is only one algorithm which is concerned 

ith the general case, and most of the algorithms give only upper 

ounds for the performance ratios. The non-approximability results 

oncerning the different cases are also included the table. 

.2. Our results 

Among the special cases, in Orman & Potts (1997) the prob- 

em 1 | Coup-Task , exact l i , a i = b i = p| C max was also examined. Or-

an et al. proved that for these inputs the problem is N P -hard if 

he delay times are arbitrary. If we suppose that a i = b i = 1 , then

e call this problem Unit Execution Time – UET – problem.) 

For the case 1 | Coup-Task , exact l i = L, a i = b i = p| C max Orman

nd Potts proved that the problem is in P , and gave an optimal 

lgorithm with time complexity O (n ) . (The exact description of 

he algorithm see later.) Similarly to the ICTP, the complexity of 

 | Coup-Task , exact l i ∈ { L 1 , L 2 } , a i = b i = p| C max is still open. Here, L 1 
nd L 2 denote two different delay times. In this paper, we investi- 

ate this problem. The basis of our motivation is that in practical 

roblems there are almost always special conditions. In the case of 

n aircraft-carriers, there is a bounded number of airplanes with 

ifferent ranges, and it is plausible that only two different planes 

re used in a deployment. As another example let us consider the 

ar production assembly-line. If we suppose, that during the pol- 

shing process, two different phases are required and two basic 

ypes of polishing row-materials exist (metal and normal), then the 

chedule can also be handled by such model. 
845 
We introduce the First-Fit Decreasing ( FFD ) approximation algo- 

ithm for the problem 

 | Coup-Task , exact l i ∈ { L 1 , L 2 } , a i = b i = 1 | C max . 

The FFD algorithm was originally defined by Johnson (1973) as 

 bin packing approximation algorithm. We define the appropriate 

ersion of this algorithm to our problem in consideration. Natu- 

ally, the algorithm is designed to solve problems with arbitrary 

umber of different delays but in this paper we will investigate it 

nly for the UET problem with two distinct delays among tasks. 

Algorithm First-Fit Decreasing 

Step 1. Sort the jobs in nonincreasing order according to the 

idle times. After ordering we suppose that l 1 ≥ l 2 ≥ . . . ≥ l n . 

Let i = 1 . 

Step 2. Schedule job J i from the earliest time which results in a 

feasible schedule. 

Step 3. i = i + 1 . If i ≤ n then goto Step 2. Otherwise END. 

The time complexity of the algorithm is O (n ) (see Claim 4.2 ). 

We will investigate the algorithm FFD from the worst-case point 

f view, and prove that 

 . 57894 . . . ≈ 30 

19 

≤ ρFFD 

< 

√ 

11 + 3 

4 

≈ 1 . 57916 . . . . 

In what follows, in Section 2 , we start with preliminaries, where 

e give some basic definitions and show the lower bounds that 

ill be used in the proofs. Section 3 deals with instances with 

qual delays. We prove that the FFD gives an optimal solution 

o this problem, and we give the exact value of the makespan. 

ection 4 contains the complete analysis of FFD for the instances 

hat have two different delay times. Finally, we provide some con- 

luding remarks in Section 5 . 

. Preliminaries 

Hereinafter we will consider UET problems. Let us consider an 

rbitrary feasible schedule σ . We will say that in σ J i and J j are 

onsecutive if S(b i ) < S(a j ) , the jobs are nested if S(a i ) < S(a j ) <

(b j ) < S(b i ) , and the jobs are interleaved if S(a i ) < S(a j ) < S(b i ) <

(b j ) . 

A similar definition can be done for the set of jobs: e.g. let S 1 
nd S 2 be sets of jobs. In schedule σ S 2 is nested in S 1 if ∀ J i ∈ S 1 
nd ∀ J j ∈ S 2 , S(a i ) < S(a j ) < S(b j ) < S(b i ) . 

If a task is performed in the time-period [ i − 1 , i ] , then we say

hat the task occupies the position i. In schedule σ the subset 

 J i , . . . , J m 

} of interleaved jobs form a block , if ∀ j, k, i ≤ j < k ≤ m,

 j = L k , and S(a j ) < S(a k ) . Jobs J i and J m 

are the first- and the last-

tem of the block, resp. We call the sum of the remaining idle times 

ithin a block gap. If there is no gap within the block, then we say

hat the block is complete, otherwise it is incomplete. 

From the literature, there are some lower bounds known to es- 

imate the optimal schedule for the CTP. 

 

∗
max (I n ) ≥ LB1 = 2n . (1) 
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he next one gives an improvement for those cases where 
∑ 

l i ≥
 (n − 1) (see Békési, Galambos, Oswald, & Reinelt, 2009 ). 

 

∗
max (I n ) ≥ LB2 = 2n + 

⌈ 

1 

n 

( 

n ∑ 

i = 1 
l i − n (n − 1 ) 

) ⌉ 

. (2) 

f we apply the lower bound (2) for inputs with two different de- 

ays we can use the following estimation. 

 

∗
max (I n ) ≥ LB3 = n 1 + n 2 + 

n 1 L 1 + n 2 L 2 
n 1 + n 2 

+ 1 , (3) 

here n 1 and n 2 , mean the number of jobs with longer and shorter 

elays, respectively. At the end, if we have inputs with two differ- 

nt delays then the first part of the input – with n 1 jobs and L 1 
elays – gives also a lower bound. 

 

∗
max (I n ) ≥ LB4 = n 1 + L 1 + 1 . (4) 

. Theorems for scheduling jobs with equal delays 

Let I n be an instance with jobs of equal delay times, and let us 

enote the common delay time by L. Such instance will be called 

-uniform instance. We will say that the subset { J i , . . . , J m 

} of jobs

re continuously scheduled if ∀ j, i ≤ j < m,S(a j+1 ) = S(a j ) + 1 . It is

lear that for an L -uniform instance FFD schedules the items in a 

lock continuously. Furthermore, let J k and J k +1 be the last item 

f block B , and the first item of block B + 1 , respectively. Then

f S(b k ) + 1 = S(a k +1 ) , then the two blocks are also continuously

cheduled. 

Let I n be an L -uniform instance. Let k = 	 n/ (L + 1) 
 , and n =
 c + n r , where n c = k (L + 1) , and n r = n − k (L + 1) ≤ L. In Orman

 Potts (1997) an optimal algorithm has been defined for the 

roblem 1 | CT P, a i = b i = p, l i = L | C max . If we apply this algorithm

or the case a i = b i = 1 , then we get the following algorithm.

lgorithm Greedy 

Step 1. Compute k = 	 n/ (L + 1) 
 . 
Step 2. Form k (complete) blocks of jobs, where each block con- 

tains L + 1 jobs. 

Step 3. If n r > 0 , then form an incomplete block containing all

the remaining jobs where the first tasks are scheduled con- 

tinuously. 

Step 4. Schedule the complete blocks and the incomplete blocks 

– if any – continuously. 

his algorithm in Orman & Potts (1997) has been analysed and it 

as proven to provide an optimal schedule. The value of C ∗max (I n ) 

as not given. Here, we give a simpler – but more formalized –

roof, and we give C ∗max (I n ) explicitly. 

heorem 3.1. Algorithm Greedy generates an optimal schedule for 

he 1 | Coup − T ask, a i = b i = 1 , l i = L | C max problem in O (n ) time,

nd 

 

∗
max (I n ) = 

{
k (L + 1) + n , if n r = 0 ;

(k + 1)(L + 1) + n , otherwise. 

roof. We already know that Greedy generates an optimal sched- 

le, so we prove only the validity of the formula. 

First consider the case when all blocks are complete, i.e. n r = 0 .

hen C ∗max (I n ) = 2k (L + 1 ) and n = k (L + 1) thus the claim holds. 

Now suppose that the last block is not complete. The contribu- 

ion of k complete blocks to the makespan is 2(L + 1) k . The length

f the last block is L + 2 + (n r − 1) where n r = n − k (L + 1) . Thus

e get 

 

∗
max (I n ) = 2(L + 1) k + L + 2 + n − k (L + 1) − 1 

= 2(L + 1) k + L + 1 − k (L + 1) + n 

= ( k + 1 ) ( L + 1 ) + n. 

�

fi

846 
Since for L -uniform instances an FFD schedule is identical to 

reedy , the following corollary is a consequence of Theorem 3.1 . 

orollary For L-uniform instances 

 

F F D 
max (I n ) = 

{
k (L + 1) + n , if n r = 0 ;

(k + 1)(L + 1) + n , otherwise. 
(5) 

e realize that C F F D max (I n ) is a function of n , and L . Let us denote this

unction by 

 

F F D 
max (I n ) = f (n, L ) . (6) 

onsidering the formula of (5) , we see that moving from n to 

n + 1) , f (n, L ) grows by 1 if the last block is not complete (for

 ), otherwise (if the last block is complete for n ) the value of (5) is

rowing by L + 2 . In both cases, by n → (n + 1) , the value of (5) is

rowing by at least 1. Thus, if we increase n by d ≥ 1 , the value of

5) is growing by at least d. Thus we have 

f (n − d, L ) ≤ f (n, L ) − d (7) 

or any 1 ≤ d ≤ n . 

. Theorems for two different delays 

Hereinafter, we suppose that instances contain only jobs with 

wo different delay times L 1 and L 2 , where L 1 > L 2 . Jobs with delay

ime L 1 , or L 2 are called long , or short , resp. Let I n = (I 1 , I 2 ) be the

oncatenation of instances I 1 and I 2 , with n 1 long and n 2 short jobs

 n = n 1 + n 2 ), resp. To avoid the complicated notations sometimes 

e write instead of I n simply I. 

If we have two different delay times, then Step 1 in algorithm 

FD can be performed in O (n ) time creating two ”heaps” for the 

ong and short jobs, respectively. 

In Section 2 we defined the set of interleaved jobs. If we have 

obs with two different gaps, then a (set) of short jobs can be in 

nterleaved position either with a (set) of long jobs or with a (set) 

f short jobs. In these cases, we speak about long-interleaved or 

hort-interleaved jobs, resp. If for a short job J i , S(a i ) > S(b n 1 ) ( i >

 1 , ) then we call the job long-consecutive . 

We define the algorithm Separate, denoted by SEP . This algo- 

ithm applies the FFD rule independently for the subinstances I 1 , 

nd I 2 , and concatenates the two schedules. 

lgorithm Separate 

Step 1. t = 1 . Schedule all jobs in I 1 from the position t using

FFD . 

Step 2. t = C F F D max (I 1 ) + 1 . Schedule all jobs in I 2 starting at posi-

tion t by the algorithm FFD . 

irst, we prove a simple Claim that we use several times there- 

nafter. 

laim 4.1. If the FFD schedule of input I n contains long-interleaved 

hort jobs, and there is at least one empty position just after the sec- 

nd task of the last long job, then the idle time (denoted by τ ) in the

FD schedule is at most L 2 . 

roof. During the proof we use the following – easily provable 

facts. If the conditions are true then (a) there is at least one 

ested complete short block, (b) there is no incomplete nested 

hort block, (c) the first long-interleaved short job starts just af- 

er the second task of the last nested short job. 

Because of the conditions, there is at least one empty position 

ust after the second task of the last long job. Let us denote the 

umber of complete nested blocks of short jobs by n 2 ,cn . There are 

wo cases. 

Case A. Suppose that n 2 ≥ (L 1 − n 1 + 1) − 2(L 2 + 1) n 2 ,cn . 

In this case, the gap within the incomplete long block will be 

lled with nested jobs and the first tasks of interleaved short jobs. 
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Fig. 4.1. An example for two different types of interleaved short jobs. Boxes denote the long jobs and circles correspond to short jobs. 

Fig. 4.2. Schedule of short interleaved jobs if second tasks are not consecutive. 
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r  
herefore, there is no gap within the incomplete block of the long 

obs. So, idle time can occur only after the incomplete block of the 

ong jobs. By this reason, the sum of idle times in the FFD schedule

independently whether or not long-consecutive short jobs exist 

is at most L 2 . 

Case B. Suppose that n 2 < (L 1 − n 1 + 1) − 2(L 2 + 1) n 2 ,cn . 

Now, there is no long-consecutive short job. A gap remains 

ithin the incomplete block of the long jobs, and there is also 

n idle time after the second task of the last long job. Let us de-

ote these gaps by τ1 , and τ2 , resp. Both gaps start up within 

he two tasks of the first interleaved short job (see Fig. 4.2 ), thus

= τ1 + τ2 < L 2 . �

emma 4.1. For any input I with two different delays C SEP 
max (I) ≥

 

F F D 
max (I) . 

roof. For scheduling the long jobs FFD and SEP are identical, so 

 

F F D 
max (I 1 ) = C SEP 

max (I 1 ) . Furthermore, the two algorithms remain iden-

ical if there are only complete blocks from long jobs. So we can 

uppose that an incomplete block from long jobs exists. Let us ap- 

ly the equality (6) for the instances I 1 and I 2 with parameters 

n 1 , L 1 ) , and (n 2 , L 2 ) We get 

 

SEP 
max (I) = C F F D max (I 1 ) + C F F D max (I 2 ) = f (n 1 , L 1 ) + f (n 2 , L 2 ) 

= t + f (n 2 , L 2 ) . 

Denote the number of nested short jobs by n 2 ,ne ≥ 0 . Now we 

istinguish several cases. 

ase A. There is no (long-)interleaved short job. Then FFD sched- 

les n 2 − n 2 ,ne jobs from time t, so 

 

F F D 
max (I) = t + f (n 2 − n 2 ,ne , L 2 ) ≤ t + f (n 2 , L 2 ) − n 2 ,ne ≤ C SEP 

max (I) . 

ase B. There is at least one long-interleaved short job. Suppose 

he last interleaved short job ends at position p > t . It follows that 

ositions j = t, . . . , p − 1 are either idles or they are occupied by

he second tasks of some interleaved short jobs. 

ase B.1. There is no empty position between t and p − 1 . This 

eans that there are n 2 ,i = p − t interleaved short jobs. 

Let n 2 ,lc ≥ 0 be the number of long-consecutive short jobs. 

ince there are also n 2 ,ne nested small jobs, n 2 ,lc = n 2 − n 2 ,ne − n 2 ,i .

he long-consecutive short jobs are scheduled by FFD from posi- 

ion p. Then 

 

F F D 
max (I) = p + f (n 2 − n 2 ,ne − (p − t) , L 2 ) 

≤ p + f (n 2 , L 2 ) − n 2 ,ne − (p − t) 

= t + f (n 2 , L 2 ) − n 2 ,ne ≤ SEP (I) . 

ase B.2. There is at least one empty position between t and p − 1 . 

ow, we can use the Claim 4.1 , and so, τ ≤ L 2 . 

In this case the first interleaved short job ends strictly later 

han t + 1 , and the incomplete long block will be filled with nested
847 
obs and the first tasks of interleaved short jobs. By this reason, the 

um of idle times in the FFD schedule is at most L 2 . 

On the other hand, in the SEP schedule all positions in the 

ap of the incomplete long block remain idle. Since in the FFD 

chedule there is at least one complete block of nested jobs, the 

ength of the gap is at least 2(L 2 + 1) > L 2 . Thus the total length

f idle intervals in the SEP schedule is bigger than L 2 . Then clearly 

 

F F D 
max (I) < C SEP 

max (I) . �

At this point we are able to easily determine the time complex- 

ty of algorithm FFD . We assume that L 1 and L 2 are fixed. 

laim 4.2. The time complexity of the FFD algorithm is O (n ) . 

roof. The ordering in Step 1 needs only O (n ) time, since there 

re only two different types of jobs. In Step 2, FFD first schedules 

he long jobs in O (n ) time. Then come the short jobs. From this

oint we store (in a vector) that what time-slots are occupied and 

hat time slots are free. Note, that any time slot will be checked 

t most once: if the time slot will be occupied by the current job, 

his time slot will be never checked again. Otherwise, if the time 

lot is free but cannot be occupied by the current (short) job, it 

ever will be able to be occupied by some other short job. 

We know from Lemma 4.1 that C F F D max (I) ≤ C SEP 
max (I) ≤ 2 n + L 1 + L 2 

olds, it means that at most so many time slots are tried (each 

ne is tried at most once). We conclude that the complexity is 

 (n ) . �

Let us note that since we have only two distinct delays, the 

nstance size is log ( max L 1 , L 2 ) . It implies that an O(n) time algo- 

ithm is not a polynomial time algorithm. 

.1. Upper bounds 

In this subsection, we give an upper bound for the performance 

atio of FFD . This ratio depends strongly on the structure of an 

nstance i.e. does the FFD schedule contain complete blocks, are 

here nested short jobs, or interleaved short jobs, etc? We will in- 

estigate FFD schedules with different structures. In the following, 

f for two instances I and I ′ , C F F D max (I) / C ∗max (I) ≤ C F F D max (I ′ ) / C ∗max (I ′ ) ,
hen we say that C F F D max (I ′ ) dominates C F F D max (I) . Our upper bound 

roof will be divided into three parts. 

- First, we will consider instances for which C F F D max (I) / C ∗max (I) ≤
3 
2 
. 

- Secondly, we investigate inputs for which there is a dominant 

instance with a given structure. 

- Finally, we give an upper bound for the set of dominant in- 

stances. 

In the sequel, we will use the following notations. Let k b , k s ,

 , and r s be such integers, for which n = k (L + 1) + r where
b 1 b 1 b 
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 ≤ r b ≤ L 1 and n 2 = k s (L 2 + 1) + r s where 0 ≤ r s ≤ L 2 . Then 

 b (L 1 + 1) = n 1 − r b and k s (L 2 + 1) = n 2 − r s . (8)

.1.1. Inputs with performance ratio at most 3 
2 . 

emma 4.2. If I is such an input for which there is at least one com-

lete block of long jobs in the FFD schedule, then 
C F F D max (I) 
C ∗max (I) 

≤ 3 / 2 . 

roof. Since there is a complete block of long jobs, we have 

 1 + 1 ≤ n 1 . (9) 

pplying (6) for the instances I 1 and I 2 separately, and taking into 

ccount that for L -uniform instances C F F D max (I) = C SEP 
max (I) , we get that

 

SEP 
max (I) = f (n 1 , L 1 ) + f (n 2 , L 2 ) . (10)

n the other hand, applying Theorem 3.1 for I 1 , we have 

 

∗
max (I) ≥ C ∗max (I 1 ) = f (n 1 , L 1 ) . 

ase A. If k s = 0 (i.e. there is no complete block of short jobs in

he SEP schedule), then we first apply the lower bound (4) . Then 

sing the inequality (9) and the lower bound (1) , we have 

 

SEP 
max (I) − C ∗max (I) ≤ f (n 2 , L 2 ) = L 2 + 1 + n 2 

≤ L 1 + n 2 < n 1 + n 2 = n ≤ C ∗max (I) / 2 , 

hus C SEP 
max (I) ≤ (3 / 2) C ∗max (I) and we are done. 

ase B. If k s > 0 (i.e. there is at least one complete block also from

he short jobs in the SEP schedule), then 

 2 + 1 ≤ n 2 . (11) 

et us start with (10) and apply (8) - (11) . Then we get 

 

SEP 
max (I) = f (n 1 , L 1 ) + f (n 2 , L 2 ) 

≤ (k b + 1)(L 1 + 1) + n 1 + (k s + 1)(L 2 + 1) + n 2 

= n 1 − r b + (L 1 + 1) + n 1 + n 2 − r s + (L 2 + 1) + n 2 

≤ 2 n 1 + (L 1 + 1) + 2 n 2 + (L 2 + 1) < 3 n 1 + 3 n 2 = 3 n 

≤ (3 / 2) C ∗max (I) 

here the last inequality follows from the lower bound (1) . �

emma 4.3. Let us suppose that k b = 0 , i.e. there is no complete

lock from the big jobs. If there is at least one complete block of short

obs, then 
C F F D max (I) 
C ∗max (I) 

≤ 3 / 2 . 

roof. Let us denote the number of short jobs in complete blocks 

y n 2 ,c . Then 

 2 ≥ n 2 ,c ≥ L 2 + 1 . (12) 

f all of the short jobs are nested jobs then the FFD schedule is 

ptimal. So, we can suppose that there is at least one short job i 

ith S(b i ) ≥ S(b n 1 ) + 1 . Let us denote the sum of idle times in the

FD schedule by τ. If τ ≤ n then C F F D max (I) ≤ 3 n. Thus it is enough to

how that τ ≤ n . 

ase A. There is at least one long-interleaved short job, and these 

obs are scheduled so that the second tasks are not consecutive 

o the last task of the long jobs (see Fig. 4.2 ). Now, we apply

emma 4.1 , which results that τ ≤ L 2 . From (12) we get L 2 < n 2 <

. Therefore τ < n, and we are done. 

ase B. There is at least one long-interleaved short job, and these 

obs are scheduled so that the second tasks are consecutive to the 

ast task of the long jobs. This schedule of the interleaved jobs does 

ot result in gap just after the second task of the last long job (see

ig. 4.3 ). 

Let us consider the tasks which are scheduled in the gap of the 

ast long-interleaved short job. These tasks are the second tasks of 

he last incomplete block of nested jobs (if any), the second tasks 
848 
f the long jobs and second tasks of the long-interleaved jobs ex- 

ept the last one. Since there is no gap within this time interval, 

ere there are L 2 tasks. Note that we also have at least one com- 

lete block of L 2 + 1 short jobs (which are nested jobs or long- 

onsecutive jobs), and these jobs belong to another subset of I 2 . 

his means, that the number of jobs is at least n ≥ 2 L 2 + 1 . 

On the other hand, gap (idle time interval) can happen only in 

he incomplete block of long-consecutive jobs and within the first 

asks and second tasks of the long jobs. The size of both gaps is 

t most L 2 . Thus, the total gap is at most τ ≤ 2 L 2 ≤ n and we are

one. 

ase C. There is no interleaved short job in the F F D schedule at all.

imilar to the Case B, we get that the total gap is at most τ ≤ 2 L 2 .

Now, we can suppose that the number of long-consecutive 

obs is n 2 ,lc > 0 , otherwise the schedule is optimal. Any long- 

onsecutive job could not be scheduled as long-interleaved job, 

hus n 2 ,icn + n 1 > L 2 , where n 2 ,icn is the number of jobs in the in-

omplete block of the nested short jobs (see again Fig. 4.3 ). Since 

n the schedule there are further short jobs which form at least 

ne complete block, n ≥ n 2 ,icn + n 1 + (L 2 + 1) > 2 L 2 + 1 > τ. �

emma 4.4. If there are neither nested nor interleaved short jobs in 

he input I, then C F F D max (I) / C ∗max (I) ≤ 3 / 2 . 

roof. If the conditions are true then all short jobs are long- 

onsecutive and C F F D max (I) = C SEP 
max (I) . Since there is no interleaved 

ob, therefore L 2 ≤ n 1 − 1 . So, we get 

 

F F D 
max (I) = (n 1 + L 1 + 1) + (n 2 + L 2 + 1) = n + L 1 + L 2 + 2 

≤ n + (L 1 + n 1 + 1) = 

1 

2 

LB 1 + LB 4 ≤ (3 / 2) C ∗max (L ) . 

�

In the next lemma, we exclude the case when there is no long- 

onsecutive short job at all. 

emma 4.5. If there is no long-consecutive short job in the input I, 

hen C F F D max (I) / C ∗max (I) ≤ 3 / 2 . 

roof. We claim that C F F D max (I) ≤ L 1 + n + 2 . Let us consider the sta-

us when all the long jobs are just scheduled. Now, the first n 1 
ime slots are occupied, and the time slots are busy from L 1 + 1 to

 1 + 2 + (n 1 − 1) = L 1 + n 1 + 1 . 

Now let us see how the short jobs are scheduled. 

First, suppose that there is no nested short job. Then all short 

obs are interleaved jobs and since L 2 < L 1 , the second tasks of the

hort jobs can be assigned continuously from the time L 1 + n 1 + 1 ,

nd so we have C F F D max (I) = (L 1 + n 1 + 1) + n 2 . 

Otherwise, there are several nested jobs. Let us denote by n 2 ,ne 

nd n 2 ,i the number of nested short jobs and the number of in- 

erleaved jobs, resp. Then n 2 = n 2 ,ne + n 2 ,i and so n 2 ,i < n 2 . There-

ore, 

 

F F D 
max (I) = (L 1 + n 1 + 1) + n 2 ,i < (L 1 + n 1 + 1) + n 2 = L 1 + n + 1 , 

nd so 

3 

2 

C ∗max (I) ≥ LB4 + LB1 / 2 = (L 1 + n 1 + 1 ) + n ≥ C F F D max (I) . 

�

.1.2. Inputs with dominant instances 

From the Lemma 4.4 we know that if there are neither nested 

or interleaved short jobs then C F F D max ( I) / C 
∗
max ( I) ≤ 3 

2 
. In this section

e will investigate those cases when one of them occurs. Let 

B = max { LB 1 , LB 3 , LB 4 } . 
emma 4.6. Suppose that I is an input that contains nested short jobs 

n its FFD schedule. Then there exists a dominant instance I ′ for which 

he FFD schedule does not contain nested jobs. 
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Fig. 4.3. Schedule of short interleaved jobs if first tasks are consecutive. 

Fig. 4.4. An instance with jobs, L 1 = 14 , n 1 = 2 , L 2 = 9 ,n 2 ,i = 5 , and z = 3 . 

Fig. 4.5. The modified instance with L ′ 1 = 11 , n 1 = 2 , L 2 = 9 , n ′ 
2 ,i 

= 8 . 

Fig. 4.6. An instance without interleaved jobs L 1 = 13 , n 1 = 2 , L 2 = 6 , n 2 = 7 ,z = 5 . 

Fig. 4.7. The modified instance with L ′ 1 = 8 , n 1 = 2 , n 2 ,i = 5 , L 2 = 6 , n 2 = 7 . 

Fig. 4.8. An instance with L 1 = 10 , n 1 = 7 , n 2 = 4 , L 2 = 7 , and z = 4 . 

Fig. 4.9. The modified instance with L 1 = 10 , n ′ 1 = 3 , n ′ 2 = 8 , and L 2 = 7 . 
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roof. Let z > 0 , n 2 ,i denote the number of nested and the number

f interleaved short jobs, respectively. By Lemma 4.2 , we can sup- 

ose that the FFD schedule of I does not contain complete blocks of 

ong jobs, and by Lemma 4.3 , there is no complete block of nested

hort jobs. So, the nested short jobs form an incomplete block, and 

heir second tasks occupy z positions just before the second tasks 

f the long jobs (see Fig. 4.4 ). 

Now, in I ′ let L ′ 
1 

= L 1 − z, and we consider the changes in the

FD schedule of our modified input. We remark that L 2 = L ′ 
1 

− n 1 . 

laim 4.3. LB (I ′ ) ≤ LB (I) 
849 
roof. Since LB 1 depends on only the number of jobs therefore 

B 1(I) = LB 1(I ′ ) . In I ′ the sum of the gaps are smaller than in I.

herefore, LB3 (I ′ ) ≤ LB3 (I) , and LB4 (I ′ ) ≤ LB4 (I) . �

ase A. First, we suppose that there is at least one interleaved 

hort job in I. Then 

 2 = n 1 + z + (n 2 ,i − 1) . (13) 

f we schedule the items of I ′ , then each earlier nested short job 

ill be interleaved and the interleaved short jobs remain inter- 

eaved, i.e. z ′ = 0 , and n ′ 
2 ,i 

= z + n 2 ,i . It is easy to check that af-
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Fig. 4.10. Instance with z = 2 short jobs in long-consecutive block. 

Fig. 4.11. Modified input with z = 0 short jobs in long-consecutive block. 
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A

o
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s

F

C  
er having scheduled all long jobs and all interleaved jobs, the 

akespan is the same and the number of already scheduled short 

obs is also the same, i.e. n 1 + z + n 2 ,i = n 1 + z ′ + n ′ 
2 ,i 

. As a con-

equence of (13) , there is no complete block in the modified 

chedule. 

By finishing the schedule with the remained short jobs (that 

ll will be long-consecutive jobs), the makespan of the FFD 

chedule does not change. So, applying the Claim 4.3 we get 

 

F F D 
max (I ′ ) /LB (I ′ ) > C F F D max (I) /LB (I) . 

ase B. Now assume that there is no interleaved short job while 

FD schedules items of I. Let us denote the number of long- 

onsecutive jobs by n lc . It is clear that the FFD schedule of I ′ 
oes not contain complete block from the long-consecutive short 

obs. Now, after the scheduling of the long jobs, the last oc- 

upied timeslot in I ′ will be z unit earlier, and the number of 

ested jobs is z ′ = 0 . The schedule will contain n ′ 
2 ,i 

= z new inter-

eaved short jobs, therefore – before the FFD schedules the long- 

onsecutive short jobs – the makespan of the two schedules is 

qual. Since the number of long-consecutive short jobs have not 

hanged, C F F D max ( I 
′ ) = C F F D max (I) , and – using again Claim 4.3 we get

he desired inequality. �

emma 4.7. Let I be an instance for which the FFD schedule contains 

nterleaved short jobs. Then there exists a dominant instance I ′ for 

hich in the FFD schedule the first short job is an interleaved short 

ob, and L 2 = L 1 − n 1 . 

roof. There are no nested jobs, therefore L 2 ≥ L 1 − n 1 . Then I ′ 
ust contain at least one interleaved job. If L 2 = L 1 − n 1 then we

re ready, I ′ = I. Let L 2 = L 1 − n 1 + z, where z > 0 , integer. 

Let us make a modified input I ′ where n ′ 
1 

= n 1 − z and n ′ 
2 

=
 2 + z. Note that the number of jobs does not change. Now, having

cheduled the long jobs and the interleaved short jobs by FFD the 

akespan is the same as earlier, and the number of already sched- 

led short jobs is increasing by z. So, finishing the schedule with 

he remained short jobs (that all will be long-consecutive jobs), the 

alue of the FFD schedule remains the same. 

Let us see how the lower bound changes. LB 1 does not 

hange, LB 3 will be smaller, and LB 4 decreases by z. Therefore, 

B will not increase, thus for I ′ still holds that C F F D max (I ′ ) /LB (I ′ ) >
 

F F D 
max (I) /LB (I) . �

Now, we will investigate the structure of the long-consecutive 

hort jobs. 

emma 4.8. Let I be an instance that its FFD schedule does not con- 

ain nested short jobs, contains interleaved and long-consecutive short 

obs. Then there exists such a dominant instance I ′ which contains ex- 

ctly one long-consecutive short job. 

roof. Suppose there are at least z + 1 long-consecutive short jobs, 

here z ≤ L 2 . We derive the following instance: let L ′ 1 = L 1 + z and

 

′ = L 2 + z. Note that the number of jobs does not change. 

2 

850 
Now after scheduling the long jobs, the last occupied time slot 

ill be z units later. Since L ′ 
2 

> L 2 , the number of interleaved jobs 

ncreases by z, and just after scheduling the interleaved jobs, the 

orresponding makespan increased by 2 z. So, if it was previously 

, now it is t + 2 z. The number of the remained short jobs is de-

reased by z, but since L 2 is also increased by z, the increment 

omparing to t + 2 z is the same, as the increment was comparing 

o t in the previous input. It means that the makespan of the FFD 

chedule increases by 2 z. 

Let us see how the lower bound changes. LB 1 does not change, 

B 3 will be increased by z, and LB 4 also grows by z. This means

hat LB increases by at most z. Therefore, for I ′ it still holds that 

 

F F D 
max (I ′ ) /LB (I ′ ) > C F F D max (I) /LB (I) , as the numerator increased by 2 z,

hile the denominator increased by at most z. �

.1.3. The upper bound 

In the previous subsections we have found some instances with 

erformance ratio ≤ 3 / 2 , and also some instances have been anal- 

sed for which the FFD schedules have dominant examples with 

iven structures. Therefore the following proposition is true. 

roposition 4.1. If we want to find an instance I with 

 

F F D 
max (I) /LB (I) > 3 / 2 then we have to analyse those cases for which

he FFD schedule (a) does not contain complete blocks ( Lemma 4.2 , 

emma 4.3 ), (b) does not contain nested short jobs ( Lemma 4.4 ,

emma 4.6 ), (c) contains interleaved short jobs ( Lemma 4.4 , Lemma 

.7 ), (d) the idle time of the short jobs is L 2 = L 1 − n 1 ( Lemma 4.7 ),

e) contains exactly one long-consecutive short job ( Lemma 4.5 , 4.8 ). 

Let I be an example, which satisfies the conditions (a)-(e). From 

roposition 4.1 the following simple assumptions follow. 

- n 1 < L 1 + 1 , results in a schedule with one – incomplete –

block of long jobs, and after having scheduled the long jobs 

an idle time starts up with size L 1 − n 1 + 1 > 0 . 

- L 2 + 2 > L 1 − n 1 + 1 , to avoid nested short jobs. We will inves-

tigate those special inputs where L 2 = L 1 − n 1 , which results 

in the longest short jobs in the instance. 

- L 2 ≥ n 1 , results in several interleaved jobs. 

- n 2 = L 2 − n 1 + 2 . Using this condition, FFD schedules as much

interleaved jobs as possible and just one short job remains. 

This lonely short job will be a long-consecutive job. 

s consequence of the assumptions above, if an instance I disposes 

f the characteristics above, the following facts are true. 

act 4.1. From the conditions it follows that L 2 = L 1 − n 1 ≥ n 1 , and

o 

L 1 
n 1 

≥ 2 . (14) 

act 4.2. After scheduling the long jobs we have 

 

F F D 
max (I 1 ) = L 1 + 2 + n 1 − 1 = L 1 + n 1 + 1 . (15)
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act 4.3. After scheduling the interleaved jobs we have 

 

F F D 
max (I) = (L 1 + n 1 + 1) + (L 2 − n 1 + 1) = L 1 + L 2 + 2 . (16)

act 4.4. After scheduling the last short job we have 

 

F F D 
max (I) = (L 1 + L 2 + 2) + L 2 + 2 = L 1 + 2 L 2 + 4 . (17)

We compare C F F D max (I) and C ∗max (I) . Estimating the optimal solu- 

ion, we use the lower bound LB 3 . To do that, let us express L 2 
nd n 2 as the variables of L 1 and n 1 . Applying L 2 = L 1 − n 1 and

 2 = L 2 − n 1 + 2 = L 1 − 2 n 1 + 2 , we get 

 

F F D 
max (I) = L 1 + 2 L 2 + 4 = 3 L 1 − 2 n 1 + 4 . 

nd 

 

∗
max (I) ≥ n 1 + (L 1 − 2 n 1 + 2) + 

n 1 L 1 + (L 1 − 2 n 1 + 2)(L 1 − n 1 ) 

n 1 + L 1 − 2 n 1 + 2 
+ 1 

= L 1 − n 1 + 3 + 

n 1 L 1 + (L 1 − 2 n 1 + 2)(L 1 − n 1 ) 

L 1 − n 1 + 2 

et us introduce the new variable x = L 1 /n 1 . Then we can express

he previous values as C F F D max (I) /n 1 = 3 x − 2 + 4 /n 1 and 

C ∗max (I) 

n 1 

≥ x − 1 + 

3 

n 1 

+ 

x + (x − 2 + 

2 
n 1 

)(x − 1) 

x − 1 + 

2 
n 1 

. 

For the sake of simpler notation we introduce the substitution 

 /n 1 = a . Then we get 

C F F D max (I) 

C ∗max (I) 
≤ 3 x − 2 + 4 a 

x − 1 + 3 a + 

x +(x −2+2 a )(x −1) 
x −1+2 a 

= 

(3 x − 2 + 4 a )(x − 1 + 2 a ) 

(x − 1 + 3 a )(x − 1 + 2 a ) + x + (x − 2 + 2 a )(x − 1) 

= 

(3 x − 2 + 4 a )(x − 1 + 2 a ) 

6 a 2 − 7 a + 7 ax + 2 x 2 − 4 x + 3 

(18) 

nd we are interested in the maximum of the right hand side. Be- 

ause of the inequality (14) , we can suppose that 2 ≤ x. 

emma 4.9. If for an instance I, 2 ≤ x ≤ 4 then 

C F F D max (I) 

C ∗max (I) 
≤ 30 

19 

roof. Applying the equality (18) , our claim is equivalent with 

 x 2 + (20 a − 25) x + (28 a 2 − 58 a + 52) ≥ 0 (19)

ere, the discriminant is 

 (a ) = (20 a − 25) 2 − 4 · 3 · (28 a 2 − 58 a + 52) = 64 a 2 − 304 a + 1

ecall that a = 1 /n 1 where n 1 is integer, thus 0 < a ≤ 1 . It is

asy to see that D 

′ (a ) = 128 a − 304 < 0 in the whole (0 ; 1] in-

erval. Thus, D (a ) is decreasing. The unique solution of D (a ) = 0

n the considered interval is 19 
8 − 3 

4 

√ 

10 ≈ 0 . 0032918 which means 

hat D (a ) < 0 for 19 
8 − 3 

4 

√ 

10 < a ≤ 1 , or in equivalent form, n 1 <

 / ( 19 
8 − 3 

4 

√ 

10 ) ≈ 303 . 79 . 

Now let us suppose that 0 < a ≤ 19 
8 − 3 

4 

√ 

10 which means that 

 1 ≥ 304 . Then, the equation (19) has two solutions, which are 

 1 , 2 = 

25 
6 − 10 

3 a ± 1 
6 

√ 

64 a 2 − 304 a + 1 . We state that both solutions 

re strictly bigger than 4. It suffices to see that the smaller root is 

igger than 4, i.e. 

1 

6 

− 10 

3 

a − 1 

6 

√ 

64 a 2 − 304 a + 1 > 0 , 

y simple calculation, we get 24 a ( 14 a + 11 ) > 0 , which holds. This 

eans that the function in the left hand side in (19) is positive, if

 ≤ 4 . �

emma 4.10. If for an instance I, 4 < x, then 

C F F D max (I) 

C ∗ (I) 
≤ (3 x − 2)(x − 1) 

2 x 2 − 4 x + 3 

≤
√ 

11 + 3 

4 

≈ 1 . 579156 . 

max 

851 
roof. Applying (18) , we have to prove the following inequality. 

(3 x − 2 + 4 a )(x − 1 + 2 a ) 

6 a 2 − 7 a + 7 ax + 2 x 2 − 4 x + 3 

≤ (3 x − 2)(x − 1) 

2 x 2 − 4 x + 3 

, (20) 

hich is equivalent to the following inequality. 

 (2 x 2 + 2 x − 12) + x 3 − 13 x + 10 ≥ 0 . 

n the left hand side 2 x 2 + 2 x − 12 = 2 ( x + 3 ) ( x − 2 ) ≥ 0 because

 ≥ 2 . Moreover, it is easy to see that for x ≥ 4 

 

3 − 13 x + 10 > x 3 − 13 x − 12 = ( x + 3 ) ( x − 4 ) ( x + 1 ) ≥ 0 . 

Now we are interested in the biggest possible value of 
(3 x −2)(x −1) 

2 x 2 −4 x +3 
, considering that x ≥ 4 . To prove this, it is enough to 

ee that 

( 3 x − 2 ) (x − 1) 

2 x 2 − 4 x + 3 

−
√ 

11 + 3 

4 

≤ 0 . (21) 

he left hand side can be transformed as follows. 

( 3 x − 2 ) (x − 1) 

2 x 2 − 4 x + 3 

−
√ 

11 + 3 

4 

= 

3 − √ 

11 

4 

(
x − 1 

2 

√ 

11 − 5 
2 

)2 

x 2 − 2 x + 

3 
2 

. 

ince 3 −
√ 

11 < 0 and x 2 − 2 x + 

3 
2 > 0 if x > 4 , (21) is true. �

.2. The lower bound 

In this section, we give lower bounds for the performance ratio 

f FFD . 

emma 4.11. Let I(n, k ) be an instance which contains n = n 1 + n 2 =
 k jobs, where n 1 = 3 k and n 2 = 6 k pieces of long and short jobs,

espectively. Let us suppose that L 1 = 12 k − 2 and L 2 = 9 k − 2 . Then 

im sup 

k →∞ 

C F F D max (I(n, k )) 

C ∗max (I(n , k )) 
= 

30 

19 

. 

roof. After having scheduled long jobs there is a gap of 9 k − 1 

mong the two tasks of the items. Fig. 4.12 shows the status when 

very long job of I(n, k ) has been scheduled. 

Since a short job needs 9 k positions, FFD can not schedule any 

hort job as nested job in the gap of long jobs. So, FFD will start to

chedule interleaved short jobs. 

FFD will schedule the first item in such a way that its second 

ask occupies the first empty position after the last task of the 

ong jobs. It occupies the positions 6 k + 2 and 15 k positions for

he first and the second tasks, respectively. (The tasks occupy the 

nits [6 k + 1 , 6 k + 2] and [15 k − 1 , 15 k ] . It is clear that the posi-

ion 15 k was free. Similarly, the position 6 k + 2 is also free. So, the

rst interleaved short job can be scheduled in this position. Fol- 

owing this idea, FFD can schedule (12 k − 1) − (6 k ) = 6 k − 1 inter-

eaved short jobs. The second task of the last interleaved short job 

ccupies the position 21 k − 2 . 

The remaining short job needs L 2 + 2 units to be completed. 

herefore, the makespan of the instance I(n, k ) produced by the 

lgorithm FFD is C F F D max (I(n, k )) = 21 k − 2 + L 2 + 2 = 30 k − 2 . For the

nstance I(n, k ) 
 

1 

n 

( 

n ∑ 

i =1 

l i − n (n − 1) 

) ⌉ 

= k − 1 ≥ 0 , 

herefore, we can apply LB2 , and so C ∗(I(n, k )) ≥ 19 k − 1 . There-

ore, 

im sup 

k →∞ 

C F F D max (I(n, k )) 

C ∗max (I(n , k )) 
≤ 30 k − 2 

19 k − 1 

(22) 

To prove that the right hand side of the inequality (22) is tight, 

e consider the following feasible schedule of the instance I(n, k ) . 

e schedule three times k pieces of long jobs and 2 k pieces of 
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Fig. 4.12. Status when all long jobs are scheduled by FFD . 

Fig. 4.13. Status when all the jobs of I(n, k ) are scheduled by FFD . 

Fig. 4.14. An optimal schedule of the instance I(n, k ) if k = 2 . 
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hort jobs at the earliest possible time. We illustrate the schedule 

n the Fig. 4.14 for the case k = 2 . 

It is easy to check that all the positions are occupied except 

hose ones which are between the first task of the last interleaved 

hort job and the second task of the first nested short job. So the 

ap in this schedule is: 

12 k − 2) − [(k − 1) + 2 k + 3 k + 3 k + 2 k ] = k − 1 . 

o, 

 

∗(I(n, k )) ≤ 2 n + (k − 1) = 19 k − 1 . (23)

herefore 

im sup 

k →∞ 

C F F D max (I(n, k )) 

C ∗max (I(n , k )) 
≥ 30 k − 2 

19 k − 1 

(24) 

aking the inequalities (22) and (24) , we get the desired result. �

Combining the results in the Lemma 4.9, Lemma 4.10 , and 

emma 4.11 we get the following theorem. 

heorem 4.1. For those problems where we only have jobs with two 

ifferent idle times, the worst-case ratio of the FFD algorithm is 

 . 57894 . . . = 

30 

19 

≤ ρFFD 

≤
√ 

11 + 3 

4 

= 1 . 579156 . . . , 

nd the lower bound is tight if L 1 /n 1 ≤ 4 . 

. Conclusions 

In this paper, we investigated a special case of CTP problem 

here the tasks have unit length and there are only two different 

aps. 

This special case is denoted by the three-field notation as 

 | Coup-Task , exact l i ∈ { L 1 , L 2 } , a i = b i = 1 | C max . 

e considered the First Fit Decreasing ( FFD ) algorithm where the 

obs are scheduled in greedy way according to their delay time: the 

arger the delay time, the sooner the schedule. We were looking 

or the absolute worst case ratio of FFD , and we proved that the 

orst-case ratio of FFD is in the interval [1 . 57894 . . . , 1 . 57916 . . . ) . 
852 
Even though we considered a very special case, it is visible that 

he analysis is quite hard. We hope that this paper helps to under- 

tand the structure of the problem for those cases when at least 

hree different delay times are present. Maybe the first step in this 

irection is to analyse the case with 3 different delay times. Our 

xperiments show that the bound decreases. Finally, is it even pos- 

ible to analyse the algorithm FFD for the general case of the UET 

roblem? 
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