
A Branch-and-Bound Algorithm for the Coupled Task Problem

József Békési∗, Gábor Galambos∗, Michael N. Jung†,
Marcus Oswald†, Gerhard Reinelt†

April 3, 2013

Abstract

The coupled task problem is to schedule jobs on a single machine where each job
consists of two subtasks and where the second subtask has to be started after a given
time interval with respect to the first one. The problem has several applications and is
NP-hard. In this paper we present a branch-and-bound algorithm for this problem and
compare its performance with four integer programming models.

1 The Coupled Task Problem

The Coupled Task Problem (CTP) deals with scheduling n jobs each of which consists of two
subtasks and where there is the additional requirement that between the execution of these
subtasks an exact delay is required. Such jobs are sometimes also called interleaving two-phase
jobs in the literature. We use the following notation. The set of jobs is {J1, J2, . . . , Jn} and
the set of tasks is {T1, T2, . . . , T2n}, where T2i−1 and T2i denote the first and second subtask
of Ji. For improving readability when distinguishing between the first and the second task
of job Ji, the index 2i − 1 is denoted by iA and the index 2i by iB. We will usually refer to
jobs or tasks just by their index. The processing times for the first and second task of job Ji
are ai and bi resp., and the delay between the tasks is li. The processing time for task Tk is
denoted pk. The system time time for job Ji is denoted ti = ai + li + bi = p2i−1 + li + p2i. All
processing times and delays are assumed to be positive integer numbers.

A single machine is available to process the jobs. They may be scheduled in any order
with the restriction that no two tasks occupy the machine at the same time. Interrupting
a task and resuming it later (preemption) is not allowed. The objective is to minimize the
makespan of the schedule, i.e., to minimize the termination time of the job finished last.
This is equivalent to minimizing the total time where the processor is idle. Idle times occur
between the execution of tasks and we will speak about gaps in the schedule. For an easy
distinction we call the requested gap between the execution of the two tasks of a job a break.

∗Department of Computer Sciences, Juhász Gyula Teacher Training Faculty, University of Szeged,
Boldogasszony sgt. 3, H-6701 Szeged, Hungary
Supported by the European Union and the European Social Fund through project “Supercomputer, the na-
tional virtual lab”, grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-0010
†Institut für Informatik, Fakultät für Mathematik und Informatik, Universität Heidelberg,

Im Neuenheimer Feld 368, D-69120 Heidelberg, Germany
Supported by DAAD exchange program 324 PPP-Ungarn

1



The CTP was introduced and shown to be NP-hard in [6]. Example applications are the
management of a radar station or the operation of airplane carriers [7]. By imposing restric-
tions on the parameters ai, bi and li several special cases of the CTP have been investigated.
Most of them remain NP-hard, but a few can be solved in polynomial time [3, 10, 5]. The
special case where ai = a, li = l, and bi = b, for i = 1, . . . , n, is called Identical Coupled Task
Problem (IdCTP). It is of particular interest because its complexity is still open. Further
generalizations of the problem have been studied, e.g., [8] considers the case where the breaks
are not fixed but have to satisfy lower and upper bounds.

In this paper we focus on the optimal solution of the general coupled task problem with
fixed breaks and without any additional assumptions on the parameters. In Section 2, we
present a new branch-and-bound algorithm which is of combinatorial nature and, in particular,
does not make use of linear programming. We compare it with four linear integer models
described in Section 3: a time-indexed model, two models based on linear ordering variables,
and a model given by Sherali and Smith in [9]. Computational results on various types of
coupled task problem instances are presented in Section 4. Some conclusions are given in the
final Section 5.

2 The branch-and-bound approach

The general coupled task problem or variants of it have so far been approached by inte-
ger programming or dynamic programming algorithms [2, 4, 9]. As an alternative and also
for comparison with integer programming approaches for the general problem we designed
a branch-and-bound algorithm where bounds are computed in a purely combinatorial way
without the need of linear programming. Its main special features are the way of defining the
subproblems and the various lower bound computations.

Generation of subproblems

As usual in a branch-and-bound algorithm we first try to solve the given problem instance
by computing a feasible solution yielding an upper bound on the optimum value and by
exhibiting a lower bound obtained by certain bounding procedures (described below). If the
two bounds coincide, then the problem is solved to proven optimality. Otherwise we replace
the instance by a collection of subproblems such that the union of their feasible solutions
contains all feasible solutions. Then it is tried to solve these subproblems and, if some cannot
be solved, the process is iterated. A subproblem can also considered solved if a lower bound
for its feasible solutions is computed which is larger than or equal to the value of the best
known feasible solution of the original problem.

In our approach subproblems are created in a special way by requiring that some linear
ordering has to be satisfied for a subset of tasks. The root node of the branch-and-bound tree
(corresponding to the original problem) is specified by the empty ordering, i.e., there is no
restriction on the sequence of tasks. Consider a subproblem with associated ordering π for
some tasks. If the problem cannot be solved, child nodes are constructed by augmenting π
by inserting a new job i obeying the following rule: the tasks of this job may only be inserted
after the last task of π which is the first subtask of a job. Note that a subproblem is only
characterized by an order in which part of the tasks have to be executed and that no concrete
start times are specified yet.

2



Let LA denote the last task of π which is the first subtask of a job and LB denote the
corresponding second task. The rule for creating nodes implies that the order π will not be
changed up to and including LA when creating subproblems. The children of a node are
in principle all possible partial orderings obtained by extending π with a not yet included
job i, and inserting its first task iA at any position after LA. For the second task iB we
just assume that it is positioned after iA. So, from the original problem we can possibly
generate n subproblems on level 1 of the branch-and-bound tree. Each of these subproblems
can possibly lead to 3(n − 1) subproblems on level 2, and so on. Thus, at first sight, the
branch-and-bound tree can grow very fast, but it will turn out that many of the potential
child nodes are infeasible. And by excluding some symmetries (see below) the size of the tree
can be reduced further.

We call a subsequence of a partial ordering a block if no further insertion of tasks into
the sequence is possible due to the extension rule and if for every job either both tasks are
contained in it or none of them. A block is called active if it may be extended with further
jobs. Obviously, at any time there is only one active block. Namely, if when creating a
child node both tasks of the new job are placed at the end of the partial ordering π, then
the previously active block is considered completed and a new active block is created. For
all other placements of the new job the active block remains active. Figure 1 illustrates the
block structure resulting from the placement of tasks. The left block is completed because
no other task may be inserted and for every jobs its two tasks are present. The active
block (containing LA) consists of four task and there are three insertion possibilities into the
corresponding ordering.

completed block active block

Figure 1: Illustration of the block structure and task placement.

Feasibility test

For checking the feasibility of a partial ordering π, we calculate lower and upper bounds (a
time window) for the start time of each of its tasks. The lower bound for the first task is
initialized with 0 and the upper bound for the last task is initialized with the current global
upper bound minus 1 minus its processing time, since with any later placement the solution
would not lead to a solution better than the currently known best one. Then, the bounds
for all tasks in the partial ordering are updated iteratively by taking the bounds of their
predecessors and successors as well as the bounds of the other task of the same job into
account. This is done until no further improvement of bounds is possible. A potential node is
infeasible or can be pruned if the lower bound on the start time of one of its tasks exceeds its
upper bound, i.e., its time window becomes empty. Otherwise the associated partial ordering
can potentially lead to a better solution.

3



Algorithm 1: Feasibility test

Input: partial ordering π = (π1, . . . , π2k), best known solution value UB
Output: feasibility and, if feasible, time windows (lbπ1 , ubπ1), . . . , (lbπn , ubπn)
begin

// Initialization of bounds on starting times

lbπ1 = 0, ubπ1 = 0
for i = 2, . . . , 2k do

lbπi = pπ1
ubπi = UB − pπ2k − 1

lbs(π1) = ad(π1) + ld(π1), ubs(π1) = ad(π1) + ld(π1)

ubf(π2k) = ubπ2k − ad(π2k) − ld(π2k)

// Start of loop that calculates time windows

while there are bound changes do
// Adjust lower bounds

for i = 2, . . . , n do
if lbπi < lbπi−1 + pπi−1 then

lbπi = lbπi−1 + pπi−1

if πi ∈ F then
lbs(πi) = lbπi + ad(πi) + ld(πi)

else
lbf(πi) = lbπi − ad(πi) − ld(πi)

// Adjust upper bounds

for i = n− 1, . . . , 1 do
if ubπi > ubπi+1 − pπi+1 then

ubπi = ubπi+1 − pπi+1

if πi ∈ F then
ubs(πi) = ubπi + ad(πi) + ld(πi)

else
ubf(πi) = ubπi − ad(πi) − ld(πi)

// Test feasibility

for i = 1, . . . , n do
if lbπi > ubπi then

Return infeasible.

Return feasible and the time windows.

4



The basic feasibility test is given as Algorithm 1. For ease of notation we use the functions
f : S → F mapping a second task to its corresponding first task, s : F → S mapping a first
task to its corresponding second task, and d : {π1, . . . , πk} → {1, . . . , n} associating the
corresponding job numbers with tasks of the ordering.

Note that the bounds of the tasks belonging to the same job are always adapted simulta-
neously and hence the placement of the two corresponding tasks always remains valid with
respect to the break li. As a byproduct, this feasibility test produces time windows for the
start times of each task in π that can be exploited for a better bound estimation in the
subsequent bounding heuristics.

Note that, when a new active block is created, all tasks of the previously active block
can be started at the lower bounds of their time windows. This is valid because there will
be no future interaction with the completed block and every start time within the window
of these tasks is feasible. (Of course, the starting times of coupled tasks have to observe
the break.) Starting times fixed this way can also be kept for child nodes, so the update of
time windows only needs to be done for the currently active block. Therefore, at child nodes,
Algorithm 1 only has to be carried out for the partial ordering representing the active block
and the time window of the first task of it can be started with the completion time of the
previously completed block.

Bound calculation

Assume, we are at a node of depth k with partial ordering π = (π1, . . . , π2k) and let Π be the
set of jobs in π. We compute lower bounds on the makespan of child nodes by taking also
tasks into account which are not yet inserted. Note, that the time windows computed in the
feasibility test can be exploited. We assume that the tasks LA and LB are defined as above
and belong to job m with positions πA = LA and πB = LB.

Four bounding procedures of increasing computational effort are employed. It will turn
out that these bounds can be computed very fast and many nodes can be explored (and
possibly discarded) in a reasonable amount of time. The heuristics try to exploit different
properties of the jobs, e.g., heuristic B4 is very helpful if some jobs cannot intertwine with
others or if system times of jobs are very large.

These four bounding procedures are executed in order B1–B4. The order is chosen such
that the heuristics become more and more time consuming. A bound computation has to
be applied only if the previous bound is still smaller than the current best solution, because
otherwise the node can be pruned.

B1 Trivial bound

Since we know that the children of π do not insert a job before LA, we can compute a trivial
lower bound by summing up the lower bound for the finishing time of LA, the processing times
of all tasks in π scheduled after LA, and the processing times of all tasks not yet included
in π. Thus the bound is

B1 = lbLA
+ pLA

+
2k∑

i=A+1

pπi +
∑
j /∈Π

(aj + bj).

For the root node this is just the sum of the processing times of all tasks.

5



Algorithm 2: B2 Analysis of the break between LA and LB
Input: ordering π = (π1, . . . , π2k) and time windows (lbπ1 , ubπ1), . . . , (lbπn , ubπn)
Output: lower bound B2 on the makespan of a schedule which respects π
begin

// Initialization of bound and compute how much of the break is left

PF = ∅
PN = ∅

gB2 = lm −
B−1∑
j=A+1

pπj

B2 = lbLB
+ pLB

+
2k∑

j=B+1

pπj

// Test how not inserted jobs fit into the break g if started after

LA
for j = 1, . . . , n do

if j /∈ Π then
// Simple test if it could not fit completely

if aj + bj > gB2 or tj > lm then
// Test if only first could fit

if aj ≤ gB2 and lj ≥ bm then
B2 = B2 + bj
PF = PF ∪ {j}

else
B2 = B2 + aj + bj
PN = PN ∪ {j}

Return B2

B2 Analysis of the break between LA and LB

This procedure tries to identify tasks which cannot be placed before LB. The processing
times of these tasks can then be added to the finishing time of LB.

Obviously, all tasks that are already placed after LB in the partial ordering belong to this
set. For the jobs which are not yet in π Algorithm 2 is executed. It tries to place the tasks
of these jobs between LA and LB taking into account which share of the break between LA
and LB is already assigned for other tasks. The sets PF and PN are used to collect the indices
of jobs, which do not completely fit into the break (PF if only the first subtask fits, PN if
neither subtask fits).

Figure 2 illustrates the tests in the inner loop of Algorithm 2. The upper job, which is
not yet included in the partial ordering, does neither completely fit into the break, nor can its
tasks be intertwined with the task LB, hence it belongs to PN . The lower job could possibly
be intertwined with LB if the white job would be scheduled a little earlier, but the job does
not completely fit into the break, hence it would be placed in PF .

Since we work with time windows for the start times, jobs can be moved in the schedule,

6



Figure 2: Illustration of the inner loop of Algorithm 2.

as the white job in Figure 2. To take all possible start times into account would be too time
consuming for the bounding procedure, so we do not incorporate this at the price of obtaining
weaker bounds.

Now the second bound is computed as

B2 = lbLB
+ pLB

+
2k∑

i=B+1

pπi +
∑
j∈PN

(aj + bj) +
∑
j∈PF

bj .

Procedure B2 is most effective if the tasks have relatively large processing times compared
to the break sizes which makes intertwining of jobs rather difficult. Then, the improvement
with respect to the trivial bound B1 can be expected to be in the range of the gap left
between LA and LB.

B3 Improved analysis of inevitable idle times in gaps

This bound is initialized with the trivial bound B1 and, in addition, considers gaps that are
already apparent in the partial ordering π. The procedure tries to estimate how good these
gaps can be filled with not yet placed jobs and adds the amount that cannot be filled for each
gap since this amounts to inevitable idle time of the processor.

The estimation of the best gap fillings can be seen as solving a knapsack problem where
the processing times of the tasks not yet scheduled are the item sizes and the gap size is
the capacity of the knapsack. However, since solving these knapsack problems exactly is too
time consuming, we proceed in a slightly different way. For small gaps we compute optimum
solutions, but for larger gaps we relax the problem by allowing the filling of the gap to be
composed of all tasks. The latter computations can be performed before starting the branch-
and-bound algorithm and the results are stored in a table for future access.

We consider gaps as small if their size is below the four smallest possible gap sizes that
could be filled completely with tasks not included in the partial ordering. (The choice of four
gaps turned out to be best in our computational experiments.) These four smallest values gi,
i = 1, . . . , 4, can easily be computed as the minimum sum of i processing times of different
tasks not yet contained in π. In addition we define g0 = 0. For a gap of size g, let z(g) be
the largest of these numbers less than or equal to g, i.e., z(g) = max{gi | gi ≤ g, 0 ≤ i ≤ 4}.

The number z(g) thus is the best filling of the gap g using only the smallest tasks. If
z(g) 6= g4, i.e., the best filling is produced by one of the smaller fillings, then the amount
g − z(g) can be added to the lower bound since the gap cannot be filled any better and the

7



Algorithm 3: B3 Analysis of idle times in gaps

Input: ordering π = (π1, . . . , π2k) and time windows (lbπ1 , ubπ1), . . . , (lbπn , ubπn)
Output: lower bound B3 on the makespan of a schedule which respects π
begin

// Initialization of best fillings of 4 smallest gaps

compute gi, 0 ≤ i ≤ 4
B3 = B1 + gB2 − z̄(gB2)
for j = B, . . . , 2k − 1 do

// calculate variable gap sizes between πj and πj+1

lb = lbπj+1 − ubπj
ub = ubπj+1 − lbπj
// for all possible gap sizes calculate best filling and add the

minimum remainder of the gap to the bound

B3 = B3 + min{i− z̄(i) | lb ≤ i ≤ ub}
Return B3

schedule will have at least this idle time. If z(g) = g4, possible fillings other than the smallest
four have to be taken into account.

This procedure can be improved by considering also larger gaps. During preprocessing
we compute a look-up table which gives for each possible gap size the maximum filling using
combinations of any tasks. If the amount of what is left of a gap exceeds the four smallest
values, then the look-up table can be used and the difference between the gap size and its
best filling can be added as well. In the following, we will refer to the best filling of gap g by
all tasks as Z(g) (already calculated during preprocessing for all relevant gap sizes). Then
the best filling z̄(g) with respect to the current ordering π is computed as

z̄(g) =

{
z(g) if g ≤ g4,

Z(g) otherwise.

The first gap considered is the gap left between LA and LB whose size was already com-
puted as gB2 in procedure B2. If we want to take into account other gaps as well, we have
to make sure that they do not overlap. For the procedure, we hence apply the method only
to the gaps between consecutive tasks in π appearing after LB. It has to be noted that the
sizes of these gaps are often not yet fixed but can vary. This happens, when at least one of
the adjacent tasks has lbi < ubi. Algorithm 3 describes the procedure in detail.

This procedure is most effective when the processing times of tasks are relatively large
which makes it difficult to fill breaks almost completely. This is the case in test sets T3
and T4 (cf. Section 4). The procedure is also effective deeper in the tree when there are only
few jobs left to fill the gaps.

B4 Analysis of system times of jobs not inserted yet

For the fourth bound each unscheduled job i is considered separately and an individual
bound B4i is computed. The bounds are initialized with the earliest finishing time of LA.
Then the system time of job i is added and all processing times of tasks executed after LA

8



Algorithm 4: B4 Analysis of system times of jobs not inserted yet

Input: ordering π = (π1, . . . , π2k) and time windows (lbπ1 , ubπ1), . . . , (lbπn , ubπn)
Output: lower bound B4 on the makespan of a schedule which respects π
begin

// go through not yet inserted jobs

for i ∈ {1, . . . , n}\Π do
B4i = lbLA

+ pLA
+ ti

// Go through the partial ordering after LA, upper part in

Figure 3

for j = A+ 1, . . . , 2k do
// If a task in π does not fit into Ji from the left, we can

add its exectution time

if ld(πj) < ai or li < pπj then

B4i = B4i + pπj

// go through other not yet inserted jobs, lower part in Figure 3

for j ∈ {1, . . . , n}\(Π ∪ {i}) do
if Jj fits into the gap of Ji: tj ≤ li then

δij = 0

else if they can be intertwined in both ways: ai, bi ≤ lj , aj , bj ≤ li then
δij = min{aj , bj}

else if Ji fits into Jj from the right: ai ≤ lj , bj ≤ li then
δij = aj

else if Ji fits into Jj from the left: bi ≤ lj , aj ≤ li then
δij = bj

else they can not be intertwined at all
δij = aj + bj

B4i = B4i + δij

B4 = max
i∈{1,...,n}\Π

B4i

which cannot be put in the gap of i. This includes the other jobs not yet placed. Figure 3
illustrates when processing times can be added for a given job i. The checked tasks could fit,
whereas the crossed tasks do not fit. For the partial ordering π at the top only the last task
could be intertwined with i. The jobs not yet scheduled at the bottom fit as described.

The bound is computed with Algorithm 4. Note that the computation of δij in the
algorithm can also be executed for all pairs of jobs i and j before the branch-and-bound
algorithm is started and the information is just looked up at runtime. However, it is included
in the algorithm description to display how it is computed. The same function d as in
Algorithm 1 is used.

9



can be inserted completely

considered job

can not be intertwined can only be intertwined

jobs not placed yet

Figure 3: Illustration of procedure B4.

Node selection

A basic decision in the design of a branch-and-bound algorithm concerns the sequence in
which the generated subproblems are processed, i.e., the question which of the unprocessed
nodes of the branch-and-bound tree is chosen next. Our strategy for node selection can be
seen as a combination of depth-first and best-bound-first search. On the one hand it finds good
feasible solutions fast (by diving in a depth-first manner into the tree for reaching promising
leaves), on the other hand it tries to compute tight bounds. For the latter goal, the lower
bound for each node is computed when the node is created. During the best-bound-first part
the node with the lowest lower bound is processed next. This approach is very effective since
the bound calculating procedures are very fast.

Symmetry breaking

The success of a branch-and-bound algorithm heavily depends on the possibility to prunes
nodes on low levels of the tree. Besides by finding good lower bounds, a node can also be
discarded if we can argue that by certain symmetry arguments there is another node which
leads to solutions at least as good.

A first elimination of unnecessary nodes is possible by considering blocks in the partial
orderings. Since blocks do not overlap the schedule can be calculated for each block individ-
ually. For one given solution, all solutions, which are just a permutation of the same blocks,
have the same makespan. Therefore, we only accept the permutation in which the blocks are
sorted such that the first tasks are sorted lexicographically.

Another observation is that also identical coupled tasks should be ordered lexicographi-
cally. This has only a small impact, since this situation rarely occurs, but it only involves
negligible computational effort.

Figure 4 visualizes the subproblem generation and shows some effects of the symmetry
breaking. The branch-and-bound tree of this example has three jobs where jobs 1 and 3 have
identical data. The figure also illustrates how fast the tree can grow in principle.

3 Integer programming models

For assessing the performance of the branch-and-bound algorithm we have implemented four
integer programming models for the general coupled task problem. Except for the model

10



Figure 4: Generation of branch-and-bound tree and symmetry breaking.

presented in 3.3 we do not claim originality of the approaches. Time-indexed models or models
with ordering variables have been presented also in [4, 9]. Many ideas are straightforward
and we restrict ourselves here to short outlines stating the variables and basic constraints.

3.1 A time-indexed model

Time-indexed formulations are common for modeling machine scheduling problems since their
linear programming relaxations often provide strong lower bounds. Their main disadvantage
is, depending on the data, the quickly growing number of variables and constraints.

We use binary variables xit, for i = 1, 2, . . . , n and t = 0, 1, . . . , Tmax − 1 (for some upper
bound Tmax on the makespan) where xit is 1 if job i is started at time t, and 0 otherwise.

Instead of modeling the problem as a min-max problem, we conduct a binary search for
the optimum schedule length and try for each estimated makespan T to schedule as many
jobs as possible within [0, T ]. Since T might be too small, it is now only demanded that every
job is scheduled at most once, i.e.,

T−1∑
t=0

xit ≤ 1, i = 1, 2, . . . , n.

We introduce auxiliary binary variables zit, for i = 1, 2, . . . , n and t = 0, 1, . . . , T with the
interpretation that zit = 1 if a subtask of job i occupies the machine in time interval [t, t+ 1],

11



and zit = 0 otherwise. The z- and x-variables are related by

zit =
t∑

s=t−ai+1

xis +

t−ai−li∑
s=t−ti+1

xis,

for 0 ≤ t ≤ T , where variables xis with s < 0 are ignored.
The requirement that the execution of no two subtasks overlap, can simply be written as

n∑
i=1

zit ≤ 1, for t = 0, 1, . . . , T − 1.

For the IP-model we do not generate the auxiliary variables zit but write these constraints
directly in terms of the xit variables.

We obtain a linear 0/1-programming formulation where the feasible solutions correspond
to schedules of subsets of jobs in the interval [0, T ]. The goal to schedule as many jobs as
possible leads to the objective function

max

n∑
i=1

T−1∑
t=0

xit.

3.2 A formulation with linear ordering variables

A basic requirement for the feasibility of a schedule is that all tasks are linearly ordered.
To formulate this we introduce linear ordering variables xij for each pair of tasks i and j,
1 ≤ i, j ≤ 2n, i 6= j, where xij = 1 if task i is started before task j, and xij = 0 otherwise.
Clearly, the equation xij + xji = 1 has to be satisfied for 1 ≤ i < j ≤ 2n. Furthermore, since
for every job i its first task must be executed before its second task, we can fix the variables
xiAiB = 1, for i = 1, . . . , n.

For enforcing a sequential ordering of the tasks we use the so-called 3-dicycle inequalities

xij + xjk + xki ≤ 2

for every triple i, j, k of distinct tasks.
The linear ordering variables only guarantee that the tasks form a sequence. Of course, in

addition the processing times and gap sizes have to be respected. For every job i we introduce
variables siA and siB denoting the start times of its tasks. These variables can be defined
as continuous variables because due to the integral data they will be integral in the optimal
solution. Clearly, the relation siB = siA + ai + li holds.

Let U be an upper bound on the makespan. With the following constraints we model the
differences between start times of pairs of tasks depending on the ordering.

(i) Difference between first task of job i and first task of job j

siA ≤ U − ai − tjxiAjA ,
sjA ≤ U − aj − tixjAiA .

(ii) Difference between first task of job i and second task of job j

sjB ≥ siA + ai − U(1− xiAjB ),

siA ≥ sjB + bj − U(1− xjBiA).

12



(iii) Difference between second task of job i and second task of job j

sjB ≥ siB + bi − U(1− xiBjB ),

siB ≥ sjB + bj − U(1− xjBiB ).

The collection of the constraints given so far provides a linear integer model of the general
coupled task problem. The objective function can be set up in a simple way. We add an
extra job as new dummy job n+ 1 of length 0 and fix its respective linear ordering variables
such that it can only be started after all tasks of the regular jobs have been executed. Then
the objective function is just to minimize its starting time. Note that this is the same as
introducing a variable T for the makespan to be minimized and requiring that it is greater
than or equal to the completion time of any job.

We have conducted many experiments with sets of further constraints for strengthening
the model depending on the concrete input data. For example, one can exclude some variable
settings if processing times are too big for breaks, limit the total sum of processing times
scheduled in the breaks of jobs, analyze the interdependence between jobs or incorporate
optimum makespans computed for small sets of jobs. We do not go into further detail here,
because computations did in general not reveal particular advantages when introducing these
constraints.

3.3 An alternative formulation with linear ordering variables

This formulation also uses linear ordering variables, but there are no variables for start or
termination times. Instead we introduce variables for idle times following the execution of
tasks.

First note, that for a task k the value of xkiB−xkiA is 1 if k is executed in the gap of job i,
and 0 otherwise. We can use this expression to add for every job i the knapsack constraint∑

k/∈{iA,iB}

(xkiB − xkiA)pk ≤ li.

stating that the sum of the processing times of tasks that are executed in the break of i must
not exceed li.

The ordering and knapsack constraints together with the integrality of the xij-variables do
not yet provide a characterization of orderings associated with feasible coupled task schedules.
Consider the coupled task problem with three jobs where all tasks have length 1 and the
breaks are l1 = l3 = 2 and l2 = 3. Now take the ordering 〈1A, 2A, 3A, 1B, 2B, 3B〉 and the
corresponding setting of the xij-variables. All knapsack constraints are fullfilled since there
are exactly two units of processing time used in each break. But there is only one feasible
schedule which forces the break of job 2 to be exactly 2 (but it should be 3).

To overcome this problem, we introduce additional variables yk, for k = 1, . . . , 2n, giving
the idle time of the processor after the execution of task k. The makespan can now be written
as
∑n

i=1(ai+yiA +bi+yiB ) and, since the processing times are constant, the objective function
becomes

min

n∑
i=1

(yiA + yiB ).

13



The idle time variables yi have to be linked with the linear ordering variables xij . Let Gi be
the set of tasks that are executed in the break of job i. Then, we can add all processing and
idle times in this break and must obtain its length li. Therefore we have the equation

yiA +
∑
j∈Gi

(pj + yj) = li.

Since task j is in Gi if and only if xjiB − xjiA = 1 we obtain the equivalent equation

yiA +
∑

j /∈{iA,iB}

(xjiB − xjiA)(pj + yj) = li.

However, this is a quadratic equation and we apply the well-known transformation to linearize
it by introducing new variables yij , 1 ≤ i ≤ n, 1 ≤ j ≤ 2n, j 6∈ {iA, iB}, for the products
(xjiB − xjiA)yj . To ensure that yij = yj if xjiB − xjiA = 1 and yij = 0 otherwise, we add the
constraints

yij ≤ yj , 1 ≤ i ≤ n, 1 ≤ j ≤ 2n, j /∈ {iA, iB},
yij ≤ Cij(xjiB − xjiA), 1 ≤ i ≤ n, 1 ≤ j ≤ 2n, j /∈ {iA, iB},
yij ≥ yj − Cj(xiBj + xjiA), 1 ≤ i ≤ n, 1 ≤ j ≤ 2n, j /∈ {iA, iB}.

The positive constants Cij are upper bounds on the values of yij and Cij = max{0, li − pj}
are suitable values. The upper bounds Cj for the values of yj can be chosen as

Cj =

{
lj , if j is the first task of a job,

maxi{Cij | j /∈ {iA, iB}}, if j is the second task of a job.

The knapsack constraints can be now rewritten as linear equations

yiA +
∑

j /∈{iA,iB}

(
(xjiB − xjiA)pj + yij

)
= li, 1 ≤ i ≤ n.

3.4 The model of Sherali and Smith

Finally, we discuss one of the models which have been introduced in [9]. In contrast to the
linear ordering models, it treats each job as one unit and does not consider the two tasks
separately. To distinguish the relative processing order of the tasks of each pair of jobs i
and j the following five cases are defined:

(i) Job i is finished before job j begins.

(ii) The four tasks of the jobs i and j are processed alternately, starting with the first task
of job i.

(iii) Either job i is processed completely in the break of job j, or vice versa (at most one
case is possible which can be read in advance from the concrete problem data).

(iv) The four tasks of the jobs i and j are processed alternately, starting with the first task
of job j.

(v) Job j is finished before job i is started.

14



For each pair of jobs i, j and each case k, 1 ≤ k ≤ 5, a binary variable yijk is introduced
which equals one if and only if the corresponding configuration is realized. Furthermore,
variables si for the start time of job i and a variable T for the makespan are introduced.

An integer model can then be formulated as

min
s,y,T

T

s.t. sj − si ≥
5∑

k=1

lijkyijk, 1 ≤ i < j ≤ n,

sj − si ≤
5∑

k=1

rijkyijk, 1 ≤ i < j ≤ n,

T ≥ si + ti, 1 ≤ i ≤ n,
5∑

k=1

yijk = 1, 1 ≤ i < j ≤ n,

where lijk and rijk are constants depending on the concrete data of the jobs i and j as well
as on the case k (for details see [9]).

4 Computational experiments

We studied the performance of the above approaches on different types of instances of the
coupled task problem. For all models of Sections 3.1–3.4 an integer program was generated
for each instance and solved with Cplex 12.1 using standard parameter settings. Note that for
the time-indexed model, in addition a binary search has to be conducted. Therefore, a series
of MIPs has to be solved for each instance. The branch-and-bound algorithm of section 2 is
implemented in C++. Its implementation only uses one core of the machine.

The experiments were run on a PC with an Intel Quad Core CPU, 3.4GHz, 3Mb Cache
and 16GB RAM. For every problem instance, the CPU time was limited to at most one hour.
Prior to optimization a first-fit heuristic was called 10.000 times with random permutations
of the jobs for obtaining a first feasible schedule and an upper bound on the optimum. CPU
time for this heuristic was neglible and is not included.

We generated four types of random instances with the following specifications:

T1 All numbers ai, li and bi are uniformly distributed between 1 and 10.

T2 The breaks li are uniformly distributed between 1 and 10, all processing times ai and bi
are equal to 1. (These problems are called unit execution time or UET problems. They
have been considered in [1] for deriving worst-case bounds for approximation algo-
rithms.)

T3 Data is generated according to [9] using normal distributions with mean value 30 and
standard deviation 5 for ai, mean value 600 and standard deviation 100 for li, and mean
value 120 and standard deviation 30 for bi.

15



T4 The processing times ai and bi are all uniformly distributed between 1 and 100 and the
problems are generated in such a way that the tasks fit together almost perfectly in
the sense that the optimum makespan exceeds the trivial lower bound

∑
(ai + bi) by at

most 1 time unit.

For each of these types and for all problem sizes 10 random instances were generated. The
results from our experiments are summarized in Tables 1 and 2. Each row gives the mean
values for 10 randomly generated instances of the respective type and problem size. For the
integer models the relative gaps between the lower bound at termination and the optimum
solution value are given in percent, but the average is only taken over instances not solved to
optimality. Furthermore the number of nodes of the branch-and-bound trees is given. The
last column gives the average CPU times for the solved instances (for the other ones the time
limit of one hour is reached).

B&B LOP model 1 LOP model 2
Size Nodes CPU Gap Nodes CPU Gap Nodes CPU

T1

8 2.66e2 0.0 0.00 3.58e3 0.6 0.00 7.38e2 0.5
9 6.71e2 0.0 0.00 2.18e4 5.3 0.00 3.03e3 3.3

10 2.27e3 0.0 0.00 9.04e4 21.7 0.00 1.11e4 14.9
11 4.32e3 0.0 0.00 3.82e5 130.8 0.00 1.73e4 35.3
12 1.14e4 0.0 0.00 3.18e6 1254.6 0.00 4.26e4 145.4
20 1.93e7 104.2 40.29 2.69e5 3600.7 2.07 2.19e5 3241.9

T2

7 2.78e2 0.0 0.00 1.20e3 0.3 0.00 9.15e2 0.3
8 8.14e2 0.0 0.00 1.12e4 2.5 0.00 5.54e3 2.3
9 9.91e3 0.1 0.00 9.47e4 35.3 0.00 5.25e4 34.1

10 3.42e4 0.2 0.00 5.64e5 306.6 0.00 1.68e5 157.9
11 3.16e5 2.0 6.51 2.06e6 2787.8 2.00 1.03e6 1805.2
12 1.49e6 11.3 16.17 1.03e6 3600.2 2.65 8.79e5 2521.4

T3

7 5.24e2 0.0 0.00 2.28e2 0.1 0.00 6.14e2 0.3
8 2.73e3 0.0 0.00 1.52e3 0.7 0.00 6.11e3 3.6
9 8.93e3 0.1 0.00 1.35e4 8.7 0.00 4.01e4 36.9

10 3.28e4 0.5 0.00 1.42e5 157.8 0.00 3.06e5 580.4
11 1.08e5 2.0 5.53 7.72e5 2721.0 2.66 8.58e5 3118.7
12 4.58e5 8.9 20.82 8.81e5 3600.3 7.45 9.03e5 3600.2

T4

7 9.17e1 0.0 0.00 2.08e2 0.2 0.00 2.42e2 0.2
8 2.86e2 0.0 0.00 1.13e3 0.7 0.00 1.28e3 1.5
9 9.15e2 0.0 0.00 2.74e3 1.9 0.00 3.66e3 7.4

10 3.40e3 0.0 0.00 1.87e4 19.0 0.00 1.37e4 37.8
11 1.39e4 0.2 0.00 5.36e4 107.1 0.00 3.48e4 241.3
12 4.33e4 0.8 0.00 1.29e5 568.9 0.55 1.05e5 1079.2

Table 1: Summary of comparison of the five approaches (1).

The time-indexed model is only suited for solving T2 problems. Here, it even outperforms
the branch-and-bound algorithm. This is due to the fact, that the schedule is rather short
and thus the size of the integer program is small. For some experiments analyzing the worst-
case behaviour of certain approximative algorithms for UET problems we could even go to n
beyond 100. For the other problem types, the makespans become too large, which strongly

16



B&B Time-index model Sherali-Smith model
Size Nodes CPU Gap Nodes CPU Gap Nodes CPU

T1

8 2.66e2 0.0 0.00 2.21e4 22.5 0.00 1.31e4 0.5
9 6.71e2 0.0 0.00 9.73e4 118.5 0.00 4.45e4 1.5

10 2.27e3 0.0 0.00 4.00e5 647.9 0.00 2.40e5 6.3
11 4.32e3 0.0 0.74 6.42e5 1830.8 0.00 8.67e5 23.8
12 1.14e4 0.0 1.35 9.17e5 2431.4 0.00 5.71e6 200.2
20 1.93e7 104.2 5.98 1.40e5 3600.0 52.56 1.11e7 3600.0

T2

7 2.78e2 0.0 0.00 4.00e-1 0.0 0.00 9.92e3 0.3
8 8.14e2 0.0 0.00 5.73e1 0.1 0.00 7.43e4 2.2
9 9.91e3 0.1 0.00 3.98e1 0.1 0.00 9.24e5 27.3

10 3.42e4 0.2 0.00 3.27e2 0.1 0.00 1.11e7 382.9
11 3.16e5 2.0 0.00 1.38e4 0.8 4.60 3.89e7 2426.5
12 1.49e6 11.3 0.00 2.90e4 1.8 17.13 3.56e7 3600.0

T3

7 5.24e2 0.0 0.00 1.60e1 124.6 0.00 3.56e3 0.1
8 2.73e3 0.0 0.91 7.42e2 1297.0 0.00 4.62e4 1.2
9 8.93e3 0.1 1.86 5.28e2 3166.5 0.00 5.30e5 14.0

10 3.28e4 0.5 6.42 4.50e2 3600.1 0.00 5.46e6 197.9
11 1.08e5 2.0 5.60 2.34e2 3600.1 0.81 3.09e7 1785.0
12 4.58e5 8.9 9.43 2.52e2 3600.2 7.25 3.47e7 2946.6

T4

7 9.17e1 0.0 0.00 0.00 5.9 0.00 3.47e3 0.1
8 2.86e2 0.0 0.00 1.28e1 48.5 0.00 1.01e4 0.5
9 9.15e2 0.0 0.00 0.00 17.3 0.00 2.21e4 1.2

10 3.40e3 0.0 3.35 1.65e3 2228.3 0.00 1.99e5 8.9
11 1.39e4 0.2 5.12 1.81e3 3256.7 0.00 4.23e5 29.7
12 4.33e4 0.8 7.64 1.31e3 3600.1 0.00 7.70e5 105.0

Table 2: Summary of comparison of the five approaches (2).

increases the problem size and the computation of optimum solutions is out of reach for this
approach.

Comparing the results of the two linear ordering based models and the Sherali-Smith
model, we see that the Sherali-Smith model can solve the problems faster to optimality if
they can be solved within the time limit. However, for the problems which could not be
solved within the time limit, the gap of at least one of the linear ordering models is generally
smaller, which is due to better lower bound values. Hence, we can conclude that the linear
ordering formulations provide tighter root node relaxations but are slower in closing the gap
because the solution times for the linear programming relaxations are much larger. For T2, T3
and T4 problems these models clearly outperform the time-indexed model.

The branch-and-bound algorithm compares favorably with all other formulations. All
instances in the testset of Tables 1 and 2 could be solved within the time limit and with a
maximum solution time of 415 seconds. Generally, both the number of branch-and-bound
nodes needed and the computing time per node, are much smaller for this algorithm than for
the others.

We explored the competitiveness of the time-index model on T2 instances further by con-
sidering larger instances. At first glance, the times do not seem to be that much better. But,
the branch-and-bound algorithm only solves those instances where the optimum makespan
equals the trivial bound

∑
i ai + bi. Here the solution is always found in the first couple

of hundred nodes with solution times much less than 1 second. None of the non-trivial so-

17



B&B Time-index model
Size Sol CPU Nodes Gap Sol CPU Nodes Gap
13 10 81 1.24e+07 0.0 10 17 1.36e+05 0.0
14 10 745 9.86e+07 0.0 10 121 9.18e+05 0.0
15 6 0 2.08e+08 3.2 10 424 2.37e+06 0.0
16 4 0 2.31e+08 3.0 7 442 1.27e+07 3.0

Table 3: Comparison between branch-and-bound and time-indexed model on T2 instances.

lutions of the problems with size 15 or 16 are found by branch-and-bound within the time
limit. Here, the effect of the bounding procedures described in Section 2 is weak and hence
branch-and-bound generates very many nodes.

5 Conclusions

Our computational results show that the branch-and-bound approach outperforms the other
models by far, except when the processing times of the jobs ai and bi are very small. Then,
the bounding heuristics usually do not improve the bound at all and a lot of time is wasted. In
this case, the time-indexed model is clearly the best choice, because the number of variables
remains fairly small.

The effectiveness of the other models is highly depending on the structure of the problem
instance to be solved. E.g., we considered a coupled-task problem instance with identical
jobs, where n = 9, ai = 3, li = 6, bi = 4. The time-indexed model solved this problem in
about 1 second with 9 subproblems and a root bound of 78. The Sherali-Smith model was
stopped after 1 hour after having generated more than 800 000 nodes with a lower bound of
still 55. However, for this problem type, neither of our approaches is appropriate, since there
exists a specially tailored dynamic programming algorithm given in [2] which can easily solve
such problem instances even for n up to 1000.

From the study of the coupled task problem we conclude that, although integer linear pro-
gramming approaches might seem more elegant, tailored branch-and-bound algorithms (and
sometimes even dynamic programming algorithms) should not be overlooked. Depending on
the structure of the problem and the size of the instances they can be much more effec-
tive. Furthermore, branch-and-bound has the additional advantage that it usually can be
parallelized in a fairly straightforward way and even make use of massively parallel hardware.

Acknowledgement

We would like to thank two anonymous referees for very helpful comments and suggestions
for improving a first version of this paper.

18



References

[1] A.A. Ageev and A.E. Baburin: Approximation algorithms for UET scheduling problems
with exact delays, Operations Research Letters 25, 533–540, 2007.

[2] D. Ahr, J. Békési, G. Galambos, M. Oswald, and G. Reinelt: An Exact Algorithm for
Scheduling Identical Coupled Tasks, Mathematical Methods of Operations Research 59,
193–203, 2004.

[3] J. Blazewicz, K. Ecker, T. Kis, and M. Tanas: A Note on the Complexity of Scheduling
Coupled Tasks on a Single Processor, Journal of the Brazilian Computer Society 7,
23–26, 2001.

[4] M. Elshafei, H.D. Sherali, and J.C. Smith: Radar pulse interleaving for multi-target
tracking, Naval Research Logistics 51 (4), 72–94, 2004.

[5] H. Li and H. Zhao: Scheduling Coupled-Tasks on a Single Machine, in: IEEE Symposium
on Computational Intelligence in Scheduling SCIS ’07, 137–142, 2007.

[6] A.J. Orman and C.N. Potts: On the Complexity of Coupled-Task Scheduling, Discrete
Applied Mathematics 72, 141–154, 1997.

[7] A.J. Orman, C.N. Potts, A.K. Shahani, and A.R. Moore: Scheduling for a multifunction
phased array radar system, European Journal of Operational Research 90, 13–25, 1996.

[8] C.N. Potts and J.D. Whitehead: Heuristics for a Coupled-Operation Scheduling Problem,
The Journal of the Operational Research Society 58, 1375–1388, 2007.

[9] H.D. Sherali and J.C. Smith: Interleaving Two-Phased Jobs on a Single Machine with
Application to Radar Pulse Interleaving, Discrete Optimization 2, 348–361, 2005.

[10] M. Tanas, J. Blazewicz, and K. Ecker: Polynomial Time Algorithm for Coupled Tasks
Scheduling Problem, in: J. Blazewicz, K. Ecker and B. Hammer (eds): ICOLE 2007,
Lessach, Austria, Report IfI-07-03, TU Clausthal, 76–69, 2007.

19


