1,321 research outputs found

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Stabilisation of Time Delay Systems with Nonlinear Disturbances Using Sliding Mode Control

    Get PDF
    This paper focuses on a class of control systems with delayed states and nonlinear disturbances using sliding mode techniques. Both matched and mismatched uncertainties are considered which are assumed to be bounded by known nonlinear functions. The bounds are used in the control design and analysis to reduce conservatism. A sliding function is designed and a set of sufficient conditions is derived to guarantee the asymptotic stability of the corresponding sliding motion by using the Lyapunov-Razumikhin approach which allows large time varying delay with fast changing rate. A delay dependent sliding mode control is synthesised to drive the system to the sliding surface in finite time and maintain a sliding motion thereafter. Effectiveness of the proposed method is demonstrated via a case study on a continuous stirred tank reactor system

    Adaptive Stabilization of Stochastic Nonlinear Systems Disturbed by Unknown Time Delay and Covariance Noise

    Get PDF
    This paper considers a more general stochastic nonlinear time-delay system driven by unknown covariance noise and investigates its adaptive state-feedback control problem. As a remarkable feature, the growth assumptions imposed on delay-dependent nonlinear terms are removed. Then, with the help of Lyapunov-Krasovskii functionals and adaptive backstepping technique, an adaptive state-feedback controller is constructed by overcoming the negative effects brought by unknown time delay and covariance noise. Based on the designed controller, the closed-loop system can be guaranteed to be globally asymptotically stable (GAS) in probability. Finally, a simulation example demonstrates the effectiveness of the proposed scheme

    Benelux meeting on systems and control, 23rd, March 17-19, 2004, Helvoirt, The Netherlands

    Get PDF
    Book of abstract

    A Survey of Decentralized Adaptive Control

    Get PDF
    corecore