45,721 research outputs found

    Modular Multilevel Converters in Hybrid Multi-Terminal HVDC Systems

    Full text link
    High-voltage direct current (HVDC) systems are becoming commonplace in modern power systems. Line commutated converters (LCCs) are suitable for bulk power and ultra-HVDC (UHVDC) transmission, while with inflexible power reversal capability and possible commutation failures. However, voltage source converters (VSCs) possess flexible power reversal capability and provide immunity to commutation failures. Modular VSC topologies offer improved performance compared to conventional 2 level/3 level VSC-based HVDC. The family of modular VSCs includes the well-established modular multilevel converter (MMC) and other emerging modular VSC topologies such as the DC-fault tolerant alternate arm converter (AAC) that share topological and operational similarities with the MMC. It is noteworthy that the integration of LCC and modular VSCs leads to unique benefits despite the challenges of different HVDC configurations. Hence, it is necessary to explore the system performance of different HVDC converter topologies, especially more complex hybrid multiterminal HVDC (MTDC) systems and DC-grids combining different converters. This thesis focuses on the combination of the LCC, MMC and AAC to constitute different hybrid HVDC transmission systems. It is of significance to provide a common platform where the proper comparison and evaluation of different HVDC systems and control methods can be completed and independently validated. Therefore, this thesis also provides an overview of current HVDC benchmark models available in the existing literature. In addition, the detailed modeling methods of HVDC systems are discussed in this thesis. For ensuring the static security of HVDC systems especially the future DC-grids, this thesis proposes a generalized expression of DC power flow under mixed power/voltage (P/V) and current/voltage (I/V) droop control, considering the DC power flow for normal operation and after converter outage. Detailed simulation models are established in PLECS-Blockset and Simulink to study the hybrid HVDC/MTDC systems and DC grid combining the LCC with the MMC and (or) AAC. The detailed sets of results demonstrate the functionalities of developed hybrid HVDC systems and validate the performance of systems complying with widely accepted HVDC operating standards. The developed LCC/AAC-based HVDC/MTDC systems and LCC/MMC/AAC-based DC grid in this thesis are prime steps towards the study of more complex MTDC systems and a key element in the development of future DC super grids

    Control of multi-terminal HVDC networks towards wind power integration: A review

    Get PDF
    © 2015 Elsevier Ltd. More interconnections among countries and synchronous areas are foreseen in order to fulfil the EU 2050 target on the renewable generation share. One proposal to accomplish this challenging objective is the development of the so-called European SuperGrid. Multi-terminal HVDC networks are emerging as the most promising technologies to develop such a concept. Moreover, multi-terminal HVDC grids are based on highly controllable devices, which may allow not only transmitting power, but also supporting the AC grids to ensure a secure and stable operation. This paper aims to present an overview of different control schemes for multi-terminal HVDC grids, including the control of the power converters and the controls for power sharing and the provision of ancillary services. This paper also analyses the proposed modifications of the existing control schemes to manage high participation shares of wind power generation in multi-terminal grids.Postprint (author's final draft

    Evolutionary Algorithms for Community Detection in Continental-Scale High-Voltage Transmission Grids

    Get PDF
    Symmetry is a key concept in the study of power systems, not only because the admittance and Jacobian matrices used in power flow analysis are symmetrical, but because some previous studies have shown that in some real-world power grids there are complex symmetries. In order to investigate the topological characteristics of power grids, this paper proposes the use of evolutionary algorithms for community detection using modularity density measures on networks representing supergrids in order to discover densely connected structures. Two evolutionary approaches (generational genetic algorithm, GGA+, and modularity and improved genetic algorithm, MIGA) were applied. The results obtained in two large networks representing supergrids (European grid and North American grid) provide insights on both the structure of the supergrid and the topological differences between different regions. Numerical and graphical results show how these evolutionary approaches clearly outperform to the well-known Louvain modularity method. In particular, the average value of modularity obtained by GGA+ in the European grid was 0.815, while an average of 0.827 was reached in the North American grid. These results outperform those obtained by MIGA and Louvain methods (0.801 and 0.766 in the European grid and 0.813 and 0.798 in the North American grid, respectively)

    Paradigm and paradox in topology control of power grids

    Full text link
    Corrective Transmission Switching can be used by the grid operator to relieve line overloading and voltage violations, improve system reliability, and reduce system losses. Power grid optimization by means of line switching is typically formulated as a mixed integer programming problem (MIP). Such problems are known to be computationally intractable, and accordingly, a number of heuristic approaches to grid topology reconfiguration have been proposed in the power systems literature. By means of some low order examples (3-bus systems), it is shown that within a reasonably large class of “greedy” heuristics, none can be found that perform better than the others across all grid topologies. Despite this cautionary tale, statistical evidence based on a large number of simulations using IEEE 118-bus systems indicates that among three heuristics, a globally greedy heuristic is the most computationally intensive, but has the best chance of reducing generation costs while enforcing N-1 connectivity. It is argued that, among all iterative methods, the locally optimal switches at each stage have a better chance in not only approximating a global optimal solution but also greatly limiting the number of lines that are switched.First author draf

    Paradigm and Paradox in Topology Control of Power Grids

    Full text link
    Corrective Transmission Switching can be used by the grid operator to relieve line overloading and voltage violations, improve system reliability, and reduce system losses. Power grid optimization by means of line switching is typically formulated as a mixed integer programming problem (MIP). Such problems are known to be computationally intractable, and accordingly, a number of heuristic approaches to grid topology reconfiguration have been proposed in the power systems literature. By means of some low order examples (3-bus systems), it is shown that within a reasonably large class of greedy heuristics, none can be found that perform better than the others across all grid topologies. Despite this cautionary tale, statistical evidence based on a large number of simulations using using IEEE 118- bus systems indicates that among three heuristics, a globally greedy heuristic is the most computationally intensive, but has the best chance of reducing generation costs while enforcing N-1 connectivity. It is argued that, among all iterative methods, the locally optimal switches at each stage have a better chance in not only approximating a global optimal solution but also greatly limiting the number of lines that are switched

    Dual Channel Control with DC Fault Ride Through for MMC-based, Isolated DC/DC Converter

    Get PDF
    This study is sponsored by the Engineering and Physical Sciences Research Council (EPSRC) grant no EP/K006428/1, 2013.D. Jovcic and H. Zhang are with the School of Engineering, University of Aberdeen, AB24 3UE, U.K. ([email protected], [email protected]).Peer reviewedPostprin

    Swarm Intelligence Based Multi-phase OPF For Peak Power Loss Reduction In A Smart Grid

    Full text link
    Recently there has been increasing interest in improving smart grids efficiency using computational intelligence. A key challenge in future smart grid is designing Optimal Power Flow tool to solve important planning problems including optimal DG capacities. Although, a number of OPF tools exists for balanced networks there is a lack of research for unbalanced multi-phase distribution networks. In this paper, a new OPF technique has been proposed for the DG capacity planning of a smart grid. During the formulation of the proposed algorithm, multi-phase power distribution system is considered which has unbalanced loadings, voltage control and reactive power compensation devices. The proposed algorithm is built upon a co-simulation framework that optimizes the objective by adapting a constriction factor Particle Swarm optimization. The proposed multi-phase OPF technique is validated using IEEE 8500-node benchmark distribution system.Comment: IEEE PES GM 2014, Washington DC, US

    Power quality and electromagnetic compatibility: special report, session 2

    Get PDF
    The scope of Session 2 (S2) has been defined as follows by the Session Advisory Group and the Technical Committee: Power Quality (PQ), with the more general concept of electromagnetic compatibility (EMC) and with some related safety problems in electricity distribution systems. Special focus is put on voltage continuity (supply reliability, problem of outages) and voltage quality (voltage level, flicker, unbalance, harmonics). This session will also look at electromagnetic compatibility (mains frequency to 150 kHz), electromagnetic interferences and electric and magnetic fields issues. Also addressed in this session are electrical safety and immunity concerns (lightning issues, step, touch and transferred voltages). The aim of this special report is to present a synthesis of the present concerns in PQ&EMC, based on all selected papers of session 2 and related papers from other sessions, (152 papers in total). The report is divided in the following 4 blocks: Block 1: Electric and Magnetic Fields, EMC, Earthing systems Block 2: Harmonics Block 3: Voltage Variation Block 4: Power Quality Monitoring Two Round Tables will be organised: - Power quality and EMC in the Future Grid (CIGRE/CIRED WG C4.24, RT 13) - Reliability Benchmarking - why we should do it? What should be done in future? (RT 15
    corecore