Recently there has been increasing interest in improving smart grids
efficiency using computational intelligence. A key challenge in future smart
grid is designing Optimal Power Flow tool to solve important planning problems
including optimal DG capacities. Although, a number of OPF tools exists for
balanced networks there is a lack of research for unbalanced multi-phase
distribution networks. In this paper, a new OPF technique has been proposed for
the DG capacity planning of a smart grid. During the formulation of the
proposed algorithm, multi-phase power distribution system is considered which
has unbalanced loadings, voltage control and reactive power compensation
devices. The proposed algorithm is built upon a co-simulation framework that
optimizes the objective by adapting a constriction factor Particle Swarm
optimization. The proposed multi-phase OPF technique is validated using IEEE
8500-node benchmark distribution system.Comment: IEEE PES GM 2014, Washington DC, US