16,191 research outputs found

    Connectivity Compression for Irregular Quadrilateral Meshes

    Get PDF
    Applications that require Internet access to remote 3D datasets are often limited by the storage costs of 3D models. Several compression methods are available to address these limits for objects represented by triangle meshes. Many CAD and VRML models, however, are represented as quadrilateral meshes or mixed triangle/quadrilateral meshes, and these models may also require compression. We present an algorithm for encoding the connectivity of such quadrilateral meshes, and we demonstrate that by preserving and exploiting the original quad structure, our approach achieves encodings 30 - 80% smaller than an approach based on randomly splitting quads into triangles. We present both a code with a proven worst-case cost of 3 bits per vertex (or 2.75 bits per vertex for meshes without valence-two vertices) and entropy-coding results for typical meshes ranging from 0.3 to 0.9 bits per vertex, depending on the regularity of the mesh. Our method may be implemented by a rule for a particular splitting of quads into triangles and by using the compression and decompression algorithms introduced in [Rossignac99] and [Rossignac&Szymczak99]. We also present extensions to the algorithm to compress meshes with holes and handles and meshes containing triangles and other polygons as well as quads

    Scalable wavelet-based coding of irregular meshes with interactive region-of-interest support

    Get PDF
    This paper proposes a novel functionality in wavelet-based irregular mesh coding, which is interactive region-of-interest (ROI) support. The proposed approach enables the user to define the arbitrary ROIs at the decoder side and to prioritize and decode these regions at arbitrarily high-granularity levels. In this context, a novel adaptive wavelet transform for irregular meshes is proposed, which enables: 1) varying the resolution across the surface at arbitrarily fine-granularity levels and 2) dynamic tiling, which adapts the tile sizes to the local sampling densities at each resolution level. The proposed tiling approach enables a rate-distortion-optimal distribution of rate across spatial regions. When limiting the highest resolution ROI to the visible regions, the fine granularity of the proposed adaptive wavelet transform reduces the required amount of graphics memory by up to 50%. Furthermore, the required graphics memory for an arbitrary small ROI becomes negligible compared to rendering without ROI support, independent of any tiling decisions. Random access is provided by a novel dynamic tiling approach, which proves to be particularly beneficial for large models of over 10(6) similar to 10(7) vertices. The experiments show that the dynamic tiling introduces a limited lossless rate penalty compared to an equivalent codec without ROI support. Additionally, rate savings up to 85% are observed while decoding ROIs of tens of thousands of vertices

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE

    Subdivision surface fitting to a dense mesh using ridges and umbilics

    Get PDF
    Fitting a sparse surface to approximate vast dense data is of interest for many applications: reverse engineering, recognition and compression, etc. The present work provides an approach to fit a Loop subdivision surface to a dense triangular mesh of arbitrary topology, whilst preserving and aligning the original features. The natural ridge-joined connectivity of umbilics and ridge-crossings is used as the connectivity of the control mesh for subdivision, so that the edges follow salient features on the surface. Furthermore, the chosen features and connectivity characterise the overall shape of the original mesh, since ridges capture extreme principal curvatures and ridges start and end at umbilics. A metric of Hausdorff distance including curvature vectors is proposed and implemented in a distance transform algorithm to construct the connectivity. Ridge-colour matching is introduced as a criterion for edge flipping to improve feature alignment. Several examples are provided to demonstrate the feature-preserving capability of the proposed approach
    • …
    corecore