8,404 research outputs found

    A Review of Building Information Modeling and Simulation as Virtual Representations Under the Digital Twin Concept

    Get PDF
    Building Information Modeling (BIM) is a highly promising technique for achieving digitalization in the construction industry, widely used in modern construction projects for digitally representing facilities. Nevertheless, retains limitations in terms of representing construction operations. The digital twin concept may potentially overcome these limitations and initiate advanced digital transformation in the construction industry as it has revolutionized the product lifecycle management in the manufacturing industry. This research provides a critical review of applying digital twin in the construction industry. Altogether, 140 papers from related journals and databases were reviewed. The digital aspect of twinning consists of BIM and simulation modeling. These two techniques have been used to create virtual or digital representations of actual buildings and real-world construction processes. However, integrating and applying BIM and simulation modeling according to the digital twin concept remains to be fully studied. Comprehensive evaluations of BIM, simulation modeling, and digital twin will provide a well-defined framework for this research, to identify direction and potential for digital twin in the construction industry, thereby progressing to the next level of digitalization and improvement in construction management practice

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    Intelligent Simulation Modeling of a Flexible Manufacturing System with Automated Guided Vehicles

    Get PDF
    Although simulation is a very flexible and cost effective problem solving technique, it has been traditionally limited to building models which are merely descriptive of the system under study. Relatively new approaches combine improvement heuristics and artificial intelligence with simulation to provide prescriptive power in simulation modeling. This study demonstrates the synergy obtained by bringing together the "learning automata theory" and simulation analysis. Intelligent objects are embedded in the simulation model of a Flexible Manufacturing System (FMS), in which Automated Guided Vehicles (AGVs) serve as the material handling system between four unique workcenters. The objective of the study is to find satisfactory AGV routing patterns along available paths to minimize the mean time spent by different kinds of parts in the system. System parameters such as different part routing and processing time requirements, arrivals distribution, number of palettes, available paths between workcenters, number and speed of AGVs can be defined by the user. The network of learning automata acts as the decision maker driving the simulation, and the FMS model acts as the training environment for the automata network; providing realistic, yet cost-effective and risk-free feedback. Object oriented design and implementation of the simulation model with a process oriented world view, graphical animation and visually interactive simulation (using GUI objects such as windows, menus, dialog boxes; mouse sensitive dynamic automaton trace charts and dynamic graphical statistical monitoring) are other issues dealt with in the study

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    The 1990 progress report and future plans

    Get PDF
    This document describes the progress and plans of the Artificial Intelligence Research Branch (RIA) at ARC in 1990. Activities span a range from basic scientific research to engineering development and to fielded NASA applications, particularly those applications that are enabled by basic research carried out at RIA. Work is conducted in-house and through collaborative partners in academia and industry. Our major focus is on a limited number of research themes with a dual commitment to technical excellence and proven applicability to NASA short, medium, and long-term problems. RIA acts as the Agency's lead organization for research aspects of artificial intelligence, working closely with a second research laboratory at JPL and AI applications groups at all NASA centers

    Achieving manufacturing excellence through the integration of enterprise systems and simulation

    Get PDF
    This paper discusses the significance of the enterprise systems and simulation integration in improving shop floor’s short-term production planning capability. The ultimate objectives are to identify the integration protocols, optimisation parameters and critical design artefacts, thereby identifying key ‘ingredients’ that help in setting out a future research agenda in pursuit of optimum decision-making at the shop floor level. While the integration of enterprise systems and simulation gains a widespread agreement within the existing work, the optimality, scalability and flexibility of the schedules remained unanswered. Furthermore, there seems to be no commonality or pattern as to how many core modules are required to enable such a flexible and scalable integration. Nevertheless, the objective of such integration remains clear, i.e. to achieve an optimum total production time, lead time, cycle time, production release rates and cost. The issues presently faced by existing enterprise systems (ES), if properly addressed, can contribute to the achievement of manufacturing excellence and can help identify the building blocks for the software architectural platform enabling the integration

    Evolution of a supply chain management game for the trading agent competition

    Get PDF
    TAC SCM is a supply chain management game for the Trading Agent Competition (TAC). The purpose of TAC is to spur high quality research into realistic trading agent problems. We discuss TAC and TAC SCM: game and competition design, scientific impact, and lessons learnt
    • …
    corecore