38,030 research outputs found

    Exploiting the accumulated evidence for gene selection in microarray gene expression data

    Get PDF
    Machine Learning methods have of late made signicant efforts to solving multidisciplinary problems in the field of cancer classification using microarray gene expression data. Feature subset selection methods can play an important role in the modeling process, since these tasks are characterized by a large number of features and a few observations, making the modeling a non-trivial undertaking. In this particular scenario, it is extremely important to select genes by taking into account the possible interactions with other gene subsets. This paper shows that, by accumulating the evidence in favour (or against) each gene along the search process, the obtained gene subsets may constitute better solutions, either in terms of predictive accuracy or gene size, or in both. The proposed technique is extremely simple and applicable at a negligible overhead in cost.Postprint (published version

    An evolutionary approach to the optimisation of autonomous pod distribution for application in an urban transportation service

    Get PDF
    For autonomous vehicles (AVs), which when deployed in urban areas are called “pods”, to be used as part of a commercially viable low-cost urban transport system, they will need to operate efficiently. Among ways to achieve efficiency, is to minimise time vehicles are not serving users. To reduce the amount of wasted time, this paper presents a novel approach for distribution of AVs within an urban environment. Our approach uses evolutionary computation, in the form of a genetic algorithm (GA), which is applied to a simulation of an intelligent transportation service, operating in the city of Coventry, UK. The goal of the GA is to optimise distribution of pods, to reduce the amount of user waiting time. To test the algorithm, real-world transport data was obtained for Coventry, which in turn was processed to generate user demand patterns. Results from the study showed a 30% increase in the number of successful journeys completed in a 24 hours, compared to a random distribution. The implications of these findings could yield significant benefits for fleet management companies. These include increases in profits per day, a decrease in capital cost, and better energy efficiency. The algorithm could also be adapted to any service offering pick up and drop of points, including package delivery and transportation of goods

    Estimation and Regularization Techniques for Regression Models with Multidimensional Prediction Functions

    Get PDF
    Boosting is one of the most important methods for fitting regression models and building prediction rules from high-dimensional data. A notable feature of boosting is that the technique has a built-in mechanism for shrinking coefficient estimates and variable selection. This regularization mechanism makes boosting a suitable method for analyzing data characterized by small sample sizes and large numbers of predictors. We extend the existing methodology by developing a boosting method for prediction functions with multiple components. Such multidimensional functions occur in many types of statistical models, for example in count data models and in models involving outcome variables with a mixture distribution. As will be demonstrated, the new algorithm is suitable for both the estimation of the prediction function and regularization of the estimates. In addition, nuisance parameters can be estimated simultaneously with the prediction function

    Using numerical plant models and phenotypic correlation space to design achievable ideotypes

    Full text link
    Numerical plant models can predict the outcome of plant traits modifications resulting from genetic variations, on plant performance, by simulating physiological processes and their interaction with the environment. Optimization methods complement those models to design ideotypes, i.e. ideal values of a set of plant traits resulting in optimal adaptation for given combinations of environment and management, mainly through the maximization of a performance criteria (e.g. yield, light interception). As use of simulation models gains momentum in plant breeding, numerical experiments must be carefully engineered to provide accurate and attainable results, rooting them in biological reality. Here, we propose a multi-objective optimization formulation that includes a metric of performance, returned by the numerical model, and a metric of feasibility, accounting for correlations between traits based on field observations. We applied this approach to two contrasting models: a process-based crop model of sunflower and a functional-structural plant model of apple trees. In both cases, the method successfully characterized key plant traits and identified a continuum of optimal solutions, ranging from the most feasible to the most efficient. The present study thus provides successful proof of concept for this enhanced modeling approach, which identified paths for desirable trait modification, including direction and intensity.Comment: 25 pages, 5 figures, 2017, Plant, Cell and Environmen
    • 

    corecore