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Estimation and Regularization Techniques for
Regression Models with Multidimensional

Prediction Functions

Matthias Schmid1, Sergej Potapov1,

Annette Pfahlberg1, Torsten Hothorn2

Abstract

Boosting is one of the most important methods for fitting regression models and build-
ing prediction rules from high-dimensional data. A notable feature of boosting is that
the technique has a built-in mechanism for shrinking coefficient estimates and variable
selection. This regularization mechanism makes boosting a suitable method for analyz-
ing data characterized by small sample sizes and large numbers of predictors. We extend
the existing methodology by developing a boosting method for prediction functions with
multiple components. Such multidimensional functions occur in many types of statistical
models, for example in count data models and in models involving outcome variables with
a mixture distribution. As will be demonstrated, the new algorithm is suitable for both
the estimation of the prediction function and regularization of the estimates. In addition,
nuisance parameters can be estimated simultaneously with the prediction function.

Keywords: Gradient boosting, multidimensional prediction function, scale parameter estima-
tion, variable selection, count data model, clinical predictors.

1 Introduction

A common problem in statistical research is the development of model fitting and prediction
techniques for the analysis of high-dimensional data. High-dimensional data sets, which are
characterized by relatively small sample sizes and large numbers of variables, arise in many fields
of modern research. Most notably, advances in genomic research have led to large sets of gene
expression data where sample sizes are considerably smaller than the number of gene expression
measurements (Golub et al. 1999, Dudoit et al. 2002). A consequence of this “p > n” situation
is that standard techniques for prediction and model fitting (such as maximum likelihood
estimation) become infeasible. Moreover, high-dimensional data sets usually involve the problem
of separating noise from information, i.e., of selecting a small number of relevant predictors from
the full set of variables.
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In a regression framework, the problem of analyzing high-dimensional data can be formulated as
follows: Consider a data set containing the values of an outcome variable Y and predictor vari-
ables X1, . . . ,Xp. Although Y will be one-dimensional in most applications, we explicitly allow
for multidimensional outcome variables. The objective is to model the relationship between Y
and X := (X1, . . . ,Xp)

>, and to obtain an “optimal” prediction of Y given X. Usually, this is
accomplished by optimizing an objective function ρ(Y , f, σ) ∈ R over a prediction function f
(depending on X) and a set of scale parameters (denoted by σ). Linear regression with a contin-
uous outcome variable Y ∈ R is a well-known example of this approach: Here, ρ corresponds to
the least squares objective function while f is a parametric (linear) function of X, and σ ∈ R+

is the residual variance.

In order to address the issue of analyzing high-dimensional data sets, a variety of regression
techniques has been developed over the past years (see, e.g., Hastie et al. 2003). Many of these
techniques are characterized by a built-in mechanism for “regularization”, which means that
shrinkage of coefficient estimates or selection of relevant predictors is carried out simultaneously
with the estimation of the model parameters. Both shrinkage and variable selection will typically
improve prediction accuracy: In case of shrinkage, coefficient estimates tend to have a slightly
increased bias but a decreased variance, while in case of variable selection, overfitting the data
is avoided by selecting the most “informative” predictors only.

Important examples of recently developed regularization techniques are boosting (which will be
considered in this paper) and L1 penalized estimation. Boosting (Breiman 1998, 1999, Friedman
et al. 2000, Friedman 2001) is an iterative method for obtaining statistical model estimates via
gradient descent techniques. A key feature of boosting is that the procedure can be modified
such that variable selection is carried out in each iteration (Bühlmann and Yu 2003, Bühlmann
2006). As a result, the final boosting fit typically depends on only a small subset of predictor
variables but can still be interpreted as the fit of a regression model. L1 penalized estimation
techniques have been developed for regression models with a linear prediction function. Due to
the structure of the L1 penalty, a number of coefficient estimates will typically become zero, so
that the procedure implicitly results in a selection of the most informative predictor variables.
The most important examples of L1 penalized techniques are the Lasso and its extensions
(Tibshirani 1996, Tibshirani et al. 2005, Zou 2006, Yuan and Lin 2006), SCAD procedures (Fan
and Li 2001) and the Elastic Net methodology (being a combination of L1 and L2 penalized
regression, see Zou and Hastie 2005). By introducing the LARS algorithm for linear prediction
functions, Efron et al. (2004) have embedded boosting and L1 penalized techniques into a
more general framework (LARS will, however, not be considered in this paper). Both boosting
and L1 penalized estimation techniques can be applied to a large variety of statistical problems,
such as regression, classification and time-to-event analysis (Bühlmann and Hothorn 2007, Park
and Hastie 2007). Besides being computationally efficient, the techniques are competitive with
methods based on a separation of variable selection and the model fitting process (see, e.g.,
Segal 2006).

A limitation of classical boosting and L1 penalized estimation approaches is that the techniques
are designed for statistical problems involving a one-dimensional prediction function only. In
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fact, boosting and L1 penalized estimation are suitable for fitting many common statistical
models, such as linear or logistic regression. However, there is a variety of important statistical
problems that cannot be reduced to estimating a one-dimensional prediction function only.
This is particularly true when scale parameters or nuisance parameters have to be estimated
simultaneously with the prediction function, or when the prediction function itself depends on
multiple components. Typical examples of such multidimensional estimation problems are:

(a) Classification with multiple outcome categories. Regressing outcome variables with a multi-
nomial distribution on a set of predictor variables is a natural extension of the binary classifi-
cation problem. In the setting of a multinomial logit model, each of the outcome categories is
associated with a separate component of the prediction function. Thus, if there is a total num-
ber of K possible outcome categories, a K-dimensional prediction function has to be estimated.
Friedman et al. (2000) have addressed this problem by constructing a boosting algorithm for
multiclass prediction (see also Hastie et al. 2003, Sections 10.10.2 and 10.10.3).

(b) Regression models for count data. Apart from the classical Poisson model, count data models
are typically used for addressing problems such as overdispersion or excessive amounts of zero
counts. A typical example in this context is negative binomial regression, where the prediction
function has to be estimated simultaneously with a scale parameter used to model overdisper-
sion. If excessive amounts of zero counts have to be taken into account, it is common to use
zero-inflated Poisson or negative binomial models (see Hilbe 2007). With models of this type,
the outcome variable is assumed to be a mixture of a zero-generating (Bernoulli) process and
a counting process. As a consequence, using zero-inflated Poisson or negative binomial models
involves the estimation of a two-dimensional prediction function (where the first component of
the prediction function is used to model the zero-generating process and the second component
is used to model the count data process). It is important to note that each of the two com-
ponents may depend on different sets of predictor variables. Furthermore, fitting zero-inflated
negative binomial models involves the estimation of an additional scale parameter, where both
the two-dimensional prediction function and the scale parameter have to be estimated simul-
taneously.

(c) Clinical predictors in cancer research. Predicting outcomes such as “time to disease” or
“future disease status” is a common problem in cancer research. In many situations, there
are well-established predictors for the outcome variable(s) under consideration (such as the
International Prognostic Index, see International Non-Hodgkin’s Lymphoma Prognostic Factors
Project 1993). At the same time, advances in genomic research have lead to new predictors
based on gene expression measurements (see, e.g., van’t Veer et al. 2002, Bullinger et al. 2004).
It is an obvious question whether the performance of cancer prediction can be improved by
combining gene-based and traditional clinical predictors. Clearly, a combined model involves
prediction functions depending on two components, where one component depends on a set of
clinical predictor variables and the other component depends on gene expression measurements.
Since inclusion of the clinical component is often mandatory (for both practical and conceptual
reasons), only the gene-based component of the prediction function requires variable selection
(i.e., the selection of a small number of relevant genes).
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Obviously, all examples described above are special cases of a more general estimation problem
involving predictors with multiple components. We will address this problem by developing a
boosting algorithm for multidimensional prediction functions. The proposed algorithm is based
on the classical gradient boosting method introduced by Friedman (2001) but is modified such
that both parameter estimation and variable selection can be carried out in each component
of the multidimensional prediction function. Instead of “descending” the gradient only in one
direction, the algorithm computes partial derivatives of the objective function (with respect to
the various components of the prediction function). In a next step, the algorithm cycles through
the partial derivatives, where each component of the prediction function is successively updated
in the course of the cycle. Similar to the original boosting idea, this procedure can be modified
such that variable selection is carried out in each step of the cycle. If necessary, updates of scale
parameters can be obtained at the end of the cycle. This is accomplished by using the current
value of the prediction function as an offset value.

As we will demonstrate, the new algorithm constitutes a flexible approach to model fitting and
prediction in multidimensional settings. Moreover, the algorithm shares the favorable proper-
ties of the classical boosting approach when it comes to efficiency and prediction accuracy. In
the special case of a one-dimensional prediction function, the new approach coincides with the
original boosting algorithm proposed by Friedman (2001). In addition, it generalizes the work
of Schmid and Hothorn (2008b) who developed a boosting algorithm for parametric survival
models with a scale parameter. In case of a multinomial logit model, there is a direct correspon-
dence between the new algorithm and the multiclass procedure suggested by Friedman et al.
(2000).

The rest of the paper is organized as follows: In Section 2, the new algorithm is presented
in detail, along with a number of technical details involved in choosing appropriate tuning
parameters. The characteristics of the algorithm are demonstrated in Section 3, where two
examples from epidemiological and clinical research are discussed. A summary of the paper is
given in Section 4.

2 Boosting with multidimensional prediction functions

Let (X1, Y1), . . . , (Xn, Yn) be a set of independent realizations of the random variable (X,Y ),
where X is a p-dimensional vector of predictor variables and Y is a (possibly multidimensional)
outcome variable. Define X := (X1, . . . , Xn) and Y := (Y1, . . . , Yn). The objective is to estimate
the K-dimensional prediction function f ∗ ∈ RK and the L-dimensional set of scale parameters
σ∗ ∈ RL, which are defined by

(f ∗, σ∗) = (f ∗1 , . . . , f
∗
K , σ

∗
1, . . . , σ

∗
L) := argmin

f,σ
EY ,X

[
ρ(Y , f(X), σ)

]
. (1)

The objective function (or “loss function”) ρ is assumed to be differentiable with respect to
each of the components of f = (f1, . . . , fK).
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Usually, in a boosting framework, f ∗ and σ∗ are estimated by minimizing the empirical risk∑n
i=1 ρ(Yi, f(Xi), σ) over f and σ = (σ1, . . . , σL). We introduce the following multidimensional

extension of the gradient boosting approach developed by Friedman (2001):

1. Initialize the n-dimensional vectors f̂
[0]
1 , . . . , f̂

[0]
K with offset values, e.g., f̂

[0]
1 = 0, . . . ,

f̂
[0]
K = 0. Further initialize the one-dimensional scale parameter estimates σ̂

[0]
1 , . . . , σ̂

[0]
L

with offset values, e.g., σ̂
[0]
1 = 1, . . . , σ̂

[0]
K = 1. (Alternatively, the maximum likelihood

estimates corresponding to the unconditional distribution of Y could be used as offset
values.)

2. For each of the K components of f specify a base-learner, i.e., a regression estimator with
one input variable and one output variable. Set m = 0.

3. Increase m by 1.

4. (a) Set k = 0.

(b) Increase k by 1. Compute the negative partial derivative − ∂ρ
∂fk

and evaluate at

f̂ [m−1](Xi) =
(
f̂

[m−1]
1 (Xi), . . . , f̂

[m−1]
K (Xi)

)
, (2)

σ̂[m−1] =
(
σ̂

[m−1]
1 , . . . , σ̂

[m−1]
L

)
, i = 1, . . . , n. (3)

This yields the negative gradient vector

U
[m−1]
k =

(
U

[m−1]
i,k

)
i=1,...,n

:=

(
− ∂

∂fk
ρ
(
Yi, f̂

[m−1](Xi), σ̂
[m−1]

))
i=1,...,n

. (4)

(c) Fit the negative gradient vector U
[m−1]
k to each of the p components of X (i.e.,

to each predictor variable) separately by using p times the base-learner (regression
estimator) specified in step 2. This yields p vectors of predicted values, where each

vector is an estimate of the negative gradient vector U
[m−1]
k .

(d) Select the component of X which fits U
[m−1]
k best according to a pre-specified

goodness-of-fit criterion. Set Û
[m−1]
k equal to the fitted values from the corresponding

best model fitted in 4(c).

(e) Update f̂
[m−1]
k ← f̂

[m−1]
k + ν Û

[m−1]
k , where 0 < ν ≤ 1 is a real-valued step length

factor.

(f) For k = 2, . . . , K repeat steps 4(b) to 4(e). Update f̂ [m] ← f̂ [m−1].

5. (a) Set l = 0.

(b) Increase l by 1.
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(c) Plug f̂ [m] and σ̂
[m−1]
1 , . . . , σ̂

[m−1]
l−1 , σ̂

[m−1]
l+1 , . . . , σ̂

[m−1]
L into the empirical risk function∑n

i=1 ρ(Yi, f, σ) and minimize the empirical risk over σl. Set σ̂
[m−1]
l equal to the

newly obtained estimate of σl.

(d) For l = 2, . . . , L repeat steps 5(b) and 5(c). Update σ̂[m] ← σ̂[m−1].

6. Iterate Steps 3 to 5 until m = mstop for some stopping iteration mstop.

The above algorithm can be viewed as a combination of two classical techniques for statistical
model estimation, namely functional gradient descent (Friedman 2001) and backfitting (Hastie
and Tibshirani 1990). In fact, each component fk, k = 1, . . . , K, is updated by

1. using the current estimates of the other components f ∗1 , . . . , f
∗
k−1, f

∗
k+1, . . . , f

∗
K and

σ∗1, . . . , σ
∗
L as offset values (backfitting approach, see step 4(b)), and by

2. adding an estimate of the true negative partial derivative U
[m−1]
i,k to the current estimate

of f ∗k (gradient descent approach, see step 4(e)).

After having obtained an update of f̂ in step 4, the algorithm cycles through the components
of σ, where in each step of the cycle, an update of σl, l = 1, . . . , L, is obtained (step 5). This is
accomplished by minimizing the empirical risk (evaluated at the current estimates of the other
parameters f ∗ and σ∗1, . . . , σ

∗
l−1, σ

∗
l+1, . . . , σ

∗
L) numerically. A summary of the algorithm is given

in Figure 1.

The value of the stopping iteration mstop is the main tuning parameter of the algorithm. In the
literature it has been argued that boosting algorithms should generally not be run until conver-
gence. Otherwise, overfits resulting in suboptimal prediction rules are likely (see Bühlmann and
Hothorn 2007). In this paper, five-fold cross-validation will be used for determining the value
of mstop (i.e., mstop is the iteration with lowest predictive risk). The choice of the step length
factor ν has been shown to be of minor importance with respect to the predictive performance
of a boosting algorithm. The only requirement is that the value of ν is small (0 < ν ≤ 0.1),
such that a stagewise adaption of the true prediction function is possible (see Bühlmann and
Hothorn 2007, Schmid and Hothorn 2008a). In the following, a constant value of ν (= 0.1) will
be used. In step 4(d) of the algorithm we will use the R2 measure of explained variation as the

goodness-of-fit criterion (since the vectors U
[m−1]
k are measured on a continuous scale).

As outlined in Section 1, the algorithm combines model estimation with the selection of the
most relevant predictor variables. In steps 4(c) to 4(e), by using a regression estimator as the
base-learner, a structural relationship between Y and the set of predictors X is established.
Due to the additive structure of the update (step 4(e)), the final estimates of f ∗1 , . . . , f

∗
K at iter-

ation mstop are fits of an additive model but will depend only on a subset of the p components
of X. In each iteration, the algorithm selects the basis direction “closest” to the descent direc-
tion of the prediction function (step 4(d)). Since only one element of X is used for updating
the prediction function in step 4(e), the algorithm is applicable even if p > n. In this context,
the proposed algorithm can be interpreted as a “stagewise regression” technique, as given by
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Initialize: f̂
[0]
1 , . . . , f̂

[0]
K and σ̂

[0]
1 , . . . , σ̂

[0]
K with offset values.

for k = 1 to K do
Specify a base-learner for component fk.

end for
Evaluate:

for m = 1 to mstop do
for k = 1 to K do

(i) Compute− ∂ρ
∂fk

and evaluate at f̂ [m−1](Xi), σ̂
[m−1], i = 1, . . . , n. This yields U

[m−1]
k .

(ii) Fit U
[m−1]
k to each of the p components of X separately by using p times the

base-learner.
(iii) Select the component of X which fits U

[m−1]
k best. Set Û

[m−1]
k equal to the fitted

values from the best-fitting model.
(iv) Update f̂

[m−1]
k ← f̂

[m−1]
k + ν Û

[m−1]
k .

end for
Update f̂ [m] ← f̂ [m−1].
for l = 1 to L do

Plug f̂ [m] and σ̂
[m−1]
1 , . . . , σ̂

[m−1]
l−1 , σ̂

[m−1]
l+1 , . . . , σ̂

[m−1]
L into the empirical risk function

and minimize over σl. Set σ̂
[m−1]
l equal to the newly obtained estimate of σl.

end for
Update σ̂[m] ← σ̂[m−1].

end for

Figure 1: Gradient boosting with multidimensional prediction functions.

Efron et al. (2004). Note that the step length factor ν can be viewed as a regularization factor
used for shrinking the predictions f̂ [m].

It is easily seen that in case of a one-dimensional prediction function f ∗ ≡ f ∗1 and an empty
set of scale parameters, the boosting algorithm presented above reduces to the classical gra-
dient descent algorithm developed by Friedman (2001). Similarly, if f ∗ ≡ f ∗1 and σ∗ is one-
dimensional, the algorithm is a generalization of the model fitting approach developed by
Schmid and Hothorn (2008b) (where boosting was used for deriving parametric survival pre-
diction rules). In case of a multinomial logit model with K outcome categories, the conditional
probability of falling into category k is typically modeled via

P (Y = k|X) =
ef

∗
k (X)∑K

j=1 e
f∗j (X)

. (5)

Thus, by setting σ∗ equal to the empty set, the boosting algorithm introduced above can be
used for fitting the multiclass model defined by (5). If the negative multinomial log likelihood

ρmultinom(Y, f) =

−
n∑
i=1

[
log (n!)−

K∑
k=1

I (Yi = k) fk(Xi) + log

(
K∑
j=1

efj(Xi)

)]
(6)
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is used as the loss function, the new algorithm will give essentially the same result as the
multiclass method suggested by Friedman et al. (2000) and Hastie et al. (2003).

Finally, the boosting algorithm presented above can easily be modified such that the components
of f are restricted to depend on subsets χ1, . . . , χK ⊂ {X1, . . . ,Xp} only. Reducing the predictor
spaces in step 4 of the algorithm adds considerable flexibility to the boosting procedure, since
it allows for taking into account prior knowledge about the dependencies between f ∗k and Y .
A detailed example of this approach is given in Section 3.2.

3 Examples

3.1 Modeling nevus counts of preschool children

Nevus counts of children have been established as an important risk factor for malignant
melanoma occurring later in life (Gallagher et al. 1990). In 1999 and 2000, the CMONDE
Study Group (Uter et al. 2004, Pfahlberg et al. 2004) conducted a standardized skin assess-
ment of n = 3527 preschool children in the German town of Göttingen. Nevus counts were
collected in the course of a mandatory medical examination prior to school enrollment. Pre-
dictor variables in the data set included three continuous predictors (age, skin pigmentation,
body mass index) and five categorical predictors (sex, hair color, skin type, color of iris, degree
of freckling). The number of possible combinations of the categories was equal to 576.

In the following we will use the eight predictor variables for modeling expected nevus counts
of children. In order to construct accurate predictions of the nevus counts, identification of
relevant covariates is necessary. Also, given the fact that a relatively large number of categories
is involved in the modeling process, some sort of regularization (i.e., shrinkage) of the predic-
tion function is desirable. As pointed out earlier, the algorithm introduced in Section 2 is an
appropriate technique for addressing these issues.

We will compare the predictions obtained from boosting with four different loss functions, where
each loss function corresponds to a particular type of count data model:

1. Negative Poisson log likelihood loss. The most popular distribution used for modeling
count data is the Poisson distribution. In the generalized linear model (GLM) setting
(McCullagh and Nelder 1989), Poisson model estimates are obtained by maximizing the
conditional log likelihood

lPo(Y, f1) =
n∑
i=1

(
Yi log (f1(Xi))− log (Yi!)− f1(Xi)

)
(7)

over a one-dimensional prediction function f = f1 (where exp(f1(X)) corresponds to
the conditional expectation of the outcome variable Y given the predictors X). Since
maximum likelihood estimation tends to become unstable in the presence of a larger
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number of categorical predictors, we use the boosting algorithm introduced in Section 2
for obtaining estimates of the optimal prediction function f ∗. This is accomplished by
setting the loss function ρ equal to the negative Poisson log likelihood (7) and the set of
scale parameters σ equal to the empty set.

2. Negative NB log likelihood loss. The underlying assumptions of the Poisson model are
often too restrictive for capturing the full variability contained in a data set. A common
way to model over-dispersed data is to consider negative binomial (NB) regression models.
The log likelihood corresponding to the negative binomial model is given by

lNB(Y, f1, σ1) =
n∑
i=1

(
log [Γ(Yi + σ1)]− log (Yi!)− log [Γ(σ1)]

)
+

n∑
i=1

σ1 log

(
σ1

f1(Xi) + σ1

)
+

n∑
i=1

Yi log

(
f1(Xi)

f1(Xi) + σ1

)
, (8)

where f = f1 is a one-dimensional prediction function and σ = σ1 is a one-dimensional
scale parameter used for modeling the variance of Y . It is well known that λ :=
exp(f1(X)) corresponds to the conditional expectation of the outcome variable Y given
the predictors X, and that the conditional variance of Y |X is given by λ + λ2/σ1. The
log likelihood given in (8) reduces to a Poisson log likelihood as σ1 →∞. In the following
we will use the boosting algorithm introduced in Section 2 for obtaining estimates of the
optimal parameters f ∗1 and σ∗1. This is accomplished by setting ρ equal to the negative
NB log likelihood (8) and σ equal to the scale parameter σ1 in (8).

3. Negative zero-inflated Poisson log likelihood loss. Excessive amounts of zero counts, i.e.,
more zeros than expected in a Poisson or negative binomial model, are a common problem
associated with count data. In case of the CMONDE data, the fraction of zero nevus
counts is approximately 8.4%, which is about 25 times as much as the corresponding
fraction to be expected from the unconditional distribution of the nevus counts (0.337%).
In order to take this problem into account, we additionally fit a zero-inflated Poisson
model to the CMONDE data. The log likelihood of the zero-inflated Poisson model is
given by

lZIPo(Y, f1, f2) =
∑
i:Yi=0

(
ef1(Xi)

1 + ef1(Xi)
+

1

1 + ef1(Xi)
e−e

f2(Xi)

)
+
∑
i:Yi>0

log

(
1

1 + ef1(Xi)

)
+
∑
i:Yi>0

(
Yi · f2(Xi)− log (Yi!)− ef2(Xi)

)
, (9)
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where f1 is the predictor of the binomial logit model

P (Z = 0|X) =
ef1(X)

1 + ef1(X)
(10)

with a binary outcome variable Z ∈ {0, 1}, and f2 is the predictor of the Poisson model

P
(
Ỹ = k|X) =

ek·f2(X)

k!
ee

f2(X)

(11)

with a Poisson-distributed outcome variable Ỹ . It is easily seen from (9) to (11) that the
zero-inflated Poisson model is a mixture of a point mass at zero (accounting for an extra
amount of zeros) and a Poisson distribution. For details we refer to Hilbe (2007). Since
we want to regularize the estimates of both components of the prediction function, we
use the boosting algorithm introduced in Section 2. This is achieved by setting ρ equal to
the negative log likelihood (9) and f = (f1, f2). The set of scale parameters σ is set equal
to the empty set.

4. Negative zero-inflated NB log likelihood loss. In case of over-dispersed data, modeling
additional amounts of zero counts can be accomplished by using the zero-inflated negative
binomial model. The log likelihood of this model is given by

lZINB(Y, f1, f2, σ1) = −
n∑
i=1

log
(
1 + ef1(Xi)

)
+
∑
i:Yi=0

log

(
ef1(Xi) +

(
ef2(Xi) + σ1

σ1

)−σ1
)

−
∑
i:Yi>0

σ1 log

(
ef2(Xi) + σ1

σ1

)
+
∑
i:Yi>0

Yi log
(
1 + e−f2(Xi) · σ1

)
−
∑
i:Yi>0

(log (Γ(σ1)) + log (1 + Yi))

−
∑
i:Yi>0

log (σ1 + Yi) . (12)

Similar to the zero-inflated Poisson model, the zero-inflated negative binomial model is a
mixture of a point mass at zero (modeled by a binomial GLM) and a zero-inflated negative
binomial regression model. We apply the new boosting algorithm to the CMONDE data
by setting ρ equal to the negative log likelihood (12) and f = (f1, f2). The set of scale
parameters σ will be set equal to the scale parameter σ1 in (12).

In order to compare the four models described above, we carried out a benchmark study using
the CMONDE data. In a first step, the full data set was randomly split into 20 pairs of training
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samples and test samples. Each training sample contained 3175 observations, i.e., about 90% of
the data. In a next step, the boosting algorithm introduced in Section 2 was used to estimate
the parameters of the four count data models. As base-learners, simple linear regression models
were used, so that the components of f̂ are linear functions of the predictors. As a consequence of
this strategy, coefficient estimates were obtained for each predictor variable. For all components
of f , variables were selected from the full set of predictors (i.e., no restrictions were made to
the set of predictors at the beginning of the algorithm). In a last step, the prediction rules
obtained from the four models were evaluated by using the 20 test samples. All computations
were carried out with the R system for statistical computing (version 2.7.2, R Development
Core Team 2008) using a modification of the glmboost() function in package mboost (version
1.0-4, Hothorn et al. 2008). In order to determine the 20 values of the stopping iteration mstop,
we ran five-fold cross-validation on the training samples.

Since the negative versions of the log likelihood functions (7), (8), (9) and (12) are used as loss
functions for the respective boosting algorithms, it would be a natural approach to measure the
prediction accuracy of the boosting methods by computing the predictive log likelihood values
from the test samples. Since the functions (7), (8), (9) and (12) are measured on different
scales, however, using this approach would be unsuitable for comparing the four models. We
therefore used the Brier score (Brier 1950), which is a model-independent measure of prediction
accuracy. The Brier score is defined as the negative average squared distance between the
observed probabilities and the predicted probabilities of the outcome categories in the test
samples. Thus, since the count data models under consideration are characterized by equidistant
outcome categories, using the Brier score corresponds to using the integrated squared difference
of the estimated and observed c.d.f.’s of the test observations as a measure of prediction error.

More formally, the Brier score for test sample t, t ∈ {1, . . . , 20}, is defined as

BS t := − 1

nt

M∑
k=1

nt∑
i=1

(pikt − p̂ikt)2 , (13)

where nt is the number of observations in test sample t and M is the number of categories of
the outcome variable. Let Yit be the i-th realization of the outcome variable Y in test sample t.
Then the parameters pikt in (13) are defined as

pikt =

{
1 if Yit = k
0 otherwise

. (14)

The parameters pikt can be interpreted as the observed probability of category k given Xit

(where Xit denotes the i-th realization of the predictor variable X in test sample t). Similarly,
the predicted probabilities of category k given Xit (denoted by p̂ikt) are obtained by plugging
the estimates of f ∗ and σ∗ (computed from training sample t) into the likelihood functions
corresponding to test sample t. For computational reasons we define piMt := 1 −∑k≤M∗ pikt,
where M∗ is the largest outcome value observed in the data.

The Brier score can generally be used for assessing the quality of probabilistic forecasts. It is
an example of a so-called “proper” scoring rule, where “proper” means that the expectation
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of (13) is maximized if the predictions p̂ikt are computed from the true model with parameters f ∗

and σ∗. For details on proper scoring rules we refer to Gneiting and Raftery (2007). Generally, a
large value of the Brier score corresponds to a highly accurate prediction rule (and vice versa).

In Figure 2, boxplots of the Brier score values computed from the 20 test samples of the
CMONDE data are shown. Obviously, the Brier score values corresponding to the Poisson
model are smallest on average, indicating that not all of the variability contained in the data
is captured by the Poisson distribution. It can also be seen from Figure 2 that introducing
a scale parameter for modeling overdispersion, i.e., using a negative binomial model, leads to
improved predictions. On the other hand, the prediction accuracy of the negative binomial
model is substantially higher than the accuracy of the zero-inflated Poisson model. Similarly, if
compared to the negative binomial model, the zero-inflated negative binomial model does not
seem to lead to an additional increase in predictive power. This result is confirmed by the Vuong
test (p = 0.112), suggesting that there is no significant difference between the negative binomial
model and its zero-inflated extension (cf. Greene 1994). For this reason, and also because of its
simpler structure, we suggest to use the negative binomial model for predicting nevus counts.
(Note, however, that the Vuong statistic cannot be interpreted strictly in this context, as the
estimates of f ∗ and σ∗ are not the maximum likelihood estimates.)
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Figure 2: Predictive Brier score values computed from the 20 test samples of the CMONDE data
(Po = Poisson model, ZIPo = zero-inflated Poisson model, NB = negative binomial model, ZINB
= zero inflated negative binomial model). Obviously, the negative binomial models perform
better than the Poisson models, indicating that overdispersion is present in the CMONDE
data.



13

The coefficient estimates of the negative binomial model (computed from the full data set) are
shown in Table 1. When comparing the directions of the estimates to the results published by
the CMONDE study group, it becomes obvious that the original results (Pfahlberg et al. 2004)
are supported by the boosting estimates. For example, children with blonde hair tend to have
substantially more nevi than children with black hair. Also, the number of facial freckles is
positively correlated with the number of nevi, where male children have significantly more nevi
(on average) than female children. A detailed description of the variables contained in Table 1
and their effect on nevus counts can be found in Pfahlberg et al. (2004).

Predictor Est. Coefficient 95% CI
Intercept -0.14068 [-0.51618 , -0.07116]
sex (male) 0.00000
sex (female) -0.14582 [-0.17535 , -0.06107]
hair color (blonde) 0.00000
hair color (brown) 0.01013 [-0.04855 , 0.04980]
hair color (red) -0.46247 [-1.11221 , -0.40183]
hair color (black) -0.71926 [-0.81337 , -0.48059]
Fitzpatrick skin type (I) 0.00000
Fitzpatrick skin type (II) 0.23245 [ 0.11955 , 0.44403]
Fitzpatrick skin type (III) 0.16916 [ 0.06052 , 0.36555]
Fitzpatrick skin type (IV) 0.05135 [-0.05836 , 0.26312]
color of iris (blue) 0.00000
color of iris (dark brown) -0.40879 [-0.50766 , -0.27041]
color of iris (green-blue) -0.14020 [-0.21713 , -0.01745]
color of iris (green-brown) -0.09826 [-0.19544 , -0.03328]
color of iris (light blue) -0.01592 [-0.14156 , 0.08361]
color of iris (light brown) -0.22140 [-0.30272 , -0.15544]
facial freckles (none) 0.00000
facial freckles (few) 0.14717 [ 0.08570 , 0.20098]
facial freckles (many) 0.27431 [ 0.13412 , 0.49588]
skin pigmentation
(reflectance in percent at 650 nm) 0.01524 [ 0.00493 , 0.03437]
age in years 0.11097 [ 0.02410 , 0.19061]
body mass index in kg/m2 0.03901 [ 0.01759 , 0.05234]
σ̂ 1.94294 [ 1.76163 , 1.98270]

Table 1: Boosting coefficient estimates obtained from the CMONDE data (negative binomial
model). The 95% confidence intervals were computed from 50 bootstrap samples. Skin type was
determined by using the categories proposed by Fitzpatrick (Fitzpatrick 1988). Skin pigmenta-
tion was quantified with remission photometry, i.e., small reflectance measurements correspond
to a highly pigmented skin.
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3.2 Breast cancer gene expression data

In this section we will re-analyze a breast cancer data set collected by the Netherlands Cancer
Institute (van’t Veer et al. 2002, van de Vijver et al. 2002). Based on n = 295 patients and the
expressions of 70 genes, van’t Veer et al. (2002) proposed a signature for prediction of metastasis-
free survival in breast cancer. In addition to gene expression measurements, the data contained
nine clinical covariates (such as age and tumor diameter), which are well-established predictors
of metastasis-free survival. It is therefore desirable to construct a combined predictor that makes
use of both the gene expression data and the clinical covariates. A particularly important issue
in this context is that using clinical covariates for prediction is often mandatory for practical
and conceptual reasons. For reasons of interpretability, sparse models are desired, so that only
a small number of genes should contribute to the combined predictor. We therefore want to
construct a predictor depending on a small number of genes but with a mandatory inclusion of
all clinical covariates.

In the following we will use the boosting algorithm introduced in Section 2 to address this
problem. We define the prediction function f ∗ as follows:

f ∗ = (f ∗1 , . . . , f
∗
K) := f ∗1 + · · ·+ f ∗K . (15)

The components f ∗1 , . . . , f
∗
K−1 in (15) correspond to the effects of the clinical covariates, while

the component f ∗K corresponds to the effect of the gene expression measurements. In case of the
breast cancer data, there are nine clinical covariates X1, . . . ,X9, i.e., f ∗ depends on K = 10
components. Having defined the prediction function, we restrict the components f ∗1 , . . . , f

∗
9 to

depend on the “single covariate” sets χ1 := {X1}, . . . , χ9 := {X9}, respectively. Similarly,
the component f ∗10 is restricted to depend on the set χ10 := {X10, . . . ,X79} corresponding to
the 70 gene expression measurements proposed by van’t Veer et al. (2002). In other words, the
definition of the sets χ1, . . . , χ9 leads to mandatory updates of the clinical components f ∗1 , . . . , f

∗
9

in each iteration of the boosting algorithm. In contrast, the component f ∗10 corresponding to the
gene expression data is updated by selecting only one gene in each iteration. As a consequence,
the model fit will depend on all clinical covariates but only on a small number of genes.

As a loss function we use the negative partial log likelihood function of a Cox proportional
hazards model. Thus, if simple linear regression models are used as base-learners, the final
boosting estimate f̂ can be interpreted as the linear predictor of the a Cox model (Ridgeway
1999). Note that fitting Cox models to gene expression data is a well-established approach,
which has been applied to the breast cancer data before (see van Houwelingen et al. 2006).

In order to compare the predictive accuracy of the combined predictor with other types of
predictors, we carried out a benchmark study using the breast cancer data. In a first step,
the full data set was randomly split into 20 pairs of training samples and test samples. In
contrast to the CMONDE data discussed in Section 3.1, we decreased the size of the training
sets to two thirds of the data (197 observations). This strategy lead to an increased number of
observations in the test samples, thus assuring that reliable estimates of the prediction error
could be computed. In a next step, three estimation techniques were applied to the training
samples:
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(a) boosting with a mandatory inclusion of the clinical predictors (as described above),

(b) boosting with the set of gene expression measurements χ10 only,

(c) a Cox proportional hazards model with the clinical predictors X1, . . . ,X9 only.

In other words, we compared the combined predictor to the predictor based on the gene expres-
sion data only (method (b)) and the predictor based on the clinical data only (method (c)). As
base-learners, simple linear regression models were used.

In order to evaluate the prediction rules obtained from the training samples, we used the
predictive partial log likelihood values computed from the test samples. Using this approach
for comparing the three estimation techniques is an appropriate strategy, since the same loss
function (namely the negative partial log likelihood function) is used for all three techniques.
Therefore, for each technique, the predictive partial log likelihood values are measured on the
same scale.

Figure 3 shows boxplots of the average partial log likelihood values obtained from the 20 test
samples of the breast cancer data. Both the combined predictor and the predictor based on
the gene expression data seem to perform better than predictor based on the clinical data
only. On the other hand, the average difference between the predictions obtained from the
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Figure 3: Average predictive partial log likelihood values computed from the 20 test samples of
the breast cancer data. The prediction accuracy of the combined predictor is similar to that of
the gene-based predictor. Both the combined predictor and the gene-based predictor result in
more accurate predictions than the predictor using the clinical data only.
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combined predictor and the predictions obtained from the gene-based predictor seems to be
small. However, the variance of the predictive partial log likelihood values obtained from the
combined predictor is somewhat smaller than that of the gene-based predictor. These results
suggest that in case of the breast cancer data, using gene expression measurements leads to
more accurate predictions than using clinical data only. However, the predictive accuracy of
the gene-based predictor can only be slightly improved if a combination of the clinical data and
the gene expression data is used.

This conclusion is further confirmed if, for the full data set, the values of the estimated prediction
function f̂(Xi) are split into a “low-risk” group, a “medium-risk” group and a “high-risk” group.
Kaplan-Meier estimates of the survival curves corresponding to the three groups are shown in
Figure 4. Obviously, the combined predictor performs better than the clinical predictor with
respect to separating the three risk groups. On the other hand, the differences between the
Kaplan-Meier estimates corresponding to the combined predictor and the gene-based predictor
are small.
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Figure 4: Kaplan-Meier estimates of the three risk groups, as computed from the full breast
cancer data set. Conditional inference survival trees were used to determine the split points for
the estimated prediction function f̂ (see Hothorn et al. 2006). In the left panel, the predictor
based on the clinical data (grey lines) is compared to the predictor based on both the clinical
data and the gene expression data (black lines). Obviously, the combined predictor improves
the separation of groups with different mortality levels, at least within a time range of [0, 10]
years. In the right panel, the predictor based on the gene expression data only (grey lines) is
compared to the predictor based on both the clinical data and the gene expression data (black
lines). Obviously, if compared to the gene-based predictor, the combined predictor only leads
to a slightly improved separation of groups with different mortality levels.
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4 Conclusion

Originally developed as a machine learning technique for predicting binary outcomes (Freund
and Schapire 1997), boosting has gained considerable attention in the statistical community
over that last years. Most notably, by showing that the original boosting algorithm for binary
classification can be interpreted as a gradient descent technique for minimizing arbitrary loss
functions, Breiman (1998, 1999) has laid the foundations for applying boosting algorithms to
a wide class of statistical estimation problems. Later, by introducing the “statistical view” of
boosting, Friedman et al. (2000) have established boosting as a tool for fitting general types of
regression models.

In this paper we have extended the gradient descent approach of Friedman (2001) by con-
structing a boosting algorithm for regression models with multidimensional prediction func-
tions. Instead of descending the gradient in one direction only, the algorithm introduced in
this paper successively computes the partial derivatives of the components of the prediction
function. Updates of a component of the prediction function are then computed by using the
current values of the other components as offset values. The new algorithm can therefore be
viewed as a combination of the original gradient boosting approach and the backfitting idea
introduced by Hastie and Tibshirani (1990). Most important, the regularization concept of the
original boosting approach carries over to the new multi-dimensional algorithm. As a result, the
algorithm introduced in this paper is particularly useful for analyzing high-dimensional data
(where selecting a moderate number of relevant predictors is often a key problem).

As demonstrated in Section 3, the algorithm proved to work well in two important statis-
tical modeling situations, namely count data models and survival predictions based on gene
expression data. Concerning count data models, we found that boosting is a suitable tech-
nique for fitting negative binomial models and zero-inflated count data models (involving a
two-dimensional prediction function and the estimation of a dispersion parameter). Apart from
the models considered in this paper, the algorithm can easily be used to fit other popular types
of count data models, such as the Hurdle model (Mullahy 1986) or the generalized Poisson
distribution (Consul and Jain 1973). Fitting these models to the CMONDE data did not lead
to an improvement in predictive accuracy (if compared to the negative binomial model).

The problem of including mandatory clinical covariates into survival predictions based on gene
expression data has first been investigated by Binder and Schumacher (2008). Instead of updat-
ing each clinical covariate separately, the authors constructed a boosting algorithm which, in
each iteration, computes a simultaneous update of all clinical covariates. Afterwards, the best
fitting predictor is selected out of the set of gene expression data in each iteration. Instead of
shrinking the estimates (with a step length factor ν < 1), Binder and Schumacher (2008) used
one-step Fisher scoring and a penalized base-learning procedure for the gene expression data.
An alternative strategy, which is similar to the one used in this paper, has been suggested by
Bühlmann and Hothorn (2007), Section 7.3. With this strategy, the prediction function cor-
responding to the clinical covariates is first estimated by using a classical regression model.
Afterwards, the predicted values of this model are used as offset values for a gradient boost-
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ing algorithm with the gene expression data only. A disadvantage of this two-step approach is
that the multivariate structure between the clinical covariates and the genes may not be fully
explored. In contrast, the method presented in this paper uses an a priori restriction of the
subsets of predictor variables, thus constituting a natural example of the more general boosting
framework introduced in Section 2 of this paper. Furthermore, by using a shrinkage factor ν
instead of working with Fisher scoring and penalized base-learners, the algorithm presented in
this paper is more similar to the classical forward stagewise idea (Efron et al. 2004) than the
algorithm developed by Binder and Schumacher (2008).

A different approach to modeling the breast cancer data would be to use Cox models with a
ridge penalty, as suggested by van Houwelingen et al. (2006). This approach, however, does
not allow for selecting the most relevant predictor variables but instead results in (shrunken)
coefficient estimates for all 70 genes. Since a major focus of this paper is on variable selection
(leading to sparse model fits with a good interpretability), we did not consider ridge regression
methods.

In addition to the application examples presented in Section 3, the proposed algorithm is gen-
erally suitable for solving a wide class of estimation problems with multidimensional prediction
functions. In particular, boosting constitutes a natural approach to estimating the parameters
of (identifiable) finite mixture models, where, in addition to the regression parameters, the
class probabilities of a fixed number of latent categories have to be estimated. (Note that the
zero-inflated count data models considered in Section 3.1 are special cases of finite mixture
models.) Furthermore, the algorithm can easily be modified such that different types of base-
learners can be applied to different components of the prediction function. For example, one
could use smooth base-learners for modeling the first component of the prediction function, tree
base-learners for modeling the second component, linear base-learners for modeling the third
component, etc. Similarly, by using two-dimensional base-learners, interaction terms between
the covariates can be included into the prediction function. In addition, instead of updating scale
parameters by numerical optimization, it is possible to regress them on a (possibly restricted)
set of covariates. This can easily be accomplished by treating the (sub)set of scale parameters as
an ordinary component of the prediction function, i.e., by modeling the scale parameter(s) via
the same base-learning procedures as used for the prediction function. In this regard, boosting
with multidimensional prediction functions constitutes a highly flexible approach to statistical
model estimation.
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