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Abstract

Machine Learning methods have of late made sig-
nificant efforts to solving multidisciplinary prob-
lems in the field of cancer classification using mi-
croarray gene expression data. Feature subset se-
lection methods can play an important role in the
modeling process, since these tasks are character-
ized by a large number of features and a few obser-
vations, making the modeling a non-trivial under-
taking.

In this particular scenario, it is extremely im-
portant to select genes by taking into account the
possible interactions with other gene subsets. This
paper shows that, by accumulating the evidence in
favour (or against) each gene along the search pro-
cess, the obtained gene subsets may constitute bet-
ter solutions, either in terms of predictive accuracy
or gene size, or in both. The proposed technique
is extremely simple and applicable at a negligible
overhead in cost.

1 Introduction

In the last years research in feature subset selec-
tion (FSS) has become a hot topic, boosted by
the introduction of new application domains and
the growth of the number of features involved
[Liu and Motoda, 1998]. An example of these new
domains is web page categorization, a domain cur-

∗A shorter version of this paper appeared in the Procs.
of the 19th European Conference on Artificial Intelligence
(ECAI 2010).
†Corresponding author.

rently of much interest for internet search en-
gines where thousands of terms can be found in
a document. Another example is found in can-
cer classification by gene expression using DNA
microarrays, a domain where Machine Learning
methods are now extensively used for this task
[Duan et al., 2005]. Problems with many features
and a limited number of observations are also very
common in molecule classification or medical diag-
nosis, among others.

The selection of a new feature (either to be re-
moved or added to the current set) involves the
evaluation of many models. These models typ-
ically consist of the addition (deletion) of one
feature to (from) the current set. In wrapper
methods, an inducer is called to build tempo-
rary solutions and return their evaluation using
some resampling method (e.g. cross-validation)
[Kohavi and John, 1997].

In the standard procedure, only the best such
model evaluation is considered for selecting which
feature should removed or added, and the remain-
ing evaluations are readily discarded. Yet there is
valuable information in the discarded evaluations:
the very many evaluated subsets contain informa-
tion on the relevance of the features that belong to
the subset; this relevance does not depend on the
subset being selected or not. When an inducer is
requested to estimate the predictive accuracy of a
model using a given feature subset within a wrap-
per strategy, no indication is given on which fea-
ture is the most recent addition (or deletion): the
inducer just sees a feature subset which has to be
evaluated as a whole.

Since the most difficult part of a FSS process is
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to evaluate the interactions between features, the
accumulated evaluation of a feature in diverse con-
texts should account for many of these interactions,
and ultimately provide with a more informed esti-
mation of usefulness for the chosen inducer. The
different contexts of a particular feature x are given
by all those subsets which are being evaluated along
the search process (not necessarily to assess the in-
fluence of x, as noted above), either containing or
not containing x.

Our idea is to accumulate the inducer evalua-
tions as a rich source of information. This informa-
tion can then be used in conventional existing algo-
rithms, such as the well-known forward or backward
selection. This idea can be applied to any sequen-
tial search algorithm and any inducer and, as shown
below, at a negligible extra cost.

In this paper we present experimental results
showing good performance in a suite of bench-
mark microarray problems. The proposed modifi-
cation always achieves improvements when applied
to standard backward selection, either in the esti-
mated predictive accuracy, in the size of the deliv-
ered gene subsets, or in both.

2 Accumulated Evidence in
Feature Subset Selection

2.1 Preliminaries

It is common to see feature subset selection (FSS)
in a set Y of size n as an search problem where
the search space is the power set of Y , P(Y )
[Langley, 1994]. Each state in the search space cor-
responds to a subset of features. Exhaustive search
is usually intractable, and methods to explore the
search space efficiently must be employed. These
methods are often divided into two main categories:
filter methods and subset selection methods. A ma-
jor disadvantage of filter methods is that they are
performed independently of the classifier, and the
same set of features need not be optimal for dif-
ferent classifiers. Most filter methods disregard the
dependencies between features, as each feature is
considered in isolation.

Without loss of generality, it can be assumed that
the evaluation measure J : P(Y )→ R+ ∪ {0} is to
be maximized. In this setting, the problem is to
find the optimal subset X ∈ P (Y ) as the one max-

imizing J . The evaluation measure maybe inducer-
independent (as in filter methods) or may be the
same inducer being used to solve the task (as in
wrapper methods). In either case, we will refer to
JL(X) as the usefulness of X ⊆ Y estimated using
the inducer L. Since the inducer evaluation in a
sample varies depending on the resampling method
used, we prefer to use the notation JL(X) instead
of simply L(X) to express such evaluation.

In the literature, several suboptimal algorithms
have been proposed for doing this. Among them,
a wide family is formed by those algorithms which,
departing from an initial solution, iteratively add or
delete features by locally optimizing the objective
function. The search starts with an arbitrary set
of features (e.g. the full set or the empty set) and
moves iteratively to neighbor solutions by adding
or removing features. Among the most used algo-
rithms for this problem are the sequential forward
generation (SFG) and sequential backward genera-
tion (SBG), their generalization plus l - take away
r or PTA(l, r) [Stearns, 1976] 1 or the floating
search methods [Pudil et al., 1994]. These latter
algorithms work by combining SFG and SBG steps.

2.2 Accumulated evidence and fea-
ture relevance

The idea consists on accumulating the evidence in
favor or against a feature, taking into account its
history of evaluations alongside different feature
subsets. A further explanation can be to extract
the most of every subset evaluation, normally the
most costly part of a FSS process.

Let Yx = {X ∈ P(Y )|x ∈ X} be the set of all fea-
ture subsets of the initial set that contain a certain
feature x (note that |Yx| = 2n−1 for all x ∈ Y ).

Let L+
x and L−x be the average evaluation of all

subsets containing and not containing x:

L+
x =

1

2n−1

∑
X∈Yx

JL(X)

L−x =
1

2n−1

∑
X 6∈Yx

JL(X)

Given an inducer L (either filter or wrapper) de-
fine, for a given feature x ∈ Y , the relevance of x
as:

1SFG is PTA(1,0) and SBG is PTA(0,1).
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RL(x) = L+
x − L−x (1)

The above definition can be more compactly ex-
pressed as:

RL(x) =
1

2n−1

∑
X 6∈Yx

JL(X ∪ {x})− JL(X)

(2)

Remark 1. Defining feature relevance with ex-
pression (2) is very attractive, since it captures fea-
ture interactions in all possible ways. We take the
freedom of presenting an informal but hopefully il-
lustrative analogy of what this measure captures.
Imagine we are willing to evaluate the average in-
fluence of a basketball player on a team scoring: we
can compute the difference in points that the team
scores with and without this player, no matter what
other players are playing in the player’s team. If
this difference is positive, then we can conclude that
this players accomplishments are positive for the
team; otherwise we conclude that we should bet-
ter sell the player at the best possible price! Note
that in this example, only subsets X of size 4 are
considered and Y \X is the bench2.

Remark 2. Full evaluation of expression (2)
has an exponential cost in n, making it unfeasi-
ble for most practical applications; an estimation
is therefore mandatory via Monte Carlo techniques,
generating feature subsets randomly from a precise
probability distribution determined by the FSS al-
gorithm being used. Oddly, although RL(x) takes
into account all possible feature interactions, by
its very nature it does not capture redundancy:
two identical features will have the same relevance.
This is true even by making JL cope with redun-
dancy. However, since a search algorithm will im-
pose an order on the evaluated feature subsets, the
current state can be used to ascertain redundancy,
as will be shown below.

The above expressions can be conveniently gen-
eralized by considering a weighing function w:

RwL(x) =

∑
X 6∈Yx

JL(X ∪ {x})− JL(x)
wx(X)∑

X 6∈Yx

wx(X)

(3)

2Incidentally, this way of ranking players (together with
rebounds, assists, etc) is used in the NBA.

For example, the choice wx(X) = |X|/|Y | =
|X|/n gives more importance to improvements in
JL achieved in a scenario with already many fea-
tures (improving performance in such a case has
a certain merit); alternatively, one could choose
wx(X) = JL(X); this choice expresses the belief
that an improved performance when JL(X) is al-
ready high should be rewarded, and less so when
it is low (it has a much lower merit). Many al-
ternatives are possible and the best one (if such
choice exists at all) is at the moment an open ques-
tion. Note that eq. (3) reduces to eq. (1) when
wx(X) = 1 for all x.

In the following, we present a practical method
to approximate this measure of relevance and inte-
grate it in a SBG search algorithm at no additional
cost. The idea consists on accumulating the evi-
dence in favor or against a feature by taking into
account the history of evaluations throughout the
search process.

2.3 Practical computation of the ac-
cumulated evidence

Let Xk denote the current set, where |Xk| = k,
for notational simplicity (thus X0 = ∅ and Xn =
Y ); let Xn−k be the set of features not in Xk, i.e.
Xn−k = Y \ Xk. Assume first we are in front of
performing a forward step. Given Xk, in a classical
SFG, the set

{
JL(Xk ∪ {x}) | x ∈ Xn−k

}
is computed (4)

and the feature x′ = arg max
x∈Xn−k

JL(Xk ∪ {x}) is se-

lected. However, all the remaining information:

{
JL(Xk ∪ {x}) | x ∈ Xn−k, x 6= x′

}
is discarded,

(5)
yet sometime in the future these individual fea-

tures x (and eventually x′ itself) will be considered
again for inclusion or exclusion from the current set
in forward or backward steps, respectively.

Conversely, in a backward step the search algo-
rithm is going to evaluate a feature x for possible
exclusion from Xn−k in such a way that the set

{
JL(Xn−k \ {x}) | x ∈ Xn−k

}
is computed (6)
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and the feature x′ = arg max
x∈Xn−k

JL(Xn−k \ {x}) is

selected for removal. Again, the information:

{
JL(Xn−k \ {x}) | x ∈ Xn−k, x 6= x′

}
is discarded.

(7)
Yet, sometime in the future these individual fea-

tures x (and eventually x′ itself) will be considered
again for inclusion or exclusion from the current set
in forward or backward steps, respectively. Rea-
soning in more general terms, the search algorithm
always evaluates a feature x for possible inclusion
in (or exclusion from) the current subset using in-
formation about x.

Now let PL denote the set of feature subsets that
the search algorithm has evaluated so far (imply-
ing a call to L). Let PL|x = {X ∈ PL|x ∈ X}.
For every x ∈ Y , define the accumulated evalua-
tions (or simply accumulators) as the Monte Carlo
estimations:

L̂+
x =

∑
X∈PL|x

JL(X)wx(X)∑
X∈PL|x

wx(X)
(8)

L̂−x =

∑
X 6∈PL|x

JL(X)wx(X)∑
X 6∈PL|x

wx(X)
(9)

which are approximations to the weighted ver-
sions of L+

x and L−x , respectively. These two
approximated values depend on the search algo-
rithm, which determines the strategy to traverse
the search space. Different FSS algorithms (such
as SFG or SBG) provide different traces of eval-
uated subsets at any given number of algorithmic
steps. In these conditions, the impact of the con-
sidered feature in the current subset X can be used
to ascertain redundancy and make it influence the
search, by modullating the effect of the accumu-
lated evaluations. Consider now, for λ ∈ [0, 1],

R̂wL(x) =
λ

2
(L̂+

x − L̂−x + 1) + (1− λ)ĴL(x), (10)

where ĴL(x) = JL(X \ {x}) in a backward step
(the effect of removing x from X) and ĴL(x) =
JL(X ∪{x}) in a forward step (the effect of adding

x to X) and λ is a free parameter. This scheme gen-
eralizes conventional forward and backward steps
(as used by SFG, SBG or any other sequential al-
gorithm) in two ways:

1. By setting λ = 0, the conventional forward
and backward steps are recovered and both
relevance and redundancy are evaluated using
ĴL(x). By setting λ = 1, a pure arithmetic
average between L̂+

x and 1− L̂−x is computed.

For other values of λ, the search history makes
an influence on the search itself, conditioning
the selection of features. In this case, only a
1− λ fraction of the importance is assigned to
the current subset evaluation.

2. The search history itself is formed by all known
contexts in which the considered feature could
appear or not (and not only by previous eval-
uations of the feature), thus conforming a
broader picture of its true relevance.

Example. Consider the following feature subset
mask (n = 20) for a current feature subset X8 ⊂ Y
where the i-th index is 1 when feature xi ∈ X8 and
0 otherwise:

10010010001010100101

signaling the presence of features number 1, 4, 7,
etc. An evaluation JL(X) of this subset is indeed
expressing how good is to have the first feature but
not the second or the third, also how good is to
have the seventh feature but not the one before the
last, and so forth. For this reason, all the features
in Y (and not only those in X) should have their
accumulators updated every time.

3 A practical algorithm

We illustrate the approach on the popular SBG
search algorithm (Algorithm 1) and give a prac-
tical implementation of the previous ideas for it
(SBG+, Algorithm 2). In addition, for simplic-
ity of presentation, we fix wx(X) = 1. In this case,
normalization simply amounts to a division by the
number of performed accumulations. The initial-
ization of the accumulated relevances is 0 for all
x ∈ Y . The results are first accumulated and then
used; for this reason, even in the first algorithmic
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step (the first discarded feature) the behavior of
both algorithms may start to diverge. At the end of
the FSS process, n+x (resp. n−x ) will be the number
of times that a feature subset (resp. not) containing
x has been evaluated. Note that the computation is
done at a negligible overhead in cost; this is due to
the fact that the inducer is called exactly the same
number of times for SBG than for the accumulated
counterpart SBG+.

Algorithm 1 SBG (inducer L, feature set Y )

1: Xn ← Y
2: k ← 0
3: repeat
4: for all x ∈ Xn−k do

5: compute the set
{
JL(Xn−k \ {x})

}
6: end for
7: x′ ← arg max

x∈Xn−k

JL(Xn−k \ {x})

8: Xn−k ← Xn−k \ {x′}
9: k ← k + 1

10: until k = n
11: return arg max

k=1÷n
JL(Xk)

4 Experimental work

Experimental work is now presented in order to
assess the described modifications using two se-
quential algorithms: SBG and its accumulated
counterpart SBG+. The algorithms were imple-
mented using the R language for statistical com-
puting [R Development Core Team, 2008].

5 Experimental settings

Each full experiment consists of an outer loop of
5x2-cross-validation (5x2cv) for model selection,
as proposed by several authors [Dietterich, 1998,
Alpaydin, 1999]. This procedure performs 5 repeti-
tions of a 2-fold cross-validation. It keeps half of the
examples out of the feature selection process and
uses them as a test set to evaluate the final quality
of the selected features. For every fold and repeti-
tion of the outer cross-validation loop, two feature
selection processes are conducted with the same ex-
amples, one with the original algorithm (SBG) and

Algorithm 2 SBG+ (inducer L, feature set Y , λ ∈
[0, 1])

1: Xn ← Y
2: k ← 0
3: {Initialize accumulators and counters}
4: ∀x ∈ Y, L̂+

x ← L̂−x ← 0
5: ∀x ∈ Y, n+

x ← n−x ← 0
6: repeat
7: for all x ∈ Xn−k do

8: compute the set
{
JL(Xn−k \ {x})

}
9: end for

10: {Update accumulators and counters}
11: for all x ∈ Y do
12: if x ∈ Xn−k then
13: L̂+

x ← L̂+
x +

∑
y∈Xn−k\{x}

JL(Xn−k \ {y})

14: n+x ← n+x + 1
15: else
16: L̂−x ← L̂−x + JL(Xn−k \ {x})
17: n−x ← n−x + 1
18: end if
19: end for
20: x′ ← arg max

x∈Xn−k

{
λ
2 (L̂+

x /n
+
x − L̂−x /n−x + 1)

21: +(1− λ)ĴL(Xn−k \ {x})
}

22: Xn−k ← Xn−k \ {x′}
23: k ← k + 1
24: until k = n
25: return arg max

k=1÷n
JL(Xk)
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one with the accumulated version (SBG+).
Each feature selection iteration uses the

1-nearest-neighbor learner implementation in
[Venables and Ripley, 2002] (which uses Euclidean
distance), linear discriminant analysis (LDA)
and the Support Vector Machine with radial
kernel (SVMr). The parameters of the SVM (the
regularization constant or cost and the kernel
width) are kept fixed to their default values in all
the experiments, since we are only interested in
the influence that different feature subsets have on
the modelling3.

The evaluation of these inducers is resampled in
a second (inner) 5x2cv loop for a more informed
estimation of usefulness. In all cases, stratification
is used to keep the same proportion of class labels
across the partitioned sets. After some preliminary
experiments, we set λ = 2

3 in expression (10). It
is very important to mention that there is no stop-
ping criterion in the algorithms: the two backward
methods run until all the features have been re-
moved. Then the best subset in the obtained se-
quence of subsets is returned. This setting avoids
the specification of an a priori size for the solution.
It also eliminates the possibility that the accumu-
lated algorithm performs differently simply because
it merely influences the stopping point.

Once the best feature subset is found (a different
one in every outer loop), this subset is evaluated in
the corresponding test set. The final test error (the
one reported) is the mean of these 10 values.

5.1 Benchmarking microarray data
sets

In a microarray gene expression context, there is
a wide spectrum of FSS algorithms. Commonly
found methods fall into the filter category: a list
of the top-ranked genes based on some inducer-free
figure of merit is generated, followed by and induc-
tive process where a classifier is incrementally eval-
uated [Ruiz et al., 2006]. This constitutes a fast
and low complexity approach. However, consid-
ering individual contributions only can hinder the
discovery of possible interactions between genes.

Many authors have claimed that the wrap-
per approach, if affordable, is preferable to

3These values are 1 for the cost parameter and the inverse
of the number of features for the smoothing parameter in the
kernel.

the filter approach (e.g. [Liu and Motoda, 1998,
Kohavi and John, 1997]). It is therefore of the
greatest importance to take the most of every eval-
uation of the inducer, which is normally the more
costly part.

Validation of the described approach uses five
public-domain microarray gene expression data
sets, shortly described as follows:

1. Colon Tumor : Used originally by
[Alon et al., 1999], it consists of 62 sam-
ples of colon tissue, of which 40 are tumorous
and 22 normal, and contains 2,000 genes.

2. Leukemia: Used first by [Golub et al., 1999],
the training set consisted originally of 38 bone
marrow examples (plus a further test set with
34 examples). This set of examples has been
merged to form a data sample of 72 examples,
which are described by 7,129 probes: 6,817 hu-
man genes and 312 control genes. The goal is
to tell acute myeloid leukemia from acute lym-
phoblastic leukemia.

3. Lung Cancer : Studied by
[Gordon et al., 2002], the problem con-
sists in distinguishing between malignant
pleural mesothelioma and adenocarcinoma of
the lung. There are 181 examples available,
described by 12,533 genes.

4. Prostate Cancer : This data set was used by
[Singh et al., 2002] to analyze differences in
pathological features of prostate cancer and to
identify genes that might anticipate its clinical
behavior. There are 181 examples and 12,600
genes.

5. Breast Cancer : [Veer et al., 2002] studied 97
patients with primary invasive breast carci-
noma; 24,481 genes were analyzed.

These problems are hard for several reasons, in
particular the sparsity of the data, the high dimen-
sionality of the feature (gene) space, and the fact
that very many features (the genes) are irrelevant
or redundant. In these situations, performing fea-
ture selection is at best a delicate task that entails
a very high risk of overfitting, even when the full
set features has been preprocessed to lower the di-
mensionality of the problem.
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We made a preliminary selection of genes on the
basis of the ratio of their between-groups to within-
groups sum of squares, as in other approaches, to
make a wrapper approach computationally feasi-
ble [Dudoit et al., 2002]. In this work, the top 200
genes for each dataset were selected as the source
of study. It is important to stress that there has
been little effort to find the best models among
those represented by the considered inducers: in
other words, nearest-neighbors is limited to just one
neighbour and the SVM parameters have been set
to their default values. All the effort is devoted to
find good feature subsets and to compare the two
search algorithms in similar experimental circum-
stances.

For comparative purposes, performance results
using the whole set of features and the reduced
subset of 200 features are displayed in Table 1. In
view of these results, it is clear that these subsets
constitute a very good departing point for further
analysis with wrapper methods.

1NN LDA SVMr

Problem Y X200 Y X200 Y X200

Colon Tumor 23.9 23.2 24.8 20.0 31.0 14.8
Leukemia 9.7 8.3 14.1 3.1 26.7 2.8

Lung Cancer 1.8 2.0 N/A 1.8 4.4 1.0
Prostate Cancer 23.4 19.1 N/A 25.5 38.2 26.9

Breast Cancer 45.1 27.7 N/A 24.5 48.3 24.1

Table 1: Average test error (in %) for the different
inducers in the preprocessing phase. Y : using the
full set of genes; X200: using the top pre-selected
200 genes; N/A: computation unaffordable due to
numerical inaccuracies in LDA.

1NN LDA SVMr

Problem SBG+SBG SBG+SBG SBG+SBG

Colon Tumor 18.1 20.0 19.0 22.2 18.1 18.7
Leukemia 8.1 10.9 16.7 17.7 7.8 9.2

Lung Cancer 3.3 3.4 2.7 3.4 3.4 3.5
Prostate Cancer 14.0 15.5 24.8 26.4 21.9 22.0

Breast Cancer 26.2 29.3 27.4 36.7 23.7 25.6

Average 13.9 15.8 18.1 21.3 15.0 15.8

Table 2: Average test error (in %) for the different
inducers when comparing SBG+ to SBG.

1NN LDA SVMr

Problem SBG+SBG SBG+SBG SBG+SBG

Colon Tumor 37.4 73.8 70.5 79.2 15.5 14.2
Leukemia 7.2 28.3 30.0 32.5 6.1 37.2

Lung Cancer 17.4 20.0 4.1 13.4 4.5 8.8
Prostate Cancer 18.3 19.3 23.5 44.3 12.9 8.1

Breast Cancer 60.2 34.2 22.4 52.6 13.0 17.5

Average 28.1 35.1 30.1 44.4 10.4 17.2

Table 3: Average gene subset sizes for the different
inducers when comparing SBG+ to SBG.

6 Discussion

The results of the FSS process are displayed in
Tables 2 and 3. The first table shows the (cross-
validated) average test error for the two algorithms
and the different inducers. The second table shows
the (cross-validated) average size of the final se-
lected subsets.

The first fact to note is that the accumulated
version outperforms the standard version (though
in general by a modest margin) in all cases. This is
a very remarkable result, given the big differences
among the problems and among the inducers. Sec-
ond, SBG+ finds in general solutions of lower size
than SBG does, sometimes by a substantial amount
(e.g., 1NN in Colon Tumor and Leukemia, most
of LDA, or Leukemia and Lung Cancer with the
SVM). Given that there is no stopping condition,
our explanation is that the standard backward ver-
sion is greedier than the accumulated one. By the
(early) inclusion of some (or many) features that
are not as good as they look in that moment, and
cannot be removed, SBG is driven toward worse
local minima of the error function as compared to
SBG+. The greediness itself is explained by the
purely local (in the temporal sense) character of
SBG and it also explains the worse prediction re-
sults of this algorithm.

Feature selection appears to be a viable avenue
for dimensionality reduction in this field: a reduc-
tion of two orders of magnitude in the number of
features by univariate methods shows substantial
improvements (Table 1). With a further reduc-
tion of another order of magnitude, mean perfor-
mance of the finally selected classifiers is similar
to that achieved using the previously reduced sub-
set. This behavior is important, both for compu-
tational and scientific reasons. Even without op-
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timization of free parameters (a necessary step in
normal conditions), cross-validated wrapper com-
putations with 200 features may take several days
of computing time on a modest machine. Scien-
tifically, coping with hundreds of features and pre-
tending interpretability of the role of every feature
in the model is out of the question in many cases.
This is aggravated in the present situation of data
scarcity.

The results diverge for different classifiers, as it
may be reasonably expected. This is of the great-
est importance when assessing whether an improve-
ment is consistent, or is limited to a certain type of
method. In this sense, 1NN seems to be the best
method for Prostate Cancer, LDA for Lung Can-
cer and the SVM for the other three (in all cases
using SBG+). The SVM tends to deliver smaller
gene subsets, both for SBG and SBG+. Given that
the SVM parameters were not optimized beyond
educated guesses, we think there is room for fur-
ther improvement in the modeling, specially on the
accuracy side.

Comparison to other results in the literature us-
ing the same data sets is a delicate undertaking
in general. The methodological steps can be very
different, especially concerning resampling tech-
niques. We have found that many times there are
no true test sets: feature subsets or model parame-
ters (or both) are optimized by means of one or
several resampled runs of cross-validation. This
procedure is dangerous in that it cannot deliver
an unbiased estimation of true error, given that,
although test observations have not been used to
create the model, they have been used to decide
upon competing ones (namely, in the feature selec-
tion process itself). The stability of these results
is also compromised if only one resample is carried
out. On the other hand, the delivered gene subset
size is a very important issue to bear in mind, if
the solutions are to become interpretable and use-
ful from the clinical point of view. That said, we
compare with several references illustrative of re-
cent work:

1. For the Colon Tumor data set,
[Wang et al., 2008] report an error of 12.7%
with 94 genes, while [Bu et al., 2007] report
an error of 23.0% with 33 genes, both using
radial SVMs. For this dataset, we report a
test error of 18.1% using an average of 15

genes.

2. For the Leukemia problem, [Bu et al., 2007]
report an error of 4.0% with 30 genes using a
radial kernel, and an extraordinary 1.4% using
only two genes and filter methods for ranking
[Hewett and Kijsanayothin, 2008]. For this
dataset, we report an average test error of 6.1%
using an average of 6 genes.

3. The Lung Cancer data set is apparently
the easiest to separate. Accuracy values as
high as 99% are achieved by [Bu et al., 2007]
(using a SVM and 38 genes) and by
[Hong and Cho, 2008], this time using 5NN
and as much as 135 genes. For this dataset,
we report an average test error of 2.7% using
an average of 4 genes.

4. In the Prostate Cancer problem, as low as 7%
error as been reported (half our best result)
using a radial SVM and 47 genes (nearly three
times our result) [Bu et al., 2007].

5. Finally, for the Breast Cancer problem, an er-
ror of 21% is reported using a radial SVM
and 46 genes [Bu et al., 2007], and an er-
ror of 32% using again a SVM and 8 genes
[Hewett and Kijsanayothin, 2008]. For this
dataset, we report an average test error of
23.7% using an average of 13 genes.

7 Conclusions

This paper has presented a modification suitable
for feature subset selection algorithms that itera-
tively evaluate subsets of features, by making them
accumulate all the “log of merit” of the features in
quite different contexts. The idea consists in that
the current subset evaluation is not used directly to
select the feature to add (or remove), but to accu-
mulate information on the usefulness of the feature
in many contexts. The different contexts of a par-
ticular feature x are given by all those subsets that
contain x (they express how good is to have x) and
do not contain x (they express how good is not to
have x). The accumulated information is then used
to decide which feature should be added or removed
(namely, that feature with the highest (lowest) ac-
cumulated usefulness which has not yet been added
(removed)). Therefore, the search history makes an
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influence on the search itself, conditioning the se-
lection of features. This view is consistent with
the definition of a search algorithm as a mapping
from its history (including its present state) to the
set of possible moves. In these conditions, less im-
portance is assigned to the current subset evalu-
ation than in a classical FSS setting (where it is
the only source of information). Our experimental
results indicate a general improvement in perfor-
mance, without any additional modelling effort.

Future work includes exploring SFG. The deci-
sion to study SBG in the first place is consistent
with the goal of discovering feature interactions.
Having all the features from the beginning greatly
facilitates this task. Nonetheless, the more modest
computational demands that SFG entails in prac-
tice (if cut before exhaustion of features) may be an
appealing characteristic. It is relevant to point out
that the presented algorithmic modification may be
of little help if an algorithm has many opportuni-
ties to rectify its decisions (e.g., the PTA(l, r) fam-
ily of algorithms). However, even in this case, the
forward or backward steps will be more informed,
possibly making the search algorithm deliver bet-
ter solutions at earlier stages. Unfortunately, the
O(nl+r+1) cost of PTA(l, r) can well make it pro-
hibitively high for microarray data problems in
wrapper mode.

A clear avenue for further research is the setting
of the free parameter, λ. It is our conjecture that
an adaptive value may deliver better results. In
this sense, the influence of past evaluations may be
different at early or last stages of a search process.
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