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Abstract—For autonomous vehicles (AVs), which when de-
ployed in urban areas are called “pods”, to be used as part
of a commercially viable low-cost urban transport system, they
will need to operate efficiently. Among ways to achieve efficiency,
is to minimise time vehicles are not serving users. To reduce the
amount of wasted time, this paper presents a novel approach for
distribution of AVs within an urban environment. Our approach
uses evolutionary computation, in the form of a genetic algorithm
(GA), which is applied to a simulation of an intelligent transporta-
tion service, operating in the city of Coventry, UK. The goal of
the GA is to optimise distribution of pods, to reduce the amount
of user waiting time. To test the algorithm, real-world transport
data was obtained for Coventry, which in turn was processed to
generate user demand patterns. Results from the study showed a
30% increase in the number of successful journeys completed in a
24 hours, compared to a random distribution. The implications of
these findings could yield significant benefits for fleet management
companies. These include increases in profits per day, a decrease
in capital cost, and better energy efficiency. The algorithm could
also be adapted to any service offering pick up and drop of
points, including package delivery and transportation of goods.

Index Terms—autonomous vehicles, intelligent transportation
systems, fleet management

I. INTRODUCTION

The primary aim of a vehicle fleet management system
is to maximise the utilisation of the fleet, while minimising
cost. This means balancing a number of objectives on how
the fleet should operate. These objectives can be complimen-
tary, such as minimising unnecessary travelling and reducing
environmental impact. Or opposing, such as transporting users
quickly and maximising vehicle battery life. One problem
area, which can serve to both reduce costs and user waiting
times, is the vehicle distribution strategy used. The problem
of distributing resources, is a fundamental question that falls
into the realm of operational research. In the application of
designing routes for a set of load carrying vehicles to service
a set of dispersed customers at the least cost, this is known
as the vehicle routing problem (VRP) [1]. There are a number
of optimisation strategies that have been developed for this

problem, many of which focus on route selection methods that
optimise a particular factor, such as truck loading capacity,
distance travelled, and fuel used [2].

Attempts to review and classify solutions for route optimi-
sation with dynamic requests is made in [3]. It is stated that
there are two broad categories of routing solutions for dynamic
requests. These are, “fast local update procedures” and “re-
optimisation procedures”. Both are originality algorithms for a
static case, adapted into ones that could be applied to dynamic
routing problems, where new requests appear in transit. Adap-
tation of the static algorithms into dynamic algorithms can be
done by simply applying a static optimisation algorithm every
time a new request is made, or through the use of fast local
update procedures. The fast local update is good for quickly
identifying possible routes, while the re-optimisation is good
for providing good quality solutions [4]. The advantages of
both has resulted in the development of hybrid algorithms,
which run the local update procedure when a new request is
received, then performs re-optimisation to improve the results
[5]. This strategy of re-optimisation can be implemented as a
rolling time horizon, to find the optimal distribution at different
intervals throughout the day [6].

The problem of forecasting demand is explored by [7].
The researcher here uses data obtained from Uber about their
pick up and drop off times. A range of techniques are then
used to fit this data to a model. The model used with the
highest success is called Facebook Prophet, an open source
tool for modelling time-series data [8]. This model allowed
the use of geographical data in order to improve the demand
predictions. To do this the New York City subway locations
and activity times were used as well as the CityBike service.
It was shown that by incorporating temporal and geographical
data it significantly improved the results of the model.

The distribution algorithm proposed in this paper is based on
a genetic algorithm (GA). Part of the algorithm design shares
similarities to that proposed in [9] whereby the area of interest
contains regions that have a higher number of requests. The
routing algorithm is designed to make vehicles more likely
to be routed into these areas. An evolutionary algorithm is



then run to optimise the routing. The main difference with
this method and that proposed, is in the formulation of the
problem. This is done through creating a set of mathemati-
cal equations to define the problem. This strategy is called
dynamic programming, which is a mathematical technique
that can be used to optimise a particular function through
splitting it into sub functions that can be recursively optimised
[10]. The recursive nature of the solution is what separates
it from the other common optimisation technique of linear
programming. The solution is essentially a chain of decisions
that can be made where each successive decision is based on
the current state and the decisions that led to it. This is a
widely used optimisation technique to tackle the problem of
route planning in a dynamic environment [11]. However, the
process of formulating the problem is a complex one and is
less flexible than a GA for our purposes.

The use of GAs in combination with dynamic programming
is explored by [12]. The researches here attempt to solve the
issue of trucks being under-loaded by optimising the routes
they take. The way this is done is through first creating
a dynamic programming model then using a GA to solve
it. Specifically, a distributed GA is used. This is a method
by which this works is through running the GA on several
processors using threading. Each core gets a subset of the
chromosomes being evaluated with the information about
the successful chromosomes being exchanged after a certain
number of generations. This allows the GA to be run faster.

The research presented in this paper is part of a larger
Innovate UK funded project called SWARM, which is a
collaboration between WMG, RDM Ltd and Milton Keynes
Council. The project aims to implement group intelligence in
self driving pods [13]. This is for application as a means of
paid transportation in cities. An integral part of this service
requires the optimisation of pod distribution in the selected
city such that more successful journeys are carried out. The
aim of this project is to use a form of evolutionary computation
to solve this problem for application in Coventry, UK.

This paper makes a contribution to the literature by pre-
senting a novel approach to optimising AV distribution using
historical data of user demand. This is an important area of
research in the field of AV transport, as reducing passenger
journey times and making the system more efficient compared
to other transport modes, is essential for successful adoption.

II. METHODOLOGY

A. Experimental Platform

To test the proposed fleet distribution optimisation algo-
rithm, a simulation software tool called the “Fleet Visualiser”,
developed at WMG, was used (Fig. 1). This software tool,
created using the Python programming language, allows an
aerial image of any location e.g. city, airport, university
campus, to be loaded and a schematic transport map to be
constructed by the user. The map is constructed as a series of
nodes and edges to form a directed graph, which can be placed
at a pixel level. Therefore, the detail of the route is based on
the resolution of the image used. The Fleet Visualiser, allows

Fig. 1: Map of Coventry city centre overlaid with a directed
graph made up of several nodes and edges

for simulation of multiple vehicles and is capable of simulating
movement of vehicles faster than real-time. The speed at
which the simulator operates is determined by multiple factors,
including the size of map, the number of vehicles and available
computing power. The vehicles are bound by the route, which
is internally represented as a graph network.

B. Distribution Optimisation Algorithm

The distribution optimisation algorithm proposed in this
paper is based on a GA. Although other techniques were
considered, such as dynamic programming, it was thought an
evolutionary computational approach would be more flexible
and better suited to the task of optimising vehicle distribution.

An explanation for the structure of GAs is given in [14]. As
this details, a GA is a stochastic search method that imitates
natural selection to evolve and optimise the objective given.
The formulation of a GA is individual to the problem at hand,
especially when it comes to encoding and decoding. The steps
involved can be summarised as follows:

1) Represent problem variables as a chromosome of fixed
length. Choose number of chromosomes in the genera-
tion, crossover probability, and mutation probability

2) Define fitness function that returns a measure of chro-
mosome performance. This will affect the probability
that traits are passed onto future generations

3) Randomly generate the first generation
4) Calculate fitness of each chromosome in the generation
5) Use a selection algorithm that favours chromosomes

with higher fitness as parents to new chromosomes
6) Apply mutation / crossover operators to offspring chro-

mosomes in accordance with respective probabilities
7) Place the offspring in the new generation
8) Repeat until generation is same size as previous
A GA that solely manipulates the number of pods in each

region of the map at the start of the simulation would be
ineffective. This is due to the pods being spread randomly over
the city after they have all completed a single journey, thus



losing any advantage posed by their position. To overcome
this, we used a strategy where the number of pods in each
region are allocated at the start of the simulation. This then
become the target number of pods that each region should
contain. Therefore, the method proposed in our study, is to
determine the pod distribution pattern at the start of each day
and use this to determine where pods should be first located
and then subsequently returned when not servicing users.

In order to divide the map into regions that could be encoded
for the GA, a uniform grid was placed over the pod route
area. Each cell of this grid represents a location that can
be allocated a predefined target number of pods. This cell
target value is specified as a percentage of the total pods in
service, and is based on the predicted user demand for different
parts of the route for a given day. An example of this grid
overlaid on a map of Coventry is provided in Fig. 2. This
shows an optimised pod distribution, with the more intense
cells representing a higher target value.

To maintain the target values in each cell, the pods contin-
ually transmit their current location, status, and planned route,
to all other pods in the fleet. When a pod finishes servicing a
user, it will look at the map and calculate which cells have the
lowest percentage of their target. The pod will then move to
the nearest cell, which has not reached its target, taking into
account where other unused pods are travelling to, in order
avoid exceeding the cell target value.

1) Encoding: The main challenge in programming a GA is
that of encoding the chromosome. A badly encoded algorithm
could result in changing the question, or the objective of the
algorithm, and therefore optimise into a different direction to
what is desired [15]. An initially intuitive way to encode the
GA would be to have a string of genes that would represent
each node of the map. The gene would then contain the
number of pods allocated to that particular node. This could
then be altered by the algorithm as each generation is created.
The problem with this encoding scheme is that it does not
allow for mutation or crossover. Randomly changing a value

Fig. 2: Example of an optimised distribution represented as a
heat map overlaid on the city map

Fig. 3: Structure of the chromosome and crossover / mutation
processes. Each gene represents a pod, with the value assigned
to the gene representing a cell of the map grid

in the gene may result in the number of pods in the gene
increasing, which will mean the total number of pods in the
chromosome exceeds the number available. For this reason
we used an encoding scheme whereby each gene represented
a pod in the simulation (see Fig. 3). The value assigned to
that gene indicates a cell in the map where the pod will be
located. The number of pods we used was 30, therefore each
chromosome contained this number of genes. The number
of cells in the map was 182, therefore, each gene could be
assigned a value from 1 to 182. For each simulation run, the
GA will generate a chromosome. In the first generation this
will be a random distribution, with later generations based on
fitness. The simulation will then read this chromosome value,
and on generation of the fleet, will assign each pod to its
allocated region. The regions will then count how many pods
have been assigned to them when all pods have been allocated.
This will become the target. This encoding scheme works well
for the GA as mutations and crossovers will solely affect the
region to which a pod is assigned. This method ensures that
the total number of available pods cannot be exceeded, as that
would require a change in the chromosome array length.

2) Fitness Function and Algorithm Objective: The objec-
tive of the GA is based on the requirements of the SWARM
project [16]. A key requirement, identified by the potential
users of the system, is that a journey duration, from the time
of a request being made, to the passenger completing their
journey, is completed in half the time it would take to walk the
same route. This time is based on an average walking speed,
specified by Transport for London (TfL), of 4.8 km/h [17].
Therefore, reducing the time it takes for a pod to reach a user,
would in turn reduce total journey duration. This criteria was
used to determine if a journey was considered successful or
not. The percentage of successful journeys completed in a set
period was used as the measure of fitness for each chromosome
in the population. Once the GA has run every simulation in
the generation, each fitness will be normalised by dividing the
values by the sum of the fitnesses in the generation.

The mechanism through which the GA performs optimi-
sation, requires that parent chromosomes are more likely to



be selected if they have a higher fitness in the generation.
This weighted selection is done through the use of a roulette
selector. This was implemented in this program through each
chromosome in the generation being given a number of slots in
an array based on the normalised fitness. A random element
is then selected from this array, which becomes the parent
chromosome. For each offspring, this is done twice to select
two parents. The probabilities allocated to the crossover and
mutation process are then used to determine if those processes
should be carried out on the two chromosomes. If neither
processes are performed, the offspring are simply a copy of
their parents. Two offspring are produced by each pair of
parent chromosomes. This is repeated until the new generation
contains the same number of chromosomes. The GA continues
this process in a loop, gradually improving the performance
of the population. To prevent the GA running forever, an
appropriate stopping criteria must be used to avoid reaching
a local optimum. Based on a number of tests, we found that
200 was an appropriate maximum number of generations.

C. Real-world Data Set

To validate our proposed distribution method, we required
real-world data. For our study we chose Coventry City centre,
as it was a well known area to the team, had transport data
available, and was naturally enclosed due to a encircling ring-
road. The map data, including an image of the transport
route and precise scale information, was sourced from Open-
StreetMap (OSM) and vehicle data from the Department of
Transport (https://roadtraffic.dft.gov.uk/local-authorities/152).
The data is formed of vehicle counts at several points in the
city, categorised by vehicle type, over a 10 year period.

To make the optimisation case closer to reality, a user
request scheduler was created that attempted to represent real
demand patterns. This scheduler used readings from the last 10
years of traffic counts, and averaged each hour of the recording
day. This created a basic week day traffic pattern around the
city. A function was fitted to this pattern using linear regression
to produce a work day demand. This demand pattern was
used to determine the number of new user request batches.
These requests were generated at 10 minute intervals and sent
directly to the nearest unused pod in relation to the user.

The procedure for converting traffic data to user demand,
first involved splitting the work day into time points, with
10 minute intervals. The function generated by the linear
regression was then used to extract the estimated average
number of vehicles at different points in the city at this time.
These values were then normalised by dividing each value
by the sum of total requests in the day. The reason this was
done is to allow each value to be multiplied by the desired
total number of requests in the day. Effectively this value
reflects how much the service has been accepted as a mode of
transport. The request schedule produced is shown in Fig. 4.

The simulation was run for a simulated 24 hour period to
see how the distribution target generated by the GA performs.
A fleet size of 40 pods was used, as this was found to be a
sufficient number to serve the users for the request interval

Fig. 4: User demand pattern. Top: Interpolated points gener-
ated using linear regression. Bottom: Request schedule gener-
ated through normalising the interpolated points

used and the city size. It is understood that using a larger fleet
size would reduce the waiting times for users and increase the
number of users served. However, the aim of the research at
this stage is to develop strategies for vehicle distribution, and
not to optimise the number of vehicles required.

III. RESULTS AND DISCUSSION

To verify that the algorithm was operating as expected,
we chose to visualise the distribution pattern as a heat map.
Defining what is a good heat map, as opposed to what is a
bad heat map, is a challenge. This is due to the nature of
the problem that we are trying to solve. While we would
expect that if every requests is coming from the same cell,
the pods would flock to these areas, this is harder to do when
the requests are less localised. For this reason, the GA is being
verified against requests coming from two adjacent nodes,
then later applied to a more realistic scenario. Therefore, to
evaluate the performance of the proposed vehicle distribution
algorithm, we compared two scenarios. These were “informed
distribution”, where user journey requests were based on
historical transport data, and “localised requests”, where all
requests came from one area in the map.

The optimisation strategy is focused on minimising the
time taken to complete journeys. This is contrary to what is
presented in the literature, as most use dynamic programming
to formulate the problem, then use a range of methods to
solve for the optimal case. The solution we propose runs a
GA against a simulation of the problem. This allows for the
solution to be easily visualised and applied to real scenarios.
Another aspect that is different is that most researchers use
a ’rolling time horizon’ to apply the problem to the dynamic
case. In our approach, the target areas are optimised for a 24
hour period. The vehicle controller does not have knowledge of
the schedule to optimise the problem making it dynamic, with
the GA being able to adapt as new demand patterns emerge.

As an example of the complexity of the simulation task;
for each scenario we ran the GA for 200 generations, with a
population of 50 chromosomes. For each of these generations,
200 user requests were made, which equated to 2 million
simulated journeys per scenario.



Fig. 5: The GA is able to optimise the success rate from 5%
to 97% within 30 generations. The heat map, which is created
from generation 30, received the highest fitness

A. Parameter Testing using Localised Requests

In order to verify the GA works, a request schedule was
created whereby all requests would come from two adjacent
nodes. If the GA worked as anticipated, pods would all migrate
towards nodes making requests. The internal mechanism of
the GA, through which this would improve the fitness, would
simply be due to maximising the amount of time that pods
are in proximity to requesting nodes. This would minimise
the time taken to get to the request and therefore the overall
journey time, increasing the success rate. At the start of the
scenario, pods are randomly spread across all cells of the map.

The results of the localised request schedule are shown in
Fig. 5. This shows that over the course of the GA training, a
92% improvement is made in the fitness of the simulation.
This means that for the same number of pods, 92% more
journeys were successful, due to the optimisation of the
GA. The intensity of the cell colour in the heat map are
proportional to the number of pods in those cells, therefore,
for localised requests we would expect the two cells in the
south of Coventry to go a darker colour, as this is where the
user requests are being generated. Prior to optimisation, the
simulation was running at a baseline of ≈5% success rate,
based on the journey success criteria specified in Section II-B2.
The base run success rate is a function of the number of pods
available, the number of requests made in total, the pod speed
and the initial distribution of those pods.

When running the localised request scenario, the expected
result is for pods to flock to nodes producing requests.
Although the most successful chromosomes behaved in that
way to an extent, the distribution did not converge pods onto
nodes producing requests. However, the success rate was high,
at 89%. The way in which the GA distributed pods is not
clearly understood, which reveals a fundamental flaw with
GAs. This is that it can often be challenging to know why
some chromosomes are better than others. It may be useful in
extracting optimum distribution for the input and constraints.
However, extracting knowledge from the optimised model can
be challenging and often not possible. For simple cases, where
the majority of requests come from one or two nodes, we can
see the distribution cluster, and make a reasonable assumption
of why this has occurred. However, for more complicated
stochastic request patterns, this becomes impossible.

B. Optimisation using Real-world Data

To test the algorithm using real-world data, a request sched-
ule was created that would approximate a realistic demand
pattern (see Section II-C). While this solved the temporal
element of requests, the spacial element of requests needed
to be determined. For this we made an assumption that 25%
of requests would come from the train station (situated in
the south of the city), 25% of the requests would come
from the bus station (situated north), and 50% would be
equally distributed between remaining nodes. However, this is
an explanatory study, and these probabilities can be adjusted
when further user data is gathered to improve estimations.

The results of the work day pattern, which determines the
number of user requests every 10 minutes, with weighted
request locations are presented in Fig. 6. This graph shows an
increase from 32% to 62% in success rate of the simulations
over the course of training. The most successful chromosome
was used as a bench mark, as this is a high performing random
distribution and therefore makes for a good control. The heat
maps, which are examples of some of the highest success rates,
show the success increase arises out of the GA increasing
concentration of pods in two regions, located in the north
and south of the map. These regions contain nodes that had
increased 25% request weighting applied. It is possible the GA
kept pods in other regions to serve stochastic requests. This
is consistent for all tests, which found that more successful
distributions exhibited more extreme pod densities in regions
that contained nodes making more requests.

The localised request schedule had a significantly more suc-
cessful optimal case, reaching it in 30 generations, compared
to the work schedule, which produced its fittest chromosome
at generation 158. A 30% success rate increase may seem
small compared to the 92% increase of the localised request
pattern. However, 50% of requests in the work day schedule
are random and therefore have no optimal regions. The only
optimisation is that which can be made against biases of
the input request pattern. These were successfully found and
exploited by the GA to optimise the distribution of the pods. It
can be reasonably concluded that given accurate user location
data, the distribution algorithm will optimise the location of
pods considerably more than if pods were distributed ran-
domly. However, to what extent this improves the percentage
of successful journeys will require further testing.

IV. CONCLUSION

The task of optimising the distribution of autonomous pods,
in a city such as Coventry, for application in a transport
service was explored as part of this research study. It was
evident from the literature that for an autonomous transport
system to serve users in a timely manner, it is essential to
locate vehicles as strategically as possible. The problem of
optimising vehicle distributions, is one that lends itself to
evolutionary computation. Therefore, in this paper we present
a GA based method for encoding vehicle locations within
a map and determine their optimal location, based on the
distribution and frequency of user requests.



Fig. 6: Result of the GA after 200 Generations. The fitness peaks at 62% in Generation 158. The four heat maps are representative
of the more successful distributions, which exhibit extreme pod densities in regions that contained nodes making more requests

To measure the effectiveness of the GA, we created a
success criteria for pod journeys, based on requirements of
potential users. This criteria, which was used as the GA fitness
value, stated that for a journey to be successful, the duration
from user request to journey completion, must be lower than
half the time it would take to walk the same route.

Running the GA against an approximation of a realistic
demand scenario, resulted in a journey success rate increase
of 30%. This could yield significant benefits, which include
increases in profits per day, a decrease in capital cost and
better energy efficiency. The program is also adaptable to any
service offering pick up and drop of points, including package
delivery and transportation of goods.

The ideal GA will reach the optimal solution in the least
time possible. However, there is a trade off between finding
the highest quality solution and finding the solution quickly.
There are many techniques to improve the GA, focusing on
accuracy, speed, and quality of the solution. An example is
to run automated parameter adjustments for a broad range of
mutation values, population sizes and run lengths. This would
require substantial time and computing resources, but may
allow for a more optimal solution.

The interconnected and autonomous nature of pods make it
possible to share information and acts as a group. A potential
avenue for further work, would be to have pods communicate
traffic conditions to a central server. This would act as an
alternative way of collecting data to build the traffic model,
meaning a fleet could be integrated into any city without prior
knowledge of traffic conditions, and learn over time.
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