18 research outputs found

    Improved Algorithms for MST and Metric-TSP Interdiction

    Get PDF
    We consider the MST-interdiction problem: given a multigraph G = (V, E), edge weights {w_e >= 0}_{e in E}, interdiction costs {c_e >= 0}_{e in E}, and an interdiction budget B >= 0, the goal is to remove a subset R of edges of total interdiction cost at most B so as to maximize the w-weight of an MST of G-R:=(V,E-R). Our main result is a 4-approximation algorithm for this problem. This improves upon the previous-best 14-approximation [Zenklusen, FOCS 2015]. Notably, our analysis is also significantly simpler and cleaner than the one in [Zenklusen, FOCS 2015]. Whereas Zenklusen uses a greedy algorithm with an involved analysis to extract a good interdiction set from an over-budget set, we utilize a generalization of knapsack called the tree knapsack problem that nicely captures the key combinatorial aspects of this "extraction problem." We prove a simple, yet strong, LP-relative approximation bound for tree knapsack, which leads to our improved guarantees for MST interdiction. Our algorithm and analysis are nearly tight, as we show that one cannot achieve an approximation ratio better than 3 relative to the upper bound used in our analysis (and the one in [Zenklusen, FOCS 2015]). Our guarantee for MST-interdiction yields an 8-approximation for metric-TSP interdiction (improving over the 28-approximation in [Zenklusen, FOCS 2015]). We also show that maximum-spanning-tree interdiction is at least as hard to approximate as the minimization version of densest-k-subgraph

    Vertex Downgrading to Minimize Connectivity

    Get PDF
    We consider the problem of interdicting a directed graph by deleting nodes with the goal of minimizing the local edge connectivity of the remaining graph from a given source to a sink. We introduce and study a general downgrading variant of the interdiction problem where the capacity of an arc is a function of the subset of its endpoints that are downgraded, and the goal is to minimize the downgraded capacity of a minimum source-sink cut subject to a node downgrading budget. This models the case when both ends of an arc must be downgraded to remove it, for example. For this generalization, we provide a bicriteria (4,4)-approximation that downgrades nodes with total weight at most 4 times the budget and provides a solution where the downgraded connectivity from the source to the sink is at most 4 times that in an optimal solution. We accomplish this with an LP relaxation and rounding using a ball-growing algorithm based on the LP values. We further generalize the downgrading problem to one where each vertex can be downgraded to one of k levels, and the arc capacities are functions of the pairs of levels to which its ends are downgraded. We generalize our LP rounding to get a (4k,4k)-approximation for this case

    A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

    Get PDF
    Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set

    Metric and Representation Learning

    Full text link
    All data has some inherent mathematical structure. I am interested in understanding the intrinsic geometric and probabilistic structure of data to design effective algorithms and tools that can be applied to machine learning and across all branches of science. The focus of this thesis is to increase the effectiveness of machine learning techniques by developing a mathematical and algorithmic framework using which, given any type of data, we can learn an optimal representation. Representation learning is done for many reasons. It could be done to fix the corruption given corrupted data or to learn a low dimensional or simpler representation, given high dimensional data or a very complex representation of the data. It could also be that the current representation of the data does not capture the important geometric features of the data. One of the many challenges in representation learning is determining ways to judge the quality of the representation learned. In many cases, the consensus is that if d is the natural metric on the representation, then this metric should provide meaningful information about the data. Many examples of this can be seen in areas such as metric learning, manifold learning, and graph embedding. However, most algorithms that solve these problems learn a representation in a metric space first and then extract a metric. A large part of my research is exploring what happens if the order is switched, that is, learn the appropriate metric first and the embedding later. The philosophy behind this approach is that understanding the inherent geometry of the data is the most crucial part of representation learning. Often, studying the properties of the appropriate metric on the input data sets indicates the type of space, we should be seeking for the representation. Hence giving us more robust representations. Optimizing for the appropriate metric can also help overcome issues such as missing and noisy data. My projects fall into three different areas of representation learning. 1) Geometric and probabilistic analysis of representation learning methods. 2) Developing methods to learn optimal metrics on large datasets. 3) Applications. For the category of geometric and probabilistic analysis of representation learning methods, we have three projects. First, designing optimal training data for denoising autoencoders. Second, formulating a new optimal transport problem and understanding the geometric structure. Third, analyzing the robustness to perturbations of the solutions obtained from the classical multidimensional scaling algorithm versus that of the true solutions to the multidimensional scaling problem. For learning optimal metric, we are given a dissimilarity matrix hatDhat{D}, some function ff and some a subset SS of the space of all metrics and we want to find DinSD in S that minimizes f(D,hatD)f(D,hat{D}). In this thesis, we consider the version of the problem when SS is the space of metrics defined on a fixed graph. That is, given a graph GG, we let SS, be the space of all metrics defined via GG. For this SS, we consider the sparse objective function as well as convex objective functions. We also looked at the problem where we want to learn a tree. We also show how the ideas behind learning the optimal metric can be applied to dimensionality reduction in the presence of missing data. Finally, we look at an application to real world data. Specifically trying to reconstruct ancient Greek text.PHDApplied and Interdisciplinary MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169738/1/rsonthal_1.pd

    Models and algorithms for multi-agent search problems

    Full text link
    The problem of searching for objects of interest occurs in important applications ranging from rescue, security, transportation, to medicine. With the increasing use of autonomous vehicles as search platforms, there is a need for fast algorithms that can generate search plans for multiple agents in response to new information. In this dissertation, we develop new techniques for automated generation of search plans for different classes of search problems. First, we study the problem of searching for a stationary object in a discrete search space with multiple agents where each agent can access only a subset of the search space. In these problems, agents can fail to detect an object when inspecting a location. We show that when the probabilities of detection only depend on the locations, this problem can be reformulated as a minimum cost network optimization problem, and develop a fast specialized algorithm for the solution. We prove that our algorithm finds the optimal solution in finite time, and has worst-case computation performance that is faster than general minimum cost flow algorithms. We then generalize it to the case where the probabilities of detection depend on the agents and the locations, and propose a greedy algorithm that is 1/2-approximate. Second, we study the problem of searching for a moving object in a discrete search space with multiple agents where each agent can access only a subset of a discrete search space at any time and agents can fail to detect objects when searching a location at a given time. We provide necessary conditions for an optimal search plan, extending prior results in search theory. For the case where the probabilities of detection depend on the locations and the time periods, we develop a forward-backward iterative algorithm based on coordinate descent techniques to obtain solutions. To avoid local optimum, we derive a convex relaxation of the dynamic search problem and show this can be solved optimally using coordinate descent techniques. The solutions of the relaxed problem are used to provide random starting conditions for the iterative algorithm. We also address the problem where the probabilities of detection depend on the agents as well as the locations and the time periods, and show that a greedy-style algorithm is 1/2-approximate. Third, we study problems when multiple objects of interest being searched are physically scattered among locations on a graph and the agents are subject to motion constraints captured by the graph edges as well as budget constraints. We model such problem as an orienteering problem, when searching with a single agent, or a team orienteering problem, when searching with multiple agents. We develop novel real-time efficient algorithms for both problems. Fourth, we investigate classes of continuous-region multi-agent adaptive search problems as stochastic control problems with imperfect information. We allow the agent measurement errors to be either correlated or independent across agents. The structure of these problems, with objectives related to information entropy, allows for a complete characterization of the optimal strategies and the optimal cost. We derive a lower bound on the performance of the minimum mean-square error estimator, and provide upper bounds on the estimation error for special cases. For agents with independent errors, we show that the optimal sensing strategies can be obtained in terms of the solution of decoupled scalar convex optimization problems, followed by a joint region selection procedure. We further consider search of multiple objects and provide an explicit construction for adaptively determining the sensing actions

    Corridor Location: Generating Competitive and Efficient Route Alternatives

    Get PDF
    The problem of transmission line corridor location can be considered, at best, a "wicked" public systems decision problem. It requires the consideration of numerous objectives while balancing the priorities of a variety of stakeholders, and designers should be prepared to develop diverse non-inferior route alternatives that must be defensible under the scrutiny of a public forum. Political elements aside, the underlying geographical computational problems that must be solved to provide a set of high quality alternatives are no less easy, as they require solving difficult spatial optimization problems on massive GIS terrain-based raster data sets.Transmission line siting methodologies have previously been developed to guide designers in this endeavor, but close scrutiny of these methodologies show that there are many shortcomings with their approaches. The main goal of this dissertation is to take a fresh look at the process of corridor location, and develop a set of algorithms that compute path alternatives using a foundation of solid geographical theory in order to offer designers better tools for developing quality alternatives that consider the entire spectrum of viable solutions. And just as importantly, as data sets become increasingly massive and present challenging computational elements, it is important that algorithms be efficient and able to take advantage of parallel computing resources.A common approach to simplify a problem with numerous objectives is to combine the cost layers into a composite a priori weighted single-objective raster grid. This dissertation examines new methods used for determining a spatially diverse set of near-optimal alternatives, and develops parallel computing techniques for brute-force near-optimal path enumeration, as well as more elegant methods that take advantage of the hierarchical structure of the underlying path-tree computation to select sets of spatially diverse near optimal paths.Another approach for corridor location is to simultaneously consider all objectives to determine the set of Pareto-optimal solutions between the objectives. This amounts to solving a discrete multi-objective shortest path problem, which is considered to be NP-Hard for computing the full set of non-inferior solutions. Given the difficulty of solving for the complete Pareto-optimal set, this dissertation develops an approximation heuristic to compute path sets that are nearly exact-optimal in a fraction of the time when compared to exact algorithms. This method is then applied as an upper bound to an exact enumerative approach, resulting in significant performance speedups. But as analytic computing continues to moved toward distributed clusters, it is important to optimize algorithms to take full advantage parallel computing. To that extent, this dissertation develops a scalable parallel framework that efficiently solves for the supported/convex solutions of a biobjective shortest path problem. This framework is equally applicable to other biobjective network optimization problems, providing a powerful tool for solving the next generation of location analysis and geographical optimization models
    corecore