
Vertex Downgrading to Minimize Connectivity
Hassene Aissi
Paris Dauphine University, France
aissi@lamsade.dauphine.fr

Da Qi Chen
Carnegie Mellon University, Pittsburgh, PA, USA
daqic@andrew.cmu.edu

R. Ravi
Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA, USA
ravi@cmu.edu

Abstract
We consider the problem of interdicting a directed graph by deleting nodes with the goal of minimizing
the local edge connectivity of the remaining graph from a given source to a sink. We introduce
and study a general downgrading variant of the interdiction problem where the capacity of an arc
is a function of the subset of its endpoints that are downgraded, and the goal is to minimize the
downgraded capacity of a minimum source-sink cut subject to a node downgrading budget. This
models the case when both ends of an arc must be downgraded to remove it, for example. For
this generalization, we provide a bicriteria (4, 4)-approximation that downgrades nodes with total
weight at most 4 times the budget and provides a solution where the downgraded connectivity from
the source to the sink is at most 4 times that in an optimal solution. We accomplish this with an
LP relaxation and rounding using a ball-growing algorithm based on the LP values. We further
generalize the downgrading problem to one where each vertex can be downgraded to one of k levels,
and the arc capacities are functions of the pairs of levels to which its ends are downgraded. We
generalize our LP rounding to get a (4k, 4k)-approximation for this case.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases Vertex Interdiction, Vertex Downgrading, Network Interdiction, Approxima-
tion Algorithm

Digital Object Identifier 10.4230/LIPIcs.SWAT.2020.5

Related Version https://arxiv.org/pdf/1911.11229.pdf

Funding Hassene Aissi: This research benefited from the support of the FMJH Program PGMO
and from the support of EDF, Thales, Orange et Criteo.
R. Ravi: This material is based upon research supported in part by the U. S. Office of Naval Research
under award number N00014-18-1-2099.

1 Introduction

Interdiction problems arise in evaluating the robustness of infrastructure and networks. For
an optimization problem on a graph, the interdiction problem can be formulated as a game
consisting of two players: an attacker and a defender. Every edge/vertex of the graph
has an associated interdiction cost and the attacker interdicts the network by modifying
the edges/vertices subject to a budget constraint. The defender solves the problem on the
modified graph. The goal of the attacker is to hamper the defender as much as possible. Ford
and Fulkerson initiated the study of interdiction problems with the maximum flow/minimum
cut theorem [4, 10, 15]. Other examples of interdiction problems include matchings [17],
minimum spanning trees [12, 20], shortest paths [7, 11], st-flows [14, 16, 18] and global
minimum cuts [19, 3].

© Hassene Aissi, Da Qi Chen, and R. Ravi;
licensed under Creative Commons License CC-BY

17th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2020).
Editor: Susanne Albers; Article No. 5; pp. 5:1–5:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/326319721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:aissi@lamsade.dauphine.fr
mailto:daqic@andrew.cmu.edu
mailto:ravi@cmu.edu
https://doi.org/10.4230/LIPIcs.SWAT.2020.5
https://arxiv.org/pdf/1911.11229.pdf
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 Vertex Downgrading to Minimize Connectivity

Most of the interdiction literature today involves the interdiction of edges while the study
of interdicting vertices has received less attention (e.g.[17, 18]). The various applications
for these interdiction problems, including drug interdiction, hospital infection control, and
protecting electrical grids or other military installations against terrorist attacks, all naturally
motivate the study of the vertex interdiction variant. In this paper, we focus on vertex
interdiction problems related to the minimum st-cut (which is equal to the maximum st-flow
and hence also termed network flow interdiction or network interdiction in the literature).

For st-cut vertex interdiction problems, the set up is as follows. Consider a directed
graph G = (V (G), A(G)) with n vertices, m arcs, an arc cost function c : A(G)→ N, and an
interdiction cost function r : V (G) \ {s, t} → N defined on the set of vertices V (G) \ {s, t}.
A set of arcs F ⊆ A(G) is an st-cut if G\F no longer contains a directed path from s to
t. Define the cost of F as c(F) = Σe∈F c(e). For any subset of vertices X ⊆ V (G) \ {s, t},
we denote its interdiction cost by r(X) =

∑
v∈X r(v). Let λst(G\X) denote the cost of a

minimum st cut in the graph G\X.

I Problem 1. Weighted Network Vertex Interdiction Problem (WNVIP) and its
special cases. Given two specific vertices s (source) and t (sink) in V (G) and interdiction
budget b ∈ N, the Weighted Network Vertex Interdiction Problem (WNVIP) asks to find
an interdicting vertex set X∗ ⊆ V (G) \ {s, t} such that

∑
v∈X∗ r(v) ≤ b and λst(G\X∗) is

minimum. The special case of WNVIP where all the interdiction costs are one will be termed
NVIP, while the further special case when even the arc costs are one will be termed NVIP
with unit costs.

In this paper, we define and study a generalization of the network flow interdiction problem
in digraphs that we call vertex downgrading. Since interdicting vertices can be viewed
as attacking a network at its vertices, it is natural to consider a variant where attacking a
node does not destroy it completely but partially weakens its structural integrity. In terms of
minimum st-cuts, one interpretation could be that whenever a vertex is interdicted, instead of
removing it from the network we partially reduce the cost of its incident arcs. In this context,
we say that a vertex is downgraded. Specifically, consider a directed graph G = (V (G), A(G))
and a downgrading cost r : V (G) \ {s, t} → N. For every arc e = uv ∈ A(G), there exist four
associated nonegative costs ce, ceu, cev, ceuv, respectively representing the cost of arc e if 1)
neither {u, v} are downgraded, 2) only u is downgraded, 3) only v is downgraded, and 4)
both {u, v} are downgraded. Note that these cost functions are independent of each other
so downgrading vertex v might affect each of its incident arcs differently. However, we do
impose the following conditions: ce ≥ ceu ≥ ceuv and ce ≥ cev ≥ ceuv. These inequalities are
natural to impose since the more endpoints of an arc are downgraded, the lower the resulting
arc should cost. Given a downgrading set Y ⊆ V (G) \ {s, t}, define cY : A(G)→ R+ to be
the arc cost function representing the cost of cutting e after downgrading Y .

u, v /∈ Y u ∈ Y, v /∈ Y u /∈ Y, v ∈ Y u, v ∈ Y

cY (e) = ce ceu cev ceuv

Given a set of arcs F ⊆ A(G), we define cY (F) = Σe∈F cY (e).

I Problem 2. Network Vertex Downgrading Problem (NVDP). Let G=(V (G), A(G))
be a directed graph with a source s and a sink t. For every arc e = uv, we are given non-
negative costs ce, ceu, cev, ceuv as defined above. Given a (downgrading) budget b, find a set
Y ⊆ V (G) \ {s, t} and an st-cut F ⊆ A(G) such that Σv∈Y r(v) ≤ b and minimizes cY (F).

While it is not immediately obvious as it is for WNVIP, we can still show that detecting
a zero solution for NVDP is easy.

H. Aissi, D. Chen, and R. Ravi 5:3

I Theorem 1. Given an instance of NVDP on graph G with budget b, there exists a
polynomial time algorithm to determine if there exists Y ⊆ V (G) and an st-cut F ⊆ A(G)
such that Σv∈Y r(v) ≤ b and cY (F) = 0.

First we present some useful reductions between the above problems.

1. In the NFI (Network Flow Interdiction) problem defined in [4], the given graph is
undirected instead of directed and the adversary interdicts edges instead of vertices.
The goal is to minimize the cost of the minimum st-cut after interdiction. NFI can be
reduced to the undirected version of WNVIP (where the underlying graph is undirected).
Simply subdivide every undirected edge e = uv with a vertex ve. The interdiction cost
of ve remains the same as the interdiction cost of e while all original vertices have an
interdiction cost of ∞ (or a very large number). The cut cost of the edges uve, vev are
equal to the original cost of cutting the edge e.

2. The undirected version of WNVIP can be reduced to the (directed) WNVIP by replacing
every edge with two parallel arcs going in opposite directions. Each new arc has the same
cut cost as the original edge.

3. WNVIP is a special case of NVDP with costs ceu = cev = ceuv = 0 for all e = uv.
The first two observations above imply that any hardness result for NFI in [4] also applies
to WNVIP. Based on the second observation, we prove our hardness results for the (more
specific) undirected version of WNVIP. As a consequence of the third observation, all of
these hardness results also carry over to the more general NVDP.

Our work also studies the following further generalization of NVDP. Every vertex has k
possible levels that it can be downgraded to by paying different downgrading costs. Every arc
has a cutting cost depending on what level its endpoints were downgraded to. More precisely,
for each level 0 ≤ i, j ≤ k, let ri(v) be the interdiction cost to downgrade v to level i and let
ci,j(e) be the cost of cutting arc e = uv if u, v were downgraded to levels i, j respectively.
We assume that 0 = r0(v) ≤ r1(v) ≤ ... ≤ rk(v) since higher levels of downgrading should
cost more and ci,j(e) ≥ ci′,j′(e) if i ≤ i′, j ≤ j′ since the more one downgrades, the easier
it is to cut the incident arcs. Then, given a map L : V (G) → {0, ..., k}, representing
which level to downgrade each vertex to, one can talk about the cost of performing this
downgrading: rL := Σv∈V (G)rL(v)(v), and the cost of a cut F after downgrading according
to L: cL(F) := Σuv∈F cL(u),L(v)(uv). Now, we can formally define the most general problem
we address.

I Problem 3. Network Vertex Leveling Downgrading Problem (NVLDP). Let G =
(V (G), A(G)) be a directed graph with a source s and a sink t. For every vertex v and
0 ≤ i ≤ k, we have non-negative downgrading costs ri(v). For every arc e = uv and levels
0 ≤ i, j ≤ k, we are given non-negative cut costs ci,j(e). Given a (downgrading) budget b,
find a map L : V (G)→ {0, ..., k} and an st-cut F ⊆ A(G) such that rL ≤ b and minimizes
cL(F).

Note that when k = 1 we have NVDP.

Related Works
I Definition 2. An (α, β) bicriteria approximation for the interdiction (or downgrading)
problem returns a solution that violates the interdiction budget b by a factor of at most β
and provides a final cut (in the interdicted graph) with cost at most α times the optimal cost
of a minimum cut in a solution of interdiction budget at most b.

SWAT 2020

5:4 Vertex Downgrading to Minimize Connectivity

Chestnut and Zenklusen [4] study the network flow interdiction problem (NFI), which is
the undirected and edge interdiction version of WNVIP. NFI is also known to be essentially
equivalent to the budgeted minimum st cut problem [13]. NFI is also a recasting of the
k-route st-cut problem [5, 9], where a minimum cost set of edges must be deleted to reduce
the node or edge connectivity between s and t to be k. The results of Chestnut and
Zenklusen, and Chuzhoy et al. [5] show that an (α, 1)-approximation for WNVIP implies
a 2(α)2-approximation for the notorious Densest k-Subgraph (DkS) problem. The results
of Chuzhoy et al. [5] (Theorem 1.9 and Appendix section B) also imply such a hardness
for NVIP even with unit edge costs. For the directed version, WNVIP is equivalent to
directed NFI (by subdividing arcs or splitting vertices). As noted in [18], there is a symmetry
between the interdicting cost and the capacity on each arc and thus it is also hard to obtain
a (1, β)-approximation for WNVP. Furthermore, Chuzhoy et al. [5] also show that there
is no (C, 1 + γC)-bi-criteria approximation for WNVIP assuming Feige’s Random κ-AND
Hypothesis (for every C and sufficiently small constant γC). For example, under this
hypothesis, they show hardness of (11

10 − ε,
25
24 − ε) approximation for WNVIP.

Chestnut and Zenklusen give a 2(n− 1) approximation algorithm for NFI for any graph
with n vertices. In the special case where the graph is planar, Philips [14] gave an FPTAS
and Zenklusen [18] extended it to handle the vertex interdiction case.

Burch et al. [2] give a (1 + ε, 1), (1, 1 + 1
ε) pseudo-approximation algorithm for NFI. Given

any ε > 0, this algorithm returns either a (1 + ε)-approximation, or a solution violating the
budget by a factor of 1 + 1

ε but has a cut no more expensive than the optimal cost. However,
we do not know which case occurs a priori. In this line of work, Chestnut and Zenklusen [3]
have extended the technique of Burch et al. to derive pseudo-approximation algorithms
for a larger class of NFI problems that have good LP descriptions (such as duals that are
box-TDI). Chuzhoy et al. [5] provide an alternate proof of this result by subdividing edges
with nodes of appropriate costs.

Our Contributions
1. We define and initiate the study of multi-level node downgrading problems by defining the

Network Vertex Leveling Downgrading Problem (NVLDP) and provide the first results
for it. This problem extends the study in [18] of the vertex interdiction problem so as to
consider a richer set of interdiction functions.

2. For the downgrading variant NVDP, we show that the problem of detecting whether
there exists a downgrading set that gives a zero cost cut can be solved in polynomial
time. (Section 2)

3. We design a new LP rounding approximation algorithm that provides a (4, 4)-approxima-
tion to NVDP. We use a carefully constructed auxiliary graph so that the level-cut
algorithm based on ball growing for showing integrality of st-cuts in digraphs (See.
e.g. [6]) can be adapted to choose nodes to downgrade and arcs to cut based on the LP
solution. (Section 3)

4. For the most general version NVLDP with k levels of downgrading each vertex and k2

possible downgraded costs of cutting an edge, we generalize the LP rounding method for
NVDP to give a (4k, 4k)-approximation. The direct extension of the NVDP rounding to
this case only gives an O(k2) approximation. However, we exploit the sparsity properties
of a vertex optimal solution to our LP formulation to improve this guarantee to match
that for the case of k = 1. Details are in the full version [1].

5. As noted before, many previous works showed hardness in obtaining a unicriterion
approximation for WNVIP, which motivates the focus on finding bicriteria approximation
results. We push the hardness result further to show that it is also “DkS hard” to obtain a

H. Aissi, D. Chen, and R. Ravi 5:5

(1, β)-approximation for NVIP and NVIP with unit costs even in undirected graphs. Note
that this is in sharp contrast to the edge interdiction case. NFI in undirected graphs with
unitary interdiction cost and unitary cut cost can be solved by first finding a minimum
cut and then interdicting b edges in that cut [19]. Details are in the full version [1].

6. Burch et al. [2] gave a polynomial time algorithm that finds a (1 + 1/ε, 1) or (1, 1 +
ε)-approximation for any ε > 0 for WNVIP in digraphs. This was reproved more
directly by Chuzhoy et al [5] by converting both interdiction and arc costs into costs on
nodes. We show that this strategy can also be extended to give a simple (4, 4(1 + ε))-
bicriteria approximation for the multiway cut generalization in directed graphs and a
(2(1 + ε) ln k, 2(1 + ε) ln k)-approximation for the multicut vertex interdiction problem in
undirected graphs, for any ε > 0, where k is the number of terminal nodes in the multicut
problem. Details are in the full version [1].

2 Detecting Zero in NVDP in Polynomial Time

In this section, we provide an algorithm to detect, in a given instance of NVDP, whether
there exists nodes to downgrade such that the downgrading cost is less than the budget and
the min cut after downgrading is zero, and hence prove Theorem 1.

In order to demonstrate the main idea of the proof, we first work on a special case of
NVDP. Suppose for every arc e = uv, ce = ceu = cev = 1 and ceuv = 0. In other words, every
arc is unit cost and requires the downgrading of both ends in order to reduce the cost down
to zero. For every vertex v ∈ V (G), we assume the interdiction cost r(v) = 1. We call this
the Double-Downgrading Network Problem (DDNP). We first prove the following.

I Lemma 3. Given an instance of DDNP on graph G with budget b, there exist a polynomial
time algorithm to determine if there exists Y ⊆ V (G) and an st-cut F ⊆ A(G) such that
|Y | ≤ b and cY (F) = 0.

Proof. Let X ⊆ V (G) be a minimum set of vertices to downgrade such that the resulting
graph contains a cut of zero cost. Let F be the set of arcs in the graph induced by X (i.e.,
with both ends in X). Note that F are the only arcs with cost zero and hence F is an arc
cut in G. Furthermore, since X is optimal, X is the set of vertices incident to F (there
are no isolated vertices in the graph induced by X). Let Vs, Vt be the set of vertices in the
component of G\F that contains s, t respectively.

Consider the graph G2 where we add arc uv to G if there exists w ∈ V (G) such that
uv, vw ∈ A(G). First we claim that X is a vertex cut in G2. Suppose there is an st path in
G2 \X where the first arc crossing over from Vs to Vt is uv. Note that any such u ∈ Vs \X
and v ∈ Vt \X are distance 3 apart and hence do not have an arc between them in G2, a
contradiction.

Given any vertex cut Y in G2, we claim that downgrading Y in G creates an st-cut of
zero cost, by deleting the arcs induced by Y from G. Suppose for a contradiction there is an
st-path after downgrading Y and deleting the zero-cost arcs induced by Y . Then the path
cannot have two consecutive nodes in Y . Let y ∈ Y be a single node along the path with
neighbors y−, y+ 6∈ Y . Note that (y−, y+) ∈ G2, and shortcutting over all such single node
occurrences from Y in the path gives us an st-path in G2 \ Y , a contradiction.

This proves that a minimum size downgrading vertex set Y in G whose downgrading
produces a zero-cost st-cut is also a minimum vertex-cut in G2. Then, one can check if
a zero-cut solution exists with budget b for DDNP by simply checking if the minimum
vertex-cut in G2 is at most b. J

SWAT 2020

5:6 Vertex Downgrading to Minimize Connectivity

A0

Al0

A0r

Al0r

A1

Added arcs

Figure 1 Example of Added Arcs in H.

Now, to prove Theorem 1, we have to slightly modify the graph G and the construction
of G2 in order to adapt to the various costs. Our goal is still to look for a minimum vertex
cut in an auxiliary graph using r(v) as vertex cost.

Proof. Given an instance of NVDP on G with a budget b, vertex downgrading costs r(v)
and arc costs ce, ceu, cev, ceu, consider the following auxiliary graph H. First, we delete any
arc e where ce = 0 since they are free to cut anyways. For every arc e = uv where ceuv > 0,
subdivide e with a vertex te and let r(te) =∞. In some sense, since ce, ceu, cev ≥ ceuv > 0,
downgrading u, v cannot reduce the cost of e to zero. Then, we should never be allowed
to touch the vertex te. Let T be the set of all newly-added subdivided vertices. To finish
constructing H, our next step is to properly simulate H2.

We classify arcs into five types based on which of its costs are zero. Note that we no
longer have any arcs where ce = 0. Let A0 := {e = uv : ceu = cev = ceuv = 0}, the arcs where
downgrading either ends reduce its cost to zero. Let Al0 := {e = uv : ceu = ceuv = 0, cev >
0}, A0r := {e = uv : cev = ceuv = 0, ceu > 0}, Al0r := {e = uv : ceuv = 0, ceu, cev > 0}
respectively represent arcs that require the downgrading of its left tail, its right head, or
both in order to reduce its cost. Let A1 be all remaining arcs, those incident to the newly
subdivided vertex te. Now, for every path uvw of length two, we consider adding the arc uw
based on the following rules (see Figure 1 for example of newly added arcs):

If v /∈ T

Add uw? vw ∈

uv ∈ A0 Al0 A0r Al0r A1

A0 No No No No No
Al0 No No Yes Yes Yes
A0r No No No No No
Al0r No No Yes Yes Yes
A1 No No Yes Yes Yes

If v = te ∈ T , do not add uw

The idea is similar to the proof for DDNP. If uv, vw ∈ Al0r, downgrading v is not enough
to cut uv, vw for free. Thus we add arc uw to keep the connectivity. If uv ∈ A0r, then
downgrading v should reduce the cost of uv to 0. Thus, we do not want to bypass v by
adding an arc uw. If v = te ∈ T , since r(v) has high cost, we never cut it so we do not need
to strengthen the connectivity by adding arcs uw.

H. Aissi, D. Chen, and R. Ravi 5:7

Let (X,F) be a solution to NVDP where Σv∈Xr(v) is minimum, F is an st-cut and
cX(F) = 0. Let Vs be all vertices connected to s in G\F . We claim that X is a vertex cut in
H. Suppose not and there exists an st-path in H and let uv be the first arc of the path leaves
Vs. If v = te ∈ T , then arc e ∈ F , contradicting cX(F) = 0. If uv ∈ A(G), then uv ∈ F .
Since u, v /∈ X, cX(uv) > 0, a contradiction. If uv is a newly added arc, then there exist
v′ ∈ V (G) such that uv′v is a path in G. By definition, Vs ∩ T = ∅ so u, v /∈ T . Then, there
are only four cases where we add arc uw to create H. In all cases, downgrading v′ does not
reduce the cost of uv′′, v′v to 0. Since at least one of uv′, v′v ∈ F , it contradicts cX(F) = 0.

Given a minimum vertex cut Y in H, we claim downgrading Y in G creates an st-cut of
zero cost. Note that Y ∩ T = ∅ since any vertex in T is too expensive to cut. Suppose for a
contradiction there is an st-path P that does not cross an arc with cost 0 after downgrading Y .
Let P ′ be the corresponding path in H. If P contains two consecutive vertices u, v ∈ Y , then
ceuv > 0 and it would have been subdivided. This implies there are no consecutive vertices
of Y in P ′. Let uvw be a segment of P ′ where v ∈ Y . Since downgrading v does not reduce
its incident arcs to a cost of 0, it follows that uv ∈ Al0 ∪Al0r ∪A1 and vw ∈ A0r ∪Al0r ∪A1.
Then it follows that uw ∈ A(H). Then, every vertex v ∈ Y ∩ V (P ′) can be bypassed, a
contradiction.

This implies a minimum vertex cut in H is a downgrading set that creates a zero-cost
cut in G. Then, by checking the min-vertex cut cost of H, we can determine whether a
zero-solution exists for G with budget b. J

3 Approximating Network Vertex Downgrading Problem (NVDP)

As an introduction and motivation to the LP model and techniques used to solve NVLDP,
in this section, we focus on the special case NVDP, where there is only one other level to
downgrade each vertex to. Our main goal is to show the following theorem.

I Theorem 4. There exists a polynomial time algorithm that provides a (4, 4)-approximation
to NVDP on an n-node digraph.

3.1 LP Relaxation and Rounding
LP Model for Minimum st-cut. To formulate the NVDP as a LP, we begin with the
following standard formulation of minimum st-cuts [8].

min
∑

e∈A(G)

c(e)xe

s.t. dv ≤ du + xuv ∀uv ∈ A(G) (1)
ds = 0, dt ≥ 1
xuv ≥ 0 ∀uv ∈ A(G) (2)

An integer solution of this problem can be seen as setting d to be 0 for nodes in the s shore
and 1 for nodes in the t shore of the cut. Constraints (1) then insist that the x-value for
arcs crossing the cut to be set to 1. The potential dv at node v can also be interpreted as
a distance label starting from s and using the nonnegative values xuv as distances on the
arcs. Any optimal solution of the above LP can be rounded to an optimal integer solution of
no greater value by using the x-values on the arcs as lengths, growing a ball around s, and
cutting it at a random threshold between 0 and the distance to t (which is 1 in this case).
The expected cost of the random cut can be shown to be the LP value (See e.g., [6]), and
the minimum such ball can be found efficiently using Dijkstra’s algorithm. Our goal in this
section is to generalize this formulation and ball-growing method to NVDP.

SWAT 2020

5:8 Vertex Downgrading to Minimize Connectivity

One difficulty in NVDP comes from the fact that every arc has four associated costs and
we need to write an objective function that correctly captures the final cost of a chosen cut.
One way to overcome this issue is to have a distinct arc associated with each cost. In other
words, for every original arc uv ∈ A(G), we create four new arcs [uv]0, [uv]1, [uv]2, [uv]3 with
cost ce, ceu, ceuv, cev respectively. Then, every arc has its unique cost and it is now easier to
characterize the final cost of a cut. We consider the following auxiliary graph. See Figure 2.

u v w

e = uv f = vw

= (uv)0

(uv)2(uv)1 (uv)3 (vw)1 (vw)2 (vw)3

= (vw)4

(uu) (vv) = (uv)4

= (vw)0

(ww)

[uv]0 [uv]1 [uv]2 [uv]3 [vw]0 [vw]1 [vw]2 [vw]3

Vertices

Arcs

Vertices

Arcs

H

G

Costs Downgrading

Cut

r(u) r(v) r(w)

ce ceu ceuv cev cf cfv cfvw cfw

DLP Downgrading

Potential

Cut

yu yv yw

d(uv)0 d(uv)1 d(uv)2 d(uv)3 d(vv) d(vw)1 d(vw)2 d(vw)3 d(vw)4

x[uv]0 x[uv]1 x[uv]2 x[uv]3 x[vw]0 x[vw]1 x[vw]2 x[vw]3

V 0

V 1

Figure 2 Construction of the auxiliary graph H.

Constructing the Auxiliary Graph H

Let V (H) = V 0(H) ∪ V 1(H) where V 0(H) = {(vv) : v ∈ V (G)} and V 1(H) = {(uv)i :
uv ∈ A(G), i = 1, 2, 3}. Define A(H) = {[uv]0 = (uu)(uv)1, [uv]1 = (uv)1(uv)2, [uv]2 =
(uv)2(uv)3, [uv]3 = (uv)3(vv) : uv ∈ A(G)}. Essentially, the vertices (uu) ∈ V 0(H) corre-
spond to the original vertices u ∈ V (G) and for every arc uv ∈ A(G), we replace it with a path
(uu)(uv)1(uv)2(uv)3(vv) where the four arcs on the path are [uv]0, [uv]1, [uv]2, [uv]3. For
convenience and consistency in notation, we define (uv)0 := (uu), (uv)4 := (vv). Note that
the vertices of H will always be denoted as two lowercase letters in parenthesis while arcs in H
will be two lowercase letters in square brackets with subscript i = 0, 1, 2, 3. The cost function
c : A(H) → R≥0 is as follows: c([uv]0) = ce, c([uv]1) = ceu, c([uv]2) = ceuv, c([uv]3) = cev.
Since we can only downgrade vertices in V 0, to simplify the notation, we retain r(v) as the
cost to downgrade vertex (vv) ∈ V 0. Note that |V (H)| = 3|A(G)|+ |V (G)| = O(n+m).

Downgrading LP

Given the auxiliary graph H, we can now construct an LP similar to the one for st-
cuts. For vertices (vv) ∈ V 0(H) corresponding to original vertices of G, we define a
downgrading variable yv representing whether vertex v is downgraded or not in G. For every
arc [uv]i ∈ A(H), we have a cut variable x[uv]i to indicate if the arc belongs in the final
cut of the graph. Lastly for all vertices (uv)i ∈ V (H), we have a potential variable d(uv)i
representing its distance from the source (ss).

H. Aissi, D. Chen, and R. Ravi 5:9

The idea is to construct an LP that forces s, t to be at least distance 1 apart from each
other as before. This distance can only be contributed from the arc variables x[uv]i . The
downgrading variables yv imposes limits on how large these distances x[uv]i of some of its
incident arcs can be. The motivation is that the larger yu and yv are, the more we should
allow arc [uv]2 to appear in the final cut over the other arcs [uv]0, [uv]1, [uv]3 in order to
incur the cheaper cost of ceuv. We consider the following downgrading LP henceforth called
DLP.

Figure 2 includes the list of variables associated with H. In the LP, our objective is to
minimize the cost of the final cut. Constraint (3) corresponds to the budget constraint for the
downgrading variables. Constraint (4) is analogous to Constraint (1) in the LP for min-cuts.

Constraint (5) relates cut and downgrade variables. If we do not consider any constraint
related to downgrading variables for a moment, the LP will naturally always want to choose
the cheapest arc [uv]2 over [uv]0, [uv]1, [uv]3 when cutting somewhere between (uu) and (vv).
However, the cut should not be allowed to go through [uv]2 if one of u, v is not downgraded.
In other words x[uv]2 should be at most the minimum of yu, yv. This reasoning gives the
constraint x[uv]2 , x[uv]3 , x[vw]1 and, x[vw]2 all need to be ≤ yv for in-arcs uv and out-arcs vw.
Now consider an arc f = vw ∈ E(G). In an integral solution, if v is downgraded, the arc
vw incurs a cost of either cfv or cfvw but not both, since v must lie on one side of the cut.
This translates to a LP solution where only one of the arcs [vw]1, [vw]2 is in the final cut.
Thus, a better constraint to impose is x[vw]1 + x[vw]2 ≤ yv. We can also similarly insist that
x[uv]2 +x[uv]3 ≤ yv for in-arcs uv. To push this even further, consider a path uvw in G. In an
integral solution, at most one of the arcs uv, vw appears in the final cut. This implies that if
v is downgraded, then only one of the costs cev, ceuv, cfv, cfvw is incurred. This corresponds
to the tighter constraint (5). Note that for every vertex v ∈ V (G), for every pair of incoming
and outgoing arcs of v, we need to add one such constraint. Then for every vertex in G, we
potentially have to add up to n2 many constraints. In total, the number of constraints would
still only be O(n3). The last few constraints in DLP make sure s and t are 1 distance apart
and cannot themselves be downgraded. The final LP relaxation is given below.

min
∑

[uv]i∈A(H)

c([uv]i)x[uv]i

s.t.
∑

(vv)∈V 0(H)

r(v)yv ≤ b (3)

d(uv)i+1 ≤ d(uv)i + x[uv]i ∀arc [uv]i, 0 ≤ i ≤ 3 (4)
x[uv]2 + x[uv]3 + x[vw]1 + x[vw]2 ≤ yv ∀ path (uv)3(vv)(vw)1 (5)
d(ss) = 0, d(tt) = 1, ys = 0, yt = 0

The following lemmas shows the validity of our defined DLP for NVDP.

I Lemma 5. An optimal solution to NVDP provides a feasible integral solution to DLP with
the same cost.

Proof. Given a digraph G with cost functions ce, ceu, cev, ceuv, a source s and a sink t, let
Y ⊆ V (G), F ⊆ A(G) be an optimal solution to NVDP where r(Y) ≤ b, F is an st-cut
and cY (F) is minimum. Then, a feasible solution (x, y, d) to DLP on the graph H can be
constructed as follows:

For the cut variables x, let
x[uv]0 = 1 if uv ∈ F and u, v /∈ Y , 0 otherwise,
x[uv]1 = 1 if uv ∈ F and u ∈ Y, v /∈ Y , 0 otherwise,

SWAT 2020

5:10 Vertex Downgrading to Minimize Connectivity

x[uv]2 = 1 if uv ∈ F, u, v ∈ Y , 0 otherwise,
x[uv]3 = 1 if uv ∈ F, u /∈ Y, v ∈ Y , 0 otherwise.

For the downgrading variables y, let yu = 1 if u ∈ Y , 0 otherwise.
For the potential variables d, let d[uv]i = 0 if [uv]i ∈ S and 1 otherwise,

where we define S, T as follows. Let F ∗ be the set of arcs in H whose x variable is 1. We
claim that F ∗ is an st-cut in H. Note that every st-path Q in H corresponds to an st-path
P in G. Then, there is an arc uv in P that is also in F . Then, it follows from construction
that the x value for one of [uv]0, [uv]1, [uv]2, [uv]3 is 1 and thus there exists i = 0, 1, 2, 3 such
that [uv]i ∈ F ∗. Note that [uv]i is also in Q. Therefore F ∗ is an st-cut in H. Then, let S be
the set of vertices in H\F ∗ that is connected to the source s and let T = V (H)\S.

Note that by construction, (x, y, d) is integral and is a feasible solution to DLP. The final
objective value Σ[uv]i∈A(H)c([uv]i)x[uv]i = Σ[uv]i∈F∗c([uv]i) and by construction, it matches
the cost cY (F ∗). J

I Lemma 6. An integral solution (x∗, y∗, d∗) to DLP with objective value c∗ corresponds to
a feasible solution (Y ∗, E∗) to NVDP such that cY ∗(E∗) ≤ c∗.

Proof. Given a directed graph G and its auxiliary graph H, let (x∗, y∗, d∗) be an optimal
integral solution to DLP with an objective value of c∗. Let F ∗ ⊆ A(H) be the set of arcs
whose x∗ value is 1. Let Y ∗ ⊆ V 0(H) whose y value is 1. Let E∗ ⊆ A(G) = {uv ∈ A(G) :
[uv]i ∈ F ∗ for some i = 0, 1, 2, 3} be the set of original arcs of those in F ∗.

Note that by construction, Y ∗ does not violate the budget constraint. Every st-path in
G corresponds directly to an st-path in H. Since F ∗ is an st-cut in H, it follows that E∗ is
an st-cut in G. Then it remains to show that c∗ ≥ cY ∗(E∗).

Note that

c∗ = Σ[uv]i∈A(H)c([uv]i)x∗[uv]i = Σe=uv∈A(G)cex
∗
[uv]0 + ceux

∗
[uv]1 + ceuvx

∗
[uv]2 + cevx

∗
[uv]3 .

Meanwhile, note that cY ∗(E∗) = Σe=uv∈A(G)c
Y ∗(e). Thus, it suffices to prove the following

claim.

B Claim 7. For every arc e = uv ∈ A(G), Σ3
i=0c([uv]i)x∗[uv]i ≥ c

Y ∗(e).

First, note that if e = uv /∈ E∗, then cY ∗(e) = 0 by definition fo E∗. Then, the inequality
is trivially true. Thus, we may assume uv ∈ E∗ which implies there exist i = 0, 1, 2, 3 such
that [uv]i ∈ F ∗ and x∗[uv]i = 1. We will now break into cases depending on whether u, v ∈ Y ∗.

Suppose u, v /∈ Y ∗. Then, y∗u = y∗v = 0 and by constraint (5) in DLP, it follows that the ∗x
value for [uv]1, [uv]2, [uv]3 are all 0. Then, [uv]0 ∈ F ∗ and Σ3

i=0c([uv]i)x∗[uv]i = ce = cY
∗(e).

Now, assume u ∈ Y ∗, v /∈ Y ∗. By constraint (5), x∗[uv]2 + x∗[uv]3 ≤ y∗v = 0 and thus
only the x∗ value for [uv]0, [uv]1 can be 1. Since we have an integral solution, it follows
that x∗[uv]0 + x∗[uv]1 ≥ 1, since e ∈ E∗. Note that ce ≥ ceu. Then Σ3

i=0c[uv]ix
∗
[uv]i =

cex
∗
[uv]0 + ceux

∗
[uv]1 ≥ ceu(x∗[uv]0 + x∗[uv]1) ≥ ceu = cY

∗(e). Note that a similar argument can
be made for the case when u /∈ Y ∗, v ∈ Y ∗.

Lastly, assume both u, v ∈ Y ∗. Then cY ∗(e) = ceuv. Note that ce, ceu, cev ≥ ceuv. Then,
Σ3
i=0c([uv]i)x∗[uv]i ≥ Σ3

i=0ceuvx
∗
[uv]i ≥ ceuv. The last inequality is due to the fact that there

exists i = 0, 1, 2, 3 such that [uv]i ∈ F ∗. This completes the proof of claim and thus also our
lemma. J

H. Aissi, D. Chen, and R. Ravi 5:11

Bicriteria Approximation for NVDP

We now prove Theorem 4. We will work with an optimal solution of DLP defined on the
auxiliary graph H. The idea is to use a ball-growing algorithm that greedily finds cuts
until one with the promised guarantee is produced. The reason this algorithm is successful
is proved by analyzing a randomized algorithm that picks a number 0 ≤ α ≤ 1 uniformly
at random and chooses a cut at distance α from the source s. Then we choose vertices
to downgrade and arcs to cut based on arcs in this cut at distance α. By computing the
expected downgrading cost and the expected cost of the cut arcs, the analysis will show the
existence of a level cut that satisfies our approximation guarantee.

To achieve the desired result, we cannot work with the graph H directly. This is because
the ball-growing algorithm works only if the probability of cutting some arc can be bounded
within some range. This bound exists for the final cut arcs (as in the proof for st-cuts) but
not for the final downgraded vertices. Consider a vertex v; it is downgraded if any arc of the
form [uv]2, [uv]3, [vw]1, [vw]2 is cut in H. Thus it has the potential of being cut anywhere
between the range of the vertices (uv)2 and (vw)3. We would like to use Constraint (5) to
bound this range but we cannot do this directly since we do not know the length of the
arc [vw]0 which also lies in this range. To circumvent this difficulty and properly employ
Constraint (5), we will construct a reduced graph H ′ obtained by contracting some arcs.

Let (x∗, y∗, d∗) be an optimal solution to DLP where the optimal cost is c∗. It follows
from the validity of our model that c∗ is at most the cost of an optimal integral solution.

Constructing Graph H ′

For every arc uv ∈ A(G), we compare the value x∗[uv]0 and x∗[uv]1 + x∗[uv]2 + x∗[uv]3 . The
reason we separate this way is because the variables in the second term are influenced by the
downgrading values on u, v. Thus the more we downgrade u and v, the larger we are allowed
to increase the second sum, and the more length we can place between u and v in these
variables. For an arc uv ∈ A(G), if x∗[uv]0 < x∗[uv]1 + x∗[uv]2 + x∗[uv]3 , we say uv is an aided arc
since the majority of its length is contributed by the downgrading values on the u, v and
thus the downgrading values help to generate its length. For all other arcs, we say uv is an
unaided arc since more of its length would be contributed by the arc [uv]0, corresponding
to simply paying for the original cost of deletion ce without the aid from downgrading. To
construct H ′, if uv is an aided arc, then contract [uv]0. Otherwise, contract [uv]1, [uv]2, [uv]3.

Consider a path P = (uv)0(uv)1(uv)2(uv)3(uv)4 in H. Note that the length of this path
is shortened in H ′ depending on whether uv is an aided/unaided arc. However, since we
always retain the larger of x∗[uv]0 and x∗[uv]1 + x∗[uv]2 + x∗[uv]3 in H ′, the path’s length is at
most halved. Then it follows that the distance between any two vertices in H ′ is reduced to
at most half its original value in H. In particular, it follows that the shortest path between
the source and the sink is at least 1/2. This property will be crucial in arguing that the
solution chosen by our algorithm has low cost relative to the LP optimum.

We make one last adjustments to the weight of aided arcs. Let D∗((uv)i) be the shortest
path distance from the source (ss) to the vertex (uv)i viewing x∗ as lengths in H ′. Consider
a path [uv]1[uv]2[uv]3 of an aided arc. Note that the distances of nodes (uu), (uv)2, (uv)3 are
strictly increasing but D∗((vv)) might be strictly less than D∗((uv)3) (e.g. via an alternate
shorter path to (vv) avoiding (uu)). In fact D∗((vv)) might even be smaller than D∗((uu)).
This makes the analysis of the usage of arcs of the form [uv]i in the cutting procedure difficult.
To avoid this difficulty, for any aided arcs uv where D∗((vv)) < D∗((uu)), replace the path
[uv]1[uv]2[uv]3 with a single dummy arc. Then we redefine a new weight variable x′: for every

SWAT 2020

5:12 Vertex Downgrading to Minimize Connectivity

aided arc uv, where 0 ≤ D∗((vv))−D∗((uu)) < Σ3
i=1x

∗
[uv]i , let x

′
[uv]i = x∗[uv]i

D∗((vv))−D∗((uu))
Σ3
i=1x

∗
[uv]i

.
The weight of all dummy arcs are 0. For all other arcs, the x′ variables stay the same. This
step guarantees that for all aided arcs that have not been replaced by dummy arcs, the
distances of (uu), (uv)2, (uv)3, (vv) are in non-decreasing order. For those that have been
replaced by the dummy arc, we will ensure that these arcs do not occur in any cut chosen in
our algorithm. Two important things to keep in mind: x′ ≤ x∗ for any arc while the distance
of any vertex from the source remains unchanged. In particular D∗((tt)) remains at least
1/2. Our ball growing algorithm uses the modified distances x′.

Algorithm 1 Ball-Growing Algorithm for NVDP.

Require: a graph G and its auxiliary graph H ′ with non-negative arc-weights x′[uv]i , source
(ss), sink (tt), arc cut costs c([uv]i) and vertex downgrading costs r(v)

Ensure: a vertex set V ′ and an arc cut E′ of G such that Σv∈V ′r(v) ≤ 4b, cV ′(E′) ≤ 4c∗
1: initialization V = {(ss)}, D((uv)i) = 1 for all (uv)i ∈ V (H ′)
2: repeat
3: let X ′ ⊆ A(H ′) be the cut induced by V
4: find [uv]i = (uv)i(uv)i+1 ∈ X ′ minimizing D((uv)i) + x′[uv]i
5: update by adding (uv)i+1 to V , update D((uv)i+1) = D((uv)i) + x′[uv]i
6: let E′ = {uv ∈ A(G) : {[uv]0, [uv]1, [uv]2, [uv]3} ∩ X ′ 6= ∅} and V ′ = {v ∈ V (G) :

{[uv]2, [uv]3, [vw]1[vw]2} ∩X ′ 6= ∅ for some u,w ∈ V (G)}
7: until Σv∈V ′r(v) ≤ 4b and cV ′(E′) ≤ 4c∗
8: output the set V ′, E′

Algorithm 1 is simply a restatement of Dijkstra’s algorithm run on H ′. It follows the
general ball-growing technique and looks at cuts X ′ at various distances from the source.
Note that the algorithm adds at least one vertex to a node set V at each iteration so it runs
for at most |V (H ′)| = O(m) steps when applied to the graph H ′ (Recall that m denotes the
number of arcs in the original graph G).

At each iteration, the algorithm computes a cut X ′ ⊆ A(H ′) and considers the set E′
of original arcs associated to those in X ′ and the vertex set V ′ representing the set of
vertices we should downgrade based on the arcs in X ′. For example, if [uv]2 ∈ X ′, then we
should downgrade both u and v. Note that every chosen cut only contains arcs [uv]i where
D((uv)i) ≤ D((uv)i+1) so they do not contain any dummy arcs. Thus we can essentially
ignore dummy arcs in accounting for the cost of the chosen cut. Furthermore, since X ′ is a
cut in H ′, it follows that E′ is a cut in G.

To argue the validity of the algorithm, we show that there exists a cut X ′ at some distance
α ≤ D(tt) from the source such that the associated sets V ′, E′ provides the approximation
guarantee.

I Lemma 8. There exists X ′, V ′, E′ such that Σv∈V ′r(v) ≤ 4b, cV ′(E′) ≤ 4c∗

The main idea of the proof is to pick a distance uniformly at random between zero and
the distance of (tt) (which is at least half) and study the cut at that distance. We claim
that the extent to which an arc is cut (chosen in E′ above) in the random cut is at most
twice its x∗-value, using the fact that the range of this arc is at most its x∗-value and the
range of the cutting threshold is at least half. When nodes are chosen in the random cut
(in V ′ above) to be downgraded, we argue that the range of cutting any node is at most
the maximum of the values in the left hand side of the constraints (5) corresponding to this
node, which in turn is at most its y∗-value. Again, since the range of the cutting threshold

H. Aissi, D. Chen, and R. Ravi 5:13

is at least half, we infer that the probability of downgrading a node in the cutting process
is at most twice its y∗-value. To obtain a cut where we simultaneously do not exceed both
bounds, we use Markov’s inequality to argue a probability of at least half of being within
twice these respective expectations, hence giving us a single cut with both bounds within
four times their respective LP values. The detailed proof follows.

Proof of Lemma 8. Let D((uv)i) be the shortest-path distance from the source (ss) to any
vertex (uv)i ∈ V (H ′) viewing the x′ variables as lengths. Note that D((tt)) ≥ 1/2 since the
original distance is at least 1 and H ′ reduces the distance by at most 1/2. Note that the
triangle-inequality holds under this distance metric where D((uv)i)−D((u′v′)i′) is at most
the distance between (uv)i and (u′v′)i′ .

Defining the Random Variables. Let α be chosen uniformly at random from the interval
[0, D((tt))]. Consider Xα := {[uv]i ∈ A(H ′) : D((uv)i) ≤ α < D((uv)i+1)}, the cut at
distance α in H ′. Let Eα = {uv ∈ A(G) : [uv]i ∈ Xα for some i = 0, 1, 2, 3}, representing the
original arcs corresponding to those in Xα. Let Vα = {v ∈ V (G) : {[uv]2, [uv]3, [vw]1, [vw]2}∩
Xα 6= ∅ for some u,w ∈ V (G)}, representing the set of vertices we should downgrade so
that the final cost of the arcs Eα matches the cost associated to Xα. More precisely, we
want cVα(Eα) = Σ[uv]i∈Xαc([uv]i). Note that by construction Eα is an st-cut in G. Let
V = Σv∈Vαr(v), E = cVα(Eα). Our goal is to show that these two random variables V, E have
low expectations and obtain our approximation guarantee using Markov’s inequality. In
particular, we will prove that E[V] ≤ 2b, and that E[E] ≤ 2c∗ where c∗ is the optimal value
of DLP.

To understand E , for every arc e = uv ∈ A(G), we introduce the indicator variables Ee
to be 1 if arc e ∈ Eα and 0 otherwise. Then E = Σe∈A(G)EecVα(e). To study the value of
EecVα(e), we can break into several cases depending on which arc [uv]i ∈ Xα. Note that if
[uv]i /∈ Xα for i = 0, 1, 2, 3, then e /∈ Eα and EecYα(e) = 0. Next, if we assume [uv]i ∈ Xα,
then one can check that cVα(e) ≤ c([uv]i) as in the proof of Claim 7.

Slightly abusing the notation, define the indicator variable E[uv]i for arc [uv]i ∈ A(H) to
be 1 if [uv]i ∈ Xα and 0 otherwise. Then, we can upper-bound the expectation of E using
conditional expectations of the events E[uv]i = 1 as follows.

E[E] =Σe∈A(G)E[EecVα(e)]
=Σe∈A(G)Σ3

i=0E[cVα(e)|E[uv]i = 1] · Pr[E[uv]i = 1]
≤Σe∈A(G)Σ3

i=0c([uv]i)Pr[E[uv]i = 1]

To understand the probability of E[uv]i = 1, note that an arc [uv]i ∈ Xα if and only if
D((uv)i) ≤ α < D((uv)i+1). Then, Pr[[uv]i ∈ Xα] ≤ (D((uv)i+1) − D((uv)i)/D((tt)) ≤
2x′[uv]i ≤ 2x∗[uv]i since D((tt)) ≥ 1/2. Combining with the previous inequalities, we see that

E[E] ≤Σuv∈A(G)Σ3
i=0c([uv]i)Pr[E[uv]i = 1]

≤Σuv∈A(G)Σ3
i=0c([uv]i)2x∗[uv]i = 2c∗.

Next, we show a similar result for V. Note that E[V] = Σv∈V (G)r(v) · Pr[v ∈ Vα].
Recall that v ∈ Vα if and only if there exists a vertex u or w such that at least one of
[uv]2, [uv]3, [vw]1, [vw]2 ∈ Xα. Note that if uv is an unaided arc, then [uv]2, [uv]3 would
have been contracted in H ′ and would never be chosen in Xα. If uv is an aided arc that
was turned into a dummy arc, it would also never be chosen in the final cut. Therefore,
we only need to consider aided arcs that have not been turned into dummy arcs. In order

SWAT 2020

5:14 Vertex Downgrading to Minimize Connectivity

to upper-bound the probability of choosing v into Vα, we thus need to find the range of
possible α that might affect v. For any vertex v ∈ V (G), it follows that we only need to
examine aided arcs incident to the vertex v. Let u ∈ V (G) such that uv ∈ A(G), uv is
an aided arc and D((uv)2) is minimum. Let w ∈ V (G) such that vw is an aided arc and
D((vw)3) is maximum. Note that for any aided arcs zv, vz′ that are not replaced by a dummy
arc, D((zz)) ≤ D((zv)2) ≤ D((zv)3) ≤ D((vv)) ≤ D((vz′)2) ≤ D((vz′)3) ≤ D((z′z′)) by
our choice of x′. For all such arcs of the form [zv]2, [zv]3, [vz′]1, [vz′]2, their extremities
are in the distance range D((uv)2), D((vw)3). Then, v is chosen only if α is between
D((uv)2) and D((vw)3). The distance between (uv)2 and (vw)3 is upper-bounded by the
length of a shortest path in H ′. Since vw is an aided arc, [vw]0 is contracted in H ′. Then
(uv)2(uv)3(vv)(vw)1(vw)2 is a path in H ′. Thus D((vw)3) − D((uv)2) ≤ x′[uv]2 + x′[uv]3 +
x′[vw]1 + x′[vw]2 ≤ x

∗
[uv]2 + x∗[uv]3 + x∗[vw]1 + x∗[vw]2 ≤ y

∗
v where the last inequality follows from

Constraint (5)1. Thus, Pr[D((uv)2) ≤ α < D((vw)3)] ≤ y∗v/D((tt)) ≤ 2y∗v . Therefore

E[V] =Σv∈V (G)r(v) · Pr[v ∈ Vα]
≤Σv∈V (G)r(v)2y∗v ≤ 2b.

Lastly, by Markov’s inequality, Pr[V ≤ (2 + ε)2b] ≥ 1− 1/(2 + ε), P r[E ≤ 4c∗] ≥ 1/2 for
any ε > 0. Then it follows there exists 0 ≤ α ≤ D((tt)) such that Σv∈Vαr(v) ≤ 4b+ 2εb and
cVα(Eα) ≤ 4c∗. One can choose ε such that 2εb < 1. Since r(v) is always integral, it follows
that Σv∈Vαr(v) ≤ 4b, proving Lemma 8. J

It is well known that the Ball Growing algorithm (which is Djikstra’s algorithm run on
H ′) selects a linear number of nested cuts that represent the set of all cuts at all distances
between zero and D((tt)) from the source. It follows from Lemma 8 that one of these cuts
meets the desired guarantees. Theorem 4 is then proved by simply running Algorithm 1 on
the auxiliary graph H ′.

References
1 Hassene Aissi, Da Qi Chen, and R. Ravi. Downgrading to minimize connectivity, 2019.

arXiv:1911.11229.
2 C. Burch, R. Carr, S. Krumke, M. Marathe, C. Phillips, and E. Sundberg. A decomposition-

based pseudoapproximation algorithm for network flow inhibition. In Woodruff D. L., editor,
Network Interdiction and Stochastic Integer Programming, volume 26, pages 51–68. springer,
2003.

3 Stephen R Chestnut and Rico Zenklusen. Interdicting structured combinatorial optimization
problems with {0, 1}-objectives. Mathematics of Operations Research, 42(1):144–166, 2016.

4 Stephen R Chestnut and Rico Zenklusen. Hardness and approximation for network flow
interdiction. Networks, 69(4):378–387, 2017.

5 Julia Chuzhoy, Yury Makarychev, Aravindan Vijayaraghavan, and Yuan Zhou. Approximation
algorithms and hardness of the k-route cut problem. ACM Transactions on Algorithms (TALG),
12(1):2, 2016.

6 Julia Chuzoy. Flows, cuts and integral routing in graphs - an approximation algorithmist’s
perspective. In Proc. of the International Congress of Mathematicians, pages 585–607, 2014.

1 This is the main reason why we distinguish between aided and unaided arcs and contract the appropriate
one to construct H ′. Without the contraction, the distance between (uv)2 and (vw)3 includes the arc
[vw]0 and thus could be arbitrarily larger than y∗v . Also, without rescaling x∗ to x′, it is possible that
some D((zv)3) > D((vw)3). Then, the range in which v is downgraded can go much further past y∗v .

http://arxiv.org/abs/1911.11229

H. Aissi, D. Chen, and R. Ravi 5:15

7 Bruce Golden. A problem in network interdiction. Naval Research Logistics Quarterly,
25(4):711–713, 1978.

8 Bertrand Guenin, Jochen Könemann, and Levent Tuncel. A gentle introduction to optimization.
Cambridge University Press, 2014.

9 Guru Guruganesh, Laura Sanita, and Chaitanya Swamy. Improved region-growing and
combinatorial algorithms for k-route cut problems. In Proceedings of the twenty-sixth annual
ACM-SIAM symposium on Discrete algorithms, pages 676–695. Society for Industrial and
Applied Mathematics, 2015.

10 T. E. Harris and F. S. Ross. Fundamentals of a method for evaluating rail net capacities.
Technical report, RAND CORP SANTA MONICA CA, Santa Monica, California, 1955.

11 Eitan Israeli and R Kevin Wood. Shortest-path network interdiction. Networks: An Interna-
tional Journal, 40(2):97–111, 2002.

12 André Linhares and Chaitanya Swamy. Improved algorithms for mst and metric-tsp interdiction.
Proceedings of 44th International Colloquium on Automata, Languages, and Programming,
32:1–14, 2017.

13 Christos H Papadimitriou and Mihalis Yannakakis. On the approximability of trade-offs and
optimal access of web sources. In Proceedings 41st Annual Symposium on Foundations of
Computer Science, pages 86–92. IEEE, 2000.

14 Cynthia A. Phillips. The network inhibition problem. In Proceedings of the Twenty-fifth
Annual ACM Symposium on Theory of Computing, STOC ’93, pages 776–785, New York, NY,
USA, 1993. ACM. doi:10.1145/167088.167286.

15 Alexander Schrijver. On the history of the transportation and maximum flow problems.
Mathematical Programming, 91(3):437–445, 2002.

16 R. Wood. Deterministic network interdiction. Mathematical and Computer Modeling, 17(2):1–
18, 1993.

17 R. Zenklusen. Matching interdiction. Discrete Applied Mathematics, 145(15), 2010.
18 R. Zenklusen. Network flow interdiction on planar graphs. Discrete Applied Mathematics,

158(13), 2010.
19 R. Zenklusen. Connectivity interdiction. Operations Research Letters, 42(67):450–454, 2014.
20 R. Zenklusen. An O(1) approximation for minimum spanning tree interdiction. Proceedings of

56th Annual IEEE Symposium on Foundations of Computer Science, pages 709–728, 2015.

SWAT 2020

https://doi.org/10.1145/167088.167286

	Introduction
	Detecting Zero in NVDP in Polynomial Time
	Approximating Network Vertex Downgrading Problem (NVDP)
	LP Relaxation and Rounding

